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Abstract. The algorithm of the arithmetic-geometric mean defines a sequence converg-
ing to its complex limit. We prove that the correspondence between those sequences and

their nonzero limits is one-t0-0ne. Our method utilizes a new proof of a certain structural
theorem of the arithmetic-geometric mean. In the process, our proof clarifies the rela-
tionship of the three aspects of our problem: patterns of the algorithm leading to various
arithmetic-geometric means, a subgroup of \pi_{1}(\mathbb{C}\backslash \{0,1\}) and the modular group \Gamma_{2}(4) .
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1. Introduction and the main result

The study of the arithmetic-geometric mean of two complex numbers
was started by Gauss. However, its various aspects were brought to light
only by later mathematicians (e.g. von David [7] and Geppert [2]). Espe-
cially in Cox [1] was given a thorough exposition on a structural theorem of
the complex means, as well as a good account of its historical background.
In the present paper we are concerned with the same subject, but focusing
our attention on a question not touched in the above works.

Let us begin with the famous algorithm leading to an arithmetic-ge0-
metric mean. With complex numbers a and b we consider

a_{0}=a , b_{0}=b ,

(AG)
a_{n}= \frac{a_{n-1}+b_{n-1}}{2} , b_{n}=(a_{n-1}b_{n-1})^{1/2} , n=1,2 , . .

A sequence \{(a_{n}, b_{n})\}(n=0,1, \ldots) is called an agm-sequence for (a, b) ,
if it satisfies the above algorithm. Because of two possible choices of b_{n} at
every step of the algorithm there are infinitely many such agm sequences for
(a, b) . It is well known that for any agm sequence \{(a_{n}, b_{n})\} both sequences
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\{a_{n}\} and \{b_{n}\} converge to the same limit. In this paper this value will be
also called the limit of the agm-sequence.

Now we ask the following question: Is the correspondence between agm-
sequences and their limits one-t0-0ne or not? An answer to this question is
given in the following theorem.

Theorem 1 Suppose that complex numbers a and b satisfy ab\neq 0 and
a\pm b\neq 0 . Let \{(a_{n}, b_{n})\} and \{(a_{n}’, b_{n}’)\} be arbitrary agm-sequences for
(a, b) and \tau and \tau’ be their respective limits. If \tau=\tau’\neq 0 , then the two
agm-sequences become identical, namely

(a_{n}, b_{n})=(a_{n}’, b_{n}’) for every n\geq 0 .

The above one-t0-0ne correspondence would not be expected should we
include agm-sequences converging to 0. As pointed out in Cox [1], those
agm-sequences that have non-zero limits form a countable set and therefore,
one might say, “most” of agm-sequences converge to 0. (We will review some
basic properties of the agm-sequence in the next section.)

Our proof of the above theorem is strongly connected to the main re-
sult of Cox [1], which states that any non-zero arithmetic-geometric mean
is expressed by two kinds of so called the simplest mean. His proof employs
certain theta identities and in this sense agrees with the traditional treat-
ment of the subject along the line of Gauss and Geppert (see Geppert [2]).
However, the presence of theta identities seems (at least to the present
author) to make the scheme of arguments somewhat unclear. Therefore,
in proving our theorem, we prefer to follow a more elementary, analytical
approach developed in [4].

This paper consists of the following two parts; in the first part (from
Section 2 to Section 5) we will give a different proof to the main theorem of
Cox [1] and in the second (Section 6) prove Theorem 1 using the information
derived from the first part.

I would like to thank Prof. Masaaki Yoshida for informing me that the
map \mu s in (6.2) is injective, one of the crucial facts in proving Theorem 1.
My gratitude also goes to the referee, whose comments helped to improve
various parts of this paper, especially the proof of Prop. 2.7.
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2. Basic properties

In this section we make a brief review of some basic properties of the
complex arithmetic-geometric mean, mostly following von David [7] and
Cox [1]. Throughout this paper, unless otherwise specified, the complex
numbers a and b are supposed to satisfy the condition:

(A) ab\neq 0 , a\pm b\neq 0 .

The following proposition states that, if the starting point (a, b) satisfies
(A), then, at every step of the algorithm (AG), (a_{n}, b_{n}) also satisfies the
same condition.

Proposition 2.1 (a_{n}, b_{n}) satisfies (A) if and only if (a_{n-1}, b_{n-1}) satisfies
(A).

Proof The proof is an easy consequence of the equality:

a_{n} \pm b_{n}=\frac{1}{2}(\sqrt{a_{n-1}}\pm\sqrt{b_{n-1}})^{2} (2.1)

\square

Definition 2.2 At each step of the algorithm (AG), (a_{n}, b_{n}) is called the
right choice if the following holds:

Re ( \frac{b_{n}}{a_{n}})>0 , or Re ( \frac{b_{n}}{a_{n}})=0 , Im ( \frac{b_{n}}{a_{n}})>0 . (2.2)

It is obvious that one of the two pairs (a_{n}, \pm b_{n}) is the right choice, while
the other is not.

The following estimates will be useful in proving the convergence of an
agm-sequence. Let ang(s, t) denote the unoriented angle between complex
numbers s and t , and put M_{n}= \max(|a_{n}|, |b_{n}|) .

Lemma 2.3 (i) If (a_{n}, b_{n}) is the right choice, then

ang(a_{n}, b_{n})\leq\frac{1}{2}ang(a_{n-1}, b_{n-1}) . (2.3)

(ii) If (a_{n}, b_{n}) is the right choice, then

|a_{n}-b_{n}| \leq\frac{1}{2}|a_{n-1}-b_{n-1}| . (2.4)
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(iii) For any choice, we have

M_{n}\leq M_{n-1} . (2.5)

(iv) If (a_{n}, b_{n})(n\geq 1) is not the right choice, then

M_{n+2} \leq\frac{3}{4}M_{n-1} . (2.6)

For the proof of Lemma 2.3 we refer to the proof of Prop. 2.1 in Cox [1].
The above lemma enables us to prove the convergence of any agm-

sequence.

Proposition 2.4 Let a and b be arbitrary complex numbers and \{(a_{n}, b_{n})\}

an agm-sequence for (a, b) . Then both sequences \{a_{n}\} and \{b_{n}\} converge to
the same limit.

