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Sheaves on the category of periodic observation
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Abstract. A Grothendieck topology on the subgroup category of the additive group of
integers is defined and the sheafification of the presheaves induced from discrete dynamical
systems are determined.

Key words: category, dynamical systems, Grothendieck topology, sheafification.

Introduction

Suppose various observers record the activity of one object periodically
with their own time units and each obtains his own dynamical model of the
object. How should we obtain a comprehensive model of the object starting
from these personal models?

This question may be regarded as a special case of the universal problem
of recovering the global information from coherent pieces of local informa-
tion, which is often analyzed succinctly by the sheaf theory.

In this paper, we introduce a Grothendieck topology on the category
of observers with different time units and show that the sheafification pr0-

cedure gives us an effective method of synthesizing the personal dynamical
models of observers whose time units generates the unit ideal of the integer.

1. The category of observers with different time units

1.1. The category N^{O}

Let N^{O} be the category whose objects are natural integers and whose
arrows are generated by \{\beta_{n,m} : marrow n|n|m\} and \{\alpha_{n} : narrow n|n\in N\}

with the following relations:

\beta_{nn}=1_{n}

\beta_{\ell} , m\beta m , n=\beta l,n
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\{

and

\alpha_{m}^{n}\beta_{m} ,mn=\beta m,mn(ymn

for m\in N and n>1. The latter relation can be expressed as the commu-
tativity of the diagram

mm\uparrow\beta_{m,mn}\underline{\alpha_{m}^{n}}

\beta_{m} , mn

mnmn\vec{\alpha_{mn}}

The following picture illustrates this category.

The object n stands for the observer with time unit n . The arrow \alpha_{n} is the
time flow of the observer n and the arrow \beta_{m} ,nm : nmarrow m means that the
observer mn can obtain his own data via the observer m .

Alternatively we can define N^{O} as follows: Its objects are natural num-
bers and for each m and its divisor d , there are countable arrows

\alpha_{d}^{p} \mbox{\boldmath $\beta$}d, m : marrow d, p=0,1, 2, . .

We often write them as \alpha p\beta when there is no danger of confusion. When
d=m, we write \alpha p\beta simply as \alpha p . We also denote \alpha^{0}\beta by \beta .

For each n , the identity arrow is \alpha^{0}=\alpha_{n}^{0}\beta_{n} ,n .
The composition is defined by

(\alpha^{p}\beta_{d,dk})\circ(\alpha^{q}\beta)=\alpha^{p+qk}\beta .

Lemma 1.1 The composition satisfies the axioms of category.
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Proof. The identity axiom is obvious. A simple calculation shows that
both (\alpha^{p_{1}}\beta_{d,dn_{1}}\circ\alpha^{p_{2}}\beta_{dn_{1},dn_{1}n_{2}}) \circ\alpha p_{3}\beta and \alpha p1\beta_{d,d}n_{1}\circ (\alpha^{p_{2}}\beta_{dn_{1},dn_{1}n_{2}}0\alpha p3\beta)

coincide with

\alpha^{p}1+p_{2}n_{1}+psn_{1}n_{2}\beta .
\square

We note that \alpha^{p}\circ\beta=\alpha p\beta , which shows our notation for arrows con-
forms with the composition and the abbreviation. Hereafter we omit the
composition symbol \circ .

1.2. The categories Q^{O} and R^{O}

When the multiplicative monoid N^{\cross} acts on a set X by x\mapsto n.x(n\in

N) , we can define a category X^{O} as follows. Its objects are elements of X .
For each element x of X , there is an arrow

\alpha_{x} : xarrow x

which is aperiodic, namely, for every natural number k , \alpha_{x}^{k}\neq lx. For each
element x of X and a natural number n , there is an arrow

\beta_{x} ,n : n.xarrow x

satisfying

\beta_{x} , no\beta n . x , m=\beta_{x,mn}

for each x\in X and n , m\in N and

\alpha_{x}^{n}0\beta_{x} , n=\beta x,nno\alpha . x

for each x\in X and n\in N.
Note that when X=N with the action n.x=nx, the two meanings of

N^{O} coincide.
When N^{\cross} acts on the sets of rational numbers and real numbers by

multiplication, we obtain categories Q^{O} and R^{O} respectively.

