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Extrinsic shape of circles and the standard imbedding
of a Cayley projective plane

Toshiaki ADACHI, Sadahiro MAEDA and Koichi OGIUE
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Abstract. The main purpose of this paper is to give a characterization of the parallel
imbedding of a Cayley projective plane P_{Cay}(c) into a real space form in terms of the
extrinsic shape of particular circles on P_{Cay}(c) .
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1. Introduction

To what extent can we determine the properties of a submanifold by
observing the extrinsic shape of geodesies or circles of a submanifold? As
typical cases, we recall that a submanifold is totally geodesic (resp. totally
umbilic with parallel mean curvature vector) if and only if all geodesies
(resp. circles) of the submanifold are geodesies (resp. circles) in the ambient
space ([7]).

On the other hand, it is well-known that a sphere is the only surface
in E^{3} all of whose geodesies are circles in E^{3} . This result is generalized as
follows: A submanifold of a real space form is isotropic and parallel if and
only if all geodesies of the submanifold are circles in the ambient space ([4],
[9] ) .

Then, what is the extrinsic shape of circles of an isotropic parallel sub-
manifold of a real space form? An isotropic parallel submanifold of a real
space form is locally equivalent either to the first standard imbedding of
one of the compact symmetric spaces of rank one or to the second stan-
dard imbedding of a sphere. It is proved in [3] that the image of a circle
under the first standard imbedding of a real projective space or the second
standard imbedding of a sphere is never a circle in the ambient space. On
the contrary, some circles of a complex projective space or a quaternionic
projective space are mapped to circles in the ambient space under the first
standard imbedding ([1]).
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Our purpose of this paper is to prove that some circles of a Cayley
projective plane are mapped to circles in the ambient space under the first
standard imbedding and to give some characterizations of the first standard
imbeddings of a Cayley projective plane by observing the extrinsic shape of
particular circles.

2. Cayley circles

We first review the definition of circles. A curve \gamma=\gamma(s) , parametrized
by arclength s , in a Riemannian manifold M is called a circle if there exist
a field Y=Y(s) of unit vectors along \gamma and a positive constant k which
satisfy

\{

\nabla_{\dot{\gamma}}\dot{\gamma}=kY

\nabla_{\gamma}Y=-k\dot{\gamma} ,
(2.1)

where \dot{\gamma} denotes the unit tangent vector of \gamma and \nabla the covariant differenti-
ation. The constant k is called the curvature of the circle. For an arbitrary
point x , an arbitrary orthonormal pair (u, v) of vectors at x and an arbi-
trary positive number k , there exists a unique circle \gamma=\gamma(s) with initial
condition \gamma(0)=x,\dot{\gamma}(O)=u and Y(0)=v . For detail, see [7].

It follows from (2.1) that the sectional curvature K(\dot{\gamma}, Y) given by the
plane spanned by \dot{\gamma} and Y is constant along \gamma if M is locally symmetric.
Therefore, in a Cayley projective plane P_{Cay}(c) of maximal sectional cur-
vature c , we define a Cayley circle as a circle \gamma which satisfies K(\dot{\gamma}, Y)=c .
The extrinsic shape of Cayley circles through the first standard minimal
imbedding of a Cayley projective plane will be studied in section 4.

3. Isotropic immersions

First of all, we recall the notion of iso\underline{tr}opic immersions. Let M and \overline{M}

be Riemannian manifolds and f : Marrow M be an isometric immersion. We
denote by \nabla and \overline{\nabla} the Riemannian connections of M and \overline{M} , respectively,
and by \sigma the second fundamental form of f . Then the Gauss formula is
given by

\overline{\nabla}_{X}Z=\nabla_{X}Z+\sigma(X, Z) (3.1)
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and the Weingarten formula is given by

\overline{\nabla}_{X}\xi=\nabla_{X}^{\perp}\xi-A_{\xi}X , (3.2)

where \nabla^{\perp} denotes the covariant differentiation in the normal bundle and
A_{\xi} the shape operator in the direction of \xi so that \langle A_{\xi}X, Z\rangle=\langle\sigma(X, Z), \xi\rangle .

The immersion f is said to be isotropic at x\in M if ||\sigma(X, X)||/||X||^{2}

is constant on the tangent space T_{x}(M) of M at x . If the immersion is
isotropic at every point, then the immersion is said to be isotropic. Note
that a totally umbilic immersion is isotropic, but not vice versa.

The following is well-known ([8]).

Lemma 1 Let f : Marrow\overline{M} be an isometric immersion. Then f is
isotropic at x\in M if and only if \langle\sigma(X, X), \sigma(X, Y)\rangle=0 for an arbitrary
orthgonal pair X, Y\in T_{x}(M) , or equivalently, A_{\sigma(X,X)}X is proportional to
X for an arbitrary X\in T_{x}(M) .