Proof. If (a, b) does not satisfy the condition (A), then it is easy to show
that the following are the only possibilities: either a_{n}=b_{n} for every n , or
that b_{n}=0 , n\geq n_{0} , with a certain number n_{0} . In either case it is clear
that both sequences converge to the same limit.

We now assume that (a, b) satisfies (A). Note that \{M_{n}\} is convergent
due to (2.5). If (a_{n}, b_{n}) is not the right choice for infinitely many numbers
n , (2.6) implies lim M_{n}=0 . Hence lim a_{n}= \lim b_{n}=0 .

If there is a number N such that (a_{n}, b_{n}) , \forall n\geq N , is the right choice,
then using (2.4) we get for any k

|aN+k+1-aN+k| \leq\frac{1}{2}|aN+k-bN+k|\leq\frac{1}{2^{k+1}}|a_{N}-b_{N}| , (2.7)

which shows that \{a_{n}\} is a Cauchy sequence. Using (2.4) again we have
lim a_{n}= \lim b_{n} . \square

Definition 2.5 Let (a, b) satisfy (A). We denote by \mathfrak{M}(a, b) the set of all
non-zero limits of agm sequences \{(a_{n}, b_{n})\} for (a, b) . For the agm-sequence
having the property that (a_{n}, b_{n}) is the right choice for every n\geq 1 , its limit
is called the simplest mean of a and b and denoted by M(a, b) .

The following proposition shows that M(a, b)\in \mathfrak{M}(a, b) and also that
\mathfrak{M}(a, b) is a countable set. Its proof can be found in Cox [1, pages 286-287].

Proposition 2.6 The limit of an agm-sequence is not equal to 0 if and
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only if (a_{n}, b_{n}) is the right choice for all but finitely many n .

In view of (2.6) one can surmise that, the more non-right choices appear
in an agm-sequence, the smaller its limit becomes. However, it also matters
where a non-right choice appears.

Proposition 2.7 For any \delta\geq 0 , there is a number n_{0} such that, for any
agm sequence \{(a_{n}, b_{n})\} for (a, b) satisfying

\lim M_{n}\geq\delta , (2.8)

(a_{n}, b_{n}) is the right choice for every n\geq n_{0} .

Proof Take any agm sequence \{(a_{n}, b_{n})\} satisfying (2.8). From (2.6) it is
clear that the number of non-right choices appearing in the sequence does
not exceed a certain number depending on \delta , say, U(\delta) .

In order to prove our proposition, it suffices to show the following; if
(a_{m+j}, b_{m+j}) , 0\leq j\leq N-1 , are right choices, while (a_{m+N}, b_{m+N}) is not,
then N is bounded by a number depending on \delta . Suppose that this was
false, N being taken arbitrarily large.

Put M= \max(|a|, |b|) . (2.4) implies

|a_{m+N+1}|=| \frac{a_{m+N}-(-b_{m+N})}{2}|\leq\frac{1}{2^{N+1}}|a_{m}-b_{m}|\leq\frac{M}{2^{N}} ,

|b_{m+N+1}|\leq M .

We get further

|b_{m+N+2}|\leq (M \frac{M}{2^{N}})^{1/2}=\frac{M}{2^{N/2}}

|b_{m+N+3}|\leq (M \frac{M}{2^{N/2}})^{1/2}=\frac{M}{2^{N/2^{2}}} ,

.\cdot

.

|b_{m+N+k+1}| \leq\frac{M}{2^{N/2^{k}}} ,

for any k .
Now choose a number l_{0} such that \frac{M}{2^{l_{0}-1}}<\frac{\delta}{2} and pick k>l_{0}(U(\delta)+1) .

It follows that any sequence of k elements contain a sequence consisting of
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l_{0} right choices. At the last term (a_{p}, b_{p}) of such sequence we have

M
|b_{p}|\leq\overline{2^{N/2^{k}}} ,

|a_{p}-b_{p}| \leq\frac{1}{2^{l_{0}}}|a_{p-l_{0}}-b_{p-l_{0}}|\leq\frac{M}{2^{l_{0}-1}} (2.9)

and therefore

|a_{p}| \leq\frac{M}{2^{l_{0}-1}}+\frac{M}{2^{N/2^{k}}} . (2.10)

Now take N so large that \frac{M}{2^{N/2^{k}}}<\delta/2 . Then (2.9) and (2.10) imply M_{p}<\delta ,

a contradiction to (2.8). \square

The above proposition shows that there are only finitely many agm-
sequences satisfying (2.8). Therefore we get

Corollary 2.8 [von David [7]] The point 0 is the only limit point of the
set \mathfrak{M}(a, b) .

As a much finer structural theorem of \mathfrak{M}(a, b) we know

Theorem 2.9 [Cox [1]] Suppose that a and b satisfy (A) and |a|\geq|b| .
Then a complex number \tau belongs to \mathfrak{M}(a, b) if and only if the following
expression holds.

\frac{1}{\tau}=\frac{p}{M(a,b)}+i\frac{q}{M(a+b,a-b)} , (2.11)

where p and q are arbitrary relatively prime integers satisfying p\equiv 1 mod
4 and q\equiv 0 mod 4.

Part of the above theorem was already known by Gauss (as its circum-
stantial evidence given in Cox [1] ) , but a precise statement and a proof of
the theorem were given in much later time. Cox’ proof employs the theta
functions

p( \tau)=\sum e^{i\pi\tau n^{2}} , q( \tau)=\sum(-1)^{n}e^{i\pi\tau n^{2}} , Im \tau\geq 0 .

and the fact that, if a/b=p(\tau)^{2}/q(\tau)^{2} , then

\mu=\frac{a}{p(\tau)^{2}}\in \mathfrak{M}(a, b) .
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We will prove the theorem without relying on theta functions. In our
proof the following integral expressions of M(a, b) and M(a+b, a-b) will
play an important role. The first formula is well known, as it is cited in
Cox [1] in a slightly different form. The second seems to have evaded due
attention.

Theorem 2.10 Suppose 0<b<a . Then the following integral formulas
are valid on the elliptic curve y^{2}=x(1-x)(a^{2}(1-x)+b^{2}x) .

\frac{1}{M(a,b)}=\frac{1}{\pi}\int_{0}^{1}\frac{dx}{y} (y>0) , (2.12)

\frac{i}{M(a+b,a-b)}=\frac{1}{\pi}\int_{0}^{-\infty}\frac{dx}{y} ({\rm Im} y>0) . (2.13)

Proof Let \{(a_{n}, b_{n})\} be the agm-sequence for (a, b) consisting only of
right choices. Define the new variable x’ by

\sqrt{x}=\frac{2a\sqrt{x’}}{a+b+(a-b)x’} .