1.3. Localization of N^{O}

We also consider the category N^{O\circ} which can be obtained from N^{O} by
inverting the \alpha ’s. Its objects are natural numbers and arrows ndarrow n are
described as \alpha p\beta with p\in Z now. The composition is defined by the same
formulas as before. Hence, N^{O} is a full and faithful subcategory of N^{O\circ} .
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1.4. N^{\circ} as the subgroup category of the additive group \bm{Z}

Every group G induces a category Sub(G) called the subgroup category.
Its objects are nontrivial subgroups of G and if H_{1}\subseteq H_{2} then an element
h of H_{2} gives an arrow (H_{1}, h, H_{2}) : H_{1}arrow H_{2} . If (H_{1}, h, H_{2}) : H_{1}arrow H_{2}

and (H_{2}, k, H_{3}) : H_{2}arrow H_{3} , then its composition is ( H_{1}, kh, H_{3} ) : H_{1}arrow H_{3}

where the product kh is possible since h\in H_{2}\subseteq H_{3} .
If G= Z, then the subgroups are \{nZ|n\in N\} and kZ\subseteq nZ iff

n|k and arrows kZarrow nZ are \{n\ell|\ell\in Z\} . Hence there is an isomorphic
functor J : Sub(Z) arrow N^{O\circ} defined by

J(nZ)=n,
J((nkZ, np, nZ) ) =\alpha^{p}\beta_{n,nk} .

2. Some properties of N^{O}

2.1. Comma category N^{O}\downarrow p

A remarkable property of N^{O} is that the comma categories are all
isomorphic. In fact, for each p\in N, there is an isomorphic functor

I_{p} : N^{O}arrow N^{O}\downarrow p

defined by

I_{p}(n)=np,

I_{p}(\alpha_{n})=\alpha_{np} ,
I_{p}(\beta_{n,nk})=\beta np,nkp .

2.2. Relation with N^{\div}

Let N^{\div} denotes the thin category whose objects are natural numbers
and narrow m if and only if n is divided by m . There is a functor

\iota : N^{\div}arrow N^{O}

which is identity on objects and maps narrow m to \beta_{m} ,n .
There is a right inverse to \iota

\pi : N^{O}arrow N^{\div}

which is the identity map on objects and maps \beta_{m} ,n to narrow m and \alpha_{n} to
the identity arrow of n .
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2.3. Properties of arrows

Proposition 2.1 Every arrow is both monic and epic.

Proof. Let f : ndarrow n. Suppose foh_{1}=foh_{2} for some h_{i} : ndearrow nd

(i= 1, 2) . If f=\alpha^{s}\beta , h_{i}=\alpha^{t_{i}}(i= 1, 2) , then f\circ h_{i}=\alpha^{dt_{i}+s}\beta(i= 1, 2) .
Hence dt_{1}+s=dt_{2}+s which implies h_{1}=h_{2} .

Similar arguments show that every arrow is an epic. \square

Proposition 2.2 \{nd_{1}arrow narrow n\alpha^{p_{1}}\beta\alpha^{p_{2}}\beta d_{2} \} has a pull-back in N^{O\circ} if and
only if p_{1}-p_{2} is divisible by the greatest common divisor of d_{1} , d_{2} .

Proof. Let \{nd_{1}arrow narrow n\alpha^{p_{1}}\beta\alpha^{p_{2}}\beta d2 }. If there is its pull-back, it must be of

the form \{nd_{1}\alpha^{q_{1}}\betaarrow nd
\alpha^{q_{2}}\betaarrow nd_{2}

\} with d the common least multiplier of d_{1}

and d_{2} . The necessary condition for this is the commutativity of the square,
which means

d_{1}q_{1}+p_{1} =d_{2}q_{2}+p_{2} . (*)

Hence p_{1}-p_{2} must be divisible by GCD(d_{1}, d_{2}) . Suppose now that this
condition is satisfied. Then there are q_{1} , q_{2} which satisfy (*) .

Let \{nd_{1}\alpha^{r_{1}}\betaarrow ndu \alpha^{r_{2}}\betaarrow nd_{2}

\} be any arrow which makes the square
commutative, namely

d_{1}r_{1}+p_{1} =d_{2}r_{2} +p_{2} .

Then we have

d_{1}(q_{1}-r_{1})=d_{2}(q_{2}-r_{2}) .

