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Cohen-Macaulay types of Hall lattices
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Abstract. The submodule lattice of a finite modules over a discrete valuation ring is
called the Hall lattice. In this paper, extending the previous work [7], we consider Cohen-
Macaulay types of Hall lattices and show that they are polynomials in q(q is the number
of elements of the residue field of the discrete valuation ring) with integer coefficients.
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1. Introduction

In this section, we summarize basic definitions and results about par-
tially ordered sets (posets, for short) and Stanley-Reisner rings. We be-
gin with the definition of Stanley-Reisner rings of finite posets and Cohen-
Macaulay types of them. See [2], [3], [8] for precise informations.

Let P be a poset. In this paper, the cardinality \# P of a poset P is always
finite. We consider a polynomial ring A=K[x|x\in P] over a field K whose
indeterminates are the elements of P . Let I be the ideal of A generated by
the set of all the monomials {xy\in A|x\in P and y\in P are incomparable.}.
The quotient ring A/I is called the Stanley-Reisner ring of P over K . A
finite free resolution of K[P] over A is an exact sequence of A-modules

0arrow F_{h}arrow arrow F_{1}arrow F_{0}arrow K[P]arrow 0 ,

where each F_{i} is a free A-module of finite rank r_{i} . Here we can minimize h
and all r_{i} ’s simultaneously [2]. The minimal one is called the minimal free
resolution of K[P] over A . The minimal free resolution always exists and is
uniquely determined. Minimal free resolutions are one of a main interest in
the commutative ring theory for a reason that we can compute the Hilbert
function of a ring from that [2, p.151]. If the above sequence is a minimal
free resolution of K[P] over A, then \beta_{i}=rankF_{i} is called the i-th Betti
number and h=hd_{A}(K[P]) the homological dimension of K[P] over A .

The homological dimension hd_{A}(K[P]) is estimated as follows. Let v be
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the cardinality of P and d the maximum value of cardinalities of chains of
P . Here a ‘chain’ means a totally ordered subset of P . Then the following
inequality holds (e.g., [4]) :

v-d\leq hd_{A}(K[P])\leq vt

In particular, if the left equality is satisfied, then P is called a Cohen-
Macaulay poset. Finite modular lattices are one of important examples. If
P is Cohen-Macaulay, then the homological dimension of K[P] is v-d and
the (v-d)-th Betti number is called the Cohen-Macaulay type of K[P] ,
or simply of P. and denoted by type(K[P}). The Cohen-Macaulay type
type(K[P]) has rich background. For example, type(K [P] ) is the minimal
number of the generators of the canonical module of K[P] . (See, e.g. , [2]
for precise informations.) Also it would be of great interest to find a com-
binatorial formula for Cohen-Macaulay types of Cohen-Macaulay posets.
T. Hibi considered this problem and find such a formula for a special class
of Cohen-Macaulay posets, which plays a fundamental role in this paper.
In the rest of this section, we briefly survey his result. Let P be a poset.
Let \hat{P} denote P\cup\{\hat{0},\hat{1}\} , where all elements x of P satisfy the condition
\hat{0}<x<\hat{1} . The M\"obius function \mu=\mu_{\hat{P}} of \hat{P} is a function

\mu : \{(x, y)\in\hat{P}\cross\hat{P}|x\leq y\}arrow Z

defined by the following two conditions:
1. \mu(x, x)=1 , for all x\in\hat{P} ;
2. if x<y in \hat{P} , then \mu(x, y)=-\sum_{x\leq z<y}\mu(x, z) .

Let us consider a chain of \hat{P}

C : \hat{0}=x_{0}<x_{1}< . <x_{s}<x_{s+1}=\hat{1} ,

( s is an arbitrary positive integer) which begins at \hat{0} and finishes at \hat{1} . If \mu(C)

denotes \prod_{i=0}^{s}\mu(x_{i}, x_{i+1})\in Z , then C is called an essential chain if \mu(C)\neq 0 ,
i.e., for each interval x_{i}<x_{i+1} we have \mu(x_{i}, x_{i+1})\neq 0 . A minimal essential
chain (m.e.c ., for short) is by definition a essential chain in which all the
subchains (strictly included) are not essential, i.e., C is m.e.c. if and only if
any strictly included subchains D\subset C such that \hat{0},\hat{1}\in D are not essential,
and the set of all the minimal essential chains of \hat{P} will be denoted by
\mathcal{F}_{\hat{P}} . If \hat{P} is a finite modular lattice, then the Cohen-Macaulay type of P
is described by the M\"obius function. The following proposition is due to
T. Hibi [4].
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Proposition 1 Let K be a field. If \hat{P} is a finite modular lattice, then

type
(K[P])= \sum_{C\in F_{\hat{P}}}|\mu(C)|

\square

Note that, if P already has the minimum element and the maximum
element, adding \hat{0} and \hat{1} to a m.e.c. of P has no effect on the value of the
M\"obius function, i.e., \mu_{\hat{P}}(C.)=\mu_{\hat{P}}(C\cup\{\hat{0},\hat{1}\}) for any m.e.c. C of P , since
\mu(x, y)=-1 if there exists no element z\in P which satisfies x<z<y . In
this case we only have to take the sum in the formula over the set \mathcal{F}_{P} of
all the minimal essential chains of P , and we denote the minimum element
and the maximum element of P by \hat{0},\hat{1} respectively.