A straightforward computation shows

\frac{dx}{\{x(1-x)(a^{2}(1-x)+b^{2}x)\}^{1/2}}=\frac{dx’}{\{x’(1-x’)(a_{1}^{2}(1-x’)+b_{1}^{2}x’)\}^{1/2}} .

A successive use of similar variable changes ensures that the right-hand side
of (2.12) equals

\lim_{narrow\infty}\frac{1}{\pi}\int_{0}^{1}\frac{dx}{\{x(1-x)(a_{n}^{2}(1-x)+b_{n}^{2}x)\}^{1/2}}

= \frac{1}{\pi M(a,b)}\int_{0}^{1}\frac{dx}{\{x(1-x)\}^{1/2}}=\frac{1}{M(a,b)} ,

which completes the proof of (2.12).
Now by another change of the variable, (1-x)(1-x’)=1 , we have

\int_{0}^{-\infty}\frac{dx}{\{x(1-x)(a^{2}(1-x)+b^{2}x)\}^{1/2}}

=i \int_{0}^{1}\frac{dx’}{\{x’(1-x’)(a^{2}(1-x)+(a^{2}-b^{2})x’)\}^{1/2}},\cdot
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In view of (2.12) the above integral is equal to

\frac{i}{M(a,\sqrt{a^{2}-b^{2}})}=\frac{i}{M(a+b,a-b)} ,

which completes the proof of the theorem. \square

3. Analyticity of arithmetic-geometric means

The obvious homogeneity

M(a, b)=aM(1, \frac{b}{a}) , \mathfrak{M}(a, b)=a\mathfrak{M}(1, \frac{b}{a}) (3.1)

may justify our temporary restriction a=1 , b=z\in \mathbb{C} . We will write
a_{n}=a_{n}(z) and b_{n}=b_{n}(z) . The condition (A) now becomes

z\in \mathbb{C}_{0}:=\mathbb{C}\backslash \{0, \pm 1\}

In this section we will show that every value of \mathfrak{M}(1, z) can be considered
a germ of a holomorphic function of z and that such a holomorphic function
can be reached by analytic continuation from any single value of \mathfrak{M}(1, z) ,
for example from M(1, z) .

Let us first note that a_{n}(z) and b_{n}(z) can be analytically continued to
(multi-valued) algebraic functions of z by the relationship (AG). Proposi-
tion 2.1 indicates that possible singularities of these algebraic functions are
0 and \pm 1 . This can be paraphrased in the following way.

Proposition 3.1 Let z and z’ be points of \mathbb{C}_{0} and \gamma be a continuous
curve in \mathbb{C}_{0} joining z with z’ Denote by (\gamma)_{*} the analytic continuation
along the curve \gamma . If \{(a_{n}(z), b_{n}(z))\} is an agm-sequence for (1, z) , then
\{((\gamma)_{*}a_{n}(z’), (\gamma)_{*}b_{n}(z’))\} becomes an agm-sequence for (1, z’) .

Note that it does not necessarily follow that ((\gamma)_{*}a_{n}(z’), (\gamma)_{*}b_{n}(z’)) is
the right choice even if (a_{n}(z), b_{n}(z)) is so. Under certain circumstances,
however, one may expect something like this to happen.

Proposition 3.2 Let U be a connected set in \mathbb{C}_{0} and \{(a_{n}(z), b_{n}(z))\} be
an agm-sequence defined in U in the sense that each a_{n} and b_{n}(n=0,1, \cdots)

are single-valued continuous functions of z in U. Suppose that there exists
a number N and a point z_{0}\in U such that

(a_{N}(z), b_{N}(z)) , \forall z\in U, the right choice,
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(a_{n}(z_{0}), b_{n}(z_{0})) , \forall n\geq N , the right choice.

It follows then that

(a_{n}(z), b_{n}(z)) , \forall z\in U, \forall n\geq N , the right choice.

Proof. Suppose that the conclusion of the proposition were false. Then
there would be a number m>N such that (a_{m}(z), b_{m}(z)) is not the right
choice for some z\in U. Let m_{0} be the minimum of such m .

Consider a curve in U connecting z_{0} with a point z where (a_{m_{0}}(z), b_{m_{0}}(z))

is not the right choice. On this curve there must be a point z_{1} satisfying
Re [b_{m_{0}}(z_{1})/a_{m_{0}}(z_{1})]=0 , which means ang (a_{m_{0}}(z_{1}), b_{m_{0}}(z_{1}))=\pi/2 . Then
the next lemma shows that (a_{m_{0}-1}(z_{1}), b_{m_{0}-1}(z_{1})) is not the right choice, a
contradiction to our assumption that m_{0} be minimal. \square

Lemma 3.3 If ang(a_{n}, b_{n})=\pi/2 , then ang(a_{n-1}, b_{n-1})=\pi and in par-
ticular (a_{n-1}, b_{n-1}) is not the right choice.

Proof. We should only note that a_{n-1} and b_{n-1} are the solutions of the
equation X^{2}-2a_{n}X+b_{n}^{2}=0 . \square

The results so far obtained now enable us to prove the analyticity of
arithmetic-geometric means in \mathbb{C}_{0} .

Theorem 3.4 Let \{(a_{n}(z_{0}), b_{n}(z_{0}))\} be an agm-sequence at z_{0}\in \mathbb{C}_{0} with
its limit \tau(z_{0})\in \mathfrak{M}(1, z_{0}) . Then there exists a neighborhood U of z_{0} such
that, if (a_{n}(z), b_{n}(z)) is the analytic extension into U of (a_{n}(z_{0}), b_{n}(z_{0})) by
the relation (AG), then

\tau(z):=\lim_{narrow\infty}a_{n}(z)=\lim_{narrow\infty}b_{n}(z)

is non-zero and holomorphic in U.