We have to show the existence of r such that

\alpha^{qi}\beta 0\alpha^{r}\beta=\alpha^{r_{i}}\beta (i= 1, 2) ,

which means

e_{i}r=r_{i}-q_{i} (i= 1, 2) , (**)

where e_{i}=d/d_{i} (i= 1, 2) . Since e_{1} , e_{2} are mutually prime, we can solve
(**) . The uniqueness of r is obvious. \square

We note that pull-backs may not exist in N^{O} since the equation (**)
has no positive solutions when the right hand side is negative
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Proposition 2.3 The category N^{O} d0es not have the fallowings:
1. initial objects,
2. terminal objects,
3. products,
4. pull-backs,
5. coproduct,
6. equalizers,
7. coequalizers.

Proof. We have no arrows from m to 2m for any m , whence there are no
initial obj ects.

The only candidate for the terminal object is 1, but 1 has non trivial
endoarrows \alpha_{1}^{n} .

The products do not exist in general. For example, the product cone
of 2 and 3 if existed must be of the form

2arrow\alpha^{k}\beta 6arrow\alpha^{\ell}\beta 3 .

Let \alpha p\beta : 12arrow 6. Then

\alpha k\beta 2,6\alpha p06,12 =\alpha k+3p \mbox{\boldmath $\beta$}2,12, \alpha\ell\beta 3,6\alpha p06,12 =\alpha^{\ell+2p} \mbox{\boldmath $\beta$}3,12.

Hence, if we take f:=\alpha^{k+1}\beta_{2,12} : 12arrow 2 and any g : 12arrow 3, there are no
h : 12arrow 6 with \alpha^{k}\beta\circ h=f.

Let f, g : marrow n be parallel arrows. If foh=g\circ h for some h : parrow m,

then f=g. Hence there are no equalizers except for the trivial case f=g.
Similarly parallel arrows f , g with f\neq g have no coequalizers.
We can show similarly that coproducts and coequalizers do not exist in

general. \square

3. Presheaves on N^{O}

3.1. Presheaves
A presheaf on N^{O} is a family of discrete dynamical systems with dif-

ferent time units with comparison morphisms from one with time unit k to
another with time unit nk . More precisely, a presheaf over N^{O} is given by
the following data:

o A family of sets \{X_{n}|n\in N\} indexed by natural numbers,
\circ a family of endomaps \tau_{n} : X_{n}arrow X_{n} for n\in N,
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\circ a family of maps \sigma_{n} ,mn : X_{n}arrow X_{mn} , for m, n\in N,

satisfying
(P_{A}) \sigma_{mn,\ell mn}0\sigma_{n} ,mn\sigma n,\ell=mn ,
(P_{B}) \sigma_{n} ,kno\tau_{n}^{k}=\tau knno\sigma , kn .

Hence, for each n\in N, we have a discrete dynamical system (X_{n}, \tau_{n}) ,
which we regard as the model conceived by the observer n .

Note that P_{B} means that \sigma_{n} ,kn : X_{n}arrow X_{kn} induces a morphism of
dynamical systems2

(X_{n}, \tau_{n}^{k}) arrow (X_{kn}, \tau_{k}n) .

This morphism compares the model of the observer n with that of the
observer kn , which is possible because we can extract, from the model
of the observer n , the information at the time intervals nk , 2nk , 3nk , . .
and compare them with the information extractable from the model of the
observer nk .

For example, the periodic points of (X_{n}, \tau_{n}) with periods dividing k are
mapped to fixed points of (X_{nk}, \tau_{n}k) by \sigma_{n} ,kn.

3.2. Presheaf induced by a discrete dynamical systems

Suppose we know a dynamical system model of an object. Then we
obtain a presheaf as follows: Let D= (X, \tau) be the discrete dynamical
system. For each natural number n , put P_{D}(n)=X and P_{D}(\alpha_{n})=\tau^{n} .
Furthermore define P_{D}(\beta_{x,n})=id for every x , n . Then P_{D} is a presheaf on
N^{O} , called the presheaf induced by the dynamical system P_{D} .

3.3. Fixed point functor

Each presheaf X = (X_{n} , \tau_{n} , \sigma_{n} ,kn ) over N^{O} induces the presheaf
Fix(X) = Fix(X ) \tau_{n}) , \sigma_{n} ,kn ) over N^{\div} , where Fix(X_{n}, \tau_{n}) :=\{x\in X_{n}|

\tau_{n}x=x\} .