2. Finite modules over a discrete valuation ring

In this section, we review some fundamental facts about finite modules
over a discrete valuation ring. Also, we define the Hall lattices to be the
submodule lattices of such modules and state several facts about them which
we need later.

Let R be a discrete valuation ring [1, p.94], \pi its maximal ideal, and
k=R/\pi the residue field. We suppose that k is a finite field of cardinality q

throughout this paper. Let M be a finite R-module. Since R is a principal
ideal domain, M can be decomposed into a direct sum of cyclic R-modules
as follows:

M\cong\oplus R/\pi^{\lambda_{i}}i=1n ,

where all \lambda_{i} are positive integers. We may assume \lambda_{1}\geq\lambda_{2}\geq \geq\lambda_{n} , i.e.,
\lambda= (\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}) is a partition. This partition \lambda is determined uniquely
for M and is called the type of M. denoted by type(M). Therefore M is
cyclic if and only if type(M) =(r) for some positive integer r . Also, if we
define an elementary R-module as a R-module which satisfies the condition
\pi M=0 , then M is elementary if and only if type(M) =(1, \sim. . . ,1) for some

nonnegative integer n . In other words, an elementary R-mntimesodules is finite
dimensional vector space over the residue field k .

Here we collect some notations and facts about partitions we use in
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what follows. Let \lambda=(\lambda_{i}) be a partition. Then |\lambda| means the sum \sum_{i\geq 1}\lambda_{i}

of all components of \lambda . The depth of \lambda is defined to be the maximum number
i such that \lambda_{i}\neq 0 . If we define \lambda_{j}’:=\#\{i|\lambda_{i}\geq j\} , then \lambda’=(\lambda_{j}’) is also a
partition called the conjugate of \lambda[6, p.2] . If we define n( \lambda)=\sum_{i\geq 1}(i-1)\lambda_{i} ,
then we have n( \lambda)=\sum_{j\geq 1}(_{2}^{\lambda_{j}’})[6, p.3] . Let lJ =(\nu_{i}) be an another partition.
If lJ_{i}\leq\lambda_{i} holds for each i\geq 1 , then we write \nu\subset\lambda . Also, a partition (\lambda_{i}+lJ_{i})

is denoted by \lambda+\nu .
Let N be a submodule of M\tau Then the quotient module M/N is also fi-

nite and its type is called the cotype of N in M , and denoted by cotype_{M}(N) .
If type(TV) =\mu=(\mu_{i}) and cotype_{M}(N)=\nu=(\nu_{i}) , then we have \mu , lJ \subset\lambda[6 ,
p. 185 (3.1) ] .

Next we consider the dual of M (For precise informations, see [6, Chap-
ter 2]). If x is a generator of \pi , then \{R/\pi^{n}, x^{n}\} is a direct system and let
E denotes the direct limit of this system. The dual \hat{M} of M is defined to
be

\hat{M}=Hom_{R}(M, E) .

The dual \hat{M} has the same type as M , i.e., \hat{M}\cong M as R-module. For a
submodule N of M, let N^{o} denote the annihilator of N in \hat{M} , i.e., N^{o}=

\{\xi\in\hat{M}|\xi(N)=0\} .
For the proofs of the following three propositions, see [6, p. 181 (1.5)]

[6, p. 188 (4.9)] [6, p.188 (4.3)] respectively.

Proposition 2 Nrightarrow N^{o} is a one-One inclusion reversing correspondence
between the submodules of M and \hat{M} . Moreover, if N has the type \mu and
cotype \nu in M, then we have type(N^{o})=\nu and cotype_{\hat{M}}(N^{o})=\mu .

Proposition 3 Let M, q be as above. Let N be a submodule of M. If the
cotype of N is \iota/ , then for each partition \mu with lJ \leq\mu\leq\lambda , there exists a
polynomial h_{\nu\mu\lambda}(t)\in Z[t] such that h_{I/\mu\lambda}(q)=\#\{submodulesP of M|P\subset

N, cotype_{M}(P)=\mu\}

For convenience, we define h_{\iota/\mu\lambda}(t)=0 unless lJ \subseteq\mu\subseteq\lambda .

