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Analysis of a family of strongly commuting self-adjoint
operators with applications to perturbed d’Alembertians
and the external field problem in quantum field theory
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Abstract. A family of strongly commuting self-adjoint operators associated with some
objects in the d-dimensional Minkowski space is introduced and operator calculi con-
cerning these self-adjoint operators and the canonical momentum operator p =

(p0, p_{1}, \ldots, p_{d-1}) are developed. It is shown that a class of unitary transformations

of p_{\mu} is given by a class of operator-valued Lorentz transformations of perturbed p_{\mu} ’s.

Moreover, the integral kernels of the unitary groups of perturbed d ’Alembertians are

explicitly computed. As an application, a detailed analysis of the quantum theory of

a charged spinless relativistic particle in an external electromagnetic field is given. The

present analysis clarifies a general mathematical structure behind Schwinger ’s proper-time

method for the external field problem in quantum field theory.
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1. Introduction

In the external field problem in quantum field theory, which concerns a
quantized scalar field or a quantized Dirac field interacting with an external
(unquantized) electromagnetic field, it is important to investigate the prop-
erties of Green’s functions (“propagators” ) of the Dirac or the Klein-Gordon
operators with vector potentials. Schwinger [Sch] presented a beautiful
heuristic method, called the proper-time method, to obtain explicit formu-
lae of Green’s functions for some classes of electromagnetic fields (cf. also
[I-Z, \S 2-5-4] ) . In spite of the beauty and the usefulness of the proper-time
method, no mathematically rigorous basis has been given to it so far. Re-
cently Vaidya et al [V-S-H] have reconsidered the proper-time method from
an algebraic point of view and algebraically computed a Green’s function
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for a spinless charged particle in an external plane-wave electromagnetic
field. The discussions in [V-S-H] also are heuristic, but we find that some
ideas in [V-S-H] may be exploited to give a rigorous basis and a complete
understanding to the proper-time method. With this motivation, we de-
velop in this paper an operator theory associated with some objects in the
d-dimensional Minkowski space M^{d} . The operator theory presented here
not only clarifies algebraic-analytic structures of the proper-time method
for a class of vector potentials, but also is interesting in its own right. In
particular, it has applications to perturbed d’Alembertians or Klein-Gordon
operators.

Before describing the outline of the present paper, we briefly explain,
for the reader’s convenience, what the proper-time method is like. We first
introduce some basic symbols. We denote a vector in M^{d} or the Euclidean
space R^{d} as x= (x^{0}, \ldots , x^{d-1})=(x^{\mu})_{\mu=0}^{d-1} and by g=(g_{\mu\iota/})_{\mu,/=0,\ldots,d-1}I the
metric tensor of M^{d} with

goo=-g_{jj}=1 , j=1 , . . ’ d-1 ,
g_{\mu\nu}=0 , \mu\neq\nu ,

so that the indefinite inner product of M^{d} is given by

xy=g_{\mu\nu}x^{\mu}y^{1J}=x^{0}y^{0}- \sum_{j=1}^{d-1}x^{j}y^{j} . (1.1)

Here, and in what follows, summation over repeated Greek indices, one
upper and the other lower, is understood unless otherwise stated. We write
xx=x^{2} .

We define

x_{\mu}=g_{\mu}\mathfrak{l}/^{X^{U}}
’ \mu=0 , , d-1 .

Then we can write xy=x^{\mu}y_{\mu} . The inverse g^{-1} of the matrix g is given by
g^{-1}=(g^{\mu\iota/})_{\mu,\iota/=0,\ldots,d-1} with g^{\mu}I/=g_{\mu}I/’\mu , \nu=0 , \ldots , d-1 , so that one can
write

x^{\mu}=g^{\mu\nu}x_{U} , \mu=0 , \ldots , d-1 .

In the theory of a quantized complex scalar field interacting with an
external electromagnetic field on M^{d} , the main object to be analyzed is a
Green’s function G(x, y)(x, y\in M^{d}) , a fundamental solution to a perturbed
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Klein-Gordon equation:

( \frac{\partial}{\partial x_{\mu}}+ieA^{\mu}(x))(\frac{\partial}{\partial x^{\mu}}+ieA_{\mu}(x))G(x, y)+m^{2}G(x, y)

=\delta(x-y) , (1.2)

where A= (A_{0}, A_{1}, \ldots, A_{d-1}) is a vector potential of the electromagnetic
field, m\geq 0 and e\in R denote the mass and the charge of the boson of the
quantized complex scalar field, respectively, and \delta(x) is the d-dimensional
Dirac distribution1 . In field theoretical language, such a Green’s function
may be given by a time-0rdered, tw0-point vacuum expectation value of the
quantized scalar field, called the “Feynman propagator”

The basic idea of the proper-time method to seek for a solution G(x, y)

to Eq.(1.2) is as follows: One first introduces an operator

H=( \frac{\partial}{\partial x_{\mu}}+ieA^{\mu}(x))(\frac{\partial}{\partial x^{\mu}}+ieA_{\mu}(x))+m^{2} ,

regarding it as a Hamiltonian that describes the proper-time evolution of
a quantum system, and considers a fundamental solution U(x, y;s) to the
Schr\"odinger equation with respect to the Hamiltonian H :

i \frac{\partial}{\partial s}U(x, y;s)=HU(x, y;s)

with the boundary conditions

\lim_{sarrow 0}U(x, y;s)=\delta(x-y) , \lim_{sarrow\infty}U(x, y;s)=0 . (1.2)

In terms of U(x, y;s) , a formal solution G(x, y) to Eq.(1.2) is given by

G(x, y)=i \int_{0}^{\infty}U(x, y;s)ds . (1.4)

Thus the problem is reduced to that of seeking for U(x, y;s) . For this
purpose, one considers the operators X_{\mu} , \Pi_{\mu} , \mu=0,1 , \ldots , d-1 , defined by

X_{\mu}=the multiplication operator by x_{\mu} , \Pi_{\mu}=i\frac{\partial}{\partial x^{\mu}}-eA_{\mu} ,

where A_{\mu} is the multiplication operator by the function A_{\mu}(x) . Then

H=-\Pi^{2}+m^{2}=-\Pi^{\mu}\Pi_{\mu}+m^{2}r

Throughout this paper, we use a physical unit system such that \hslash (the Planck constant
divided by 2\pi ) =c (the light speed) =1 .
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Let

X_{\mu}(s)=e^{isH}X_{\mu}e^{-isH} , \square _{\mu}(s)=e^{isH}\square _{\mu}e^{-isH} ,

the Heisenberg operators of X_{\mu} and \Pi_{\mu} with the Hamiltonian H. respec-
tively. Then it is easy to show formally that

\frac{d}{ds}X_{\mu}(s)=ie^{isH}[H, X_{\mu}]e^{-isH}=2\Pi_{\mu}(s) , (1.5)

\frac{d}{ds}\square _{\mu}(s)=ie^{isH}[H, \square _{\mu}]e^{-isH}

=2eF_{\mu\nu}(X(s))\square ^{\iota/}(s)-e(\partial^{\iota/}F\nu\mu)(X(s)) , (1.6)

where

F_{\mu\iota/}(x)= \frac{\partial A_{\iota/}(x)}{\partial x^{\mu}}-\frac{\partial A_{\mu}(x)}{\partial x^{\nu}} , \mu , \nu =0,1 , . . , d-1 ,

are the components of the electromagnetic field tensor with the vector p0-

tential A . Let H(s)=e^{isH}He^{-isH} , s\in R . Then we have for all s\in R

H=H(s)=-\Pi(s)^{2}+m^{2} .

Suppose that (1.5) and (1.6) are solved in such a way that \Pi(s) is a poly-
nomial of X(s) and X(0)=X and [X_{\mu}(s), X_{\iota/}] is a constant multiple of
identity. Then, using the commutation relations [X_{\mu}(s), X_{\iota/}] , we can re-
arrange the expression of H(s) , which is now a polynomial of X(s) and
X , such that all X(s)_{\mu} ’s are placed on the left side of X_{\mu} ’s, to obtain a
representation

H(s)=E(X(s), X;s) , s\in R ,

with E(x, y;s) a function. By employing Dirac’s formalism of quantum
mechanics [D], we may consider U(x, y;s) as

U(x, y;s)=\langle x|e^{-isH}|y\rangle

with \langle x| and |y\rangle the bra and the ket vectors, respectively, satisfying

X_{\mu}|y>=y_{\mu}|y> , <x|X_{\mu}=x_{\mu}<x| , \mu=0 , \ldots , d-1 .
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Hence we have

i \frac{\partial}{\partial s}U(x, y;s)=\langle x|He^{-isH}|y\rangle=\langle x|e^{-isH}H(s)|y\rangle

=\langle x|e^{-isH}E(X(s), X;s)|y\rangle

=\langle x|e^{-isH}E(X(s), y;s)|y\rangle

=\langle x|E(X, y;s)e^{-isH}|y\rangle=\langle x|E(x, y;s)e^{-isH}|y\rangle

=E(x, y;s)U(x, y;s) .

This equation can be integrated to yield

U(x, y;s)=C(x, y)e^{-i\int_{s_{0}}^{s}E(x,y;\tau)d\tau} , (1.7)

where C(x, y) is a function and s_{0}\neq 0 is a constant. The function C(x, y)

is determined by the boundary conditions (1.3) and the following identities:

(i \frac{\partial}{\partial x^{\mu}}-eA_{\mu}(x))U(x, y;s)=\langle x|e^{-isH}\Pi_{\mu}(s)|y\rangle ,

(i \frac{\partial}{\partial y^{\mu}}-eA_{\mu}(y))U(x, y;s)=\langle x|e^{-isH}\square _{\mu}(0)|y\rangle ,

where the right hand sides (RHS) are computed in terms of the solution
\Pi(s) to (1.5) and (1.6) in the same way as that shown in the case of
\langle x|He^{-isH}|y\rangle above. With C(x, y) thus determined, putting (1.7) into (1.4)
gives a Green’s function as desired. This is an outline of Schwinger’s proper-
time method applied to a quantized complex scalar field interacting with
an external electromagnetic field.

As is seen, the proper-time method may be useful as a heuristic tool,
but, there arise some questions from a mathematically rigorous point of
view. For example: (i) Is H essentially self-adjoint? (note that H may
be indefinite, i.e., neither bounded from below nor bounded from above)
(ii) Is e^{-isH} actually an integral operator? (iii) On which domain do (1.5)
and (1.6) hold? (iv) Can one justify the Dirac’s formalism used in such a
way as above? It seems very difficult and not so fruitful to mathematically
justify, in their original forms, formal manipulations used in the proper-time
method. It may be more natural to imagine that there should be other
methods, which can be made mathematically rigorous and reveal intrinsic
structures, to the external field problem treated by the proper-time method.
In this paper we present one of such methods.
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We now describe the outline of the present paper. For each a\in M^{d} ,
the function ax defines a self-adjoint multiplication operator on L^{2}(R^{d})

with domain D(ax)=\{\psi\in L^{2}(R^{d})|ax\psi\in L^{2}(R^{d})\} (we denote by D( )

operator domain).
Let \partial_{\mu} be the generalized partial differential operator in x^{\mu} acting in

L^{2}(R^{d}) , so that the \mu-th component

p_{\mu}=i\partial_{\mu} (1.8)

of the canonical momentum operator p= (p_{0}, . , p_{d-1}) is self-adjoint. For
each b\in M^{d} . we can define a self-adjoint operator on L^{2}(R^{d}) , denoted 6p,
as follows:

D(bp)= \{\psi\in L^{2}(R^{d})|\int_{R^{d}}|b\xi\overline{\psi}(\xi)|^{2}d\xi<\infty\} , (1.9a)

(\overline{bp\psi})(\xi)=b\xi\overline{\psi}(\xi) , \psi\in D(bp) , (1.9b)

where

\overline{\psi}(\xi)=\frac{1}{(2\pi)^{d/2}}\int_{R^{d}}e^{i\xi x}\psi(x)dx , \xi\in R^{d} .

is the Fourier transform of \psi with \xi x being the Minkowski inner product of
\xi and x as in (1.1).

We introduce a subset of M^{d}\cross M^{d} :

M_{0}=\{ (a, b)\in M^{d}\cross M^{d}|a\neq 0, b\neq 0, ab=0\} . (1.10)

In Section 2 we first show that, for each (a, b)\in M_{0} , ax and bp strongly
commute. In this case, via the tw0-variable functional calculus, one can
define a self-adjoint operator u(ax, bp) for a real-valued Borel measurable,
almost everywhere (a.e.) finite function u on R^{2} with respect to (w.r.t.)
the Lebesgue measure on R^{2} . We compute the unitary transformation,
given by the unitary operator e^{iu(ax,bp)} , of p_{\mu} and of the free d-dimensional
d’Alembertian. As an application, we prove essential self-adjoint of a
perturbed d’Alembertian.

Section 3 concerns a self-adjoint operator strongly commuting with ax
and bp . For a d\cross d real antisymmetric constant matrix f=(f_{\mu}l/)_{\mu,\iota^{y}=0,\ldots,d-1} ,
we introduce a self-adjoint operator L_{f} , which is a linear combination of the
components of the angular momentum operator in M^{d} . It is shown that,
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if f is in a subset of d\cross d real antisymmetric matrices, then L_{f} strongly
commutes with ax and bp .

In Section 4 we introduce operator-valued Lorentz transformations in
an abstract framework and present some elementary facts on them.

Section 5 is devoted to operator calculus of the self-adjoint operators
ax , bp , L_{f} and p_{\mu} . The main result of this section is the unitary transforma-
tion property of p_{\mu} by a unitary operator defined in terms of ax , bp and L_{f} .
We show that an operator-valued Lorentz transformation of a perturbed
momentum operator is unitarily equivalent to p on a dense domain. As a
corollary, we obtain a self-adjoint extension of a perturbed d’Alembertian.

In Section 6, we explicitly compute the integral kernels of the unitary
groups generated by perturbed d’Alembertians. This section should clarify
a general mathematical structure behind Schwinger’s proper-time method.

Section 7 is an application of the results in Sections 5 and 6 to the
external field problem of a quantized complex scalar field for a class of
vector potentials, which is reduced to an analysis of a quantum system of
a charged spinless particle interacting with a vector potential. The method
employed, which includes a regularization procedure or a deformation of
the vector potential with a parameter \epsilon>0 and limting arguments with
respect to the limit \epsilon –0, not only gives a mathematically rigorous basis
to the discussions in [V-S-H], but also presents more general results than
those in [V-S-H].

In the last section, we give a remark on the mathematical meaning of
what is done in Section 7 from a view-point of representation theory of
“partially broken canonical commutation relations”

2. Operator calculus associated with two vectors in the Min-
kowski space and essential self-adjoint of a perturbed
d’Alembertian

We say that two self-adjoint operators on a Hilbert space strongly com-
mute if their spectral measures commute. The following fact is well known
(see, e.g. , [R-Sl, Theorem VIII.13]).

Proposition 2.1 Let A and B be self-adjoint operators on a Hilbert
space. Then the following (i)-(iii) are equivalent:
(i) A and B strongly commute.
(ii) For all s , t\in R , e^{itA}e^{isB}=e^{isB}e^{itA} .
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(iii) For all t\in R , e^{itA}B\subset Be^{itA} .

Let (a, b)\in M_{0} (see (1.10)). We first show that the operators ax and bp

defined in the Introduction strongly commute. Then we consider a unitary
transformation defined by the functional calculus of ax and bp.

Lemma 2.2 The self-adjoint operators ax and bp strongly commute.

Proof. It is easy to see that

(e^{itbp}\psi)(x)=\psi(x-tb) . (2.1)

Using this formula and the condition ab=0, we have for all s\in R

(e^{itbp}e^{isax}\psi)(x)=e^{isa(x-tb)}\psi(x-tb)=e^{isax}\psi(x-tb)

=(e^{isax}e^{itbp}\psi)(x) .

Hence e^{itbp}e^{isax}=e^{isax}e^{itbp} for all s , t\in R . Thus, by Proposition 2.1, ax
and bp strongly commute. \square

We denote by B_{rea1}(R^{d}) the set of real-valued, Borel measurable fucn-
times on R^{d} which are a.e . finite w.r.t. the d-dimensional Lebesgue measure.
Let E_{ax}(\cdot) and E_{bp}(\cdot) be the spectral measures of ax and bp , respectively.
Then, by Lemma 2.2, there exists a unique tw0-dimensional spectral mea-
sure E_{ax,bp}(\cdot) such that, for all Borel sets B_{1} , B_{2} in R, E_{ax,bp}(B_{1}\cross B_{2})=

E_{ax}(B_{1})E_{bp}(B_{2}) . As is well known, the spectral measures of p_{\mu} and x_{\mu} ,
respectively, are absolutely continuous w.r.t. the Lebesgue measure on R.
Hence so are E_{ax}(\cdot) and E_{bp}(\cdot) , respectively. Thus, for each u\in B_{rea1}(R^{2}) ,
the operator

u(ax, bp):= \int_{R^{2}}u(\lambda_{1}, \lambda_{2})dE_{ax,bp}(\lambda_{1}, \lambda_{2})

is self-adjoint.
We denote by L^{\infty}(R^{d}) the set of essentially bounded Borel measurable

functions on R^{d} and set || \psi||_{\infty}:=ess.\sup_{x\in R^{d}}|\psi(x)| , the essential supre-
mum of \psi\in L^{\infty}(R^{d}) . In what follows, for simplicity, we mean by “a
bounded function on R^{d}” an element of L^{\infty}(R^{d}) . The subset of real-valued
functions in L^{\infty}(R^{d}) is denoted L_{rea1}^{\infty}(R^{d}) .