Proof. Since \tau(z_{0})\in \mathfrak{M}(1, z_{0}) , there exists a number N such that
(a_{n}(z_{0}), b_{n}(z_{0})) is the right choice for every n\geq N . We may also as-
sume that Re [b_{N}(z_{0})/a_{N}(z_{0})]>0 . Take a neighborhood U of z_{0} so that
(a_{N}(z), b_{N}(z)) is the right choice for z\in U . Then Proposition 3.2 implies
that (a_{n}(z), b_{n}(z)) are right choices for all z\in U and n\geq N . Therefore we
know that \tau(z)\neq 0 belonging to \mathfrak{M}(1, z) . To prove that \tau(z)=\lim a_{n}(z) is
holomorphic, we have only to notice its uniform convergence derived from
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(2.7):

|a_{N+k+1}(z)-a_{N+k}(z)| \leq\frac{1}{2}|aN+k(z)-b_{N+k}(z)|

\leq\frac{1}{2^{k+1}}|a_{N}(z)-b_{N}(z)| .

\square

The following two propositions pave the way for our goal in this section
that all values of \mathfrak{M}(1, z) are connected by analytic continuation.

Proposition 3.5 Let \{(a_{k}(z_{0}), b_{k}(z_{0}))\}(k=0,1, \ldots) be an agm-sequence
at z_{0}\in \mathbb{C}_{0} . Let \gamma : [0, 1] – \mathbb{C}_{0} be a continuous curve in \mathbb{C}_{0} satisfying

\gamma(0)=\frac{b_{n}}{a_{n}}(z_{0})

for some number n . Then there exists a curve \tilde{\gamma} : [0, 1] – \mathbb{C}_{0} such that

\frac{b_{n}}{a_{n}}(\tilde{\gamma}(s))=\gamma(s) , 0\leq s\leq 1 , \tilde{\gamma}(0)=z_{0} ,

where the left hand side of the equality indicates the analytic continuation
of the function b_{n}/a_{n} along the curve \tilde{\gamma} .

Proof. If n=0, the proposition is trivial as we can put \overline{\gamma}=\gamma . As the
induction hypothesis, suppose that it is true up to n-1 .

Put

c_{0}= \frac{a_{n}}{b_{n}}(z_{0}) , c_{1}= \frac{a_{n-1}}{b_{n-1}}(z_{0}) .

The two values w_{n}=b_{n}/a_{n} and w_{n-1}=b_{n-1}/a_{n-1} are related by

w_{n}= \frac{\sqrt{a_{n-1}b_{n-1}}}{(a_{n-1}+b_{n-1})/2}=\frac{2\sqrt{w_{n-1}}}{1+w_{n-1}} , (3.2)

or equivalently

w_{n}^{2}w_{n-1}^{2}+2(w_{n}^{2}-2)w_{n-1}+w_{n}^{2}=0 .

As a quadratic equation of w_{n-1} it has its discriminant D\neq 0 for w_{n}\in \mathbb{C}_{0} .
Each branch w_{n}arrow w_{n-1} defines a local homeomorphism. It is then easy to
find a curve \gamma_{1} , which is a “lift” of \gamma in the sense that the values

w_{n}=\gamma(s) , w_{n-1}=\gamma_{1}(s) (0\leq s\leq 1)
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are related by (3.2) with their respective initial values c_{0} and c_{1} .
Since our induction hypothesis ensures the existence of the curve \tilde{\gamma} such

that

\frac{b_{n-1}}{a_{n-1}}(\tilde{\gamma}(s))=\gamma_{1}(s) , 0\leq s\leq 1 , \tilde{\gamma}(0)=z_{0} ,

the same curve satisfies

\frac{b_{n}}{a_{n}}(\tilde{\gamma}(s))=\gamma(s) , 0\leq s\leq 1 ,

which completes our proof. \square

Proposition 3.6 Let \{(a_{n}(z_{0}), b_{n}(z_{0}))\} be an agm-sequence at z_{0}\in \mathbb{C}_{0} .
Suppose that there is a number N such that (a_{n}(z_{0}), b_{n}(z_{0})) is the right
choice for every n\geq N . Then there exists a continuous curve \gamma : [0, 1]arrow \mathbb{C}_{0}

with \gamma(0)=z_{0} and \gamma(1)=z_{1} , such that

((\gamma)_{*}a_{n}(z_{1}), (\gamma)_{*}b_{n}(z_{1}))

becomes the right choice for every n\geq N-1 . Here (\gamma)_{*} denotes the analytic
continuation along the curve \gamma .

Proof. If (a_{N-1}(z_{0}), b_{N-1}(z_{0})) is the right choice we may only put \gamma(s)=

z_{0}(0\leq s\leq 1) .
Suppose now that it is not the right choice. In this case we have

{\rm Re}( \frac{b_{N-1}}{a_{N-1}}(z_{0}))\leq 0 . (3.3)

Let us choose a branch \tau_{0}=\sqrt{b_{N-1}(z_{0})}/a_{N-1}(z_{0}) satisfying

\frac{b_{N}}{a_{N}}(z_{0})=\frac{2\sqrt{a_{N-1}b_{N-1}}}{a_{N-1}+b_{N-1}}=\frac{2\tau_{0}}{1+\tau_{0}^{2}} .

Since (a_{N}(z_{0}), b_{N}(z_{0})) is the right choice, we have

Re ( \frac{1}{\tau_{0}+\tau_{0}^{-1}})>0 , or Re ( \frac{1}{\tau_{0}+\tau_{0}^{-1}})=0 ,

Im ( \frac{1}{\tau_{0}+\tau_{0}^{-1}})>0 ,
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or equivalently

Re \tau_{0}>0 , or Re \tau_{0}=0 , (1-|\tau_{0}|^{2}){\rm Im}\tau_{0}>0 .

Now take a simple arc \rho satisfying

\rho(0)=\frac{b_{N-1}}{a_{N-1}}(z_{0}) , |\rho(s)|=|\rho(0)| (0\leq s\leq 1)

and Re \rho(1)>0 (3.4)

and lying in { z ; Im z\geq 0} if Im \tau_{0}>0 and in { z ; Im z\leq 0 } if Im \tau_{0}<0

(see Fig. 3.1). Note that \tau_{0} is not real by (3.3).
In view of Proposition 3.5 there is a curve \gamma in \mathbb{C}_{0} satisfying

\frac{b_{N-1}}{a_{N-1}}(\gamma(s))=\rho(s) , 0\leq s\leq 1 , \gamma(0)=z_{0} .