1A pair (X, \tau) is called a discrete dynamical system, if X is a set and \tau : Xarrow X is an
endomap. X is called the state space and \tau the transition map.

2When (X_{i}, \tau_{i}) (i= 1, 2) are discrete dynamical systems, a map f : X_{1}arrow X_{2} is called
a morphism of dynamical systems when f\circ\tau_{1}=\tau_{2}\circ f .
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4. The category of presheaves on N^{O}

4.1. Topos structure
The presheaves on N^{O} form a category Set^{N^{O^{op}}} . which is the functor

category from N^{O^{op}} to Set. An arrow F : Xarrow Y is a family of morphisms
F_{n} : X_{n}arrow Y_{n} of dynamical systems which commute with the comparison
operators, i.e. ,

F_{nm}oX(\beta_{nm,n})=Y(\beta_{nm,n})oF_{n} .

The category Set^{N^{O^{op}}} has the following properties.
1. It is complete and cocomplete, with pointwise limit and colimit opera-

tions. For example, a product of X and Y is defined as (X_{n}\cross Y_{n}, \tau_{n}^{X}\cross

\tau_{n}^{Y}) .
2. It has an exponentiation.
3. It has a subobject classifier.

Hence it is a topos. See [2] for generalities on topos.

4.2. Yoneda embedding
We first write explicitly the Yoneda embedding y : N^{O}arrow Set^{N^{O^{op}}}

which we need to describe the subobject classifier. The presheaf y(n) is
defined by

y(n)_{m}:=N^{O}(m, n)=\{

\emptyset if n \int m

\{\alpha_{n}^{p}\beta_{n,m}|p= 0,1, 2, \cdots\} if n|m

Since N^{O} is a small category, we identify

y(n)=N^{O}(-, n) .

The arrows with codomain n are written uniquely as \alpha_{n}^{p}\beta_{n} ,nk with (p, k)\in

Z_{+}\cross N. Denote the bijection Z_{+}\cross Narrow N^{O}(-, n) by \Gamma_{n} :

\Gamma_{n} (p, k ) :=\alpha^{p}\beta_{n,nk} .

We will identify y(n) with Z_{+}\cross N by the bijection \Gamma_{n} .

Lemma 4.1 For (p, k)\in y(n) , we have

(p, k)\circ\alpha_{nk}=(p+k, k) ,

(p, k)\circ\beta_{nk,nk\ell=}(p, k\ell) .
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Proof. These are just the following identities:

\alpha_{n}^{p}\beta_{n} , nk\alpha_{nk}=\alpha_{n}^{p+k}\beta_{n} ,nk ,

\alpha_{n}^{p} \mbox{\boldmath $\beta$}n, nk\beta_{n}k,nk\ell =\alpha_{n}^{p} \mbox{\boldmath $\beta$}n, nk\ell .
\square

Define transformations on Z_{+}\cross N as follows:

A : Z_{+}\cross N\ni(p, k)\mapsto(p+k, k) ,

B\ell : Z_{+}\cross N\ni(p, k)\mapsto(p, k\ell) (\ell\in N)

Then the composition of \alpha from the right is described by A and that of
\beta_{n}k,nk\ell from the right is by B_{\ell} .

The functoriarity of the Yoneda embedding y is described by

Lemma 4.2 1. \beta_{n}^{*} ,ns((p, k)) = (p, ks), where the map \beta_{n}^{*} ,ns : y(\beta_{n,ns}) :
y(ns)arrow y(n) is the induced map.

2. \alpha^{*}(p, k)=(p+ 1, k) , where the map \alpha^{*} : y(\alpha_{n}) : y(n)arrow y(n) is
the induced map.

4.3. Sieves
We describe the subobject classifier \Omega of the presheaf topos Set^{N^{O^{op}}}

using the Yoneda lemma:

\Omega_{n}\simeq Set^{N^{O^{\circ p}}}(y_{n}, \Omega)

\simeq Sub(y (n)).

A subobject S of y_{n} is a subset of N^{O}(-, n)=Z_{+}\cross N closed by composi-
tions from the right, which is called a sieve on n in N^{O} .