Lemma 2 Let f : Marrow\overline{M} be an iso\underline{tr}opic parallel immersion and \gamma be
a circle on M Then f(\gamma) is a circle on M if and only if \sigma(\dot{\gamma}(0), Y(0))=0 .

Proof. Let \gamma be a circle of curvature k on M . Put \lambda=||\sigma(\dot{\gamma},\dot{\gamma})|| . Then
\lambda is constant, since the second fundamental form is parallel and isotropic
(see, Lemma 1). It follows from Lemma 1 that A_{\sigma(\dot{\gamma},\dot{\gamma})}\dot{\gamma}=\lambda\dot{\gamma} . Since \sigma is
parallel, we get from (2.1) that

\overline{\nabla}_{\dot{\gamma}}\dot{\gamma}=\sqrt{k^{2}+\lambda^{2}Y} (3.3)

and

\overline{\nabla}_{\dot{\gamma}}\overline{Y}=-\sqrt{k^{2}+\lambda^{2}}\dot{\gamma}+\frac{3k}{\sqrt{k^{2}+\lambda^{2}}}\sigma(\dot{\gamma}, Y) , (3.4)

where

\overline{Y}=\frac{1}{\sqrt{k^{2}+\lambda^{2}}}\{kY+\sigma(\dot{\gamma},\dot{\gamma})\}

It follows from (2.1) and Lemma 1 that ||\sigma(\dot{\gamma}, Y)|| is constant along \gamma so
that \sigma(\dot{\gamma}, Y)=0 along \gamma . Therefore (3.4) reduces to

\overline{\nabla}_{\dot{\gamma}}\overline{Y}=-\sqrt{k^{2}+\lambda^{2}}\dot{\gamma} . (3.5)

(3.3) and (3.5) tell us that f(\gamma) is a circle on \overline{M} . \square
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4. Extrinsic shape of Cayley circles via first standard minimal
imbedding

It is known that the parallel imbedding of a Cayley projective plane
P_{Cay}(c) of maximal sectional curvature c into a real space form \overline{M}^{16+p}(\tilde{c})

of curvature \tilde{c} is nothing but the first standard minimal imbedding f :
P_{Cay}(c)arrow S^{25} ( \frac{3c}{4}) followed by a totally umbilic imbedding into \overline{M}^{16+p}(\tilde{c})

([4,9]) . As for the extrinsic shape of circles on P_{Cay}(c) via f , we have the
following.

Proposition 1 The first standard minimal imbedding of P_{Cay}(c) into
S^{25} ( \frac{3c}{4}) maps a Cayley circle of curvature k to a circle of curvature
\sqrt{k^{2}+c}/4 .

Proof Let f : P_{Cay}(c)arrow S^{25} ( \frac{3c}{4}) be the first standard minimal imbed-
ding and let \gamma be a Cayley circle of curvature k on P_{Cay}(c) . Then the
equation of Gauss yields

c=\langle R(\dot{\gamma}, Y)Y,\dot{\gamma}\rangle

= \frac{3c}{4}+\langle\sigma(\dot{\gamma},\dot{\gamma}), \sigma(Y, Y)\rangle-||\sigma(\dot{\gamma}, Y)||^{2} .

that is,

|| \sigma(\dot{\gamma}, Y)||^{2}=\langle\sigma(\dot{\gamma},\dot{\gamma}), \sigma(Y, Y)\rangle-\frac{c}{4} . (4.1)

On the other hand, since f is isotropic and it satisfies ||\sigma(X, X)||/||X||^{2}=

\sqrt{c}/2([4]) , we have

\langle\sigma(X, Y), \sigma(Z, W)\rangle+\langle\sigma(X, Z), \sigma(Y, W)\rangle+\langle\sigma(X, W), \sigma(Y, Z)\rangle

= \frac{c}{4}(\langle X, Y\rangle\langle Z, W\rangle+\langle X, Z\rangle\langle Y, W\rangle+\langle X, W\rangle\langle Y, Z\rangle)

for arbitrary X , Y. Z , W . Then, in particular, we get

2|| \sigma(\dot{\gamma}, Y)||^{2}+\langle\sigma(\dot{\gamma},\dot{\gamma}), \sigma(Y, Y)\rangle=\frac{c}{4} . (4.2)

Since we have \sigma(\dot{\gamma}, Y)=0 from (4.1) and (4.2), our Proposition 1 follows
from Lemma 2. \square
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5. Characterization of standard imbedding of Cayley projective
plane by observing extrinsic shape of Cayley circles

We consider converses of Proposition 1 to obtain a characterization of
the first standard minimal imbedding of a Cayley projective plane. First
we prove the following.