We denote its end point by \gamma(1)=z_{1} and along the curve consider the
branch

\tau(z)=\sqrt{\frac{b_{N-1}}{a_{N-1}}(z)}

with its initial value \tau(z_{0})=\tau_{0} . Since Re \tau(z)>0 for z=\gamma(s) , s>0 , it

Fig. 3.1.
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follows that

Re ( \frac{b_{N}}{a_{N}}(z))={\rm Re}(\frac{2}{\tau(z)+\tau(z)^{-1}})>0 , z=\gamma(s) , s>0 .

In other words (a_{N}(z), b_{N}(z)) is the right choice for any z\in\gamma .
This fact, combined with our hypothesis that (a_{n}(z_{0}), b_{n}(z_{0})) is the

right choice for every n\geq N , allows us to apply Proposition 3.2 and
conclude that (a_{n}(z_{1}), b_{n}(z_{1})) is the right choice for every n\geq N . Since
(a_{N-1}(z_{1}), b_{N-1}(z_{1})) is also the right choice thanks to (3.4), our proof is
now complete. \square

M(1, z) , as an element of \mathfrak{M}(1, z) , defines a holomorphic germ at every
point z and can be analytically continued along any curve in \mathbb{C}_{0} . However
its analytically continued value does not necessarily remain to be M(1, z) .
We shall now briefly discuss the discontinuity of the function.

Proposition 3.7 Let \{(c_{n}(z), d_{n}(z))\} be the agm-sequence for (1, z) Co -

sisting only of right choices with its limit M(1, z) . Then the point 1 is a
removable singularity of the functions M(1, z) , c_{n}(z) and d_{n}(z) for every n .

Proof. It is easy to prove by induction that \lim_{zarrow 1}c_{n}(z)=1 and
\lim_{zarrow 1}d_{n}(z)=1 and that the functions c_{n} and d_{n} are holomorphic at
1. Since (2.5) indicates that c_{n} and d_{n} are uniformly bounded in a neigh-
borhood of 1, their limit M(1, z) becomes holomorphic, too. \square

Let \sqrt{z} be a branch such that arg \sqrt{z}=0 when arg z=0. In the closed
region -\pi\leq\arg z\leq\pi , ( \frac{1+z}{2}, \sqrt{z}) is the right choice if and only if

z\in \mathbb{C}_{0}’:= {arg z=-\pi , |z|>1 } \cup\{-\pi<\arg z<\pi\}

\cup\{\arg z=\pi, |z|<1\} (3.5)

In view of Propositions 3.2 and 3.7 it follows that M(1, z) is continuous in \mathbb{C}_{0}’

and holomorphic in the interior of \mathbb{C}_{0}’ . In other words M(1, z) is continuous
from above on \{z\in \mathbb{R};-1<z<0\} and from below on \{z\in \mathbb{R};z<-1\} .

For a later reference we should note that the above fact also describes a
similar behavior of the function M(1+z, 1-z) ; it is continuous from above
on \{z\in \mathbb{R};z<-1\} and from below on \{z\in \mathbb{R};z>1\} , being holomorphic
in the rest of \mathbb{C}_{0} .

Let us now turn back to Proposition 3.6. Starting with any \tau(z_{0})\in

\mathfrak{M}(1, z_{0}) , z_{0}\in \mathbb{C}_{0} , and applying the proposition for sufficiently many times
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we can find a continuous curve \gamma(s) , 0\leq s\leq 1 , with \gamma(0)=z_{0} and \gamma(1)=z_{1}

such that

(\gamma)_{*}\tau(z)=M(1, z) for z near z_{1} .

Connecting z_{1} with z_{0} by a path not crossing the real segment (-\infty, 0) , we
obtain

Proposition 3.8 Let z_{0}\in \mathbb{C}_{0} . Every value of \mathfrak{M}(1, z_{0}) is attained by the
analytic continuation of M(1, z) along a cycle in \mathbb{C}_{0} through z_{0} .

4. Analytic continuation of M(1, z)

In this section we are concerned with the values obtained by analytic
continuation of M(1, z) along various cycles through z\in \mathbb{C}_{0} . For a while
we assume 0<z<1 . This condition will be removed at the end of this
section.

The integral expressions (2.12) and (2.13) now read as

\frac{1}{M(1,z)}=\frac{1}{\pi}\int_{0}^{1}\frac{dx}{y} , (4.1)

\frac{i}{M(1+z,1-z)}=\frac{1}{\pi}\int_{0}^{-\infty}\frac{dx}{y} . (4.2)

with y^{2}=x(1-x)(1-(1-z^{2})x) .
Let us define three circles C_{-1} , C_{0} and C_{1} , their centers being located

respectively at points -1, 0 and 1, their radii being respectively 1- z , z and
1– z . Note that each circle touches one or both of the points z and -z .

Using these circles we now define cycles \gamma_{-1} , \gamma 0 and \gamma_{1} , all through z ,
in the following manner. \gamma_{1} starts from z moving counterclockwise once
along C_{1} . \gamma_{0} starts from z tracing the circle C_{0} once counterclockwise. \gamma_{-1}

is the curve starting from z , moving to -z along the upper half of C_{0} , then
encircling once the point -1 counterclockwise along C_{-1} and coming back
from -z to z on the same upper part of C_{0} .

The three elements of the fundamental group \pi_{1}(\mathbb{C}_{0}, z) corresponding
to \gamma_{-1} , \gamma_{0} and \gamma_{1} will be denoted by the same symbols. It is well known
that it is a free group generated by these elements.

Now consider the map

\varphi : \mathbb{C}_{0}arrow \mathbb{C}_{1}:=\mathbb{C}\backslash \{0,1\}
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defined by \varphi(\zeta)=1/(1-\zeta^{2}) . Putting \lambda=1/(1-z^{2}) , we obtain the induced
homomorphism

\varphi_{*} : \pi_{1}(\mathbb{C}_{0}, z)arrow\pi_{1}(\mathbb{C}_{1}, \lambda) . (4.3)

The definition of \gamma_{j}(j=0, \pm 1) implies that the images of \gamma_{j} by \varphi_{*} can be
written as:

\varphi_{*}\gamma_{1}=\delta_{\infty}^{-1} . \varphi_{*}\gamma_{0}=\delta_{1}^{2} , \varphi_{*}\gamma_{-1}=\delta_{1}^{-1}\delta_{\infty}^{-1}\delta_{1} . (4.4)

Here \delta_{1} corresponds to a Jordan curve in \mathbb{C}_{1} through \lambda such that it encircles
the point 1 but leaves the point 0 outside, while \delta_{\infty} corresponds to a Jordan
curve encircling both 0 and 1. Both curves are oriented in the positive sense.