Proposition 4 Let M and q be as above. There exists a polynomial
g_{\mu\iota/}^{\lambda}(t)\in Z[t] such that g_{\mu\nu}^{\lambda}(q) is the number G_{\mu\iota/}^{\lambda} of submodules N of M
whose types and cotypes are lJ , \mu respectively.

The polynomial g_{\mu\nu}^{\lambda}(t)\in Z[t] is called the Hall polynomial correspond-
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ing to \lambda , \mu , \nu . The Hall polynomials enjoy duality g_{\mu\nu}^{\lambda}=g_{\nu\mu}^{\lambda}([6 , p.185
(4.3) ]) .

Next we consider the structure of the submodule lattice of a finite R-
module. Let M be a finite R-module of type \lambda=(\lambda_{i}) . The submodule
lattice L(M) of M is the set of all submodules of M ordered by inclusion.
If two R-modules M , M’ are isomorphic, then L(M) and L(M’) are isomor-
phic as poset[8, p.98]. Hence, if type(M) =\lambda , then the submodule lattice
L(M) is denoted by L_{\lambda} and called the Hall lattice corresponding to \lambda . It is
well known that Hall lattices L_{\lambda} are finite modular lattices (see [5, Theorem
6.7]), hence Cohen-Macaulay over an arbitrary field. Also, the Hall lattice
L_{\lambda} already has the minimum element {0} and the maximum element M .
We denote them by \hat{0} and \hat{1} respectively.

Suppose the depth of \lambda is n . Note that there is only one submodule of
M whose type is (1^{n}) . It is the socle S of M , i.e.,

S :=\oplus^{n}\pi^{\lambda_{i}-1}/\pi^{\lambda_{i}}i=1\cong R/\pi\oplus\cdot\cdot\oplus R/\pi (n copies).

The socle S is the maximum elementary submodule of M and has the cotype
[\lambda]:= (\lambda_{1}-1, \lambda_{2}-1, \cdot) in M (see [6, p.185 (3.2)]). The following lemma
is obvious.

Lemma 5 Every elementary submodules are included in S. Hence the
submodule lattice of S is precisely equal to the lattice of all elementary sub-
module of M. \square

Definition 6 If a quotient module M/N is an elementary R-module, then
N is called a coelementary submodule. \square

For example,

\tilde{M}:=\oplus^{n}\pi/\pi^{\lambda_{i}}i=1\cong\oplus^{n}R/\pi^{\lambda_{i}-1}i=1

is a coelementary submodule of R, since M/\tilde{M}\cong S . From the duality
of Hall polynomials we know that \tilde{M} is characterized as a coelementary
submodule of M whose cotype is (1^{n}) , where n is the depth of \lambda . Since the
interval

[0, S]= {submodules N of M|\{O\}\subseteq N\subseteq S }
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is the set of all elementary submodules of M , the interval [\tilde{M},M] is the
set of all coelementary submodules of M . Hence \tilde{M} is called the minimum
coelementary submodule of M .

3. Cohen-Macaulay types of Hall lattices

In combinatorics it is considered to be important to express a mathe-
matical quantity in the form of a polynomial because it will be a g-analogue
of the quantity or perhaps, if the polynomial has nonnegative coefficients,
they will count some mathematical objects. In this section, we will prove
our main theorem of such a type. The theorem says that Cohen-Macaulay
types of Hall lattices can be written in the form of polynomials. We begin
with the following useful fact which follows directly from Lemma 5 and [8,
p. 126, Cor. 3.9.5].

Lemma 7 Let \lambda= (\lambda_{1}, , \lambda_{n}) be a partition, L the Hall lattice associ-
ated with \lambda and \mu_{L} the M\"obius function of L. Then \mu_{L}(\hat{0},\hat{1})\neq 0 if and only
if \lambda_{i}=1 holds for each i=1 , \ldots , n . Moreover, we have

\mu_{L}(\hat{0},\hat{1})=(-1)^{n-1}q(\begin{array}{l}n2\end{array}) ,

where (\begin{array}{l}n2\end{array}) is the binomial coefficient.
We need one more preparation.