Proposition 4.3 Sieves on n are the subsets of Z_{+}\cross N which are closed
under the transformations A , B\ell .

Proof. Obvious from Lemma 4.1 \square

By Lemma 4.2, the action of arrows on sieves can be described as
follows:

Lemma 4.4 1. \Omega_{\beta} : \Omega_{n}arrow\Omega_{ns} induced by \beta : nsarrow n is given by

\Omega_{\beta}(S)= { (n, k)|(ns, ks)\in S } ) .
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2. \Omega_{\alpha} : \Omega_{n}arrow\Omega_{n} induced by \alpha_{n} : narrow n is given by

\Omega_{\alpha}(S)= { (n, k)|(n+ l, k)\in S }.

Define maps M_{s} , \sigma : Z_{+}\cross Narrow Z_{+}\cross N by

M_{s}(n, k):=(sn, sk) \sigma(n, k) =(n+ 1, k) .

Then the above lemma can be written as

Lemma 4.5 1. \Omega_{\beta} : \Omega_{n} -, \Omega_{ns} induced by \beta : nsarrow n is given by

\Omega_{\beta}(S)=M_{s}^{-1}(S) .

2. \Omega_{\alpha} : \Omega_{n} -f \Omega_{n} induced by \alpha_{n} : narrow n is given by

\Omega_{\alpha}(S)=\sigma^{-1}(S) .

Let T\in\Omega_{n}\subseteq \mathcal{P}(Z_{+}\cross N) . We have a smallest subsieve \hat{T} containing T
In fact we add to T those elements obtained by A and B_{\ell}(\ell\in N) actions.
This operation is a closure operator T\mapsto\hat{T} on \prime P(Z_{+}\cross N) and its closed
sets are precisely the sieves. Hence the set of sieves forms a complete meet
sublattice of \mathcal{P}(Z+\cross N) .

Proposition 4.6 The lattice structure of \Omega_{n} is given by
1. S_{1}\leq S_{2}\Leftrightarrow S_{1}\subseteq S_{2} ,

2. S_{1}\wedge S_{2} =S_{1}\cap S_{2} ,

3. S_{1}\vee S_{2}= S_{1}\overline{\cup}S_{2} .

4.4. Canonical sieves
For a finite subset K\subseteq N, we denote by S(n;K)\in J(n) the sieve

generated by the arrows \{\alpha^{s}\beta_{n,nkt}|s, t\in N, k\in K\} . This can be written
also as

S(n;K)= { (p, \ell)|\ell\in N, \ell\in K^{*} }.
Here K^{*} denotes the multipliers of elements of K. A sieve is called canonical
if it can be expressed as S(n;K) with a finite K\subseteq N.

Lemma 4.7 S(n, K_{1} ) \cap S (n, K_{2} ) =S(n, K_{1}\wedge K_{2} ), where

K_{1}\Lambda^{K_{2}}:=\{k_{1}\wedge k_{2}|k_{i}\in K_{i} (i= 1, 2) \}
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with k_{1}\wedge k_{2} denoting the least common multiplier.

Proof. The right hand side obviously is contained in the left hand side.
Suppose (m, k) is in the left side hand. Then there are k_{i} with k_{i}|k and
k_{i}\in K_{i} for i=1,2. Hence k_{1}\wedge k_{2}|k and (m, k) is in the right hand side.

\square

We describe the actions of \alpha_{n} and \beta_{n} ,nk on canonical sieves.
From Lemma 4.2, we have obviously the following

Proposition 4.8 The arrow \alpha_{n} leaves the canonical sieves invariant,
namely, \alpha_{n}^{*}S(n;K)=S(n;K) .

Similarly, we have

Proposition 4.9 The arrow \beta_{n} ,ns maps S(n, K) to S(ra, K/s), where

K/s:= \{\frac{k}{k\vee s}|k\in K\} .

with k\vee s denoting the greatest common divisor of k and s .

Proof. Since

\beta_{n}^{*} ,nsS(n, K)= { (p, \ell ) | (ps, \ell s)\in S(n) K) }
and (ps, \ell s ) \in J(n) K) is equivalent to k|\ell s for some k\in K, the assertion
follows from

k|\ell s\Leftrightarrow(k/k\wedge s)|\ell .
\square

5. A Grothendieck topology on N^{O}

5.1. Definition
Let S be a sieve on n identified with a subset of Z_{+}\cross N. Define

\mu(S) := { k\in N|(p, k)\in S for all p\in Z_{+} }.
A sieve S is called dense if \mu(S)=1, i.e., the greatest common divisor of
\mu(S) is 1. Let J(n) be the set of dense sieves on n .

