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Separation and weak separation on Riemann surfaces

Junichiro NARITA
(Received June 11, 1997)

Abstract. We show some necessary and sufficient conditions for weak separation by
an algebra A of analytic functions on a Riemann surface R. One of these equivalent
conditions is the following. There exists a sequence of relatively compact open sets {Dn}
in R such that (i) @D, is connected, (ii) D1 C D2 C D3 C -+, (iii) R = UDx, and
(iv) A separates the points of a neighborhood of 8Dn.
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1. Introduction

Let R be a Riemann surface, and let A be an algebra of analytic func-
tions on R. We always assume that A contains constant functions. We say
that points p and q of R are separated by A if there is a function f in A
such that f(p) # f(q), and when any pair of distinct points are separated
by A, we say that the algebra A separates the points of R. For functions f
and ¢ in A such that g Z 0, (f/g) is a meromorphic function and so we can
consider the value (f/g)(p) at any point p of R. According to Royden [4] we
say that points p and g of R are weakly separated by A if there are functions
f and g in A as above such that (f/g)(p) # (f/9)(¢), and when any pair of
distinct points are weakly separated by A, we say that the algebra A weakly
separates the points of R.

On the other hand, in Gamelin-Hayashi [2] it was defined that A weakly
separates the points of R if there is a discrete subset A of R such that A
separates the points of R\A in case A is the algebra of bounded analytic
functions H*®(R). These two definitions for weak separation coincides each
other.

In this paper we study some necessary and sufficient conditions for weak
separation, and show that separation on a rather narrow set means weak
separation on R. We also include a proof of equivalence of two definitions
for weak separation. It will be convenient since the proof is not given in .
For the moment we use the terminology “weak separation” in the sense of
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Royden.

2. Preparation

We want to use the Royden’s resolution R of R with respect to 4 and
the canonical map ¢ : R — R, and also some lemmas which are used to
construct R in Royden [4]. Following lemmas and proposition are implicitly
included in Royden [3]. See also Bishop [1]. We include the proof for the

sake of convenience.

Lemma 1 If points p, q of R are weakly separated by A, then there are
neighborhoods U of p and V of q such that A separates any pair of points
(p',q") in U x V except (p,q).

Proof.  Let f and g be functions in A such that (f/g)(p) # (f/g)(q). If
f(p) # f(q) or g(p) # g(q) then the conclusion easily follows, so we can

assume that f(p) = f(q) and g(p) = g(q). Then (f/g)(p) # (f/9)(q) can
occur only when f(p) = f(q) = g(p) = g(q) = 0. As g is not identically 0,

there exist neighborhoods U of p and V' of ¢ such that g # 0 in (U\{p}) U

(V\{g}) and (f/g)(U) N (f/g)(V) = 0. Then any pair of points (p',¢') in
(U x V)\{(p, q)} are separated by functions f or g in A. Ol

For a point p of R, let

M(p)={f/g:f, g€ A, g#0, (f/g9)(p) =0}

and let v(p) be the minimal order of meromorphic functions in M (p) at p.

Lemma 2  For a point p of R, let h be a function in M(p) with order
v(p) at p. Then for any function f in A, there exists a neighborhood U of
p such that f is represented as

oo
f= Z cnh™
n=0

mn U.

Proof. By some local coordinate (U, z) with z(p) = 0, h can be represented
as h = 2 and

o0
f= Z amz™
m=0
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in U. We want to show that the set {m : a,, # 0, m is not a multiple of
v(p)} is empty. If not, let s be the smallest number of this set, and let ¢ be
the integer with tv(p) < s < (¢t + 1)v(p). Then

f - ZZ:O alcu(p)h"C _ f - ch:O aku(p)zku(p)

ht o (p) = 2" 0P 4.

is an element of M (p) and the order of this function at p is less than v(p).
This is a contradiction. ]

Lemma 3  Suppose that A weakly separates the points of R. Then for
any point p of R, there exists a neighborhood U of p such that A separates
the points of U.