Proposition 8 Fix a partition \mu such that [\lambda]\leq\mu\leq\lambda . Let N be a
coelementary submodule of type \mu . If a partition lJ satisfies the condition
[\lambda]\leq\nu\leq\mu , then there exists a polynomial f_{\nu\mu\lambda}(t)\in Z[t] which depends
only on the partitions \nu , \mu , \lambda such that

f_{\nu\mu\lambda}(q)=\# { P\in[\tilde{M}, M]|P\subset N , type(P) =\nu }

Proof Let P be a coelementary submodule of M whose type is \nu . If P^{o}

is the dual of P , then P^{o} is an elementary submodule of \hat{M} of cotype \nu .
Similarly N^{o} is elementary having the cotype \mu . Since the correspondence
of submodules of M and \hat{M} is inclusion reversing, the number F_{\nu\mu\lambda} of coele-
mentary submodules of type \nu which is included in N equals by Proposition
2 to the number of elementary submodules of \hat{M} of cotype \nu which includes
the dual N^{o} of N .

Let M be a finite R-module of type \lambda , S the socle of M, N an elementary
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submodule of M of cotype \mu in M and lJ a partition with [\lambda]\leq\nu\leq\mu . If
P is an elementary submodule of cotype \nu including N, then the quotient
module P/N has the same cotype as P , i.e.,

cotype_{M/N}(P/N)=\nu

Hence the number F_{\nu\mu\lambda} equals to the number of elementary submodules
P/N of cotype \nu included in the elementary submodule S/N of cotype [\lambda]

in a finite R module M/N of type \mu , where S is the socle of M . Therefore
we have

F_{\nu\mu\lambda}=h_{[\lambda]\nu\mu}(q)

by Proposition 3, i.e. , f_{\nu\mu\lambda}(t)=h_{[\lambda]\nu\mu}(t) . \square

Now we are in the position to prove the main theorem.

Theorem 9 Let \lambda= (\lambda_{1}, . . , \lambda_{n}) be a partition and L=L_{\lambda} the Hall
lattice corresponding to \lambda . Then for the partition \lambda there exists a polynO-
mial \mathcal{P}_{\lambda}(t)\in Z[t] uniquely determined by \lambda such that P_{\lambda}(q) is the Cohen-
Macaulay type of L. Moreover, the polynomial has the degree n(\lambda)=

\sum_{i\geq 1}(i-1)\lambda_{i} .

Proof. Let \lambda= (\lambda_{1}, \ldots, \lambda_{n}) be a partition, L=L_{\lambda} the Hall lattice
associated with \lambda , and M a finite R-module of type \lambda . Then L is the
submodule lattice of M . Let C\in \mathcal{F}_{L} be a m.e.c. of L :

C : \hat{0}=\{0\}=N_{0}<N_{1}<\cdot\cdot<N_{s}<N_{s+1}=M=\hat{1}

Each N_{i} is also a finite R module for i=1 , \ldots , n , we denote the type of N_{i}

by \mu^{(i)} . Hence we have a sequence of partitions

\tau : \emptyset=\mu^{(0)}\subset\mu^{(1)}\subset \subset\mu^{(s)}\subset\mu^{(s+1)}=\lambda ,

where \emptyset is the empty partition. The sequence is called the tableau associated
with the m.e.c. C , denoted by tab(C). If \mathcal{T}_{\lambda} be the set of all the tableau
associated with minimal essential chains of L , then we have a disjoint union
\mathcal{F}_{L}=\bigcup_{\tau\in T_{\lambda}}\mathcal{F}_{L}(\tau) , where \mathcal{F}_{L}(\tau)= { C\in \mathcal{F}_{L}| tab(C) =\tau }. Thus, by
Proposition 1, we have

type(K [P] )
= \sum_{C\in \mathcal{F}_{L}}|\mu_{L}(C)|
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= \sum_{\tau\in \mathcal{T}_{\lambda}}\sum_{C\in \mathcal{F}_{L}(\tau)}|\mu_{L}(C)|

,

where K is a field.
Consider a m.e.c. C=(N_{i})_{i=1}^{s+1}\in \mathcal{F}_{L}(\tau) . Since \mu(N_{i}, N_{i+1})\neq 0 for each

i=0, , s , the quotient N_{i+1}/N_{i} is an elementary R-module by Lemma 7,
and each dimension \dim_{k}N_{i+1}/N_{i} equals to d_{i}:=|\tau_{i+1}-\tau_{i}| . Therefore we
have:

| \mu_{L}(C)|=\prod_{i=0}^{s}|\mu_{L}(N_{i}, N_{i+1})|

= \prod_{i=0}^{s}|(-1)^{d_{i}}q^{(_{2}^{d_{i}})}|

e(\tau)=q

where e(\tau) denotes the sum \sum_{i=0}^{s} (\begin{array}{l}d_{i}2\end{array}) . If we define \phi_{\tau}:=\#\mathcal{F}_{L}(\tau) , then we
have

type
(K[P])= \sum_{\tau\in I_{\lambda}}\phi_{\tau}q^{e(\tau)}

.