Proposition 5.1 J is a Grothendieck topology on N^{O} .

Proof. Obviously t_{n}=y(n)=Z_{+}\cross N is dense since \mu(tn) = N.

\int
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Let f : nsarrow n and S\in J(n) . We show that f^{*}S\in J(ns) . Since f is
the composition of \alpha_{n}^{k} : narrow n and \beta_{n} ,ns : nsarrow n, it suffices to show that
\alpha_{n}^{*}S \in J(n) and \beta_{n}^{*} ,nsS\in J(ns) .

By Lemma 4.4, we have obviously \mu(\alpha_{n}^{*}S) =\mu(S) , whence \alpha_{n}^{*}S \in J(n) .
By the same lemma,

\mu(\beta_{n,ns}^{*}S)\supseteq\{k|ks\in\mu(S)\}\supseteq\mu(S) ,

since s\mu(S)\subseteq\mu(S) obviously. Hence from \mu(S)=1, we have
\mu(\beta_{n,ns}^{*}S)=1 .

Finally, we have to show the transitivity of J . Let S\in J(n) and
R be a sieve on n . Suppose, for every f\in S, f^{*}R\in J(dom(f)) . Let
s_{1} , . , s_{m}\in\mu(S) with _{i}s_{i}=1. For each i and \ell\in \{0,1, . , s_{i}-1\} we
have \alpha_{n}^{\ell}\beta_{n} , ns_{i}\in S , whence \mu ( \beta_{n}^{*} ,ns_{i}n\alpha^{\ell*}R) has the greatest common divisor 1.
This means there are t_{i\ell j}\in\mu(\beta_{n,ns_{i}}^{*}\alpha_{n}^{\ell*}R) (j\in I_{i\ell}) such that _{j\in I_{i\ell}}t_{i\ell j}=1.

Since (p, nt_{i\ell j})\in\beta_{n,ns_{i}}^{*}\alpha_{n}^{\ell*}R for all p\in Z_{+} , we have

(*) (ps_{i}+l, t_{i\ell j}s_{i})\in R for all p .

Let I_{i}:= \prod_{\ell=0}^{s_{i}-1}I_{i\ell} and, for J= (jO, j_{1}, \ldots, j_{s_{i-1}})\in I_{i} , define t_{iJ}:=
\bigwedge_{\ell=0}^{s_{i}-1}t_{i\ell j_{\ell}} . Then by the distributivity of the poset N^{\div} . we have

J\in I_{i}\vee t_{iJ}=1.

From (*) , we have

(ps_{i}+\ell, t_{iJ}s_{i})\in R for all p and J\in I_{i} and \ell ,

since for all \ell there is a j with t_{iJ}|t_{i\ell j} . Hence we have

(p, t_{iJ}s_{i})\in R for all p ,

which implies t_{iJ}s_{i}\in\mu(R) for all i and J\in I_{i} . Since

\bigvee_{i}\vee t_{ij}s_{i}=\bigvee_{iJ\in I_{i}}s_{i}=1,

we conclude that R\in J(n) . \square

5.2. Canonical dense sieves
Since \mu (S (n, K)) is generated multiplicatively by K , the canonical sieve

S(n;K) is dense if and only if K=1.
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Lemma 5.2 Every dense sieve contains a canonical dense sieve.

Proof. Let S be a dense sieve. Since \mu(S)=1, there are finite K\subseteq\mu(S)

with K=1. Hence S contains the canonical dense sieve S(n, K). \square

6. Sheaves

6.1. Matching family
Let P be a presheaf over N^{O} . Let S\in\Omega_{n} be a sieve. A matching

family x is described as follows. It is a family (x_{i,k})_{(i,k)\in S} satisfying, for
i\in N and k , \ell\in K,

(M1) x_{i,k}\in P(nk) ,
(M2) x_{i,k}\cdot\alpha_{nk}=x_{i+k,k} ,
(M3) x_{i,k}\beta_{n}k,nkp = xi,kp.