Let N_{0}=\{0,1,2, \cdots\} . For r\in N_{0} , we denote by C_{rea1}^{r}(R^{d}) the set
of r times continuously differentiable, real-valued fucntions on R^{d} and by
\mathfrak{B}^{r}(R^{d}) the set of bounded functions u in C_{rea1}^{r}(R^{d}) such that, for all j=
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1, . . . ’ r , the partial derivatives of u of order j is bounded on R^{d} .
We say that a real-valued function u=u(x_{1}, x_{2}) on R^{2} is in the set

\mathfrak{B}^{r,\infty}(r\in N_{0}) if, for a.e . x_{2} , u(\cdot, x_{2})\in \mathfrak{B}^{r}(R) and, for all j=0, . , r , the
function \partial_{1}^{J}u(x_{1}, x_{2}):=\partial^{j}u(x_{1}, x_{2})/\partial x_{1}^{j} is bounded on R^{2} . We say that a
function u is in \mathfrak{B}^{\infty,r} if the function \tilde{u}(x_{1}, x_{2}):=u(x_{2}, x_{1}) is in \mathfrak{B}^{r,\infty} . In
this case, we write \theta_{2}^{j}u(x_{1}, x_{2}):=\partial^{j}u(x_{1}, x_{2})/\partial x_{2}^{j} .

We denote by C_{0}^{\infty}(R^{d}) the set of infinitely differentiate functions on
R^{d} with compact support.

Lemma 2.3 For all u\in \mathfrak{B}^{r,\infty}(R^{2}) , t/iere exists a sequence \{u_{k}\}_{k} of real-
valued functions in C_{0}^{\infty}(R^{2}) such that, for all j=0 , \ldots , r ,

\sup_{k\geq 1}|\partial_{1}^{j}u_{k}(x_{1}, x_{2})|\leq C ,

\lim_{karrow\infty}\theta_{1}^{J}u_{k}(x_{1}, x_{2})=\partial_{1}^{J}u(x_{1}, x_{2}) , a.e . (x_{1}, x_{2}) ,

where C is a constant.

Proof. This follows from a standard limting argument using Friedrichs’
mollifier. \square

Lemma 2.4 (i) Let u\in \mathfrak{B}^{1,\infty}(R^{2}) . Then, for each \mu=0,1 , \ldots , d-1 ,
u(ax, bp) leaves D(p_{\mu}) invariant and

[p_{\mu}, u(ax, bp)]=ia_{\mu}\partial_{1}u(ax, bp) on D(p_{\mu}) , (2.2)

where [A, B]:=AB-BA.
(ii) Let u\in \mathfrak{B}^{\infty,1}(R^{2}) . Then, for each \mu=0,1 , , d-1 , u(ax, bp)

leaves D(x_{\mu}) invariant and

[x_{\mu}, u(ax, bp)]=-ib_{\mu}\partial_{2}u(ax, bp) on D(x_{\mu}) .

Proof. (i) Let \psi\in D(p_{\mu}) . We first consider the case where u\in C_{0}^{\infty}(R^{2}) .
Then we have

u(ax, bp) \psi=\frac{1}{2\pi}\int_{R^{2}} \^u (\xi_{1}, \xi_{2})e^{i\xi_{1}ax}e^{i\xi_{2}bp}\psi d\xi_{1}d\xi_{2} , (2.3)

where

\^u ( \xi_{1}, \xi_{2})=\frac{1}{2\pi}\int_{R^{2}}e^{-i(\xi_{1}x_{1}+\xi_{2}x_{2})}u(x_{1}, x_{2})dx_{1}dx_{2}

is the standard Fourier transform of u and the integral on the RHS of (2.3)
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is taken in the strong topology. By (2.1), we have

(e^{i\xi_{1}ax}e^{i\xi_{2}bp}\psi)(x)=e^{i\xi_{1}ax}\psi(x-b\xi_{2}) .

Hence the function e^{i\xi_{1}ax}e^{i\xi_{2}bp}\psi is differentiable and

\partial_{\mu}(e^{i\xi_{1}ax}e^{ixi_{2}bp}\psi)(x)=ia_{\mu}\xi_{1}e^{i\xi_{1}ax}\psi(x-b\xi_{2})

+e^{i\xi_{1}ax}(\partial_{\mu}\psi)(x-b\xi_{2}) ,

which implies that \partial_{\mu}(e^{i\xi_{1}ax}e^{i\xi_{2}bp}\psi)\in L^{2}(R^{d}) . Hence e^{i\xi_{1}ax}e^{i\xi_{2}bp}\psi\in D(p_{\mu})

and

p_{\mu}e^{i\xi_{1}ax}e^{i\xi_{2}bp}\psi=-a_{\mu}\xi_{1}e^{i\xi_{1}ax}e^{i\xi_{2}bp}\psi+e^{i\xi_{1}ax}e^{i\xi_{2}bp}p_{\mu}\psi ,

which implies that

\int_{R^{2}}||\hat{u}(\xi_{1}, \xi_{2})p_{\mu}e^{i\xi_{1}ax}e^{i\xi_{2}bp}\psi||d\xi_{1}d\xi_{2}<\infty .

It follows from the closedness of p_{\mu} that u(ax, bp)\psi\in D(p_{\mu}) and

p_{\mu}u(ax, bp) \psi=\frac{1}{2\pi}\{-a_{\mu}\int_{R^{2}} \^u (\xi_{1}, \xi_{2})\xi_{1}e^{i\xi_{1}ax}e^{i\xi_{2}bp}\psi d\xi_{1}d\xi_{2}

+ \int_{R^{2}} \^u (\xi_{1}, \xi_{2})e^{i\xi_{1}ax}e^{i\xi_{2}bp}p_{\mu}\psi d\xi_{1}d\xi_{2}\}

=ia_{\mu}\partial_{1}u(ax, bp)\psi+u(ax, bp)p_{\mu}\psi .

Thus (2.2) follows.
We next consider the case where u\in \mathfrak{B}^{1,\infty}(R^{2}) . Then we can take a

sequence \{u_{k}\}_{k} as given in Lemma 2.3. By the preceding result, we have

p_{\mu}u_{k}(ax, bp)\psi=ia_{\mu}\partial_{1}u_{k}(ax, bp)\psi+u_{k}(ax, bp)p_{\mu}\psi .

By the functional calculus, u_{k}(ax, bp) – u(ax, bp) , \partial_{1}u_{k}(ax, bp) –

\partial_{1}u_{k}(ax, bp) strongly as karrow\infty . Hence p_{\mu}u_{k}(ax, bp)\psiarrow ia_{\mu}\partial_{1}u(ax, bp)\psi+

u(ax, bp)p_{\mu}\psi as karrow\infty . By the closedness of p_{\mu} , u(ax, bp)\psi\in D(p_{\mu}) and
(2.2) holds.

It is easy to see that, for all \psi\in D(x_{\mu}) ,

x_{\mu}e^{i\xi_{1}ax}e^{i\xi_{2}bp}\psi=b_{\mu}\xi_{2}e^{i\xi_{1}ax}e^{i\xi_{2}bp}\psi+e^{i\xi_{1}ax}e^{i\xi_{2}bp}x_{\mu}\psi .

Hence, in the same way as in the case of p_{\mu} , we can prove part (ii). \square

We say that a function u in B_{rea1}(R^{2}) is in the set C^{r}(R^{2}) if, for a.e .
x_{2}\in R , u(\cdot, x_{2})\in C_{rea1}^{r}(R) and there exists a sequence \{u_{k}\}_{k} in \mathfrak{B}^{r,\infty}(R^{2})
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such that, for j=0, \ldots , r ,

\sup_{k\geq 1}|\partial_{1}^{J}u_{k}(x_{1}, x_{2})|\leq C|\partial_{1}^{J}u(x_{1}, x_{2})|
, (2.4)

\lim_{karrow\infty}\theta_{1}^{J}u_{k}(x_{1}, x_{2})=\partial_{1}^{j}u(x_{1}, x_{2}) , a.e . (x_{1}, x_{2}) , (2.6)

where C is a constant.

Theorem 2.5 Let u\in C^{1}(R^{2}) and \psi\in D(p_{\mu})\cap D(\partial_{1}u(ax, bp)) . Then,

for \mu=0 , . , d-1 , e^{-iu(ax,bp)}\psi\in D(p_{\mu}) and

e^{iu(ax,bp)}p_{\mu}e^{-iu(ax,bp)}\psi=[p_{\mu}+a_{\mu}\partial_{1}u(ax, bp)]\psi . (2.6)

Proof. We first consider the case where u\in \mathfrak{B}^{1,\infty}(R^{2}) . Then u(ax, bp) is
bounded. Hence we have

e^{-iu(ax,bp)} \phi=\sum_{k=0}^{\infty}\frac{(-i)^{k}u(ax,bp)^{k}\phi}{k!} , \phi\in L^{2}(R^{d}) .

Let \psi\in D(p_{\mu}) and \psi_{N}=\sum_{k=0}^{N}(-i)^{k}u(ax, bp)^{k}\psi/k !. Then, \psi_{N} -

e^{-iu(ax,bp)}\psi (N –\infty) . Moreover, by Lemma 2.4, \psi_{N}\in D(p_{\mu}) and

p_{\mu} \psi_{N}=\sum_{k=1}^{N}\frac{(-i)^{k}}{(k-1)!}ia_{\mu}\partial_{1}u(ax, bp)u(ax, bp)^{k-1}\psi

+ \sum_{k=0}^{\infty}\frac{(-i)^{k}u(ax,bp)^{k}}{k!}p_{\mu}\psi .

Hence

p_{\mu}\psi_{N}arrow a_{\mu}\partial_{1}u(ax, bp)e^{-iu(ax,bp)}\psi+e^{-iu(ax,bp)}p_{\mu}\psi

as Narrow\infty . By the closedness of p_{\mu} , e^{-iu(ax,bp)}\psi\in D(p_{\mu}) and

p_{\mu}e^{-iu(ax,bp)}\psi=a_{\mu}\partial_{1}u(ax, bp)e^{-iu(ax,bp)}\psi+e^{-iu(ax,bp)}p_{\mu}\psi .

Thus (2.6) holds.
We next consider the case where u\in C^{1}(R^{2}) . Then there exists a

sequence \{u_{k}\}_{k} in \mathfrak{B}^{1,\infty}(R^{2}) satisfying (2.4) and (2.5) with j=0,1 . Let
\psi\in D(p_{\mu})\cap D(\partial_{1}u(ax, bp)) . By the preceding result, we have

p_{\mu}e^{-iu_{k}(ax,bp)}\psi=e^{-iu_{k}(ax,bp)}[p_{\mu}+a_{\mu}\partial_{1}u_{k}(ax, bp)]\psi .
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By the functional calculus, one can easily show that

\lim_{karrow\infty}[p_{\mu}+a_{\mu}\partial_{1}u_{k}(ax, bp)]\psi=[p_{\mu}+a_{\mu}\partial_{1}\tau\iota(ax, bp)]\psi .

Similarly, for all \eta\in D(u(ax, bp)) ,

\lim_{karrow\infty}u_{k}(ax, bp)\eta=u(ax, bp)\eta .

Hence, by standard convergence theorems ([R-Sl, Theorem VIII.25,
Theorem VIII.21]),

S- \lim_{karrow\infty}e^{-iu_{k}(ax,bp)}=e^{-iu(ax,bp)} ,

where s- lim denotes strong limit. Thus we obtain

\lim_{karrow\infty}p_{\mu}e^{-iu_{k}(ax,bp)}\psi=e^{-iu(ax,bp)}[p_{\mu}+a_{\mu}\partial_{1}u(ax, bp)]\psi .

By the closedness of p_{\mu} , e^{-iu(ax,bp)}\psi\in D(p_{\mu}) and

p_{\mu}e^{-iu(ax,bp)}\psi=e^{-iu(ax,bp)}[p_{\mu}+a_{\mu}\partial_{1}u(ax, bp)]\psi ,

which imply the desired result. \square

Remark. By virtue of Lemma 2.4(ii), we can also obtain formulae for x_{\mu} in
the same way as in the case of p_{\mu} , e.g., the formula corresponding to (2.6)
is given

e^{iu(ax,bp)}x_{\mu}e^{-iu(ax,bp)}\psi=[x_{\mu}-b_{\mu}\partial_{2}u(ax, bp)]\psi

under a condition parallel to the one in Theorem 2.5. This kind of transla-
tions from formulas of p_{\mu} into the ones of x_{\mu} is easy. Thus, in this paper,
we concentrate our attention only on formulae of p_{\mu} .

As a corollary of Theorem 2.5, we obtain the following.

Theorem 2.6 Let u\in \mathfrak{B}^{2,\infty}(R^{2}) . Then, for each \mu=0 , \ldots , d-1 ,
e^{-iu(ax,bp)} ieaves D(p_{\mu}^{2}) invariant and

e^{iu(ax,bp)}p_{\mu}^{2}e^{-iu(ax,bp)}\psi=(p_{\mu}+a_{\mu}\partial_{1}u(ax, bp))^{2}\psi ,
\psi\in D(p_{\mu}^{2}) , \mu=0,1 , . . ’ d-1 . (2.6)

Proof. Let \phi , \psi\in D(p_{\mu}^{2}) . Then, by Theorem 2.5, we have

(p_{\mu}^{2}\phi, e^{-iu(ax,bp)}\psi)=(p_{\mu}\phi,p_{\mu}e^{-iu(ax,bp)}\psi)=(p_{\mu}\psi, \eta) ,
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where

\eta=e^{-iu(ax,bp)}p_{\mu}\psi+e^{-iu(ax,bp)}a_{\mu}\partial_{1}u(ax, bp)\psi .

Since p_{\mu}\psi\in D(p_{\mu}) , it follows from Theorem 2.5 again that e^{-iu(ax,bp)}p_{\mu}\psi\in

D(p_{\mu}) . Since u(ax, bp) and \partial_{1}u(ax, bp) commute, we have

e^{-iu(ax,bp)}\partial_{1}u(ax, bp)\psi=\partial_{1}u(ax, bp)e^{-iu(ax,bp)}\psi .

Since \partial_{1}u\in \mathfrak{B}^{1,\infty}(R^{2}) , it follows from Lemma2.4 that \partial_{1}u(ax, bp)e^{-iu(ax,bp)}\psi

is in D(p_{\mu}) . Thus \eta\in D(p_{\mu}) . Hence

(p_{\mu}^{2}\phi, e^{-iu(ax,bp)}\psi)=(\phi,p_{\mu}\eta) ,

which implies that e^{-iu(ax,bp)}\psi\in D(p_{\mu}^{2}) and p_{\mu}^{2}e^{-iu(ax,bp)}\psi=p_{\mu}\eta . The last
equation combined with (2.6) gives (2.7). \square

Let

\square =-p^{2}=\partial_{0}^{2}-\sum_{j=1}^{d-1}\partial_{j}^{2} (2.8)

be the free d’Alembertian with D( \square ):=\bigcap_{\mu=0}^{d-1}D(p_{\mu}^{2}) It is easy to see that
\square is essentially self-adjoint on S(R^{d}) (the set of rapidly decreasing C^{\infty}

functions on R^{d}). We denote the closure of \square by H_{0} :

H_{0}=\overline{\coprod} . (2.9)

For u\in C^{1}(R^{2}) , we can define

\coprod_{u}=-(p+a\partial_{1}u(ax, bp))^{2}

=( \partial_{0}-ia_{0}\partial_{1}u(ax, bp))^{2}-\sum_{j=1}^{d-1}(\partial_{j}-ia_{j}\partial_{1}u(ax, bp))^{2} (2. 10)

with D( \coprod_{u})=\bigcap_{\mu=0}^{d-1}D([p_{\mu}+a_{\mu}\partial u_{1}(ax, bp)]^{2}) , which gives a perturbed
d’Alembertian.

Theorem 2.7 Let u\in \mathfrak{B}^{2,\infty}(R^{2}) . Then \coprod_{u} is essentially self-adjoint on
D(\square ) and the following operator equality holds:

e^{iu(ax,bp)}H_{0}e^{-iu(ax,bp)}=\overline{\coprod}_{u} .
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Proof. By Theorem 2.6, we have

e^{iu(ax,bp)}\Pi e^{-iu(ax,bp)}\psi=-(p+a\partial_{1}u(ax, bp))^{2}\psi , \psi\in D(\square ) .

Theorem 2.6 also implies that e^{-iu(ax,bp)} maps D(\square ) onto itself. Hence the
essential self-adjoint of \square on D(\square ) gives the desired result. \square

Remark. As is easily seen, analysis similar to that in this section can be
made also in the Euclidean space R^{d} in quite a parallel way.

3. A linear combination of the components of the angular
momentum operator in the Minkowski space

We denote by M_{d}^{as}(R) the set of d\cross d real anti-symmetric matrices:

M_{d}^{as}(R)=\{f=(f_{\mu\iota/})|f_{\mu\iota/}\in R ,
f_{\mu\nu}=-f_{\nu\mu} , \mu , \nu=0,1 , \ldots , d-1 }. (3.1)

For each f\in M_{d}^{as}(R) and a constant vector q\in M^{d} , we define

Q_{\mu}(x)=f_{\mu\nu}(x^{l/}-q^{1J}) , \mu=0,1 , \ldots , d-1 . (3.2)

It is easy to show that the multiplication operator Q_{\mu} is essentially self-
adjoint on C_{0}^{\infty}(R^{d}) . Moreover, Q_{\mu} leaves S(R^{d}) invariant and satisfies the
commutation relations

[p_{lJ}, Q_{\mu}]\psi=if_{\mu\iota/}\psi , \psi\in S(R^{d}) , \mu , \nu=0 , . , d-1 . (3.3)

We define an operator L_{f} by

L_{f}=Q_{\mu}p^{\mu} , (3.4)

with D(L_{f})= \bigcap_{\mu=0}^{d-1}D(Q_{\mu}p^{\mu}) , where, for notational simplicity, we suppress
the dependence of L_{f} on q . Note that L_{f} can be written

L_{f}=, \sum_{\iota<\mu}f_{\nu\mu}\{(x^{\mu}-q^{\mu})p^{\nu}-(x^{\iota/}-q^{\nu})p^{\mu}\}
,

i.e., L_{f} is a linear combination of (x^{\mu}-q^{\mu})p^{\iota/}-(x^{I/}-q^{I/})p^{\mu}(\nu<\mu) , the
components of the angular momentum operator in the coordinate system
translated by q .