In the following, we compute the number \phi_{\tau} more explicitly. Suppose
N_{i}\subset N_{i+1} is a part of such a m.e.c. C \in \mathcal{F}_{L}(\tau) with the types \mu^{(i)} , \mu^{(i+1)}

respectively. Let P be a submodule of N_{i} . We want to count how many
submodules P of N_{i} can appear in the next of N_{i} in such a m.e.c. C . First
we consider conditions which have to be satisfied by such a P . It is clear
that the conditions type(P) =\mu^{(i-1)} and the condition P is a coelementary
submodule of N_{i} are necessary. However not all such submodules can ap-
pear in the next step of N_{i} in C . If the type \mu^{(i-1)} of P is larger than [\mu^{(i+1)}]

the type of the minimum coelementary submodule of N_{i+1} , then there is
a possibility that N_{i-1} includes N_{i+1}^{\sim} . In this case, N_{i-1} is a coelemen-
tary submodules of N_{i+1} , and N_{i} can be omitted from C without violating
essentiality of C . This contradicts the condition C\in \mathcal{F}_{L} .

To summarize the above arguments, P have to satisfy the following
three conditions:

1. P is coelementary;
2. the type of P is \mu^{(i-1)} ;
3. P is not a coelementary submodules of N_{i+1} .

Conversely it is clear that a submodule P of N_{i} satisfying 1,2, and 3 can be
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appear in the next step of N_{i} in C .
Now directly from the definition of the Hall polynomials, there are

\mu^{(i)}

g_{(1^{d_{i-1}})\mu^{(i-1)}}(q) submodules which satisfies 1 and 2. On the other hand, by
Proposition 8, f_{\mu^{(i-1)}\mu^{(i)}\mu^{(i+1)}}(q) is the number of coelementary submodules
of N_{i+1} of type \mu^{(i-1)} included in N_{i} . Therefore if we define

\phi_{\mu^{(i-1)}}^{\mu^{(i)}}(t)=\{

\mu^{(i)}

g(t)-f_{\mu^{(i-1)}\mu^{(i)}\mu^{(i+1)}}(t)(1^{d_{i-1}})\mu^{(i-1)} if [\mu^{(i+1)}]\subset\mu^{(i-1)}

g_{(1^{d_{i-1}})\mu^{(i-1)}}^{\mu^{(i)}}(t) otherwise,

then we have \phi_{\tau}=\prod_{i=1}^{s+1}\phi_{\mu^{(}i-1)}^{\mu^{(}i)}(q) for any \tau\in \mathcal{T}_{\lambda} . Let \nu , \mu , \lambda be partitions
satisfying \tilde{\lambda}\leq\iota/\leq\mu\leq\lambda . From the definitions of g_{(1^{d})\nu}^{\mu}(t) and f_{\nu\mu\lambda}(t)

(d=|\mu|-|\nu|) , we have

g_{(1^{d})\nu}^{\mu}(q)\geq f_{\nu\mu\lambda}(q) .

for any prime power q . Hence deg f_{\nu\mu\lambda}(t)\leq deg g_{(1^{d})\nu}^{\mu}(t) . This implies
\phi_{\mu^{(i-1)}}^{\mu^{(i)}}(t) is a polynomial with integer coefficients for each i=1 , \ldots , s+
1 , and deg \phi_{\mu^{(i-1)}}^{\mu^{(i)}}(t)\leq deg g_{(1^{d_{i-1}})\mu^{(i-1)}}^{\mu^{(i)}}(t) . If we write the polynomial

\prod_{i=1}^{s+1}\phi_{\mu^{(}i-1)}^{\mu^{(}i)}(t)\in Z[t] for \phi_{\tau}(t) , then we have

type
(K[L_{\lambda}])= \sum_{\tau\in T_{\lambda}}\phi_{\tau}(q)q^{e(\tau)}

.

Moreover, for any \tau\in \mathcal{T}_{\lambda} ,

deg \phi_{\tau}(t)q^{e(\tau)}\leq\sum_{i=1}^{s+1} deg g_{(1^{d_{i-1}})\mu^{(i-1)}}^{\mu^{(i)}}(t)+e(\tau)

= \sum_{i=1}^{s+1}\{n(\mu^{(i)})-n((1^{d_{i-1}}))-n(\mu^{(i-1)})\}+\sum_{i=1}^{s+1} (\begin{array}{l}d_{i-1}2\end{array})

=n( \mu^{(s+1)})-n(\emptyset)-\sum_{i=1}^{s+1}n((1^{d_{i-1}}))+\sum_{i=1}^{s+1} (\begin{array}{l}d_{i-1}2\end{array})