Proof. Let U and h be as in the proof of Lemma 2. Lemma 2 shows that
a pair of points in U are not weakly separated by A if these points are not
separated by h. Since h = 2 it must be that v(p) = 1. Then h itself
separates the points of U.

Let h = f/g with f,g € A. By replacing U with a smaller neighborhood
of p if necessary, we can assume that f # 0 and g # 0 in U\{p}. Then any
pair of points in U are separated by functions f or g in A. U

The Royden’s resolution R of R with respect to A and the cannonical
map ¢ : R — R is defined in [4] in terms of the homomorphisms of algebras.
Here R is a Riemann surface and ¢ is an analytic map satisfying that
o(p) = ¢(q) for p,q € R if and only if there exist non-constant analytic
maps p and o from a neighborhood of p and q respectively into the complex
plane satisfying that p(p) = 0, o(q) = 0, and every f in A takes a same
value on p~1(2) Uo~!(z) for any complex number z in the images of p or o.

We use only this property of R and ¢ in the proof of following propo-
sition, and so we may use this equivalence relation p ~ ¢ to define a
Riemann surface R/~, which is enough for the purpose of this paper, al-
though p(R) = R/~ is a subsurface of the Royden’s resolution R in general.

Proposition 1  For p and q of R, p(p) = ¢(q) if and only if p and q are
not weakly separated by A. Especially, the map ¢ 1is injective on R if and
only if A weakly separates the points of R.

Proof.  If p(p) = ¢(q), then A does not separate p~'(z) and o~!(z) for
any z and so by Lemma 1, A does not weakly separate p and q.
For the reverse implication, we assume p and g are not weakly separated
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by A. Let hy, hq be functions in M (p), M(q) respectively as in the statement
of Lemma 2. Since p and ¢ are not weakly separated, hq(p) = hy(p) = 0,
hy(q) = hq(q) =0, and (hyp/hq)(p) = (hp/hg)(q). First two equations imply
hq € M(p), hy € M(q) and so (hy/hg)(p) # 0, (hp/hq)(q) # oco. Hence h,
and hg have the same order at g, and so we can take the same function
h = hy in for both p and q.
For any f € A, there are neighborhoods U of p and V of ¢ such that f =
coanh™inUand f=5Y02gbh"inV. Ifa, =by forn=0,1,..., k-1,
then the function

- ﬁ;%) anh™
hk
is a member of quotient field of A and takes values a; at p and b at q.
So ax = br and this shows that a, = b, for all n. Therefore, if we take
p = o = h, f takes a same value on p~'(2) Uo '(2) = h™!(2) for any
complex number z in A(U U V). ]

3. Main Theorem

For two sets U and F in R, We say that A is separating on U with
respect to E if every point in U is separated by A from any other point in
UULE.

Theorem 1  Let A be an algebra of analytic functions on a Riemann
surface R. Then the following four conditions are equivalent.

(a) A weakly separates the points of R.

(b) There exists a discrete subset A of R such that A separates the points
of R\A.

(c) There exists a sequence of compact sets {K,} in R such that (i)
K, C Ky C K3 C -, (ii) R=UK,, and (iii) A is separating on a
neighborhood of 0K, with respect to K,.

(d) There exists a sequence of relatively compact open sets {Dyp} in R
such that (i) OD, is connected, (ii) D1 C Dy C D3 C ---, (iii)
R = UD,, and (iv) A separates the points of a neighborhood of OD,,.

Proof. (a) = (b): Let

I'={(p,q) € Rx R:p+#q, pand q are not separated by A}.

By Lemma 1 and Lemma 3|, I" is a discrete subset of R x R. Let {R,} be
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an exhaustion of R by relatively compact subregions R, of R. For p € R,
let x(p) = min{n : p € R,} and we set

A ={p€eR:thereexistsag € R
such that (p,q) € I' and x(q) < x(p)}-

First, we show that A separates the points of R\A. If not, there exists a
pair of points p, ¢ € R\A which are not separated by A, so (p,q) € I'. Then
either p or ¢ is a member of A according to x(q) < x(p) or x(p) < x(q).
This is a contradiction.