It follows from the antisymmetry of f and (3.3) that, for all \psi\in D(L_{f}) ,
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Q_{\mu}\psi\in D(p^{\mu}) and

Q_{\mu}p^{\mu}\psi=p^{\mu}Q_{\mu}\psi , \psi\in D(L_{f}) , (3.5)

which implies that L_{f} is a symmetric operator on L^{2}(R^{d}) . Moreover, we
can prove the following fact.

Proposition 3.1 L_{f} is esentially self-adjoint on C_{0}^{\infty}(R^{d}) .

Proof. The idea of proof is to apply Nelson’s commutator theorem ([R-S2,
Theorem X.37]). Let

|x|=

the Euclidean norm of x= (x^{0}, . . , x^{d-1}) , and \triangle be the d-dimensional
Laplacian:

\triangle=-\sum_{\mu=0}^{d-1}p_{\mu}^{2} .

It is well known that the operator

N:=-\triangle+|x|^{2} , (3.6)

the Hamiltonian of the harmonic oscillator on R^{d} , is self-adjoint with
D(N)=D(\triangle)\cap D(|x|^{2}) and essentially self-adjoint on C_{0}^{\infty}(R^{d}) . We have

||-\triangle\psi||^{2}+|||x|^{2}\psi||^{2}\leq||N\psi||^{2}+2d||\psi||^{2} , \psi\in D(N) . (3.7)

Let \psi\in C_{0}^{\infty}(R^{d}) . Then, by (3.3), we have

||L_{f}\psi||^{2}=|-if_{\mu\nu}(p^{\mu}\psi, Q^{\nu}\psi)+(p_{\iota/}p_{\mu}\psi, Q^{\iota/}Q^{\mu}\psi)|

\leq

+

where

C(f)= (3.8)
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By (3.7), we have the following estimates:

=||(-\triangle)^{1/2}\psi||\leq||N^{1/2}\psi|| ,

=||-\triangle\psi||\leq||N\psi||+\sqrt{2d}||\psi|| ,

\leq C(f)|||x-q|\psi||

\leq C(f)(|||x|\psi||+|q|||\psi||)

\leq C(f)(||N^{1/2}\psi||+|q|||\psi||) ,

\leq C(f)^{2}|||x-q|^{2}\psi||

\leq C(f)^{2}(|||x|^{2}\psi||+2|q||||x|\psi||+|q|^{2}||\psi||)

\leq C(f)^{2}(||N\psi||+\sqrt{2d}||\psi||

+2|q||N^{1/2}\psi||+|q|^{2}||\psi||) . (3.9)

Hence we obtain

||L_{f}\psi||^{2}\leq C||(N+1)\psi||^{2}.
, (3.10)

where C>0 is a constant. Moreover, by using (3.3), we have

[L_{f}, N] \psi=-2i\sum_{\iota’=0}^{d-1}f_{\mu\nu}p^{\mu}p_{\nu}\psi-2i\sum_{\mu=0}^{d-1}Q_{\mu}x_{\mu}\psi ,

which gives

|(L_{f}\psi, N\psi)-(N\psi, L_{f}\psi)|\leq C’||(N+1)^{1/2}\psi||^{2} .

where C’>0 is a constant. Hence we can apply Nelson’s commutator
theorem to obtain the desired result. \square

For each a\in M^{d} , we introduce a class of d\cross d real antisymmetric
matrices:

\mathcal{F}_{a}=\{f\in M_{d}^{as}(R)|a^{\mu}f_{\mu\nu}=0, \nu=0,1, . . , d-1\} . (3.11)
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Proposition 3.2 Let a \in M^{d} .
(i) If f\in \mathcal{F}_{a} , then each Q_{\mu} strongly commutes with ap .
(ii) If f\in \mathcal{F}_{a} , then \overline{L}_{f} strongly commutes with ax and ap .

Proof. (i) Let \psi\in C_{0}^{\infty}(R^{d}) . Then, by (2.1), e^{itap}\psi is in C_{0}^{\infty}(R^{d}) and

(Q_{\mu}e^{itap}\psi)(x)=f_{\mu\iota/}(x^{\nu}-q^{\nu})\psi(x-at)

=f_{\mu\nu}(x^{\nu}-a^{\mathfrak{l}J}t-q^{lJ})\psi (x -at)
=(e^{itap}Q_{\mu}\psi)(x) ,

where, in the second equality, we have used the property f_{\mu\nu}a^{\iota/}=0 . Hence

Q_{\mu}e^{itap}\psi=e^{itap}Q_{\mu}\psi .

Since C_{0}^{\infty}(R^{d}) is a core of Q_{\mu} as already mentioned, it follows that e^{itap}Q_{\mu}\subset

Q_{\mu}e^{itap} . Hence, by Proposition 2.1, Q_{\mu} strongly commutes with ap.
(ii) Similar to the proof of part (i). \square

Remark. One can easily show that, if each Q_{\mu} strongly commutes with ap,

then f\in \mathcal{F}_{a} .

4. Operator-valued Lorentz transformations

In this section we take an interlude to introduce operator-valued Lorentz
transformations and to prove some basic facts on them.

Let H_{\mu} , \mu=0,1 , \ldots , d-1 , be complex Hilbert spaces and

H =\oplus H_{\mu}=\mu=0d-1\{\psi=\{\psi^{\mu}\}_{\mu=0}^{d-1}|\psi^{\mu}\in H_{\mu} , \mu=0,1 , \ldots , d-1\}

be the direct sum of H_{\mu} , \mu=0,1 , \ldots , d-1 . The metric tensor g of M^{d}

naturally defines a bounded linear operator on H , denoted also g , by

(g\psi)^{0}=\psi^{0} , (g\psi)^{j}=-\psi^{j} , j=1 , . , d-1 , \psi=\{\psi^{\mu}\}_{\mu=0}^{d-1}\in H . (4.1)

Definition 4.1 A densely defined linear operator L on H is called an
operator-valued Lorentz transformation on H if L^{*}gL\subset g .

Every linear operator T on ?t is represented as a matrix operator
T=(T_{I/}^{\mu}) with T_{\nu}^{\mu} a linear operator from \mathcal{H}_{\iota/} to H_{\mu} . We call T_{\nu}^{\mu} ’s
the components of T In terms of components, a bounded linear operator
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L on H is a Lorentz transformation if and only if

(L_{\mu}^{\lambda})^{*}g_{\lambda\rho}L_{\nu}^{\rho}=g_{\mu}I/\cdot

Proposition 4.2 Let T be a bounded linear operator on H such that
T^{*}g=-gT Then e^{T} is a bounded operator-valued Lorentz transformation
on H .

Proof. Putting L=e^{T}(= \sum_{k=0}^{\infty}T^{k}/k!) , we have

L^{*}g= \sum_{k=0}^{\infty}\frac{(T^{*})^{k}g}{k!}=\sum_{k=0}^{\infty}g\frac{(-1)^{k}T^{k}}{k!}=ge^{-T}=gL^{-1} ,

which implies the desired result. \square

We denote by N=\{1,2, \cdot.\} the set of natural numbers. For a densely
defined linear operator T on H such that T^{N+1}=0 for some N\in N , we
define e^{T} by

e^{T}= \sum_{k=0}^{N}\frac{T^{k}}{k!} (4.2)

with D(e^{T})=D(T^{N+1}) .

Proposition 4.3 Let T be a densely defined linear operator T on H such
that, for some N\in N , T^{N+1}=0 with D(T^{N+1}) dense and T^{*}g\supset-gT

Then e^{T} is an operator-valued Lorentz transformation on H .

Proof. We have (e^{T})^{*} \supset\sum_{k=0}^{N}(T^{*})^{k}/k! . By the assumption T^{*}g\supset-gT ,
g maps D(T^{k}) into D((T^{*})^{k}) for all k\in N and (T^{*})^{k}g\psi=g(-1)^{k}T^{k}\psi for
all \psi \in D(T^{k}) . Hence, for all \psi \in D(e^{T}) , we have ge^{T}\psi =
\sum_{k=0}^{N}(-1)^{k}(T^{*})^{k}g\psi/k! . Hence ge^{T}\psi\in D((e^{T})^{*}) and

(e^{T})^{*}ge^{T} \psi=\sum_{j=0}^{N}\sum_{k=0}^{N}\frac{(-1)^{k}(T^{*})^{j+k}}{j!k!}g\psi=g\psi .

Thus the desired result follows. \square

A special case is of some importance in applications. Let us consider
the case

H_{0}= . . =H_{d-1}=\mathcal{K}
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and S be a densely defined linear operator on \mathcal{K} . For a d\cross d matrix
f=(f_{\mu}I/)_{\mu,\nu=0,1,\ldots,d-1} , we define a d\cross d matrix

\overline{f}=(f_{\nu}^{\mu})_{\mu,\nu=0,\ldots,d-1} (4.3)

by

f_{\iota/}^{\mu}=g^{\mu\lambda}f_{\lambda\iota/} . (4.4)

Let

s_{f}=\overline{f}S , (4.5)

a linear operator on \oplus_{\mu=0}^{d-1}\mathcal{K} .

Proposition 4.4 Let S be a symmetric operator on \mathcal{K} and f\in M_{d}^{as}(R) .
Then the following (i) and (ii) hold:
(i) If S is bounded, then e^{S_{f}} is a bounded operator-valued Lorentz trans-

formation on \oplus_{\mu=0}^{d-1}\mathcal{K} .
(ii) Suppose that \overline{f}^{N+1}=0 for some N\in N . Then S_{f}^{N+1}=0 and e^{S_{f}} is an

operator-valued Lorentz transformation on\oplus_{\mu=0}^{d-1}\mathcal{K} with components

(e^{S_{f}})_{\nu}^{\mu}= \delta_{\nu}^{\mu}+\sum_{k=1}^{N}\frac{S^{k}}{k!}f_{\mu_{1}}^{\mu}f_{\mu_{2}}^{\mu 1} . f_{\nu}^{\mu k-1} ,

\mu , \nu=0 , \ldots , d-1 , (4.6)

where \delta_{I/}^{\mu} is the Kronecker delta.

Proof It is easy to see that (\overline{f})^{*}g=-g\overline{f}. Using this property, we can
show that S_{f}^{*}g\supset-gS_{f} . Hence Propositions 4.2 and 4.3 give part (i) and
(ii), respcetively. \square

5. Operator calculus on the self-adjoint operators ax , bp and \overline{L}_{f}

Let (a, b)\in M_{0} . Let f\in \mathcal{F}_{a}\cap \mathcal{F}_{b} and u\in B_{rea1}(R^{2}) . Then, by
Proposition 3.2(ii), u(ax, bp) and \overline{L}_{f} strongly commute. Hence, putting

D_{f,u}^{\infty}:=\cap D(u(ax, bp)^{j}\overline{L}_{f}^{k})j,k\in N_{0} ’ (5.1)

we have a self-adjoint operator

M(u, L_{f}):=[u(ax, bp)\overline{L}_{f}]\lceil D_{f^{u}}^{\infty},\cdot (5.2)
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For f\in M_{d}^{as}(R) and u\in L_{rea1}^{\infty}(R^{2}) , we define a bounded linear operator
\Lambda(f, u) on the Hilbert space

[L^{2}(R^{d})]:=\oplus L^{2}(R^{d})d-1 (5.3)
\mu=0

by

\Lambda(f, u):=e^{-\overline{f}u(ax,bp)}=\sum_{k=0}^{\infty}\frac{(-1)^{k}\overline{f}^{k}u(ax,bp)^{k}}{k!} , (5.4)

where \overline{f} is defined by (4.3).

Lemma 5.1 The operator \Lambda(f, u) is a bounded Lorentz transformation
on [L^{2}(R^{d})] . Moreover, the following (i) and (ii) hold:
(i) If f\in \mathcal{F}_{a} , then

\Lambda(f, u)_{\nu}^{\mu}a^{\nu}=a^{\mu} . \mu=0,1 , . ’ d-1 , (5.6)

on L^{2}(R^{d}) .
(ii) If u\in \mathfrak{B}^{1,\infty}(R^{2}) , then each component \Lambda(f, u)_{\iota/}^{\mu} leaves D(p_{\lambda}) invari-

ant (\lambda=0, \ldots, d-1) and, for all \psi\in D(p_{\lambda}) ,

p_{\lambda}\Lambda(f, u)_{\iota/}^{\mu}\psi=-ia_{\lambda}\partial_{1}u(ax, bp)\Lambda(f, u)_{\rho}^{\mu}f_{I/}^{\rho}\psi

+\Lambda(f, u)_{\nu}^{\mu}p_{\lambda}\psi . (5.6)

Proof. The first assertion follows from Proposition 4.4(i). By the property
f_{\nu}^{\mu}a^{lJ}=0 and (5.4), we obtain (5.5).

To prove part (ii), we note that, for all \phi , \psi\in D(p_{\lambda}) ,

(p_{\lambda} \phi, \Lambda(f, u)_{\nu}^{\mu}\psi)=\sum_{k=0}^{\infty}\frac{(\overline{f}^{k})_{I/}^{\mu}}{k!}(p_{\lambda}\phi, u(ax, bp)^{k}\psi) .

By Lemma 2.4, u(ax, bp)^{k}\psi\in D(p_{\lambda}) and

p_{\lambda}u(ax, bp)^{k}\psi=ika_{\lambda}\partial_{1}u(ax, bp) , u(ax, bp)^{k-1}\psi

+u(ax, bp)^{k}p_{\lambda}\psi . (5.7)

Hence

(p_{\lambda}\phi, \Lambda(f, u)_{I/}^{\mu}\psi)=(\phi , ia_{\lambda}\partial_{1}u(ax, bp)\Lambda(f, u)_{\rho}^{\mu}f_{\nu}^{\rho}\psi

+\Lambda(f, u)_{\nu}^{\mu}p_{\lambda}\psi) .
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Since this equation holds for all \phi\in D(p_{\lambda}) , the desired result follows.
\square

The first of the main results of this section is the following.

Theorem 5.2 Let f\in \mathcal{F}_{a}\cap \mathcal{F}_{b} and u\in \mathfrak{B}^{1,\infty}(R^{2}) . Then, for all \psi\in

D(N) , e^{-iM(u,L_{f})}\psi is in D(p_{\mu}) , \mu=0 , \ldots , d-1 , and

e^{iM(u,L_{f})}p^{\mu}e^{-iM(u,L_{f})}\psi=\Lambda(f, u)_{\iota/}^{\mu}(p^{\nu}+a^{\nu}\partial_{1}u(ax, bp)\overline{L}_{f})\psi (5.8)

Remark. By (5.5), the RHS of (5.8) can be written

\Lambda(f, u)_{\nu}^{\mu}(p^{\nu}+a^{\iota/}\partial_{1}u(ax, bp)\overline{L}_{f})\psi

=\Lambda(f, u)_{\iota/}^{\mu}p^{\nu}\psi+a^{\mu}\partial_{1}u(ax, bp)\overline{L}_{f}\psi . (5.8)

To prove this theorem, we need some preliminaries. For two linear
operators A and B acting in a Hilbert space, we define (ad A)^{k}B , k\in N_{0} ,
by

(ad A)^{0}B=B ,
( ad A)^{k}B= [A , (ad A)^{k-1}B ], k\geq 1 . (5.10)

It is well known (or easy to see) that

(ad A)^{k}B \psi=\sum_{j=0}^{k}\frac{(-1)^{k-j}k!}{j!(k-j)!}A^{j}BA^{k-j}\psi (5.10)

for all \psi\in\bigcap_{j=0}^{k}D(A^{j}BA^{k-j}) .

Lemma 5.3 Let f\in \mathcal{F}_{a}\cap \mathcal{F}_{b} and u\in \mathfrak{B}^{1,\infty}(R^{2}) . Let \psi\in S(R^{d}) . Then,

for all j , k\in N_{0} and \mu=0,1 , . . , d-1 , we have M(u, L_{f})^{k}\psi\in D(p_{\mu}) and
p_{\mu}M(u, L_{f})^{k}\psi\in D(M(u, L_{f})^{j}) . Moreover,

(ad M(u, L_{f}))^{k}p^{\mu}\psi

=\{
-ia^{\mu}\partial_{1}u(ax, bp)L_{f}\psi+iu(ax, bp)f_{\nu}^{\mu}p^{lJ}\psi , k=1 ,
i^{k}(\overline{f}^{k})^{\mu}I/u(ax, bp)^{k}p^{\nu}\psi , k\geq 2 .

(5.12)

Proo/. Since L_{f}^{k}\psi is in S(R^{d})\subset D(p_{\mu}) , Lemma 2.4 and (5.7) imply that
u(ax, bp)^{k}L_{f}^{k}\psi\in D(p_{\mu}) and

p_{\mu}u(ax, bp)^{k}L_{f}^{k}\psi=ika_{\mu}\partial_{1}u(ax, bp)u(ax, bp)^{k-1}L_{f}^{k}\psi
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+u(ax, bp)^{k}p_{\mu}L_{f}^{k}\psi .