=n(\lambda) ,

since (d_{i-1}) is a conjugate partition of (1^{d_{i-1}}) . Now we have shown that the
Cohen-Macaulay type of the Hall lattice corresponding to \lambda is a polynomial
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in q with integer coefficients and the degree is not larger than n(\lambda) . In the
following, we will prove the degree equals exactly to n(\lambda) . It is enough to
show that there exists \tau\in \mathcal{T}_{\lambda} such that deg \phi_{\tau}(t)+e(\tau)=n(\lambda) . Consider
a chain

D : \{0\}=N_{0}<N_{1}< <N_{\lambda_{1}}=M ,

defined by N_{i}=\tilde{N}_{i+1} . It is clear that the chain D is a m.e.c. of L . If \rho

denotes the tableau of D , then the cardinality of the set \mathcal{F}_{L}(\rho) is 1, i.e.,
\mathcal{F}_{L}(\rho)=\{D\} . Also we have \dim_{k}N_{i}/N_{i-1}=\lambda_{i}’ for each i=1\ldots , \lambda_{1} , hence

\phi_{\rho}(q)q^{e(\rho)}=\sum_{C\in F_{L}(\rho)}|\mu_{L}(C)|

=|\mu_{L}(D)|

= \sum_{i\geq 1}|(-1)^{\lambda_{i}’-1}q^{(_{2}^{\lambda_{i}’})_{1}} .

Thus the degree of \phi_{\rho}(q)q^{e(\rho)} is \sum_{i\geq 1}
(\begin{array}{l}\lambda_{i}’2\end{array})=\sum_{i\geq 1}(i-1)\lambda_{i}=n(\lambda) . \square

In the previous paper [7], the author considered Cohen-Macaulay types
of subgroup lattices of finite abelian p-groups and showed that they are
polynomials in p with integer coefficients. Theorem 1 extends this previous
result. Let p be a prime number, G a finite abelian p-group. Since p^{r}G=0

for sufficiently large r , G is a module over the ring of p-adic integers whose
residue field is a F_{p} of p elements. Hence the Cohen-Macaulay type of the
submodule lattice, or equivalently the subgroup lattice, is a polynomial in
p with integer coefficients.

For another example, let k be a finite field F_{q} of q elements, M a finite
dimensional vector space over k . Consider a nilpotent endomorphism T of
M . Let t be an indeterminate and define tx:=Tx for x\in M . Then M
can be regarded as a k[t] -module. Moreover M may be regarded as a k[[t]]-
module since t^{r}M=0 for sufficiently large r . The residue field of the ring
of formal power series k[[t]] is k=F_{q} . Hence the Cohen-Macaulay type of
the submodule lattice of M is a polynomial in q with integer coefficients.



Cohen-Macaulay types of Hall lattices 631

4. Formula for hook types

A -hook, denoted

by \Gamma_{(m_{7}}.- , of P_{\Gamma_{(m,n)}} and
derive a explicit formula for the case. Let k , l be positive integers such that
k\geq l and q an indeterminate. Then the Gaussian polynomial \{\begin{array}{l}kl\end{array}\}

q is defined
by

\{\begin{array}{l}kl\end{array}\} q= \frac{(q^{k}-1)(q^{k-1}-1)(q^{k-l+1}-1)}{(q^{l}-1)(q^{l-1}-1)\cdot\cdot(q-1)} .

The Gaussian polynomials are polynomial in q with nonnegative integer
coefficients and satisfy \{\begin{array}{l}kl\end{array}\}

q=\{\begin{array}{l}kk-l\end{array}\}

q
for any l=0, \cdots k .

Proposition 10 Let m, n be a nonnegative integers. Then we have

P_{\Gamma_{(m,n)}}(q)= \sum_{i=1}^{n} \{\begin{array}{ll}n -1n -i\end{array}\}

qq(\begin{array}{l}l2\end{array})P_{\Gamma_{(m-1,n-\iota+1)}}(q) .

Proof. Let M be a finite R-module of type \Gamma_{(m,n)} . Let C\in \mathcal{F}_{\Gamma_{(m,n)}} :

C : 0=N_{0}<N_{1}< <N_{s-1}<N_{s}<N_{s+1}=M .

Then the type N_{s} have to be one of these \Gamma_{(m-1,i)} , i=1 , . . , n-1 . On
the other hand, the type of N_{s-1} also have to be \Gamma_{(m-2,i)} , i=1 , \ldots , n-1 .
So if C’ is a m.e.c. of N_{s} , then C’\cup M is a m.e.c. of M since N_{s-1} cannot
be a coelementary submodule of M . Moreover the number of coelementary
submodule of M of type \Gamma_{(m-1,i)} (i=1, \ldots, n-1) is \{\begin{array}{l}n-1i-1\end{array}\}

q=\{\begin{array}{l}n-1n-i\end{array}\}

q ’ where
q is the cardinality of the residue field k of R. Therefore we have

\mathcal{P}_{\Gamma_{m,n}}(q)=\sum_{i=1}^{n} \{\begin{array}{ll}n -1n -i\end{array}\} q( \sum_{C’\in \mathcal{F}_{\Gamma_{(m-1,i+1)}}}|\mu(C’)|)

= \sum_{i=1}^{n} \{\begin{array}{l}n-1n-i\end{array}\}

qP_{\Gamma_{(m-1,i+1)}}(q)
.