We will rewrite (4.1) and (4.2) with \lambda now introduced:

\pi M(1, z)^{-1}=u_{1}(\lambda) , i\pi M(1+z, 1-z)^{-1}=u_{2}(\lambda) , (4.5)

where u_{1} and u_{2} are defined by the following integrals

u_{1}( \lambda)=\sqrt{\lambda}\int_{0}^{1}\frac{dt}{s} , (4.6)

u_{2}( \lambda)=\sqrt{\lambda}\int_{0}^{-\infty}\frac{dt}{s} (4.7)

on the elliptic curve

E : s^{2}=t(1-t)(\lambda-t) . (4.8)

Our objective is to evaluate the change of integral values (4.1) and (4.2)
after having z move along the cycles \gamma_{j} , j=0, \pm 1 . This question may be
equivalently posed as the evaluation of u_{1} and u_{2} when \lambda moves along \delta_{1}

and \delta_{\infty} .
Now the elliptic curve E is supposed to consist of two copies E_{1} and

E_{2} of the Riemann sphere \mathbb{C}\cup\{\infty\} , in such a way that E=E_{1}\cup E_{2} with
both E_{1} and E_{2} having cuts along the real intervals (0,1) and (\lambda, \infty) , where
the upper and lower edges of the cuts of E_{1} are identified respectively with
the lower and upper edges of the corresponding cuts of E_{2} . The integration
path in (4.6) is supposed to lie on the upper edge of (0,1) in E_{1} , while the
path in (4.7) to lie in E_{1} .

When \lambda moves along \delta_{1} , the integration path for u_{1} , after being de-
formed as indicated in Fig. 4.1, will be changed to a path as described in
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Fig. 4.1. Fig. 4.2.

Fig. 4.3.

Fig. 4.2. The new path has its homotopic equivalence suggested in Fig. 4.3,
where the real curve indicates a path in E_{1} and the dotted one in E_{2} .

Since dt/s is a holomorphic differential form in E and in particular at
the point \infty , the integration around \infty can be made as small as we would
like. Counting also that \sqrt{\lambda} is un-changed by the curve \delta_{1} , we arrive at the
formula

(\delta_{1})_{*}u_{1}=u_{1}-2u_{2} , (\delta_{1})_{*}u_{2}=u_{2} . (4.9)

A similar observation leads to

(\delta_{\infty})_{*}u_{1}=u_{1} , (\delta_{\infty})_{*}u_{2}=-2u_{1}+u_{2} . (4.10)

Therefore the circuit matrices of (u_{1}, u_{2}) along \delta_{1} and \delta_{\infty} are respec-
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tively U^{-1} and V^{-1} , where

U=(\begin{array}{ll}1 20 1\end{array}) , V=(\begin{array}{ll}1 02 1\end{array})

Denoting the circuit matrix of (M(1, z)^{-1} , iM(1+z, 1-z)^{-1}) along
\gamma\in\pi_{1}(\mathbb{C}_{0}, z) by \mu(\gamma) , we have in view of (4.4)

\mu(\gamma_{1})=V= (\begin{array}{ll}1 02 1\end{array}) (4.11)

\mu(\gamma_{0})=U^{-2}= (\begin{array}{ll}1 -40 1\end{array}) (4.12)

\mu(\gamma_{-1})=UVU^{-1}= (\begin{array}{ll}5 -82 -3\end{array}) (4.13)

Let \Gamma be the subgroup of SL(2, \mathbb{Z}) generated by V, U^{-2} and UVU^{-1} .

The homomorphism induced from (4.11)\sim (4.13) will be also denoted by \mu :

\mu : \pi_{1}(\mathbb{C}_{0}, z)arrow\Gamma\subset SL(2, \mathbb{Z}) (4.14)

indicating the circuit matrix \mu(\gamma) for any \gamma\in\pi_{1}(\mathbb{C}_{0}, z) .
The map can be considered a monodromy representation of a certain

second order equation having (M(1, z)^{-1} , iM(1+z, 1-z)^{-1}) as its funda-
mental solution, though this fact will not be used in this paper.

If we write

\mu(\gamma)=(\begin{array}{ll}p qr s\end{array}) , \gamma\in\pi_{1}(\mathbb{C}_{0}, z) ,

then it follows that

(\gamma)_{*}M(1, z)^{-1}=pM(1, z)^{-1}+iqM(1+z, 1-z)^{-1}

Until now we have assumed 0<z<1 . This restriction, however, can be
easily removed. Indeed suppose that z\in \mathbb{C}_{0}\backslash \{t\in \mathbb{R};t<-1\} . Following
the discussion made below (3.5) we can find a continuous curve \rho joining z
with z_{0}\in\{t\in \mathbb{R};0<t<1\} such that both M(1, z) and M(1+z, 1-z)
are continuous on \rho . Then for any cycle \gamma in \mathbb{C}_{0} through z , \gamma’=\rho\gamma\rho^{-1} is a
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cycle through z_{0} . Therefore

(\gamma)_{*}M(1, z)^{-1}=(\rho^{-1})_{*}(\gamma’)_{*}M(1, z_{0})^{-1}

=(\rho^{-1})_{*}(pM(1, z_{0})^{-1}+iqM(1+z_{0},1-z_{0})^{-1})

=pM(1, z)^{-1}+iqM(1+z, 1-z)^{-1} (4.15)

where (p, q) is the first row of the matrix determined by \gamma’ and the hom0-
morphism (4.14).

The following lemma can be proved by a standard discussion which will
be reviewed in the next section.

Lemma 4.1 The set of the first rows of matrices belonging to \Gamma equals
the set { (p, q);p and q are relatively prime integers such that p\equiv 1 mod
4 and q\equiv 0 mod 4}.