Next, we show that A is a discrete subset of R. If not, there exists a
sequence {ppy} of points in A such that {p,} converges to a point p in R.
Then all points of {p,,} are contained in an R,. By the definition of A, for
each p,, there exists a point ¢,, € R such that (pm,qm) € I and ¢, is also
contained in R,. Since R, is relatively compact, there is a subsequence of
{(pm,qm)} which converges to a point in R x R. This contradicts the fact
that I" is a discrete subset of R x R.

(b) = (d): We can take an exhaustion {R,} of R such that OR,
consists of finite number of smooth Jordan closed curves and OR,, N A = ()
for all n. We can also join every component of R, by finite number of
disjoint smooth Jordan arcs in R,, without passing A. Let L, be the union
of these Jordan arcs. Then D, = R,\ L, satisfies the conditions of (d).

(c) = (a): We use the Royden’s resolution R of R with respect to A
and the canonical map ¢ : R — R. It suffices to show that ¢ is injective on
each K,,.

First we show that there exists a neighborhood V' of ¢(0K,) such that
for w € V, the number of points in ¢~} (w) N K, is 1 or 0. Let U be
a neighborhood of 0K, such that A is separating on U with respect to
K,. Since ¢ is an open mapping, ¢(U) is a neighborhood of p(0K,). Let
w € p(U) and p € U be such as p(p) = w. If there exists another point
q € Kp, o(q) = w, then p and ¢ are not separated by A which contradicts
the assumption. Hence V = ¢(U) suffices our request.

Now we show that ¢ is injective on int K, by reduction to absurdity.
So we assume that there exist points a,b € int K, such that a # b and
o(a) = p(b). If p(a) € (S) where S = {p € K, : %%(p) = 0} (the set
of singular points of the map ¢), we can take ¢ ¢ ¢(S) near ¢(a) and
& € p~l(c) Nint K, near a and b € p~!(c) Nint K,, near b so that @ # b.
Hence we can assume that p(a) € ¢(S5).
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We can join ¢(a) with a point z € V by a Jordan arc v in R\(p(S) U
©(0Ky,)). In fact we can join ¢(a) with any point y € V\p(S) by an Jordan
arc 7 in R\¢(S) with the equation u : [0,1] = R, u(0) = ¢(a), u(l) = y.
If yN p(0K,) = 0, we can take z = y and v = 4. If A N p(9K,) # 0, let
to = min{t : u(t) € ¢(0Ky)} and take t; such that u(¢t;) € V and ¢; < to.
Then we can take x = u(t;) and the subarc v of 4 for 0 <t < t;.

By usual lifting argument, we see that there exist arcs v, and v, in R
with initial points a and b respectively, such that ¢(v,) = ¢(v) = v and
Ya Ny = 0. Since vy, and 7, do not meet JK,, these are contained in
int K,,. Accordingly ¢~ !'(z) N K,, contains at least two points ¢! (z) N7,
and o~ !(z) Nv,. This contradicts z € V and so we see that ¢ is injective
on int K,,. This with the assumptin of (c¢) shows that ¢ is injective on K,.

(d) = (c): We again use the Royden’s resolution R of R and ¢ : R —
R. Let U be a neighborhood of D,, such that A separates the points of U.
We can take an arcwise connected compact set B with 0D,, Cint B C B C
U. For example, we can cover 0D, by finite number of coordinate disks V/,
with V,,, C U and V,, N 0D,, # . Then UV,, is an open connected set and
we can take B = UV,, as an arcwise connected compact set.

We want to show that A is separating on B with respect to D, by
reduction to absurdity. If not, there exists a point p € D,\B with ¢(p) €
¢(B). Let E be a component of ¢~!(¢(B)) N (D, U B) containing p. As ¢
is injective on U, ¢(U\B) does not meet ¢(B) and so ¢! (p(B))N (D, UB)
is contained in the union of mutually disjoint compact sets D,\U and B.
This shows that £ C D,\U C D,\B.