\square

The next notations are needed in the proof of the following formula.
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Definition 11 Let m , l be positive integers. Then we define:

S_{m}(l)=\{(a_{1}, \ldots, a_{m})\in Z_{>0}^{m}|a_{1}+ +a_{m}=l\} ,

N_{m}(l)=\{(w_{1}, \ldots, w_{m})\in S_{m}(l)|w_{1}\geq \geq w_{m}\} .

Let \alpha= (a_{1}, \ldots, a_{m}) be an element of S_{m}(l) . If \alpha is arranged by decreas-
ing order, then we have an element \Phi(\alpha) of N_{m}(l) , called the normalization
of \alpha . If \beta\in N_{m}(l) , then we define

\phi(\beta):=Q\{\alpha\in S_{m}(l)|\Phi(\alpha)=\beta\} .

Let m , k_{1} , . , k_{n} be positive integers such that k_{1}+ \cdot . +k_{n}=m . A
multinomial coefficient (_{k_{1},\ldots,k_{n}}m) is defined by (_{k_{1}}^{m}) (\begin{array}{l}m-k_{1}k_{2}\end{array}) (\begin{array}{l}k_{n}k_{n}\end{array}) . Remark
that (_{k_{1},\ldots,k_{n}}m)= \frac{m!}{k_{1}!\cdots k_{n}!} which told us that (_{k_{1},\ldots,k_{n}}m) does not depend upon
the order of k_{1} , \ldots , k_{n} . Let w= (w_{1}, . , w_{m})\in N_{m}(l) , then there is an
another expression of w as (1^{k_{1}}2^{k_{2}} \cdot n^{k_{n}}) , where k_{i}=\#\{j|w_{j}=i\} . With
this notation, we have \phi(\beta)=(_{k_{1},\ldots,k_{n}}m) . For positive integers m , k_{1} , . , k_{n}

such that m=k_{1}+\cdots k_{n} , we define the q multinomial coefficient

\{k_{1},. m ,k_{n}\} q=\{\begin{array}{l}mk_{1}\end{array}\}

q

\{\begin{array}{l}m-k_{1}k_{2}\end{array}\}

q

\{\begin{array}{l}m-k_{1}-k_{2}k_{3}\end{array}\}

q

\{\begin{array}{l}k_{m}k_{m}\end{array}\}

q

Also the q-multinomial coefficients \{k_{1},. m ’ k_{n}\}

q

does not depend the or-

der of k_{1} , , k_{n}[8] .

Proposition 12 Let m, n be positive integers. Then we have

P_{\Gamma_{(m,n)}}(q)= \sum_{\beta=(w_{i})\in N_{m}(m+n-1)}\phi(w)
\{\begin{array}{ll}n -1w_{1}-1,. ,w_{m-1}\end{array}\}

qq^{\sigma(\beta)}
,

where \sigma(\beta)=\sum_{i=1}^{n} (\begin{array}{l}w_{i}2\end{array}) .

Proof. Proceed by the induction on m+n.

\mathcal{P}_{\Gamma_{(m,n)}}(q)

= \sum_{i=1}^{n} \{\begin{array}{ll}n -1n -i\end{array}\}

qq(\begin{array}{l}i2\end{array})P_{\Gamma_{(m-1,n-i+1)}}(q)
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= \sum_{i=1}^{n} \{\begin{array}{ll}n -1n -i\end{array}\}

qq(\begin{array}{l}i2\end{array})

( \sum_{\gamma=(v_{k})\in N_{m-1}(m+(n-i)-1)}\phi(\gamma)

\{\begin{array}{ll} n-iv_{1},. ,v_{m-1}-1\end{array}\} qqq^{\sigma(\gamma)})

= \sum_{i=1}^{n}(\sum_{\gamma=(v_{k})\in N_{m-1}(m+(n-i)-1)}\phi(\gamma) \{\begin{array}{ll}n -1n -i\end{array}\}

q

\{\begin{array}{lll} n -iv_{1}-1,. ,v_{m-1}-1\end{array}\} qq(\begin{array}{l}i2\end{array})+\sigma(\gamma)) (1)

by the induction hypothesis. If \gamma=(v_{j}) is an element of N_{m-1}(m+n-i-1) ,
then the normalization \Phi(\gamma) of (v_{j})\cup\{i\} belongs to N_{m}(m+n-1) . It is
clear that the map