Assuming for a moment that Lemma 4.1 is valid we have now reached
the main theorem of Cox [1] with an alternative proof via Theorem 3.7 and
(4.15). Our version is slightly finer than Cox’s (as in Theorem 2.9) with
respect to the condition of a and b . More precisely the condition |a|\geq|b|

can be replaced with a weaker one:

\frac{b}{a}\not\in\{z\in \mathbb{R};z<-1\} (4.16)

Theorem 4.2 Let a and b satisfy a\pm b\neq 0 , ab\neq 0 and (4.16). Then \tau

belongs to \mathfrak{M}(a, b) if and only if

\frac{1}{\tau}=\frac{p}{M(a,b)}+i\frac{q}{M(a+b,a-b)}

where p and q are arbitrary relatively prime integers satisfying

p\equiv 1 mod 4 and q\equiv 0 mod 4.

Now we consider the case where the condition (4.16) fails. This condi-
tion is necessary there since M(1, z) and M(1+z, 1-z) are continuous on
the real interval (-\infty, -1) respectively from below and from above. This ir-
regularity is a reflection of the inequality {\rm Im}(b_{n}/a_{n})>0 in (2.2) concerning
the definition of the right choice. In fact this was put somewhat randomly,
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and instead of (2.2) the definition could have been

Re ( \frac{b_{n}}{a_{n}})>0 , or Re ( \frac{b_{n}}{a_{n}})=0 , Im ( \frac{b_{n}}{a_{n}})<0 , (4. 17)

without any essential changes in our subsequent argument. (4.17) can lead
to another arithmetic-geometric mean that differs slightly from the simplest
mean.

Definition 4.3 Let \{(a_{n}, b_{n})\} be an agm-sequence for (a, b) . Suppose that
(a_{n}, b_{n}) satisfies (4.17) for every n\geq 1 . We denote by M_{c}(a, b) the limit of
the sequence \{a_{n}\} (or \{b_{n}\} ).

Obviously

M(1, z)=M_{c}(1, z) , z\in \mathbb{C}_{0}\backslash \{t\in \mathbb{R};t<0\}

Furthermore, M_{c}(1, z) is continuous from above on the real interval
(-\infty, -1) and from below on the real interval (-1, 0). Therefore M_{c}(1+

z , 1-z) is continuous from below on (-\infty, -1) . For any z\in \mathbb{C}_{0} , then, there
exists a continuous curve \rho in \mathbb{C}_{0} joining z with a point in the real interval
(0, 1) such that both M(1, z) and M_{c}(1+z, 1-z) are continuous on \rho . The
same reasoning used to prove Theorem 4.2 now applies to get

Theorem 4.4 Let a and b satisfy a\pm b\neq 0 , ab\neq 0 . Then \tau belongs to
\mathfrak{M}(a, b) if and only if

\frac{1}{\tau}=\frac{p}{M(a,b)}+i\frac{q}{M_{c}(a+b,a-b)}

where p and q are arbitrary relatively prime integers satisfying

p\equiv 1 mod 4 and q\equiv 0 mod 4.

5. A modular group

This section is devoted to a proof of Lemma 4.1. We begin with the
introduction of the principal congruence subgroup of level 2:

\Gamma(2):=\{\mu\in SL(2, \mathbb{Z});\mu\equiv(\begin{array}{ll}1 00 1\end{array}) mod 2\}

In the previous section we defined \Gamma as the subgroup of SL(2.\mathbb{Z}) generated
by V, U^{-2} and UVU^{-1} . It is clear that \Gamma\subset\Gamma(2) . The following lemma is
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contained in Cox [1, Lemma 2.5].

Lemma 5.1 \Gamma(2) is generated by- l , U and V.

The following subgroup of \Gamma(2) will play an important role:

\Gamma_{2}(4)=\{ (\begin{array}{ll}p qr s\end{array})\in\Gamma(2);p\equiv s\equiv 1 mod 4, q\equiv 0 mod 4\}

Proposition 5.2 \Gamma_{2}(4) is generated by V, U^{-2} and UVU^{-1} . That is,
\Gamma=\Gamma_{2}(4) .

Proof. The inclusion \Gamma\subset\Gamma_{2}(4) is obvious. We will therefore prove the
converse \Gamma_{2}(4)\subset\Gamma Let \mu\in\Gamma_{2}(4)\subset\Gamma(2) . Lemma 5.1 allows us to write

\mu=\pm U^{a_{1}}V^{b_{1}} . . U^{a_{m}}V^{b_{m}}

with some integers a_{j} and b_{j} , 1 \leq j\leq m . We may write U^{a_{1}}V^{b_{1}} =
(U^{2})^{a_{1}/2}V^{b_{1}}\in\Gamma . if a_{1} is even and U^{a_{1}}V^{b_{1}}=U^{a_{1}-1}(UVU^{-1})^{b_{1}}U, if a_{1} is
odd. In either case there exists \gamma\in\Gamma such that

\gamma\mu=\pm U^{a_{2}’}V^{b_{2}} . . U^{a_{m}}V^{b_{m}} .

Repeating the above argument we get some \gamma’\in\Gamma such that \gamma’\mu is equal
to one of \pm 1 and \pm U. Among these, however, only 1 belongs to \Gamma_{2}(4) .
Therefore \gamma’\mu=1 , which says \mu\in\Gamma \square

Lastly, in order to prove Lemma 4.1, let p and q be arbitrary relatively
prime integers such that p\equiv 1 mod 4 and q\equiv 0 mod 4. There exist r , s\in \mathbb{Z}

such that ps–qr =1 . This equality implies ps\equiv 1 mod 4 and hence s\equiv

1 mod 4. If r is even we have

(\begin{array}{ll}p qr s\end{array})\in\Gamma_{2}(4) .

If r is odd, then p+r becomes even and

(\begin{array}{ll}p qp+r q+s\end{array})\in\Gamma_{2}(4) .

Since the converse part of Lemma 4.1 is clear, its proof is now complete.
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6. Proof of Theorem 1

If \{(a_{n}, b_{n})\} is an agm-sequence for (a, b) , then the same sequence
\{(a_{n}, b_{n})\} except for (a_{0}, b_{0})=(b, a) is an agm sequence for (b, a) . Therefore
in proving Theorem 1 we may assume |a|\geq|b| without loss of generality.
Furthermore due to the homogeneity (3.1) we may assume that a=1 and
b=z_{0} with |z_{0}|\leq 1 .