It follows from this equation and the strong commutativity of u(ax, bp) ,
\partial_{1}u(ax, bp) with \overline{L}_{f} that p_{\mu}u(ax, bp)L_{f}^{k}\psi = p_{\mu}M(u, L_{f})^{k}\psi is in
D(M(u, L_{f})^{j}) and

M(u, L_{f})^{j}p_{\mu}M(u, L_{f})^{k}\psi=ika_{\mu}\partial_{1}u(ax, bp)M(u, L_{f})^{j+k-1}L_{f}\psi

+M(u, L_{f})^{j}u(ax, bp)^{k}p_{\mu}L_{f}^{k}\psi . (5.13)

Thus the first half of the lemma follows.
By (5.13) and the commutation relations

[p^{\mu}, L_{f}]\phi=-if_{\nu}^{\mu}p^{\nu}\phi , \phi\in S(R^{d}) , \mu=0 , . , d-1 , (5.14)

we obtain (5.12) with k=1 . Hence we have

(ad M(u, L_{f}))^{2}p^{\mu}\psi=iu(ax, bp)f_{\nu}^{\mu}[M(u, L_{f}),p^{\iota/}]\psi

=iu(ax, bp)f_{I/}^{\mu} (-ia^{1/}\partial_{1}u(ax, bp)L_{f}

+iu(ax, bp)f_{\lambda}^{I/}p^{\lambda})\psi

=i^{2}(f^{\overline{2}})_{\nu}^{\mu}u(ax, bp)^{2}p^{l/}\psi .

This implies that

(ad M(u, L_{f}))^{3}p^{\mu}\psi=i^{3}(f^{\overline{3}})_{\nu}^{\mu}u(ax, bp)^{3}p^{\nu}\psi .

Repeating this process, we obtain (5.12). \square

We next estimate ||L_{f}^{k}\psi||(f\in M_{d}^{as}(R), k\in N) for suitable vectors \psi .
For this purpose, it is convenient to rewrite L_{f} in terms of the annihilation
and creation operators defined by

c_{\mu}= \frac{1}{\sqrt{2}}(x^{\mu}-ip_{\mu}) , c_{\mu}^{\uparrow}= \frac{1}{\sqrt{2}}(x^{\mu}+ip_{\mu}) , (5.15)

respectively. Obviously c_{\mu} and c_{\mu}\dagger leave S(R^{d}) invariant and satisfy the
commutation relations:

[c_{\mu}, c_{\iota/}]\psi=0 , [c_{\mu}, c_{l/}]\psi=0 , [c_{\mu}, c_{\nu}\dagger]\psi=\delta_{\mu}I/\psi , \psi\in S(R^{d}) .
(5.16)

Let

\Phi_{0}(x)=\pi^{-d/4}e^{-|x|^{2}/2} , x\in R^{d} , (5.17)
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and

\Phi_{\alpha}=\frac{1}{\sqrt{\alpha_{0}!\cdot\alpha_{d-1}!}}(_{C_{\mu 0}}^{\uparrow})^{\alpha_{0}}
(c_{\mu d-1})^{\alpha_{d-1}}\dagger\Phi_{0} , (5.18)

where \alpha= (\alpha_{0}, \ldots, \alpha_{d-1})\in N_{0}^{d} is a multi-index (\alpha_{\mu}\in N_{0}, \mu=0, . , d-1) .
It is well known that \{\Phi_{\alpha}\}_{\alpha} is a complete orthonormal system of L^{2}(R^{d})

(note that \Phi_{\alpha} is a tensor product of Hermite functions). It is easy to see
that

c_{\mu}\dagger\Phi_{\alpha}=\sqrt{\alpha_{\mu}+1}\Phi_{(\alpha_{0},\ldots,\alpha_{\mu}+1,\ldots,\alpha_{d-1})}

and

c_{\mu}\Phi_{\alpha}=\sqrt{\alpha_{\mu}}\Phi_{(\alpha_{0},\ldots,\alpha_{\mu}-1,\ldots,\alpha_{d-1})} , \alpha_{\mu}\geq 1 ,
c_{\mu}\Phi_{(\alpha_{0},\ldots,\alpha_{\mu-1},0,\alpha_{\mu+1}\cdots,\alpha_{d-1})}=0 .

We denote by c_{\mu}^{\neq} either c_{\mu} or c_{\mu}\dagger . It follows from the above relations that

||c_{\mu_{1}}^{\#} . . c_{\mu k}^{\#}\Phi_{\alpha}||\leq (|\alpha|+1) . . (|\alpha|+k) , (5.19)

where | \alpha|=\sum_{\mu=0}^{d-1}\alpha_{\mu} .
We have

||L_{f}^{k}\Phi_{\alpha}||\leq|f_{\mu 1^{l/}1}|\cdots|f_{\mu k^{lJ}k}|||p^{\mu_{1}}(x^{\nu_{1}}-q^{\nu_{1}})\cdots p^{\mu k}(x^{\mathfrak{l}J_{k}}-q^{\nu_{k}})\Phi_{\alpha}||

\leq\frac{1}{2^{k}}|f_{\mu 1^{l/}1}| . .
|f_{\mu k^{lJ}k}| \sum_{6^{k}terms}||c_{\mu_{1}}b_{I/_{1}}\#\#

. . c_{\mu k}^{\#}b_{\nu_{k}}^{\#}\Phi_{\alpha}|| ,

where b_{\mathfrak{s}}^{\neq}, denotes c_{\nu}^{\neq} either \sqrt{2}q^{\iota/} Hence

||L_{f}^{k}\Phi_{\alpha}||\leq C(f, q)^{k}\sqrt{(|\alpha|+1)\cdots(|\alpha|+2k)} , (5.20)

where

C(f, q)=3( \sum_{\mu,\iota/=0}^{d-1}|f_{\mu}\mathfrak{l}J|)(\sqrt{2}|q|_{\infty}+1) (5.21)

with |q|_{\infty}:= \max_{\nu=0,\ldots,d-1}|q^{\nu}| . Similarly we have for all r\in N and \mu_{j}=

0 , . , d-1 , j=1 , . , r

||p_{\mu_{1}} . . p_{\mu_{r}}L_{f}^{k} \Phi_{\alpha}||\leq\frac{1}{2^{r/2}}C(f, q)^{k} (|\alpha|+1)\cdot . (|\alpha|+2k+r) .

(5.22)
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Let

S_{H}(R^{d})=\mathcal{L}\{\Phi_{\alpha}|\alpha\in N_{0}^{d}\} , (5.23)

where \mathcal{L}\{\cdots\} denotes the subspace algebraically spanned by the vectors in
the set \{\cdots\} . For f\in \mathcal{F}_{a}\cap \mathcal{F}_{b} and u\in L_{rea1}^{\infty}(R^{2}) , we define

D_{f}(u)=\mathcal{L}\{u(ax, bp)^{j}L_{f}^{k}\psi_{\ell}|\psi_{\ell}\in S_{H}(R^{d}), j, k, \ell\in N_{0}\} . (5.24)

Obviously we have S_{H}(R^{d})\subset D_{f}(u) .

Lemma 5.4 Let f\in \mathcal{F}_{a}\cap \mathcal{F}_{b} , u\in \mathfrak{B}^{1,\infty}(R^{2}) and set

r_{0}= \frac{1}{2||u||_{\infty}C(f,q)} , (5.25)

where we set r_{0}:=\infty if u=0 or f=0 . Let |t|<r_{0}(t\in R) and \psi\in D_{f}(u) .
Then, for all m\in N , multi-indices \alpha , and \mu=0 , \ldots , d-1 , the vector \psi

is in D(\overline{L_{f}}) and u(ax, bp)^{m}\overline{L_{f}}\psi is in D(p_{\mu}) . Moreover, e^{-itM(u,L_{f})}\psi is in
D(p_{\mu}) and

e^{-itM(u,L_{f})} \psi=\sum_{m=0}^{\infty}\frac{(-it)^{m}u(ax,bp)^{m}\overline{L_{f}}\psi}{m!} , (5.26)

p_{\mu}e^{-itM(u,L_{f})} \psi=\sum_{m=0}^{\infty}\frac{(-it)^{m}p_{\mu}u(ax,bp)^{m}\overline{L}_{f}^{m}\psi}{m!} . (5.27)

Proof It is sufficient to prove the assertion of the present lemma for
\psi=u(ax, bp)^{j}L_{f}^{k}\Phi_{\alpha}(j, k\in N_{0}) . The fact that S( R^{d})\subset\bigcap_{j=0}^{\infty}D(L_{f}^{j}) and
the strong commutativty of \overline{L}_{f} and u(ax, bp) imply that \psi\in D(\overline{L}_{f}^{m}) . We
have u(ax, bp)^{m}\overline{L}_{f}^{m}\psi=u(ax, bp)^{m+j}L_{f}^{m+k}\Phi_{\alpha} . Hence, by (5.20), we have

||(-it)^{m}u(ax, bp)^{m}\overline{L}_{f}^{m}\psi||

\leq|t|^{m}||u||_{\infty}^{m+j}C(f, q)^{m+k}\sqrt{(|\alpha|+1)\cdots(|\alpha|+2m+2k)} ,

which implies that, for |t|<r_{0} , the infinite series \sum_{m=0}^{\infty}||(-it)^{m}u(ax, bp)^{m}

\overline{L}_{f}^{m}\psi/m!|| converges and so does \Psi := \sum_{m=0}^{\infty}(-it)^{m}u(ax, bp)^{m}\overline{L_{f}}\psi/m! .
By the strong commutativity of u(ax, bp) and \overline{L}_{f} , we can write
u(ax, bp)^{m}\overline{L}_{f}^{m}\psi=M(u, L_{f})^{m}\psi . Hence \Psi =e^{-itM(u,L_{f})}\psi , which gives
(5.26).
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Let

\Psi_{N}=\sum_{m=0}^{N}\frac{(-it)^{m}}{m!}u(ax, bp)^{m}\overline{L}_{f}^{m}\psi

= \sum_{m=0}^{N}\frac{(-it)^{m}}{m!}u(ax, bp)^{m+k}L_{f}^{m+k}\Phi_{\alpha} .

Then, by Lemma 5.3, \Psi_{N}\in D(p_{\mu}) and

p_{\mu} \Psi_{N}=\sum_{m=0}^{N}\frac{(-it)^{m}p_{\mu}u(ax,bp)^{m+j}L_{f}^{m+k}\Phi_{\alpha}}{m!} .

By (5.7) and (5.22), we see that p_{\mu}\Psi_{N} converges as N – \infty . Since
\Psi_{N}arrow e^{-itM(u,L_{f})}\psi as N – \infty , it follows from the closedness of p_{\mu} that
e^{-itM(u,L_{f})}\psi\in D(p_{\mu}) and (5. 7) holds. \square

Proof of Theorem 5.2
Throughout the proof, we set M=M(u, L_{f}) . We first consider the

case |t|<r_{0} . Let \psi , \phi\in D_{f}(u) . Then, by Lemma 5.4, (5.11) and Lemma
5.3, we have

(\phi, e^{itM}p^{\mu}e^{-itM}\psi)=(e^{-itM}\phi,p^{\mu}e^{-itM}\psi)

= \sum_{j=0}^{\infty}\sum_{k=0}^{\infty}\frac{(it)^{j}(-it)^{k}}{j!k!}(M^{j}\phi,p^{\mu}M^{k}\psi)

= \sum_{m=0}^{\infty}\frac{(it)^{m}}{m!} ( \phi , (ad M)^{m}p^{\mu}\psi )

=(\phi, ta^{\mu}\partial_{1}u(ax, bp)\overline{L}_{f}\psi+\Lambda(tf, u)_{\iota/}^{\mu}p^{\nu}\psi) .

Since D_{f}(u) is dense in L^{2}(R^{d}) , we obtain

e^{itM}p^{\mu}e^{-itM}\psi=ta^{\mu}\partial_{1}u(ax, bp)\overline{L}_{f}\psi+\Lambda(tf, u)_{\nu}^{\mu}p^{\nu}\psi

=\Lambda(tf, u)_{\nu}^{\mu}(p^{\iota/}+ta^{\nu}\partial_{1}u(ax, bp)\overline{L}_{f})\psi . (5.28)

Let |s|<r_{0} and

\psi_{N}=\sum_{k=0}^{N}\frac{(-is)^{k}M^{k}\psi}{k!} .
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Then \psi_{N}\in D_{f}(u) and \psi_{N}arrow e^{-isM}\psi as Narrow\infty . By (5.28), we have

e^{itM}p^{\mu}e^{-itM}\psi_{N}=\Lambda(tf, u)_{\nu}^{\mu}(p^{\nu}+ta^{I/}\partial_{1}u(ax, bp)\overline{L}_{f})\psi_{N} .

By Lemma 5.4, we have

p^{\nu}\psi_{N}arrow p^{\iota/}e^{-isM}\psi(Narrow\infty) .

Note that

\overline{L}_{f}\psi_{N}=\sum_{k=0}^{N}\frac{(-is)^{k}M^{k}\overline{L}_{f}\psi}{k!}

and \overline{L}_{f}\psi\in D_{f}(u) . Hence L_{f}\psi_{N} – e^{-isM}\overline{L}_{f}\psi(N -\infty) . Since \partial_{1}u(ax, bp)

is bounded, it follows that

ta^{1/}\partial_{1}u(ax, bp)\overline{L}_{f}\psi_{N} – ta^{\nu}\partial_{1}u(ax, bp)e^{-isM}\overline{L}_{f}\psi

=e^{-isM}ta^{lJ}\partial_{1}u(ax, bp)\overline{L}_{f}\psi (N -\infty) .

Hence

e^{itM}p^{\mu}e^{-itM}\psi_{N}arrow\Lambda(tf, u)_{\iota/}^{\mu}(p^{lJ}e^{-isM}+e^{-isM}ta^{1J}\partial_{1}u(ax, bp)\overline{L}_{f})\psi .

It is clear that e^{-itM}\psi_{N} – e^{-itM}e^{-isM}\psi=e^{-i(t+s)M}\psi(Narrow\infty) . Hence,
e^{-i(t+s)M}\psi\in D(p^{\mu}) and

e^{itM}p^{\mu}e^{-i(t+s)M}\psi

=\Lambda(tf, u)_{\nu}^{\mu}(p^{lJ}e^{-isM}+e^{-isM}ta^{\nu}\partial_{1}u(ax, bp)\overline{L}_{f})\psi .

Hence we obtain

e^{i(t+s)M}p^{\mu}e^{-i(t+s)M}\psi

=\Lambda(tf, u)_{\iota/}^{\mu}(e^{isM}p^{lJ}e^{-isM}+ta^{\nu}\partial_{1}u(ax, bp)\overline{L}_{f})\psi ,

where we have used the commutativity of e^{isM} and \Lambda(tf, u)_{\nu}^{\mu} . By using
(5.28) with t=s , we obtain (5.28) with t replaced by t+s . Repeating this
process, we can show that (5.8) holds for all \psi\in D_{f}(u) .

By (3.9) and (3.10), the RHS of (5.8) with \psi\in D_{f}(u) is dominated
by C||(N+1)\psi|| (C>0 is a constant). As is well known, each \Phi_{\alpha} is an
eigenfunction of N with eigenvalue 2|\alpha|+d . Hence S_{H}(R^{d})(\subset D_{f}(u)) is a
core of N . By a simple limiting argument, one can easily show that (5.8)
established for \psi\in D_{f}(u) extends to all \psi\in D(N) , at the same time,



Analysis of a family of strongly commuting self-adjoint operators 285

proving that e^{-iM}\psi\in D(p^{\mu}) for all \psi\in D(N) . This completes the proof
of Theorem 5.2. \square

Let u , v\in B_{rea1}(R^{2}) and f\in \mathcal{F}_{a}\cap \mathcal{F}_{b} . Then, by Proposition 3.2,
u(ax, bp) and M(v, L_{f}) strongly commute. Hence u(ax, bp)+M(v, L_{f}) is
essentially self-adjoint. We denote its closure by M(u;v, L_{f}) :

M(u;v, L_{f})=\overline{u(ax,bp)+M(v,L_{f})} . (5.29)

We have

e^{itM(u;v,L_{f})}=e^{itu(ax,bp)}e^{itM(v,L_{f})}=e^{itM(v,L_{f})}e^{itu(ax,bp)} , t\in R .

(5.30)

Theorem 5.5 Let u , v\in \mathfrak{B}^{1,\infty}(R^{2}) and f\in \mathcal{F}_{a}\cap \mathcal{F}_{b} . Then, for all
\psi\in D(N) and \mu=0 , \ldots , d-1 , e^{-iM(u;v,L_{f})}\psi\in D(p^{\mu}) and

e^{iM(u;v,L_{f})}p^{\mu}e^{-iM(u;v,L_{f})}\psi

=\Lambda(f, v)_{\iota/}^{\mu}\{p^{\nu}+a^{lJ}(\partial_{1}v(ax, bp)\overline{L}_{f}+\partial_{1}u(ax, bp))\}\psi . (5.31)

Proof. Under the present assumption, \partial_{1}u(ax, bp) is a bounded self-
adjoint operator. Hence, p^{\mu}+a^{\mu}\partial_{1}u(ax, bp) is self-adjoint. Then, Theorem
2.5 implies the operator eqaulity

e^{iu(ax,bp)}p^{\mu}e^{-iu(ax,bp)}=p^{\mu}+a_{\mu}\partial_{1}u(ax, bp) .

Hence

e^{iM(v,L_{f})}e^{iu(ax,bp)}p^{\mu}e^{-iu(ax,bp)}e^{-iM(v,L_{f})}

=e^{iM(v,L_{f})}p^{\mu}e^{-iM(v,L_{f})}+a^{\mu}\partial_{1}u(ax, bp) ,

where we have used the strong commutativity of \partial_{1}u(ax, bp) and e^{\pm iM(v,L_{f})} .
By (5.30) and Theorem 5.2, we obtain (5.31). \square

We next consider the transformation of the free d’Alembertian by the
unitary operator e^{iM(u;v,L_{f})} . For this purpose, we prepare some lemmas.