\Phi : i=1\cup N_{m-1}n(m+n-i-1)arrow N_{m}(m+n-1)

is surjective and we have a disjoint union \bigcup_{i=1}^{n}N_{m-1}(m+(n-i)-1)=

\bigcup_{\beta\in N_{m}(m+n-1)}\Phi^{-1}(\beta) . Therefore

(1)= \beta\in N_{m}\sum_{(m+n-1)}(\sum_{\gamma=(v_{j})\in\Phi^{-1}(\beta)}\phi(\gamma) \{\begin{array}{ll}n -1n -i\end{array}\}

q

\{\begin{array}{lll} n -iv_{1}-1 ,v_{m-1}-1\end{array}\} qq(\begin{array}{l}i2\end{array})+\sigma(\gamma)) (2)

Here we have

\{\begin{array}{l}n-1n-i\end{array}\}

q

\{\begin{array}{lll} n -iv_{1}-1, \cdots v_{m-1}-1\end{array}\} q=\{\begin{array}{lll}n -1 i-1,v_{1}-1, ,v_{m-1}-1\end{array}\}

q

=\{\begin{array}{lll}n -1 w_{1}-1,. ,w_{m} -1\end{array}\}

q

,

for \gamma=(v_{j})\in\Phi^{-1}(\beta)\subset N_{m-1}(m+(n-i) - 1) . Also, if v\in N_{m-1}(m+
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(n-i)-1) , then (\begin{array}{l}i2\end{array}) +\sigma(\gamma)=\sigma(\Phi(\gamma)) . Hence

(2)= \beta\in N_{m}\sum_{(m+n-1)}\sum_{\gamma=(v_{j})\in\Phi^{-1}(\beta)}\phi(\gamma)
\{\begin{array}{llll}n -1 w_{1}-1, \cdots w_{m} -1\end{array}\}

qq^{\sigma}(\beta)

= \sum_{\beta\in N_{m}(m+n-1)}\sum_{\gamma\in\Phi^{-1}(\beta)}\phi(\gamma)

\{\begin{array}{lll}n -1 w_{1}-1,. ,w_{m} -1\end{array}\}

qq^{\sigma(\beta)}
.

It remains to show that \phi(\beta)=\sum_{\gamma\in\Phi^{-1}(\beta)}\phi(\gamma) . Let \beta=(w_{1}, . , w_{m})=

(1^{k_{1}}2^{k_{2}}\cdots n^{k_{n}})\in N_{m}(m+n-1) , where k_{i}=\#\{j|w_{j}=i\} . Then we have

\Phi^{-1}(\beta)=\{(1^{k_{1}} . . (i-1)^{k_{i-1}}i^{k_{i}-1}(i+1)^{k_{i+1}}\cdots n^{k_{n}}

|i=1 , \cdots ns.t . k_{i}>0}.
Hence

\sum_{\gamma\in\Phi^{-1}(\beta)}\phi(\gamma)=\sum_{i,k_{i}>0}

(\begin{array}{llllll} m-1 k_{1} \cdots k_{i-1},k_{i}-1,k_{i+1} \cdots ’ k_{n}\end{array})

= \sum_{i,k_{i}>0}\frac{(m-1)!}{k_{1}!\cdots k_{i-1}!(k_{i}-1)!k_{i+1}!}. . k_{n}!

=(m-1)! \frac{\sum_{i,k_{i}>0}k_{i}}{k_{1}!\cdots k_{i}!\cdot\cdot k_{n}!}

= \frac{m!}{k_{1}!\cdots k_{n}!}=\phi(\beta) .

\square

One can check directly from the formula that deg P_{\Gamma_{(m,n)}}(q)=(\begin{array}{l}n2\end{array}) =
n(\Gamma_{(m,n)}) . Moreover the coefficients of the polynomial \mathcal{P}_{\Gamma_{(m,n)}}(q) are all
nonnegative.

Once the non-negativity of coefficients of such combinatorial polyn0-
mials as this is proved, it is interesting to consider the combinatorial char-
acterization of them, i.e., mathematical objects which are counted by the
coefficients. However if \lambda=(m, 2)(m\geq 2) , then the polynomial P_{\lambda}(q) has
a negative coefficient. It can be shown that

\mathcal{P}_{\lambda}(q)=\frac{1}{2}(m+2)(m-1)q^{2}-(m-3)q ,

in this case. Hence it would be of interest to consider the condition on \lambda

equivalent to the non-negativity of the coefficients of the polynomials \mathcal{P}_{\lambda}(t) .
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