Let \{(a_{n}(w), b_{n}(w))\} and \{(a_{n}’(w), b_{n}’(w))\} be agm sequence for
(1, w) with w in a neighborhood of z_{0} such that a_{n}(w) , b_{n}(w) , a_{n}’(w) and
b_{n}’(w) are single-valued, holomorphic functions for every n , satisfying
\{(a_{n}(z_{0}), b_{n}(z_{0}))\}=\{(a_{n}, b_{n})\} and \{(a_{n}’(z_{0}), b_{n}’(z_{0}))\}=\{(a_{n}’, b_{n}’)\} . Sup-
pose that their respective limits \tau_{1}(w) and \tau_{2}(w) , which are also holomor-
phic, coincide at z_{0} : \tau_{1}(z_{0})=\tau_{2}(z_{0}) . We wish to prove (a_{n}(w), b_{n}(w))=

(a_{n}’(w), b_{n}’(w)) for every n .
In view of Theorem 4.2 (or rather its proof) one can write with some

integers p_{j} and q_{j} , j=1,2 ,

\frac{1}{\tau_{1}(w)}=\frac{p_{1}}{M(1,w)}+i\frac{q_{1}}{M(1+w,1-w)} ,

\frac{1}{\tau_{2}(w)}=\frac{p_{2}}{M(1,w)}+i\frac{q_{2}}{M(1+w,1-w)}

for w in a neighborhood U of z_{0} if z_{0}\not\in(-1,0) or in a half neighborhood
U\cap { z ; Im z\geq 0 } of z_{0} if z_{0}\in(-1,0) . In what follows w stands for any
point lying in this (half) neighborhood.

Now (4.6) and (4.7) show that M(1, w)^{-1} and iM(1+w, 1-w)^{-1} are
different periods of the elliptic curve (4.8). Therefore they are linearly
independent over \mathbb{R} (see e.g. [6]). From the equality of \tau_{1} and \tau_{2} at z_{0} it
follows then that (p_{1}, q_{1})=(p_{2}, q_{2}) . This in turn implies that \tau_{1}(w)=\tau_{2}(w)

as holomorphic germs.
It is not clear yet whether both agm sequence \{(a_{n}(w), b_{n}(w))\} and

\{(a_{n}’(w), b_{n}’(w))\} are identical or not. However, a repeated use of Proposi-
tion 3.6 shows that there exists a closed path \rho_{1} through w such that

(\rho_{1})_{*}\{(a_{n}(w), b_{n}(w))\}=\{(c_{n}(w), d_{n}(w))\} ,

(\rho_{1})_{*}\tau_{1}(w)=M(1, w) .

Here \{(c_{n}(w), d_{n}(w))\} is the agm-sequence for (1, w) consisting only of right
choices with its limit M(1, w) . Similarly we have another closed path \rho_{2}
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through w such that

(\rho_{2})_{*}\{(a_{n}’(w), b_{n}’(w))\}=\{(c_{n}(w), d_{n}(w))\} ,
(\rho_{2})_{*}\tau_{2}(w)=M(1, w) .

Since \tau_{1}=\tau_{2} , we have

(\rho_{2}\rho_{1}^{-1})_{*}M(1, w)=M(1, w) , (6.1)

although the same analytic continuation may change \{(c_{n}(w), d_{n}(w))\} to a
different agm-sequence.

In order to prove that this is not the case, we consider a homomorphism
induced from (4.14):

\mu : \pi_{1}(\mathbb{C}_{0}, w)arrow SL(2, \mathbb{Z}) .

This can be decomposed into the following maps:

\pi_{1}(\mathbb{C}_{0}, w)arrow\pi_{1}\mu_{1}(\mathbb{C}_{0}, z_{1})arrow\pi_{1}\mu_{2}(\mathbb{C}_{1}, \lambda_{1})arrow SL(\mu s2, \mathbb{Z}) . (6.2)

Here z_{1} is a point\in(0,1) in the real axis, \lambda_{1}=1/(1-z_{1}^{2}) , \mu_{2}=\varphi_{*} in (4.3)
and \mu_{3} is defined by the relations (4.10), namely

\mu_{3}(\delta_{1})=U^{-1} \mu_{3}(\delta_{\infty})=V^{-1} (6.3)

with the generators \delta_{1} and \delta_{\infty} of \pi_{1}(\mathbb{C}_{1}, \lambda_{1}) . \mu_{1} is derived from the cor-
respondence: \gamma

– \sigma\gamma\sigma^{-1} for any cycle \gamma through w , where \sigma is a path in
\mathbb{C}_{0} connecting w with z_{1} such that both M(1, z) and M(1+z, 1-z) are
continuous on \sigma .

The relations (4.15) and (6.1) imply that \mu(\rho_{2}\rho_{1}^{-1}) is a matrix of the
form

\mu(\rho_{2}\rho_{1}^{-1})=(\begin{array}{ll}1 0* *\end{array}) \in\Gamma_{2}(4) ,

which must be V^{m} for some m\in \mathbb{Z} .
As in Section 4 let \gamma_{1} be a cycle through z_{1} encircling the point 1

once counterclockwise but leaving the points 0 and -1 outside. We put
\sigma_{1}=\sigma^{-1}\gamma_{1}\sigma . From (4. 11)\sim (4. 13) we know \mu(\sigma_{1})=V.

On the other hand it is clear that the maps \mu_{1} and \mu_{2} are injective
It is also known that \mu_{3} is injective (see the remark below). Hence \mu is
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injective. This implies that for some m\in \mathbb{Z}

-1
\rho_{2}\rho_{1}

=\sigma_{1}^{m} .

Proposition 3.7 asserts that (\sigma_{1})_{*}\{(c_{n}(w), d_{n}(w))\}=\{(c_{n}(w), d_{n}(w))\}

Therefore we have

\{(a_{n}(w), b_{n}(w))\}=(\rho_{1}^{-1})_{*}\{(c_{n}(w), d_{n}(w))\}

=(\rho_{2}^{-1}\sigma_{1}^{m})_{*}\{(c_{n}(w), d_{n}(w))\}

=\{(a_{n}’(w), b_{n}’(w))\}

Putting in particular w=z_{0} , we have completed the proof of Theorem 1.

Remark 6.1. The fact that the homomorphism \mu_{3} is injective can be proved
in the framework of the Gauss-Schwarz theory of monodromy representa-
tions (see e.g. Yoshida [8, p54] ). Or we may refer to Lehner [3, Chap. XI ,
3D Theorem], in which it is proved that \Gamma(2)/\pm 1 is a free group generated
by U and V It is then obvious that \mu_{3} with its assignment (6.3) is injective.
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