Lemma 5.6 Let u\in \mathfrak{B}^{2,\infty}(R^{2}) . Then, for each \mu , lJ =0,1 , , d-1 ,
u(ax, bp) leaves D(p_{1^{y}}p_{\mu})\cap D(p_{\mu}p_{\nu}) invariant and, for all \psi\in D(p_{I/}p_{\mu})\cap

D(p_{\mu}p_{\nu}) ,
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p_{\nu}p_{\mu}u(ax, bp)\psi=u(ax, bp)p_{lJ}p_{\mu}\psi+i\partial_{1}u(ax, bp)(a_{\nu}p_{\mu}+a_{\mu}p_{\nu})\psi

-a_{\nu}a_{\mu}\partial_{1}^{2}u(ax, bp)\psi

Proof. Application of Lemma 2.4(i). \square

Lemma 5.7 Let u\in \mathfrak{B}^{\infty,2}(R^{2}) . Then, for each \mu , \nu=0,1 , , d-1 ,
u(ax, bp) leaves D(x_{\nu}x_{\mu})\cap D(x_{\mu}x_{\nu}) invariant and, for all \psi\in D(x_{\nu}x_{\mu})\cap

D(x_{\mu}x_{\iota/}) ,

x_{\nu}x_{\mu}u(ax, bp)\psi=u(ax, bp)x_{lJ}x_{\mu}\psi-i\partial_{2}u(ax, bp)(b_{\nu}x_{\mu}+x_{\nu}b_{\mu})\psi

-b_{\nu}b_{\mu}\partial_{2}^{2}u(ax, bp)\psi .

Proof. Application of Lemma 2.4(ii). \square

Let r, s\in N_{0} . We say that a function u on R^{2} is in the set \mathfrak{B}^{r,s}(R^{2})

if, for all x_{2}\in R , u(\cdot, x_{2})\in C_{rea1}^{r}(R) and \partial_{1}^{j}u\in \mathfrak{B}^{\infty,s}(R^{2})\cap C(R^{2}) for
j=0, . . , r with \partial_{2}^{k}\theta_{1}^{J}u=\theta_{1}^{J}\partial_{2}^{k}u , j=0, \ldots , r , k=0, \ldots , s , where C(R^{2})

denotes the space of continuous functions on R^{2} .

Lemma 5.8 Let u\in \mathfrak{B}^{2,2}(R^{2}) and f\in \mathcal{F}_{a}\cap \mathcal{F}_{b} . Then u(ax, bp)\overline{L}_{f} maps
D(N^{2}) into D(N) and, for all \psi\in D(N^{2}) ,

||Nu(ax, bp)\overline{L}_{f}\psi||\leq C||(N+1)^{2}\psi|| , (5.32)

where C>0 is a constant.

Proof. By (3.10) and the fact that S_{H}(R^{d}) is a core for (N+1)^{2} , it
is sufficient to prove (5.32) for \psi\in S_{H}(R^{d}) . Let \psi\in S_{H}(R^{d}) . Then
\overline{L}_{f}\psi=L_{f}\psi\in S_{H}(R^{d})\subset D(N)=D(\triangle)\cap D(|x|^{2}) . Hence, by Lemmas 5.6
and 5.7, u(ax, bp)\overline{L}_{f}\psi\in D(N) and

||Nu(ax, bp)L_{f} \psi||\leq C_{0}(||L_{f}\psi||+\sum(||a_{\mu}p_{\mu}L_{f}\psi||d-1

\mu=0

+||b_{\mu^{X}\mu}L_{f}\psi||)+||NL_{f}\psi|| ,

where C_{0} is a constant. By using (5.19), we can show that

||a_{\mu}p_{\mu}L_{f}\psi||\leq C_{1}||(N+1)^{3/2}\psi|| ,
||b_{\mu}x_{\mu}L_{f}\psi||\leq C_{1}||(N+1)^{3/2}\psi|| ,

||NL_{f}\psi||\leq C_{1}||(N+1)^{2}\psi|| ,
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where C_{1} is a constant. By these estimates and (3.10), we obtain (5.32)
with \psi\in S_{H}(R) . \square

The following lemma is well known (or easy to prove) (use (5.19) and
a limiting argument).

Lemma 5.9 For each \mu=0 , . . ’ d-1 , p_{\mu} maps D(N^{3/2}) into D(N) and

||Np_{\mu}\psi||\leq C||(N+1)^{3/2}\psi|| , \psi\in D(N^{3/2}) ,

where C is a constant.

For u , v\in C^{1}(R^{2}) , we define

\coprod_{f^{u,v}},=-(p+a(\partial_{1}u(ax, bp)+\partial_{1}v(ax, bp)\overline{L}_{f}))^{2}

=(\partial_{0}-ia_{0}(\partial_{1}u(ax, bp)-i\partial_{1}v(ax, bp)\overline{L}_{f}))^{2}

- \sum_{j=1}^{d-1}(\partial_{j}-ia_{j}(\partial_{1}u(ax, bp)+\partial_{1}v(ax, bp)\overline{L}_{f}))^{2} (5.33)

with D( \coprod_{f,u,v})=\bigcap_{\mu=0}^{d-1}D((p_{\mu}+a_{\mu}(\partial_{1}u(ax, bp)+\partial_{1}v(ax, bp)\overline{L}_{f}))^{2}) .

Theorem 5.10 Let u , v\in \mathfrak{B}^{3,2}(R^{2}) and f\in \mathcal{F}_{a}\cap \mathcal{F}_{b} . Then, for each
\mu=0 , \ldots , d-1 , e^{-iM(u;v,L_{f})} maps D(N^{2}) into D((p^{\mu})^{2}) and, for all \psi\in

D(N^{2}) ,

e^{iM(u;v,L_{f})}(p^{\mu})^{2}e^{-iM(u;v,L_{f})}\psi

=(\Lambda(f, v)_{\nu}^{\mu}[p^{\iota/}+a^{l/}(\partial_{1}u(ax, bp)+\partial_{1}v(ax, bp)\overline{L}_{f})])^{2}\psi . (5.34)

In particular, D(N^{2})\subset D(\coprod_{f^{u,v}},) and

e^{iM(u;v,L_{f})}\coprod e^{-iM(u;v,L_{f})}\psi=\coprod_{f,u,v}\psi , \psi\in D(N^{2}) . (5.35)

Proo/. Let \phi\in D(p_{\mu}^{2}) and \psi\in D(N^{2}) . Set M=M(u;v, L_{f}) . Then, by
Theorem 5.5, e^{-iM}\psi\in D(p^{\mu}) and we have

((p^{\mu})^{2}\phi, e^{-iM}\psi)=(p^{\mu}\phi,p^{\mu}e^{-iM}\psi)

=(p^{\mu}\phi, \eta) ,

where

\eta=e^{-iM}\Lambda(f, v)_{\nu}^{\mu}\{p^{\nu}+a^{\nu}(\partial_{1}u(ax, bp)+\partial_{1}v(ax, bp)\overline{L}_{f})\}\psi .
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By Lemmas 5.6-5.9, the vector \{p^{\nu}+a^{\nu}(\partial_{1}u(ax, bp)+\partial_{1}v(ax, bp)\overline{L}_{f})\}\psi is
in D(N) . Note that e^{-iM} commutes with \Lambda(f, v)_{\iota/}^{\mu} . Hence, by Theorem
5.5, \eta\in D(p^{\mu}) . Hence we obtain

((p^{\mu})^{2}\phi, e^{-iM}\psi)=(\phi,p^{\mu}\eta) .

This implies that e^{-iM}\psi\in D((p^{\mu})^{2}) and (p^{\mu})^{2}e^{-iM}\psi=p^{\mu}\eta . Thus (5.34)
follows. Equation (5.35) follows from (5.34) and the fact that \Lambda(f, v) is a
bounded Lorentz transformation on [L^{2}(R^{d})] (Lemma 5.1). \square

For u , v\in B_{rea1}(R^{2}) and f\in \mathcal{F}_{a}\cap \mathcal{F}_{b} , we define a self-adjoint operator
H_{f}(u, v) by

H_{f}(u, v):=e^{iM(u;v,L_{f})}H_{0}e^{-iM(u;v,L_{f})} , (5.36)

where H_{0} is given by (2.19). By Theorem 5.10, we obtain the following
result.

Corollary 5.11 Let u , v\in \mathfrak{B}^{3,2}(R) and f\in \mathcal{F}_{a}\cap \mathcal{F}_{b} . Then H_{f}(u, v) is
a self-adjoint extension of \coprod_{f,u,v}\lceil D(N^{2}) .

Remark. It is an open problem to clarify whether the symmetric operator
\coprod_{f,u,v}[D(N^{2}) in Corollary 5.11 is essentially self-adjoint or not.

6. Integral kernels of the unitary groups generated by perturbed
d’Alembertians

Let H_{0} be given by (2.9). It is well known (or easy to see ) that e^{isH_{0}}

(s\in R\backslash \{0\}) is an integral operator in the sense that

(e^{isH_{0}} \psi)(x)=\int_{R^{d}}\triangle_{s}(x, y)\psi(y)dy , \psi\in L^{1}(R^{d})\cap L^{2}(R^{d}) , (6.1)

with

\triangle_{s}(x, y)=\frac{e^{i\epsilon(s)\pi(d-2)/4}}{2^{d}\pi^{d/2}|s|^{d/2}}e^{i(x-y)^{2}/4s} , (6.2)

where \epsilon(s) is the sign function: \epsilon(s)=1 if s>0 and \epsilon(s)=-1 if s<0 .
Throughout this section, we assume that (a, b)\in M_{0} . Let H_{f}(u, v) be

as in (5.36) with u , v\in B_{rea1}(R^{2}) . In this section, we show that e^{isH_{f}(u,v)}

is an integral operator and compute the integral kernel of it.
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We first consider a simple case. Let u\in B_{rea1}(R^{2}) and

H(u)=e^{iu(ax,bp)}H_{0}e^{-iu(ax,bp)} . (6.3)

Note that, if u\in \mathfrak{B}^{2,\infty}(R^{2}) , then H(u)=\overline{\Pi}_{u} (see Theorem 2.7.)
A vector x\in M^{d} satisfying x^{2}=0 is called a null vector. We denote

by N_{d} the set of null vectors in M^{d} .

Theorem 6.1 Let u\in B_{rea1}(R^{2}) and a , b\in N_{d} . Then, for all \psi\in

L^{1}(R^{d})\cap L^{2}(R^{d}) and s\in R\backslash \{0\} ,

(e^{isH(u)}\psi)(x)

= \int_{R^{d}}e^{i[u(ax,(by-bx)/2s)-u(ay,(by-bx)/2s)]}\triangle_{s}(x, y)\psi(y)dy . (6.4)

To prove this theorem, we need a lemma.

Lemma 6.2 Let K be a bounded integral operator on L^{2}(R^{d}) with kernel
k(x, y) such that, for all \psi\in L^{1}(R^{d})\cap L^{2}(R^{d}) ,

(K \psi)(x)=\int_{R^{d}}k(x, y)\psi(y)dy . (6.5)

Suppose that |k(x, y)| is bounded on R^{d}\cross R^{d} and, for all \xi_{j}\in R ,

k (x- \sum_{j=1}^{r}\xi_{j}b_{j} , y) =e^{i\sum_{j=1}^{r}\xi_{j}\theta_{j}(x,y)}k(x, y) ,

a.e . (x, y)\in R^{d}\cross R^{d} . (6.6)

where r\in N , b_{j}\in M^{d} (j=1, \ldots, r) is a constant vector with property
(a, b_{j})\in M_{0} and \theta_{j}(x, y) is a real-valued Borel measurable function on
R^{d}\cross R^{d} . Further, assume that, for all null sets B in Rw.r.t . the one-
dimensional Lebesgue measure, \{(x, y)\in R^{d}\cross R^{d}|\theta_{j}(x, y)\in B\} is a null
set w.r.t. the 2d-dimensional Lebesgue measure for all j=1 , \ldots , r . Let
F\in L^{\infty}(R^{r+1}) . Then, for all \psi\in L^{1}(R^{d})\cap L^{2}(R^{d}) ,

(F(ax, b_{1}p, \ldots, b_{r}p)K\psi)(x)

= \int_{R^{d}}F(ax, \theta_{1}(x, y), . . , \theta_{r}(x, y))k(x, y)\psi(y)dy . (6.7)

Proo/ For F\in S(R^{r+1}) , we have

F(ax, b_{1}p, . , b_{r}p)
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= \frac{1}{(2\pi)^{r/2}}\int_{R}\tilde{F}(ax, \xi_{1}, \ldots, \xi_{r})e^{i\sum_{j=1}^{r}\xi_{j}b_{j}p}d\xi_{1}\cdots d\xi_{r} ,

where

\tilde{F}(ax, \xi_{1}, \ldots, \xi_{r})=\frac{1}{(2\pi)^{r/2}}\int_{R}e^{-i\sum_{j=1}^{r}t_{j}\xi_{j}}F(ax, t_{1}, . , t_{r})dt_{1}\cdot\cdot dt_{r}

in the operator norm toplogy. Let \psi\in L^{1}(R^{d})\cap L^{2}(R^{d}) . Then we have

(e^{i\sum_{j=1}^{r}\xi_{j}b_{j}p}K \psi)(x)=(K\psi)(x-\sum_{j=1}^{r}\xi_{j}b_{j})

= \int_{R^{d}}e^{i\sum_{j=1}^{r}\xi_{j}\theta_{j}(x,y)}k(x, y)\psi(y)dy . (6.8)

Using these representations, we see that (6.7) holds.
For any F\in L^{\infty}(R^{r+1}) , there exists a sequence \{F_{m}\}_{m=1}^{\infty}\subset S(R^{r+1})

such that \sup_{m\geq 1}||F_{m}||_{\infty}<\infty and, for a.e . (x_{1}, x_{2}, \ldots, x_{r+1})\in R^{r+1} ,
F_{m}(x_{1}, . . , x_{r+1}) – F(x_{1}, . , x_{r+1}) as m -arrow\infty . Then, by the functional
calculus, F_{m}(ax, b_{1}p, \ldots, b_{r}p) -, F(ax, b_{1}p, \ldots , b_{r}p) strongly as m – \infty .
By the assumption on \theta_{j}(x, y) ,

F_{m}(ax, \theta_{1}(x, y), . , \theta_{r}(x, y)) – F(ax, \theta_{1}(x, y), , \theta_{r}(x, y))

for a.e . (x, y) as m -arrow\infty . Hence, by the dominated convergence theorem,
we have for all \psi\in L^{1}(R^{d})\cap L^{2}(R^{d})

\lim_{marrow\infty}\int_{R^{d}}F_{m}(ax, \theta_{1}(x, y), \ldots, \theta_{r}(x, y))k(x, y)\psi(y)dy

= \int_{R^{d}}F(ax, \theta_{1}(x, y), \ldots, \theta_{r}(x, y))k(x, y)\psi(y)dy , a.e . x .

Thus we obtain (6.7) with F\in L^{\infty}(R^{r+1}) . \square

Lemma 6.3 Let F\in L^{\infty}(R^{r+1}) , a\in M^{d} , and (a, b_{j}) , (b_{j}, b_{k})\in M_{0} ,
j , k=1 , \cdots , r . Then, for all \psi\in L^{1}(R^{d})\cap L^{2}(R^{d}) and s\in R\backslash \{0\} ,

(F(ax, b_{1}p, \ldots, b_{r}p)e^{isH_{0}}\psi)(x)

= \int_{R^{d}}F (ax , \frac{b_{1}y-b_{1}x}{2s} , \frac{b_{2}y-b_{2}x}{2s} , . . . \frac{b_{r}y-b_{r}x}{2s}) \triangle_{s}(x, y)\psi(y)dy .
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Proof. By (6.2) and the condition b_{j}b_{k}=0 , we have

\triangle_{s} (x- \sum_{j=1}^{r}\xi_{j}b_{j} , y)=e^{i\sum_{j=1}^{r}\xi_{j}(b_{j}y-b_{j}x)/2s}\triangle_{s}(x, y) .

It is easy to see that \theta_{j}(x, y)=(b_{j}y-b_{j}x)/2s satisfies the assumption of
Lemma 6.2. Hence we can apply Lemma 6.2 to obtain the desired result.

\square

Proof of Theorem 6.1
We can write

e^{isH(u)}=e^{iu(ax,bp)}e^{-iu_{s}}e^{isH_{0}} ,

where u_{s}=e^{isH_{0}}u(ax, bp)e^{-isH_{0}} . Let

X(s)=e^{isH_{0}}axe^{-isH_{0}} .

and

x^{\mu}(s)=e^{isH_{0}}x^{\mu}e^{-isH_{0}} .

Then it is easy to see that x^{\mu}(s)=x^{\mu}+2sp^{\mu} on S(R^{d}) . Hence it fol-
lows that X(s)=ax+2sap on S(R^{d}) . By applying Nelson’s commutator
theorem as in the proof of Proposition 3.1, we can show that ax+2sap
is essentially self-adjoint on C_{0}^{\infty}(R^{d}) . Hence X(s)=\overline{ax+2sap} . By the
condition a^{2}=0 , X(s) strongly commutes with ax , ap and bp . Also note
that p^{\mu} strongly commutes with H_{0} . Hence, by the functional calculus, we
have u_{s}=u(\overline{ax+2sap}, bp) . This implies also that u(ax, bp) and u_{s} strongly
commute. Hence

e^{isH(u)}=e^{i[u(ax,bp)-u(\overline{ax+2sap},bp)]}e^{isH_{0}} .