Now we can use lifting argument to show that ¢(F) = ¢(B). In fact,
for any point w in ¢(B), we can join ¢(p) and w by an arc v in ¢(B), and
we can take a maximal arc v, in R with initial point p such that ¢(v,) C 7.
If ¢(vp) is a proper subset of v, then the arc v, continues to the outside
of the set Dy, and v, N 0D, # (. Hence, the set E intersects with the set
B, a contradiction. Thus, ¢(v,) = 7. Then w € ¢(vp) C ¢(F) and so
¢(E) = ¢(B).

From E C D,, and dD,, C B, it follows that p(0D,) C ¢(B) = ¢(F) C
©(Dy). For any function f in A, we can take an analytic function fonR
such that f = fop. Then f(0D,) = f(¢(0Dn)) C f(p(Dn)) = f(Dn) and
by the maximal modulus principle, f must be a constant function. This
contradicts the assumption of (d), and we conclude that A is separating on
B with respect to D,,.
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Let K,=D,,. Since 0K, C 8D, C int B C B and K,Uint B C D,UB,
conditions of (c) are satisfied if we take int B as a neighborhood of 0K,.
O

The condition (i) “0D,, is connected” of (d) in can not be
removed, and also we can not remove “a neighborhood of” in the condition
(iv) of (d).

To show this we use a Riemann surface R which is known as Myrberg’s
example ([3]), and we take A as the algebra of bounded analytic functions
H>*(R). Let ay, b, be two sequences of real numbers such that 0 < a,;; <
bpi1 < ap < by, (n = 1,2,...) and lim, 0 an = lim, 00, = 0. We
define a Riemann surface R as a two sheeted unbounded covering surface
of punctured disk Ag = {0 < |z| < 1} which has branch points over {a,}
and {b,}. Let 7 : R — Ag be a projection, and let C, = {|z| = r}. We
also assume that 7=!(C,) is connected for a, <r < b, (n =1,2,...) and
7~ 1(C;) has two components for by,y; < r < ap (n = 1,2,...) and for
b; < r < 1. It is known that every bounded analytic function on R takes a
same value on 77 1(2) for z € Ay, and so H*®(R) can not weakly separates
the points of R.

We can take connected open sets { D, } in R such that 0D, has four com-
ponents and each component is a component of 7= (C,) for r = ¢y, dp, s, tn
respectively, where b,11 < ¢, < dp < ap and by < s, <ty < 8Spy1 < tpy1 <
1 (n=12,...), im0 8p = limp ooty = 1. Note that we must take
components of 771(C,) on “different sheets” of R for r = ¢, and r = d,,
and also for » = s, and » = t,. The conditions (ii) and (iii) of (d) are
satisfied by the construction, and (iv) is satisfied since H*(R) contains the
function z o ™ where 2 is the coordinate function on Ag. Now all conditions
of (d) are satisfied except (i).

For another example which shows necessity of “a neighborhood of” in
the condition (iv) of (d), we modify the Riemann surface R such as R
has branch points also over {s,} and {t,}. Again every bounded analytic
function on R takes a same value on 77 !(z) for 2 € Ag. Let I'1 be
a subset of 771(C,,) which form a closed Jordan curve, and let I', > be
another closed Jordan curve on R such that w(I',2) is the circle whose
diameter is the segment [—b,,a,] and such that R\(I'y; UTy2) has no
relatively compact components. We take I'y, 3 and I';, 4 in the same manner,
such as T3 C 7 1(C;,) and m(T'y4) is the circle whose diameter is the
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segment [—tp, s,]. Now we can take connected open sets {D,} in R such
that (’)f)n has two components I',; UT',2 and I', 3 U, 4. We can join
these two components by a Jordan arc L, in D,, where 7(Ly) is a segment
[@n, sp]. Then D, = Dn\Ln satisfies all conditions of (d) if we remove “a
neighborhood of” in the condition (iv) of (d).
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