Theorem 1 Let M be an open set of P_{Cay}(c) which is isomet rically im-
mersed into a real space form \overline{M}^{16+p}(\tilde{c}) . If there exists k>0 and all Cay-
ley circles of curvature k on M are circles in \overline{M}^{16+p}(\tilde{c}) , then M is locally
congruent to a Cayley projective plane imbedded into S^{25}( \frac{3c}{4}) in \overline{M}^{16+p}(\tilde{c})

through the first standard minimal imbedding.

Proof Let \gamma=\gamma(s) be a Cayley circle of curvature k on M so that it
satisfies (2.1). Then, since \gamma is a circle as a curve in \overline{M}^{16+p}(\tilde{c}) , it satisfies

\{

\overline{\nabla}_{\dot{\gamma}}\dot{\gamma}=\overline{k}\overline{Y}

\overline{\nabla}_{\dot{\gamma}}\overline{Y}=-\overline{k}\dot{\gamma} ,
(5.1)

for some positive constant \overline{k} and some field \overline{Y} of unit vectors, where \overline{\nabla}

denotes the covariant differentiation on \overline{M}^{16+p}(\tilde{c}) . Equations (2.1) and
(5.1), together with the formulae of Gauss and Weingarten, yield

A_{\sigma(\dot{\gamma},\dot{\gamma})}\dot{\gamma}=(\overline{k}^{2}-k^{2})\dot{\gamma} (5.2)

and

\nabla_{\gamma}^{\perp}\sigma(\dot{\gamma},\dot{\gamma})+k\sigma(\dot{\gamma}, Y)=0 . (5.3)

It follows from (5.2) that

\langle A_{\sigma(\dot{\gamma},\dot{\gamma})}\dot{\gamma}, Z\rangle=0

or equivalently

\langle\sigma(\dot{\gamma},\dot{\gamma}), \sigma(\dot{\gamma}, Z)\rangle=0

for all Z orthogonal to \dot{\gamma} . Since \dot{\gamma} is arbitrary, it follows from Lemma 1 that
M is isotropic. Defining the covariant derivative \nabla_{X}’\sigma of \sigma by

(\nabla_{X}’\sigma)(Y, Z)=\nabla_{X}^{\perp}\sigma(Y, Z)-\sigma(\nabla_{X}Y, Z)-\sigma(Y, \nabla_{X}Z) ,
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we get from (5.3) that

(\nabla_{\gamma}’\sigma)(\dot{\gamma},\dot{\gamma})+3k\sigma(\dot{\gamma}, Y)=0 . (5.4)

Consider another Cayley circle \gamma_{1} of curvature k with \gamma_{1}(0)=\gamma(0),\dot{\gamma}_{1}(0)=

\dot{\gamma}(0) and Y_{1}(O)=-Y(0) . Then we obtain

(\nabla_{\gamma_{1}}’\sigma)(\dot{\gamma}_{1},\dot{\gamma}_{1})+3k\sigma(\dot{\gamma}_{1}, Y_{1})=0 . (5.5)

Therefore it follows from (5.4) and (5.5) that

(\nabla_{\dot{\gamma}(0)}’\sigma)(\dot{\gamma}(0),\dot{\gamma}(0))=0 . (5.6)

Since \gamma is arbitrary so that \dot{\gamma}(0) is arbitrary, thanks to the equation of
Codazzi \nabla_{X}’\sigma(Y, Z)=\nabla_{Y}’\sigma(X, Z) , we get \nabla’\sigma=0 .

Thus our assertion follows from the results of [7] and [9]. \square

6. Totally real circles

By Proposition 1 in section 4, we know the extrinsic shape of Cayley
circles on P_{Cay}(c) via the first standard minimal imbedding f : P_{Cay}(c)arrow

S^{25}( \frac{3c}{4}) . Then, what can we say about the extrinsic shape of circles on
P_{Cay}(c) which are not Cayley? In particular, we consider circles which are
as far from being Cayley as possible. A circle \gamma on P_{Cay}(c) is said to be
totally real if it satisfies K( \dot{\gamma}, Y)=\frac{c}{4} . We consider the problem: What does
a totally real circle on P_{Cay}(c) look tike in S^{25} ( \frac{3c}{4}) ? To answer this problem,
we first prove the following.