We can apply Lemma 6.3 with F(x_{1}, x_{2}, x_{3})=e^{i[u(x_{1},x_{3})-u(x_{1}+2sx_{2},x_{3})]} to
obtain (6.4). \square

We next consider the integral-kernel representation of the unitary group
generated by the self-adjoint operator

H_{f}(u):=e^{iM(u,L_{f})}H_{0}e^{-iM(u,L_{f})} , (6.9)

where u\in B_{rea1}(R^{2}) and f\in \mathcal{F}_{a}\cap \mathcal{F}_{b} . It follows from Corollary 5.11 that,
if u\in \mathfrak{B}^{3,2}(R^{2}) , then H_{f}(u) is a self-adjoint extension of the symmetric
operator -(p+a\partial_{1}u(ax, bp)\overline{L}_{f})^{2}[D(N^{2}) .
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For a matrix T=(T_{\mu\iota/})_{\mu,\iota/=0,\ldots,d-1} and x , y\in M^{d} , we set

xTy=T_{\mu}lJx^{\mu}y^{lJ}

For u\in B_{rea1}(R^{2}) and f\in \mathcal{F}_{a}\cap \mathcal{F}_{b} , we define a function \Phi_{u,f} on R^{d}\cross R^{d}\cross

R\backslash \{0\} by

\Phi_{u,f}(x, y;s)

= \frac{1}{2s}(y-q)(1-e^{-[u(ax,(by-bx)/2s)-u(ay,(by-bx)/2s)]f})(x-q) . (6.10)

Theorem 6.4 Lei u , v\in B_{rea1}(R) , f\in \mathcal{F}_{a}\cap \mathcal{F}_{b} and a , b\in N_{d} . Then, for
all \psi\in L^{1}(R^{d})\cap L^{2}(R^{d}) and s\in R\backslash \{0\} ,

(e^{isH_{f}(u)} \psi)(x)=\int_{R^{d}}e^{i\Phi_{u,f}(x,y;s)}\triangle_{s}(x, y)\psi(y)dy . (6.11)

To prove this theorem, we prepare two lemmas. For a function h on
R\cross R^{d} and \alpha\in C , we define

\Psi_{h}^{s}(x, y;\alpha)=\frac{1}{2s}(y-q)(1-e^{-\alpha h(ax,y)f})(x-q) . (6.11)

Lemma 6.5 Let f\in \mathcal{F}_{a} . Suppose that, for each y\in R^{d} , h(t, y) is
continuously differentia te in t\in R . Then, for all x , y\in R^{d} and \alpha , \beta\in C ,

\sum_{k=0}^{\infty}\frac{(i\alpha)^{k}}{k!}h(ax, y)^{k}(L_{f}^{x})^{k}e^{i\Psi_{h}^{s}(x,y;\beta)}\triangle_{s}(x, y)=e^{i\Psi_{h}^{s}(x,y;\alpha+\beta)}\triangle_{s}(x, y) ,

(6.13)

where L_{f}^{x} denotes the operator L_{f} with respect to x variable.

Proof We first prove (6.13) with \beta=0 :

\sum_{k=0}^{\infty}\frac{(i\alpha)^{k}}{k!}h(ax, y)^{k}(L_{f}^{x})^{k}\triangle_{s}(x, y)=e^{i\Psi_{h}^{s}(x,y;\alpha)}\triangle_{s}(x, y) . (6.14)

It is obvious that the function

E(\alpha):=e^{i\Psi_{h}^{s}(x,y;\alpha)}\triangle_{s}(x, y)

of \alpha is entire. Hence, to prove (6.14), it is sufficient to show that the
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following equality holds:

i^{k}h(ax, y)^{k}(L_{f}^{x})^{k} \triangle_{s}(x, y)=\frac{\partial^{k}}{\partial\alpha^{k}}E(\alpha)|_{\alpha=0} (6.15)

We prove this by induction on k . The case k=0 is trivial. Suppose that
(6.15) holds for k . Since h(ax, y) and L_{f}^{x} commute, we have

i^{k+1}h(ax, y)^{k+1}(L_{f}^{x})^{k+1}\triangle_{s}(x, y)

=ih(ax, y)L_{f}^{x} \frac{\partial^{k}}{\partial\alpha^{k}}E(\alpha)|_{\alpha=0}

=-h(ax, y)f_{\mu\nu}(x^{I/}-q^{\iota/})[ \frac{\partial^{k}}{\partial\alpha^{k}}\frac{\partial}{\partial x_{\mu}}E(\alpha)]_{\alpha=0} (6.16)

=- \frac{i}{2s}\sum_{r=0}^{k}(-1)^{r+1}{}_{k}C_{r}(y-q)(h(ax, y)f)^{r+1}(x-q)\frac{\partial^{k-r}E(\alpha)}{\partial\alpha^{k-r}}|_{\alpha=0}

where we have used the property that f_{\mu\nu}a^{\nu}=0 , \mu=0 , \ldots , d-1 . It is easy
to see that the last quantity in (6.16) is equal to

\frac{\partial^{k+1}}{\partial\alpha^{k+1}}E(\alpha)|_{\alpha=0}=[\frac{\partial^{k}}{\partial\alpha^{k}}(\frac{\partial}{\partial\alpha}E(\alpha))]\alpha=0

Thus (6.15) holds with k replaced by k+1 . Hence we obtain (6.14).
As for (6.13), by the same reason as above, it is sufficient to show that

the following equality holds:

i^{k}h(ax, y)^{k}(L_{f}^{x})^{k}e^{i\Psi_{h}^{s}(x,y;\beta)} \triangle_{s}(x, y)=\frac{\partial^{k}}{\partial\alpha^{k}}E(\alpha+\beta)|_{\alpha=0}

This can be done in quite the same way as in the preceding case. \square

Lemma 6.6 For all f\in M_{d}^{as}(R) , \overline{L}_{f} strongly commutes with H_{0} .

Proof. Let \psi\in S(R^{d}) . Then e^{isH_{0}}\psi\in S(R^{d}) and, by (6.1), we have

( \overline{L}_{f}e^{isH_{0}}\psi)(x)=-\frac{1}{2s}\int_{R^{d}}f_{\mu\iota/}(x^{\nu}-q^{\nu})(x^{\mu}-y^{\mu})\triangle_{s}(x, y)\psi(y)dy .

By the antisymmetry of f_{\mu\iota/} , we can write

f_{\mu\nu}(x^{\iota/}-q^{\mathfrak{l}J})(x^{\mu}-y^{\mu})\triangle_{s}(x, y)=f_{\mu\iota/}(x^{\nu}-q^{\nu})(q^{\mu}-y^{\mu})\triangle_{s}(x, y)

=f_{\mu\iota/}(x^{I/}-y^{\nu})(q^{\mu}-y^{\mu})\triangle_{s}(x, y)
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=2sif_{\mu\nu}(q^{\mu}-y^{\mu}) \frac{\partial\triangle_{s}(x,y)}{\partial y_{\iota/}} .

Then, by integration by parts, we obtain

\overline{L}_{f}e^{isH_{0}}\psi=e^{isH_{0}}\overline{L}_{f}\psi .

By Proposition 3.1, this equality implies that e^{isH_{0}}\overline{L}_{f}\subset\overline{L}_{f}e^{isH_{0}} . Thus, by
Proposition 2.1, \overline{L}_{f} and H_{0} strongly commute. \square

Proof of Theorem 6.4
We first consider the case where u\in \mathfrak{B}^{1,\infty}(R^{2}) . We can write

e^{isH_{f}(u)}=e^{iM(u,L_{f})}e^{-iM_{s}(u,L_{f})}e^{isH_{0}} ,

where

M_{s}(u, L_{f})=e^{isH_{0}}M(u, L_{f})e^{-isH_{0}} .

By Lemma 6.6 and the proof of Theorem 6.1, we have

M_{s}(u, L_{f})=u(\overline{ax+2sap}, bp)\overline{L}_{f}

on D(\overline{L}_{f}) . Hence, putting

V(x_{1}, x_{2}, x_{3})=u(x_{1}, x_{3})-u(x_{1}+2sx_{2}, x_{3}) , x_{1} , x_{2}\in R ,

and denoting by M the closure of V(ax, ap, bp)\overline{L}_{f} , we obtain

e^{isH_{f}(u)}=e^{iM}e^{isH_{0}} .

Let \phi \in S_{H}(R^{d}) (see (5.23)) and \psi \in C_{0}^{\infty}(R^{d}) . Let \delta =
(2||V||_{\infty}C(f, q))^{-1} and |t|<\delta . Then, as in the proof of Lemma 5.4, we
have

e^{-itM} \phi=\sum_{k=0}^{\infty}\frac{(-it)^{k}}{k!}V(ax, ap, bp)^{k}L_{f}^{k}\phi .

Hence

( \phi, e^{itM}e^{isH_{0}}\psi)=\sum_{k=0}^{\infty}\frac{t^{k}}{k!}(\phi, i^{k}V(ax, ap, bp)^{k}L_{f}^{k}e^{isH_{0}}\psi) .

Using the strong commutativity and Lemma 6.2, we can write

(\phi, i^{k}V(ax, ap, bp)^{k}L_{f}^{k}e^{isH_{0}}\psi)
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= \int_{R^{d}}\phi(x)^{*}(\int_{R^{d}}i^{k}h(ax, y)^{k}(L_{f}^{x})^{k}\triangle_{s}(x, y)\psi(y)dy)dx ,

where we set

h(ax, y)=V(ax, (ay-ax)/2s , (by-bx)/2s) .

By (6.15) and Cauchy’s estimate, we have for all r>0
|i^{k}h(ax, y)^{k}(L_{f}^{x})^{k} \triangle_{s}(x, y)|\leq k!\frac{\sup_{|\alpha|_{-}^{-}r}|E(\alpha)|}{r^{k}}

\leq\frac{k!}{r^{k}}H_{r}(x, y) ,

where

H_{r}(x, y)= \frac{1}{2^{d}\pi^{d/2}|s|^{d/2}} exp ( \frac{1}{2|s|}(1+e^{r||h||_{\infty}C(f)})|x-q||y-q|) .

Hence, for all r>|t| and N\in N , we obtain

| \sum_{k=0}^{N}\frac{t^{k}}{k!}i^{k}h(ax, y)^{k}(L_{f}^{x})^{k}\triangle_{s}(x, y)|\leq(1-\frac{|t|}{r})^{-1}H_{r}(x, y) .

Since \phi(x) is of the form P(x)e^{-|x|^{2}/2} with P(x) a polynomial (see (5.17))
and \psi has compact support, it follows that |\phi(x)^{*}H_{r}(x, y)\psi(y)| is in L^{1}(R^{d}\cross

R^{d}) . Hence, by Fubini’s theorem and the Lebesgue dominated convergence
theorem, we obtain

( \phi, e^{itM}e^{isH_{0}}\psi)=\int_{R^{d}\cross R^{d}}\phi(x)^{*}e^{i\Psi_{h}^{s}(x,y;t)}\triangle_{s}(x, y)\psi(y)dxdy .

Thus

(e^{itM}e^{isH_{0}} \psi)(x)=\int_{R^{d}}e^{i\Psi_{h}^{s}(x,y;t)}\triangle_{s}(x, y)\psi(y)dy . (6.17)

Let |\tau|<\delta . Then we have

( \phi, e^{i(\tau+t)M}e^{isH_{0}}\psi)=\sum\frac{\tau^{k}}{k!}(\phi, i^{k}V(ax, ap, bp)^{k}L_{f}^{k}e^{itM}e^{isH_{0}}\psi)\infty .
k=0

(6.18)

Using (6.17) and Lemma 6.5, we can show in the same way as above that
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the RHS of (6.18) is equal to

\int_{R^{d}\cross R^{d}}\phi(x)^{*}e^{i\Psi_{h}^{s}(x,y;t+\tau)}\triangle_{s}(x, y)\psi(y)dxdy .

Hence (6.17) holds with t replaced by t+\tau . Repeating this procedure, we
see that (6.17) holds for all t\in R . In the present case, we have \Psi_{h}^{s}(x, y;1)=

\Phi_{u,f}(x, y;s) . Thus (6.11) with \psi\in C_{0}^{\infty}(R^{d}) follows. To extend this result to
all \psi\in L^{1}(R^{d})\cap L^{2}(R^{d}) , we need only to make a simple limiting argument,
noting that there exists a sequence \{\psi_{k}\}_{k=1}^{\infty}\subset C_{0}^{\infty}(R^{d}) such that, for p=
1,2 , ||\psi_{k}-\psi||_{L^{p}(R^{d})} -0 as karrow\infty .

Finally we consider the case where u\in L_{rea1}^{\infty}(R^{2}) . Then there exist
sequences \{u_{k}\}_{k} in \mathfrak{B}^{1,\infty}(R^{2}) such that \sup_{k\geq 1}||u_{k}||_{\infty}<\infty and, for a.e .
(x_{1}, x_{2})\in R^{2} , u_{k}(x_{1}, x_{2})arrow u(x_{1}, x_{2}) as k – \infty . By the preceding result,
we have

(e^{isH_{f}(u_{k})} \psi)(x)=\int_{R^{d}}e^{i\Phi_{u_{k},f}(x,y;s)}\psi(y)dy .

By the Lebesgue dominated convergence theorem, we easily see that

\lim_{karrow\infty}\int_{R^{d}}e^{i\Phi_{u_{k},f}(x,y;s)}\psi(y)dy=\int_{R^{d}}e^{i\Phi_{u,f}(x,y;s)}\psi(y)dy .

On the other hand, for all \psi\in D_{f,u}^{\infty} (see (5.1)), M(u_{k}, L_{f})\psiarrow M(u, L_{f})\psi

as karrow\infty . Since D_{f,u}^{\infty} is a common core for M(u_{k}, L_{f}) and M(u, L_{f}) ,
it follows by standard convergence theorems ( [R-Sl, \S VIII.7]) that, for all
t\in R ,

s-\lim_{karrow\infty}e^{itM(u_{k},L_{f})}=e^{itM(u,L_{f})} .

Hence

s-\lim_{karrow\infty}e^{isH_{f}(u_{k})}=e^{isH_{f}(u)} .

Thus (6.11) with u\in L_{rea1}^{\infty}(R^{2}) holds. By a limiting argument similar to the
one just given, we can extend (6.11) with u\in L_{rea1}^{\infty}(R^{2}) to the case where
u\in B_{rea1}(R^{2}) . \square

We are now ready to derive the integral-kernel representation of the
unitary group e^{isH_{f}(u,v)} (see (5.36)).

Theorem 6.7 Let u , v\in B_{rea1}(R^{2}) , f\in \mathcal{F}_{a}\cap \mathcal{F}_{b} and a , b\in N_{d} . Then,
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for all \psi\in L^{1}(R^{d})\cap L^{2}(R^{d}) and s\in R\backslash \{0\} ,

(e^{isH_{f}(u,v)}\psi)(x) (6.19)

= \int_{R^{d}}e^{i[u(ax} ’ (by-bx)/2s)-u(ay,(bx-by)/2s)]+i\Phi_{v,f}(x,y;s)\triangle_{s}(x, y)\psi(y)dy .

Proof. As in the case of proof of Theorems 6.1 or Theorem 6.4, we need
only to prove (6.19) for the case where u\in L_{rea1}^{\infty}(R^{2}) and v\in \mathfrak{B}^{1,\infty}(R^{2}) . In
the same way as in the case of H(u) or H_{f}(v) , we can show that

e^{isH_{f}(u,v)}=e^{i[u(ax} , bp)-u(\overline{ax+2sap},bp)]_{e}isH_{f}(v) .

The kernel

k(x, y)=e^{i\Phi_{v,f}(x,y:s)}\triangle_{s}(x, y)

of e^{isH_{f}(v)} satisfies the assumption of Lemma 6.2 with

k(x-\xi_{1}a-\xi_{2}b, y)=e^{i\xi_{1}(ay-ax)/2s+i\xi_{2}(by-bx)/2s}k(x, y) .

Thus, by Theorem 6.4 and Lemma 6.2, we obtain (6.19). \square

7. Application to the external field problem

In this section we apply the operator theory developed in the preceding
sections to the external field problem mentioned in the Introduction. As for
Green’s functions as described in the Introduction, the problem is reduced
to an analysis of a quantum system of a charged spinless relativistic parti-
cle interacting with an external electromagnetic field. Thus we consider a
quantum system of such a particle moving in the Minkowski space M^{d} un-
der the influence of an electromagnetic field F=(F_{\mu\nu})_{\mu,\iota/=0,\ldots,d-1} , a tensor
field on M^{d} . A vector potential A= (A_{0}, . . ’ A_{d-1}) of the electromagnetic
field is a vector field on M^{d} such that

F_{\mu\nu}=\partial_{\mu}A_{\iota}, -\partial_{\nu}A_{\mu} . (7.1)

The gauge covariant momentum operator (\pi_{0}, \ldots, \pi_{d-1}) is defined by

\pi_{\mu}=p_{\mu}-A_{\mu} (7.2)

with D(\pi_{\mu})=D(p_{\mu})\cap D(A_{\mu}) , where the charge of the particle is absorbed
into A .
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To apply our theory, we introduce a class of vector potentials: we assume
that the vector potential A is of the form

A_{\mu}(x)=Q_{\mu}(x)W’(ax) , \mu=0 , . . , d-1 , (7.3)

where a\in M^{d} is a constant vector, W\in C_{rea1}^{1}(R) , and Q_{\mu} is given by (3.2)
with f\in M_{d}^{as}(R) . If W\in C_{rea1}^{2}(R) , then

F_{\mu\nu}(x)=-2f_{\mu\nu}W’(ax)+(a_{\mu}f_{\nu\lambda}-a_{I/}f_{\mu\lambda})(x^{\lambda}-q^{\lambda})W’(ax) . (7.4)

This class of vector potentials is a generalization of a special class of
vector potentials. It contains physically meaningful cases (see \S 7.4).

Proposition 7.1 Let W\in \mathfrak{B}^{2}(R) . Then each \pi_{\mu} is essentially self-
adjoint on C_{0}^{\infty}(R^{d}) .

Proof. It is obvious that \pi_{\mu} is symmetric and C_{0}^{\infty}(R^{d})\subset D(\pi_{\mu}) . Let N
be the self-adjoint operator given by (3.6) and \psi\in C_{0}^{\infty}(R^{d}) . Then, by (3.7)
and (3.9), we have

||\pi_{\mu}\psi||\leq C||(N+1)^{1/2}\psi||\leq C||(N+1)\psi|| ,

where C is a constant. Moreover, we have

[ \pi_{\mu}, N]\psi=2ix^{\mu}\psi-i\sum_{I’=0}^{d-1}\{[f_{\mu\nu}W’(ax)+Q_{\mu}a_{\nu}W’(ax)]p_{\iota/}\psi

+p_{\nu}[f_{\mu\nu}W’(ax)+Q_{\mu}a_{\nu}W’(ax)]\psi\} .

Hence it follows that

|(\pi_{\mu}\psi, N\psi)-(N\psi, \pi_{\mu}\psi)|\leq C’||(N+1)^{1/2}\psi||^{2} ,

where C’ is a constant. Thus we can apply Nelson’s commutator theorem
( [R-S2, Theorem X.37]) to obtain the desired result. \square

For technical reasons as well as for some interest, we first consider a
deformation of A .

7.1. A class of deformed vector potentials with a parameter \epsilon>0

Let \epsilon>0 be a parameter and u_{\epsilon}=u_{\epsilon}(t) be a function in C_{rea1}^{1}(R) ,
depending on \epsilon with the following properties:
(i) tu_{\epsilon}\in \mathfrak{B}^{1}(R) .
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(ii)

sup |tu_{\epsilon}(t)|\leq C (7.5)
t\in R

with C a constant independent of \epsilon .
(iii)

\lim_{\epsilonarrow 0}u_{\epsilon}(t)=\frac{1}{t} , t \in R\backslash \{0\} . (7.6)

Remark. A simple example of u_{\epsilon} is the following one:

u_{\epsilon}(t)= \frac{t}{t^{2}+\epsilon^{2}} .

In what follows, we assume that a\in N_{d} , i.e., a^{2}=0 . For W\in C_{rea1}^{1}(R) ,
we define

A_{\mu}^{\epsilon}=apu_{\epsilon}(ap)A_{\mu}+ \frac{1}{2}a_{\mu}u_{\epsilon}(ap)[1-apu_{\epsilon}(ap)](ax-aq)^{2}W’(ax)^{2}

(7.7)

The following lemma shows that the operator A_{\mu}^{\epsilon} is a deformation of the
multiplication operator A_{\mu} .

Lemma 7.2 For all \psi\in[\bigcap_{\mu=0}^{d-1}D(A_{\mu})]\cap D((ap)^{-1}(ax-aq)^{2}W’(ax)^{2}) ,

\lim_{\epsilonarrow 0}A_{\mu}^{\epsilon}\psi=A_{\mu}\psi , \mu=0 , \ldots , d-1 .

Proo/. By the functional calculus, (7.5) and (7.6), we have

\lim_{\epsilonarrow 0}apu_{\epsilon}(ap)\phi=\phi , \phi\in L^{2}(R^{d}) . (7.8)

Let \psi be as above. Then, by (7.8), we have

\lim_{\epsilonarrow 0}apu_{\epsilon}(ap)A_{\mu}\psi=A_{\mu}\psi

and

\lim_{\epsilonarrow 0}u_{\epsilon}(ap)(apu_{\xi j}(ap)-1)
(ax-aq)^{2}W’(ax)^{2}\psi

= \lim_{\epsilonarrow 0}apu_{\epsilon}(ap)(apu_{\epsilon}(ap)-1)
(ap)^{-1}(ax-aq)^{2}W’(ax)^{2}\psi

=0.
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Thus, by (7.7), the desired result follows. \square

For f\in \mathcal{F}_{a} and u , v\in L_{rea1}^{\infty}(R^{2}) , we define

P_{\mu}(u, v;f)=p_{\mu}+f_{\mu\iota/}u(ax, ap)pu+v(ax, ap)Q_{\mu} . (7.9)

Lemma 7.3 Suppose that u , v\in \mathfrak{B}^{1,1}(R^{2}) . Then, each P_{\mu}(u, v;f) is
essentially self-adjoint on C_{0}^{\infty}(R^{d}) .

Proof. For all \psi , \phi \in C_{0}^{\infty}(R^{d}) , we have (\psi, f_{\mu\iota/}u(ax, ap)p^{\iota/}\phi) =

(f_{\mu\nu}u(ax, ap)\psi , p^{1/}\phi) . By Lemma 2.4, u(ax, ap)\psi \in D(p_{I/}) and
p^{\iota/}u(ax, ap)\psi=ia^{\nu}\partial_{1}u(ax, ap)\psi+u(ax, ap)p^{\mathfrak{l}J}\psi . Using f_{\mu\nu}a^{\nu}=0 , we see
that f_{\mu\nu}u(ax, ap)p^{lJ} is symmetric on C_{0}^{\infty}(R^{d}) . Similarly, we can show that
v(ax, ap)Q_{\mu} is symmetric on C_{0}^{\infty}(R^{d}) . Hence P_{\mu}(u, v;f) is symmetric on
C_{0}^{\infty}(R^{d}) . We have

||P_{\mu}(u, v;f)\psi||\leq C||(N+1)^{1/2}\psi||

\leq C||(N+1)\psi|| , \psi\in C_{0}^{\infty}(R^{d}) ,

where C is a constant. Similarly we can show that

| (P_{\mu}(u, v;f)\psi , N\psi)-(N\psi, P_{\mu}(u, v;f)\psi)|\leq D||(N+1)^{1/2}\psi||^{2} ,

where D is a constant. Thus, by Nelson’s commutator theorem, we obtain
the desired result. \square

Corresponding to the deformation of A given by (7.7), we have a defor-
mation of \pi_{\mu} :

\pi_{\mu}(\in)=p_{\mu}-A_{\mu}^{\epsilon} (7.10)

with D(\pi_{\mu}(\epsilon))=D(p_{\mu})\cap D(A_{\mu}^{\epsilon})=D(p_{\mu})\cap D(A_{\mu})\cap D((ax-aq)^{2}W’(ax)^{2}) .

Lemma 7.4 Suppose that W\in \mathfrak{B}^{2}(R) and (t-aq)W’\in L^{\infty}(R) . Then
\pi_{\mu}(\epsilon) is essentially self-adjoint on C_{0}^{\infty}(R^{d}) .

Proof. Under the present assumption for W , the second term on the RHS
of (7.7) is bounded. Hence it is sufficient to show that

\overline{\pi}_{\mu}(\epsilon):=p_{\mu}-apu_{\epsilon:}(ap)A_{\mu}
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is essentially self-adjoint on C_{0}^{\infty}(R^{d}) . Note that \overline{\pi}_{\mu}=P_{\mu}(0, -W’\otimes tu_{\epsilon}; f) ,
where, for two functions u , v on R, u\otimes v is a function on R^{2} defined by

(u\otimes v)(s, t)=u(s)v(t) , s , t \in R. (7.11)

Hence Lemma 7.3 gives the desired result. \square

For W\in C_{rea1}^{1}(R) such that

Y(t):=W(t)+(t-aq)W’(t) (7.12)

is bounded, we can define a bounded operator-valued Lorentz transforma-
tion on [L^{2}(R^{d})] by

\Lambda(\in)=e^{\overline{f}Y(ax)u_{\epsilon}(ap)} , (7.13)

where f\in M_{d}^{as}(R) (see Proposition 4.4).
Let

\hat{\pi}^{\mu}(\in)=\Lambda(\epsilon)_{\nu}^{\mu}\pi^{\nu}(\epsilon) . (7.14)

We say that W is in the set \mathfrak{U}I_{r} (r\in N) if W \in \mathfrak{B}^{r}(R) and
(t - aq) (d^{k}W/dt^{k})\in L^{\infty}(R) , k=1 , \ldots , r .

We define a subset of \mathcal{F}_{a} by

\mathcal{G}_{a}=\{f\in \mathcal{F}_{a}|f_{\lambda}^{\mu}f_{\iota/}^{\lambda}=a^{\mu}a_{lJ}, \mu, lJ =0, . . , d-1\} . (7.15)

Note that every f\in \mathcal{G}_{a} satisfies

\overline{f}^{k}=0 , k\geq 3 . (7.16)

Lemma 7.5 Let W\in \mathfrak{U}I_{2} , a\in N_{d} , and f\in \mathcal{G}_{a} . Then \hat{\pi}^{\mu}(\epsilon) is essentially
self-adjoint on C_{0}^{\infty}(R^{d}) .

Proof. By direct computations, we have for all \psi\in C_{0}^{\infty}(R^{d})

\hat{\pi}_{\mu}(\epsilon)\psi=[S_{\mu}+V_{\mu}(\epsilon)]\psi ,

where

S_{\mu}=P_{\mu}(Y\otimes u_{\xi j}, -W’\otimes tu_{\epsilon}; f)

-a_{\mu}apu_{\epsilon}(ap)^{2}Y(ax)(ax-aq)W’(ax) ,

V_{\mu}( \epsilon)=\frac{1}{2}a_{\mu}apu_{\epsilon}(ap)^{2}Y(ax)^{2}
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(7.18)

+ \frac{1}{2}a_{\mu}u_{\epsilon}(ap)(apu_{\epsilon}(ap)-1) (ax-aq)^{2}W’(ax)^{2}

It is easy to see that u_{\epsilon} and Y are in \mathfrak{B}^{1}(R) . Hence V_{\mu}(\epsilon) is bounded. In the
same way as in the proof of Lemma 7.3, we can show that S_{\mu} is essentially
self-adjoint on C_{0}^{\infty}(R^{d}) . Thus the desired result follows. \square

For W\in C_{rea1}^{1}(R) , we define

\Omega(t)=\int_{aq}^{t}(s-aq)^{2}W’(s)^{2}ds , t\in R , (7.17)

and put

U_{\epsilon}=\exp\{-iM ( \frac{\Omega\otimes u_{\epsilon}}{2};W\otimes u-, L_{f}) \} ,

(7.20)

where M( ; , L_{f}) is defined by (5.29).
We say that f\in \mathcal{G}_{a} is in the set \mathcal{G}_{a}^{0} if

f_{\mu\nu}a_{\lambda}+f_{\nu\lambda}a_{\mu}+f_{\lambda\mu}a_{\nu}=0 , \mu , \nu , \lambda=0,1 , \ldots , d-1 , (7.19)

Theorem 7.6 Let a\in N_{d} , f \in \mathcal{G}_{a}^{0} and W\in \mathfrak{B}I_{2} . Assume that
(t-aq)W’\in L^{2}(R) . Then the following operator equality holds:

U_{\epsilon}pU_{\epsilon}^{-1}\mu=\overline{\hat{\pi}^{\mu}(\epsilon)} .

Proof. Let \psi\in S(R^{d}) . By the assumption on W , \Omega is in \mathfrak{B}^{1}(R) . Hence
we can apply Theorem 5.5 and Lemma 5.1 to obtain

U_{\epsilon}pU_{\epsilon}^{-1}\mu\psi=\Lambda(\epsilon)_{\nu}^{\mu}\{\Lambda(f, (Y-W)\otimes u_{\epsilon})_{\lambda}^{\nu}p^{\lambda}\psi

-a^{lJ}u_{\epsilon}(ap)W’(ax)L_{f} \psi-\frac{a^{\nu}u_{\epsilon}(ap)\Omega’(ax)}{2}\psi\} .

By Proposition 4.4(ii), we have

\Lambda(f, (Y-W)\otimes u_{\xi j})_{\lambda}^{\iota/}p^{\lambda}\psi

=p^{\nu}\psi-f_{\lambda}^{lJ}u(ax) (Y(ax)-W(ax))p^{\lambda}\psi

+ \frac{1}{2}a^{lJ}apu_{\epsilon}(ap)^{2}(Y(ax)-W(ax))^{2}\psi . (7.21)

By (7.19), we can write

a^{lJ}L_{f}\psi=apQ^{\nu}\psi-f_{\lambda}^{\nu}p^{\lambda}(ax-aq)\psi .
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Putting this relation and (7.21) into (7.20), we obtain

U_{\epsilon}pU_{\epsilon}^{-1}\mu\psi=\hat{\pi}^{\mu}(\epsilon)\psi .

This equation and Lemma 7.5 imply the desired result. \square

Remark. Theorem 7.6 shows that the closure of the Lorentz-transformation
of \pi(\epsilon)=(\pi^{\mu}(\epsilon)) by \Lambda(\epsilon) is unitarily equivalent to the canonical momentum
operator p=(p^{\mu}) . This may be an interesting fact from a view-point of
representation of “partially broken canonical commutation relations” (see

Section 8).

Let

H_{\epsilon}=U_{\epsilon}H_{0}U_{\epsilon}^{-1} . (7.22)

As a corollary of Theorem 7.6, we have the following:

Corollary 7.7 Let a\in N_{d} , f\in \mathcal{G}_{a}^{0} , W\in \mathfrak{U}I_{3} and assume that u_{\epsilon}\in \mathfrak{B}^{2}(R)

in addtion to the given properties of u_{\xi j} . Then H_{\epsilon} is a self-adjoint extension
of-\pi(\epsilon)^{2}[D(N^{2}) .

Proof. One easily sees that W\in \mathfrak{U}I_{3} implies \Omega\in \mathfrak{B}^{3}(R) . Hence, by
Theorem 7.6 and the mapping property of \exp(-iM( ; , L_{f})) on the
domain D(N^{2}) given in Theorem 5.10, we obtain the desired result. \square

We have the following integral-kernel representation of H_{\epsilon} .

Theorem 7.8 Let W\in C_{rea1}^{1}(R) and a\in N_{d} , f\in \mathcal{F}_{a} . Then, for all
\psi\in L^{1}(R^{d})\cap L^{2}(R^{d}) and s\in R\backslash \{0\} ,

(e^{isH_{\epsilon}} \psi)(x)=\int_{R^{d}}e^{-i\ominus_{\epsilon}(x,y;s)}\triangle_{s}(x, y)\psi(y)dy , (7.23)

where

O-_{\epsilon}(x, y;s)=\frac{1}{2}u_{\epsilon}(\frac{ay-ax}{2s})[\Omega(ax)-\Omega(ay)] (7.24)

- \frac{1}{2s}(y-q)[1- exp (u_{\epsilon}( \frac{ay-ax}{2s})(W(ax)-W(ay))f)](x-q) .

Proof. We need only to apply Theorem 6.7 with u=-\Omega\otimes u-/2 , v=
-W\otimes u_{\xi j} . \square
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7.2. The limit \epsilonarrow 0

We next consider the limit \epsilonarrow 0 . Let

u_{-1}(t)= \frac{1}{t} , t\in R\backslash \{0\} . (7.25)

For W\in C_{rea1}^{1}(R) , we define

M=M ( \frac{\Omega\otimes u_{-1}}{2};W\otimes u_{-1} , L_{f}) (7.26)

and set

U=e^{-iM} . (7.27)

Lemma 7.9

s-\lim_{\epsilon:arrow 0}U_{\xi j}=U, s-\lim_{\epsilonarrow 0}U_{\epsilon}^{-1}=U^{-1} . (7.28)

Proof. We set

M_{\epsilon}=M( \frac{\Omega\otimes u_{\epsilon}}{2};W\otimes u_{\epsilon}, L_{f})

Let D= \bigcap_{j,k=0}^{\infty}D((ap)^{-J}\overline{L}_{f}^{k}) . Then, for all \psi\in D , we have

M_{\epsilon} \psi=\frac{1}{2}u_{\epsilon}(ap)\Omega(ax)\psi+u_{\epsilon}(ap)W(ax)\overline{L}_{f}\psi ,

M \psi=\frac{1}{2}\Omega(ax)(ap)^{-1}\psi+W(ax)(ap)^{-1}\overline{L}_{f}\psi .

By the functional calculus, one can easily show that \lim_{\epsilonarrow 0}M_{\epsilon}\psi=M\psi .
Note that D is a common core for M_{\epsilon} and M . Hence, we can apply gen-
eral convergence theorems ( [R-Sl, Theorem VIII.25, Theorem VIII.21]) to
obtain (7.28). \square

For f\in \mathcal{G}_{a} and W\in \mathfrak{U}I_{1} , we define an operator \Lambda acting in [L^{2}(R^{d})] by

\Lambda=e^{\overline{f}(ap)^{-1}Y(ax)} . (7.29)

Then, by by Proposition 4.4, \Lambda is an operator-valued Lorentz transformation
on [L^{2}(R^{d})] and

\Lambda_{\nu}^{\mu}=\delta_{\nu}^{\mu}+f_{\iota/}^{\mu}(ap)^{-1}Y(ax)+\frac{1}{2}f_{\lambda}^{\mu}f_{\nu}^{\lambda}((ap)^{-1}Y(ax))^{2} (7.30)
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on D(\Lambda_{\nu}^{\mu}):=D(((ap)^{-1}Y(ax))^{2}) .
We prepare a general lemma.

Lemma 7.10 Let S_{k}(k\in N) and S be self-adjoint operators on a Hilbert
space H such that S_{k} converges to S in the strong resolvent sense as karrow\infty .
Suppose that there exist a dense domain D of H and a symmetric operator
S_{0} on H such that D\subset D(S_{k})\cap D(S_{0}) for all k\in N and, for all \psi\in D ,
\lim_{karrow\infty}S_{k}\psi=S_{0}\psi . Then, S_{0}r D\subset S , i.e. , S is a self-adjoint extension

of S_{0}[D .

Proof. Using the equality (S_{k}-z)(S_{k}-z)^{-1}=I , z\in C\backslash R ( I : identity),
we have

((S_{k}-z^{*})\psi, (S_{k}-z)^{-1}\phi)=(\psi, \phi) , \psi\in D , \phi\in H .