Proposition 2 Let g : P_{R}^{2}( \frac{c}{4})arrow S^{4}(\frac{3c}{4}) be the first standard minimal
imbedding of real projective plane P_{R}^{2}( \frac{c}{4}) of curvature \frac{c}{4} into a 4-dimensi0nal
sphere S^{4}( \frac{3c}{4}) of curvature \frac{3c}{4} . Then
(i) g maps each geodesic to a circle of curvature \frac{\sqrt{c}}{2} .

(ii)
\frac{gm\sqrt{3c}}{2\sqrt{2}}\frac{ps\sqrt{3c}}{2}aeach

circle of curvature \frac{\sqrt{c}}{2\sqrt{2}} to a helix of order 3 of curvatures

(iii) g maps each circle of curvature k \neq\frac{\sqrt{c}}{2\sqrt{2}} to a helix of order 4 of cur-

vatures \frac{\sqrt{4k^{2}+c}}{2} , \frac{3k\sqrt{c}}{\sqrt{4k^{2}+c}} , \frac{|8k^{2}-c|}{2\sqrt{4k^{2}+c}} .

Proof Note that g is a \frac{\sqrt{c}}{2}isotropic parallel imbedding and it satisfies
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(cf. [4])

\langle\sigma(X, Y), \sigma(Z, W)\rangle

=- \frac{c}{4}(\langle X, Y\rangle\langle Z, W\rangle-\langle X, W\rangle\langle Y, Z\rangle-\langle X, Z\rangle\langle Y, W\rangle) . (5.7)

Let \gamma be a geodesic of P_{R}^{2}( \frac{c}{4}) . Then the argument similar to Lemma 2,
combined with (5.7), proves (i).

Let \gamma be a circle of curvature k in P_{R}^{2}( \frac{c}{4}) so that it satisfies \nabla_{\dot{\gamma}}\dot{\gamma}=kY

and \nabla_{\dot{\gamma}}Y=-k\dot{\gamma} . We denote by \overline{\nabla} the covariant differentiation of S^{4}( \frac{3c}{4}) .
Then the Gauss formula gives

\overline{\nabla}_{\dot{\gamma}}\dot{\gamma}=k_{1}\xi_{2} , (5.8)

where

k_{1}= \frac{\sqrt{4k^{2}+c}}{2} (5.9)

and

\xi_{2}=\frac{2}{\sqrt{4k^{2}+c}}(kY+\sigma(\dot{\gamma},\dot{\gamma}))1 (5.10)

Differentiating (5.10), we obtain

\overline{\nabla}_{\gamma}\xi_{2}=-k_{1}\dot{\gamma}+\frac{6k}{\sqrt{4k^{2}+c}}\sigma(\dot{\gamma}, Y) .

Therefore, if we put

k_{2}= \frac{3k\sqrt{c}}{\sqrt{4k^{2}+c}} (5.11)

and

\xi_{3}=\frac{2}{\sqrt{c}}\sigma(\dot{\gamma}, Y) , (5.12)

then we have

\overline{\nabla}_{\dot{\gamma}}\xi_{2}=-k_{1}\dot{\gamma}+k_{2}\xi_{3} . (5.13)

Similarly, differentiating (5.12), we obtain

\overline{\nabla}_{\gamma}\xi_{3}=-k_{2}\xi_{2}+k_{3}\xi_{4} , (5.14)
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where

k_{3}= \frac{|8k^{2}-c|}{2\sqrt{4k^{2}+c}} (5.15)

and

\xi_{4}=\frac{\sqrt{c}}{\sqrt{4k^{2}+c}}Y+\frac{8k(c-2k^{2})}{(8k^{2}-c)\sqrt{c(4k^{2}+c)}}\sigma(\dot{\gamma},\dot{\gamma})

+ \frac{4k\sqrt{4k^{2}+c}}{(8k^{2}-c)\sqrt{c}}\sigma(Y, Y) .

From (5.8), (5.9), (5. 11), (5. 13), (5. 14) and (5. 15) we get (ii) and (iii).
\square

We see from Remark 2.2 in [6] that every circle of P_{Cay}(c) is contained
in some totally geodesic P_{C}^{2}(c) . This, combined with Proposition 2 in [2],
implies that every totally real circle of P_{Cay}(c) is contained in some totally
geodesic P_{R}^{2}(c/4) .

P_{R}^{2}( \frac{c}{4})

arrow g
S^{4}( \frac{3c}{4})

t.g.\downarrow \downarrow t.g .

P_{Cay}(c)
\vec{f}

S^{25}( \frac{3c}{4})

Therefore our Proposition 2 yields

Theorem 2 The first standard minimal imbedding of P_{Cay}(c) into S^{25} ( \frac{3c}{4})

maps a totally real circle to a helix of order 3 or 4.
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