Taking the limit k – \infty gives

((S_{0}-z^{*})\psi, (S-z)^{-1}\phi)=(\psi, \phi) ,

which implies that, for all \eta\in D(S) , (S_{0}\psi, \eta)=(\psi, S\eta) . Hence, \psi\in

D(S^{*})=D(S) and S\psi=S_{0}\psi . Thus the desired result follows. \square

Let

D_{a}=d1\overline{\cap}D((ap)^{-1}x_{\mu})\cap D(x_{\mu})\cap D(p_{\mu})\cap D((ap)^{-1}p_{\mu})

\mu=0

\cap D(p_{\mu}(ap)^{-1})\cap D((ap)^{-2}p_{\mu}) (7.31)

Then D_{a}\subset D(\Lambda_{1/}\mu\pi)\iota/ and

\Lambda_{1/}^{\mu\nu}\pi=\pi^{\mu}+Y(ax)(ap)^{-1}f_{lJ}^{\mu}p^{lJ}-Y(ax)(ap)^{-1}f_{lJ}^{\mu}A^{\nu}

+ \frac{1}{2}Y(ax)^{2}f_{\lambda}^{\mu}f_{I/}^{\lambda}(ap)^{-2}p^{\iota/} (7.32)

on D_{a} .
We set

\hat{p}_{\mu}:=Up^{\mu}U^{-1} , \mu=0 , \ldots , d-1 . (7.33)

Theorem 7.11 Let W, a and f be as in Theorem 7.6. Then

\hat{p}^{\mu}\supset[\Lambda_{\nu}^{\mu}\pi^{I/}][D_{a}, (7.34)

i.e,\hat{p}^{\mu} is a self-adjoint extension of [\Lambda_{I/}^{\mu\nu}\pi][D_{a} .
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Proof. By Theorem 7.6, we have for all z\in C\backslash R

U_{\epsilon}(p^{\mu}-z)^{-1}U_{\epsilon}^{-1}=(\overline{\hat{\pi}^{\mu}(\epsilon)}-z)^{-1}

Hence, by Lemma 7.9,

s-\lim_{\epsilonarrow 0}(\overline{\hat{\pi}^{\mu}(\epsilon)}-z)^{-1}=U(p^{\mu}-z)^{-1}U^{-1}

=(\hat{p}^{\mu}-z)^{-1} .

Hence \overline{\hat{\pi}^{\mu}(\epsilon)} converges to \hat{p}^{\mu} in the strong resolvent sense as \epsilonarrow 0 . On the
other hand, it is straight forward to see that, for all \psi\in D_{a} ,

\lim_{\epsilonarrow 0}\hat{\pi}^{\mu}(\epsilon)\psi=\Lambda_{\nu}^{\mu}\pi^{\iota/}\psi .

Thus, applying Lemma 7.10, we obtain (7.34). \square

Let H_{0} be given by (2.13) and

H=UH_{0}U^{-1} (7.35)

Lemma 7.12 Let W\in C_{rea1}^{1}(R) and f\in \mathcal{F}_{a} . Then H_{\epsilon} converges to H
in the strong resolvent sense as \epsilonarrow 0 .

Proof. This can be proven by using Lemma 7.9. \square

Theorem 7.13 Let W\in 2D_{3} , a\in N_{d} , and f\in \mathcal{G}_{a}^{0} . Then H is a self-
adjoint extension of-\pi^{2}\lceil D(N^{2}) .

Proof. By Corollary 7.7 and Lemma 7.4, D(N^{2})\subset D(H_{\epsilon}) and, for all
\psi\in D(N^{2}) ,

\lim_{\epsilonarrow 0}H_{\epsilon}\psi=-\pi^{2}\psi ,

where we take u_{\epsilon} such that u_{\epsilon}\in \mathfrak{B}^{2}(R) . Hence, by Lemma 7.12 and Lemma
7.10, we obtain the desired result. \square

Theorem 7.14 Let W, a and f be as in Theorem 7.8. Then, for all
\psi\in L^{1}(R^{d})\cap L^{2}(R^{d}) and s\in R\backslash \{0\} ,

(e^{isH} \psi)(x)=\int_{R^{d}}e^{-i\Theta(x,y;s)}\triangle_{s}(x, y)\psi(y)dy , (7.36)
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where

O-(x, y;s)=-\frac{s[\Omega(ax)-\Omega(ay)]}{ax-ay} (7.37)

- \frac{1}{2s}(y-q)[1- exp (-2s \frac{W(ax)-W(ay)}{ax-ay}f)](x-q) .

Proof. This follows from an application of Theorem 6.7. \square

Remark, (i) As easily seen,

\lim_{\epsilonarrow 0}\Theta_{\epsilon}(x, y;s)=\Theta(x, y;s) , x\neq y .

(ii) If f\in \mathcal{G}_{a} , then we have

O-(x, y;s)=-\frac{s[\Omega(ax)-\Omega(ay)]}{ax-ay}

+ \frac{W(ax)-W(ay)}{ax-ay}(y-q)f(x-q)

+s( \frac{W(ax)-W(ay)}{ax-ay})^{2}(y-q)f^{2}(x-q) .

Note that we can write

\frac{W(ax)-W(ay)}{ax-ay}(y-q)f(x-q)=\int_{x}^{y}A_{\mu}(x’)dx_{J}^{\prime\mu}.

where the integral on the RHS is taken along the straight line from x to y .

(iii) Formula (7.36) is more general than the corresponding formula in
[V-S-H] (Equation (70) there). In [V-S-H] only a special value of the kernel
e^{-i\Theta(x,y;s)}\triangle_{s}(x, y) , i.e., e^{-i\Theta(x,q;s)}\triangle_{s}(x, q) (the case y=q and f\in \mathcal{G}_{a}^{0} ) is
computed.

7.3. Green’s functions
Finally we consider the implications of the preceding results for Green’s

functions (propagators) of d’Alembertians or Klein-Gordon operators with
perturbations. By Theorem 7.13, the self-adjoint operator H+m^{2} with
m\geq 0 (a constant) may be regarded as a generalization of the perturbed
Klein-Gordon operator -\pi^{2}+m^{2} . The propagator of H+m^{2} may be defined
as the limit \epsilonarrow 0 of

G_{\pm,\epsilon}:=(H+m^{2}\pm i\epsilon)^{-1} (7.38)
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in a suitable sense, where \epsilon>0 is a constant parameter.
Let \sigma>0 be a constant and

G_{\pm,\epsilon}^{\sigma}(x, y)= \mp i\int_{\sigma}^{\infty}e^{-s\epsilon\pm ism^{2}-i\Theta(x,y;\pm s)}\triangle\pm s(x, y)ds . (7.39)

These integrals are absolutely convergent.

Remark. The function |\triangle_{s}(x, y)| as a function of s has singularity of order
d/2 at s=0 (see (6.2)). This is the reason why the cutoff parameter \sigma is
introduced in the integral in (7.39).

Lemma 7.15 Let W, a and f be as in Theorem 7.8. Then, for all \phi , \psi\in

L^{1}(R^{d})\cap L^{2}(R^{d}) ,

( \phi, G_{\pm,\epsilon}\psi)=\lim_{\sigmaarrow 0}\int_{R^{d}\cross R^{d}}G_{\pm,\epsilon}^{\sigma}(x, y)\phi(x)^{*}\psi(y)dxdy , (7.40)

Proof. By the functional calculus, we have

G_{\pm,\epsilon}= \lim_{\sigmaarrow 0}\mp i\int_{\sigma}^{\infty}e^{\pm is(m^{2}\pm i\epsilon)}e^{\pm isH}ds , (7.41)

where the integral and the limit \sigmaarrow 0 are taken in the operator norm
topology. Hence

( \phi, G_{\pm,\epsilon}\psi)=\lim_{\sigmaarrow 0}\mp i\int_{\sigma}^{\infty}e^{\pm is(m^{2}\pm i\epsilon)}(\phi, e^{\pm isH}\psi)ds .

Using Theorem 7.14 and applying Fubini’s theorem to interchange the ds-
integral and the space integral, we obtain the desired result. \square

Remark. An expression similar to (7.40) can be derived for H_{\delta}(\delta>0) too
(see (7.22)).

Let d\geq 3 . Then, for all \sigma>0 , the integrals

G_{\pm}^{\sigma}(x, y):= \int_{\sigma}^{\infty}e^{\pm ism^{2}-i\Theta(x,y;\pm s)}\triangle\pm s(x, y)ds (7.42)

are absolutely convergent (see (6.2)).

Theorem 7.16 Let d\geq 3 . Let W, a and f be as in Theorem 7.8. Then
there exist unique G_{\pm}\in S’(R^{d}\cross R^{d}) (the space of tempered distributions
on R^{d}\cross R^{d} ), respectively, such that, for all \phi , \psi\in S(R^{d}) ,

G_{\pm}( \phi\otimes\psi)=\lim_{\epsilonarrow 0}(\phi^{*}, G_{\pm,\epsilon}\psi) . (7.43)
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Moreover,

G_{\pm}( \phi\otimes\psi)=\lim_{\sigmaarrow 0}\int_{R^{d}\cross R^{d}}G_{\pm}^{\sigma}(x, y)\phi(x)\psi(y)dxdy . (7.44)

Proof. Let \phi , \psi\in S(R^{d}) . By Lemma 7.15 and its proof, we can write

(\phi^{*}, G_{\pm,\epsilon}\psi)=T_{\pm,\epsilon}^{\delta}(\phi, \psi)+S_{\pm,\epsilon}^{\delta}(\phi, \psi)

with

T_{\pm,\epsilon}^{\delta}( \phi, \psi)=\int_{R^{d}\cross R^{d}}G_{\pm,\epsilon}^{\delta}(x, y)\phi(x)\psi(y)dxdy ,

S_{\pm,\epsilon}^{\delta}( \phi, \psi)=\mp i\int_{0}^{\delta}e^{-s\epsilon\pm ism^{2}}(\phi^{*}, e^{\pm isH}\psi)ds ,

where \delta>0 is arbitrary. We have

|G_{\pm,\epsilon}^{\delta}(x, y)\phi(x)\psi(y)|\leq C_{\delta}|\phi(x)||\psi(y)| , (7.45)

where

C_{\delta}= \frac{1}{2^{d}\pi^{d/2}}\int_{\delta}^{\infty}\frac{1}{s^{d/2}}ds<\infty ,

and

\lim_{\epsilonarrow 0}G_{\pm,\epsilon}^{\delta}(x, y)\phi(x)\psi(y)=G_{\pm}^{\delta}(x, y)\phi(x)\psi(y) .

Hence, by the dominated convergence theorem,

T_{\pm}^{\delta}( \phi, \psi):=\lim_{\epsilonarrow 0}T_{\pm,\epsilon}^{\delta}(\phi, \psi)

exist and

T_{\pm}^{\delta}( \phi, \psi)=\int_{R^{d}\cross R^{d}}G_{\pm}^{\delta}(x, y)\phi(x)\psi(y)dxdy . (7.46)

Estimate (7.45) implies that

|T_{\pm}^{\delta}(\phi, \psi)|\leq C_{\delta}||\phi||_{L^{1}(R^{d})}||\psi||_{L^{1}(R^{d})} . (7.47)

As for S_{\pm,\epsilon}^{\delta}(\phi, \psi) , we have

|e^{-S\xi j}(\pm ism^{2}\phi^{*}, e^{\pm isH}\psi)|\leq||\phi||_{L^{2}(R^{d})}||\psi||_{L^{2}(R^{d})}
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and

\lim_{\epsilonarrow 0}e^{-s\epsilon\pm ism^{2}}(\phi^{*}, e^{\pm isH}\psi)=e^{\pm ism^{2}}(\phi^{*}, e^{\pm isH}\psi) .

Hence, by the dominated convergence theorem,

S_{\pm}^{\delta}( \phi, \psi):=\lim_{\epsilonarrow 0}S_{\pm,\epsilon}^{\delta}(\phi, \psi)

exist and

S_{\pm}^{\delta}( \phi, \psi)=\mp i\int_{0}^{\delta}e^{\pm ism^{2}}(\phi^{*}, e^{\pm isH}\psi)ds (7.48)

with

|S_{\pm}^{\delta}(\phi, \psi)|\leq\delta||\phi||_{L^{2}(R^{d})}||\psi||_{L^{2}(R^{d})} . (7.49)

Thus

\overline{G}_{\pm}(\phi, \psi):=\lim_{\epsilonarrow 0}(\phi^{*}, G\pm,\epsilon\psi)

exist and

\overline{G}_{\pm}(\phi, \psi)=T_{\pm}^{\delta}(\phi, \psi)+S_{\pm}^{\delta}(\phi, \psi) . (7.50)

By (7.47) and (7.49), the bilinear functional \overline{G}_{\pm}( , ) on S(R^{d})\cross S(R^{d})

are jointly continuous. Hence, by the nuclear theorem, there exist unique
G_{\pm}\in S’(R^{d}\cross R^{d}) , respectively, such that, for all \phi , \psi\in S(R^{d}) , (7.43)
holds. Taking the limit \deltaarrow 0 in (7.50) and using (7.46) and (7.49), we
obtain (7.44). \square

7.4. Examples
In this subsection, we give examples of vector potentials to which our

theory can be applied.

Example 1. A constant electromagnetic field. Let W(t) be given as W(t)=
ct+d with real constants c and d. Then we have A_{\mu}(x)=cQ_{\mu}(x) and
F_{\mu\iota/}(x)=-2cf_{\mu\iota/} . Hence, in this case, the electromagnetic field is constant
in space-time, being proportional to the antisymmetric tensor (f_{\mu\nu}) .

Example 2. An electromagnetic wave with a propagation vector. Let \eta and
a be vectors in M^{d} satisfying \eta^{2}=-1 , a^{2}=0 , a\eta=0 . Let

f_{\mu\nu}=a_{\mu}\eta_{\nu}-a_{\nu}\eta_{\mu} .
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Then f=(f_{\mu\iota/}) is in \mathcal{G}_{a}^{0} (see (7.19)) and we have

F_{\mu\iota/}(x)=-f_{\mu\iota/}[2W’(ax)+(ax-aq)W’(ax)]

Suppose that W is in C^{3}(R) . Then F_{\mu\nu} satisfies the free Maxwell equation

\partial^{\mu}F_{\mu}I/(x)=0 .

Since F_{\mu}\mathfrak{l}J is a function of ax , it physically represents an electromagnetic

wave with propagation vector a . The vector \eta is called a polarization vector.

As a special case of the present example, we have a plane electromag-

netic wave. Indeed, if W(t) is a solution to the differential equation

2W’(t)+(t-aq)W’(t)=e^{it} , (7.51)

then we have

F_{\mu\nu}(x)=-f_{\mu\nu}e^{iax} ,

a plane wave with propagation vector a . A solution to (7.51) is given by

W(t)=e^{iaq} \int_{0}^{t-aq}\frac{e^{is}-1-ise^{is}}{s^{2}}ds+C

=e^{iaq} \sum_{n=0}^{\infty}\frac{i^{n}(t-aq)^{n+1}}{(n+2)!}+C

with C an arbitrary real constant.

8. Concluding remarks –a view-point in connection with repre-
sentation of the canonical commutation relations

In this paper we have developed an operator theory concerning a family

of strongly commuting self-adjoint operators in L^{2}(R^{d}) which are associated
with some objects in the Minkowski space M^{d} . We have constructed a class

of self-adjoint operators in L^{2}(R^{d}) (see (5.36)) which may be regarded as

perturbed d’Alembertians in the sense of unitary groups and whose unitary

groups have integral-kernel representations in explicit forms (Theorem 6.7).

We have shown that the operator theory given here can be applied to the

external field problem of a charged particle for a class of vector potentials

and clarifies an algebraic- analytic structure behind it. We expect that the

framework of the present work can be extended to a more general one that

enables us to treat the external field problem for a Dirac particle, where
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Dirac operators on M^{d} are the main objects to be analyzed. This aspect
will be considered in a separate paper.

In concluding this paper, we want to give a brief remark on the math-
ematical meaning of what is done in Section 7. The position operator
x=(x^{\mu}) and the gauge covariant momentum operator \pi satisfy the fol-
lowing commutation relations on a suitable domain:

[x^{\mu}, x^{\nu}]=0 , (8.1)

[x^{\mu}, \pi_{\nu}]=-i\delta_{\nu}^{\mu} , (8.2)

[\pi_{\mu}, \pi_{\nu}]=-iF_{\mu\iota/} , \mu , \nu =0 , . . ’ d-1 . (8.3)

If F_{\mu\iota/}\equiv 0 , then these commutation relations are just the canonical commu-
tation relations (CCR) with d degrees of freedom. Hence (8.1)-(8.3) may
be regarded as a deformation of the CCR in the sense that \pi_{\mu} ’s are not
necessarily commutative ; or we may say that (8.1)-(8.3) are a representa-
tion of “partially broken CCR” (PB-CCR). Theorem 7.11 shows that, for a
class of vector potentials, there exists an operator-valued Lorentz transfor-
ma in \Lambda on L^{2}(R^{d}) such that \Lambda\pi is unitarily equivalent on a dense domain
to the canonical momentum operator p . From a representation-theoretical
point of view of CCR, this can be rephrased as follows: Let U be defined by
(7.27). Then the set \{Ux^{\mu}U^{-1}, \Lambda_{\mu\nu}\pi^{\nu}\}_{\mu=0}^{d-1} of symmetric operators satisfy
the CCR with d degrees of freedom. If \Lambda_{\mu\nu}\pi^{\nu} is essentially self-adjoint on
D_{a} (see (7.31))(unf0rtunately, we have not been able to prove this), then
the representation { Ux^{\mu}U^{-1} ,^{\overline{\Lambda_{\mu\iota/}\pi^{I/}[D_{a}}\}_{\mu=0}^{d-1}} of CCR is equivalent to the
Schr\"odinger representation \{x^{\mu},p_{\mu}\}_{\mu=0}^{d-1} . Thus, for a class of vector poten-
tials, the PB-CCR (8.1)-(8.3) are related, via an operator-valued Lorentz
transformation, to the CCR with d degrees of freedom. This may be a re-
markable mechanism to be further investigated. It is an interesting problem
to find wider classes of vector potentials for which such a mechanism exists.
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