Each x\in P(n) defines a matching family \kappa x :=(x_{i,k})_{(i,k)\in S} , where
x_{i,k} :=x \alpha_{n}^{i}\beta_{n} ,nk , whence we have

(*) \kappa s : P(n)arrow Match(S, P).

A presheaf P is called separated if and only if \kappa s is injective for every
n and for every dense sieve S on n . A presheaf P is called a sheaf for the
Grothendieck topology J if and only if \kappa is bijective for every n and for every
dense sieve S on n .

Lemma 6.1 A presheaf P is a sheaf if \kappa s is bijective for canonical sieves
S .

Proof. In fact, if S contains a dense S(n, K), then we have

P_{D}(n)arrow f Match(S, P_{D} ) \underline{g} Match(S(n , K), P_{D} ).

Since f and g are obviously injective, if g\circ f is bijective then f is surjective
and hence bijective. \square

6.2. Presheaves P_{D}

Let D= (X, \tau) be a discrete dynamical system and let P_{D} be the
induced presheaf defined in \S 3.2.

Then P_{D}(n)=X for every n and \beta ’s act as the identity and \alpha_{n} : narrow n

acts as \tau^{n} by definition.
We have the following description of matching families
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Proposition 6.2 If K=\{n_{1}, n_{2}, . , n_{k}\} , then matching families
x\in Match (S(n, k) , P_{D} )

correspond bijectively to the sequences

(x_{i})_{i\in N}\in X^{N}

satisfying

\tau^{nn_{j}}x_{i}=x_{i+n_{j}} for all i\in N and j\in \{ 1,2, \ldots , k\} ,

by the correspondence x_{i}=x_{i,\wedge K} for i\in N, where\wedge K is the least common
multiplier. Moreover the \kappa S(n,K) : P_{D}(n)arrow Match(S(n, K), P_{D} ) is given
by

x\mapsto (x , \tau^{n}x , \tau^{2n}x, . . . ’
\tau^{kn}x, . . .).

Hence it is obviously injective and we have the following proposition.

Proposition 6.3 The presheaf P_{D} is separated.

We introduce an equivalence re1ation\sim_{n} on X by

x\sim_{n}y\Leftrightarrow\tau^{nm}x=\tau^{nm}defy for some m\in N.

It is obvious that\sim_{n} is in fact an equivalence relation.

Lemma 6.4 Let S(n, \{n_{1} , \ldots , n_{k}\} ) \in J(n) . If a sequence (x_{i})_{i\in N}\in X^{N}

satisfies
\tau^{nn_{j}}x_{i}= xi+nj

for all i\in Z_{+} and j=1, . , k , then

\tau^{n}x_{i}\sim_{n}x_{i+1} \forall i\in N.

Proof. Since 1= \sum_{1\leq i\leq k}\ell_{i}n_{i} , with \ell_{i}\in Z, we have

1+ \sum_{\ell_{i}<0}|\ell_{i}|n_{i}=\sum_{\ell_{i}\geq 0}\ell_{i}n_{i}
,

which we denote by m . Then, for all p\in N,

\tau^{nm}x_{p}=(\prod_{\ell_{i}>0}\tau\ell inn_{i} ) x_{p}=x_{p+\Sigma_{\ell_{i}>0}\ell_{i}n_{i}}=x_{p+m}



Sheaves on the category of periodic observation 577

and

\tau^{nm-n}x_{p+1}
= \prod_{\ell_{i}<0}\tau^{|\ell_{i}|}nni_{X_{p+1}}=x_{p+\Sigma_{\ell_{i}<0}\tau^{1}}\ell i|n_{i}=x_{p+m}

.

Hence

\tau^{nm-n}(\tau^{n}x_{p})=\tau^{mn-n}x_{p+1} ,

which implies \tau^{n}x_{p}\sim_{n}x_{p+1} . \square

When \tau is injective, the equivalence re1ation\sim_{n} is the identity relation.
Hence we have the following theorem.

Theorem 6.5 The presheaf P_{D} induced from a discrete dynamical system
D= (X, \tau) is a sheaf if \tau is injective.

Proof In fact we show that

P_{D}(n)arrow Match(S, P_{D} )

is a bijection for n\in N^{O} and S\in J(n) . By Lemma 6.1, we may also assume
that

S=S(n, K) \in J(n) .

By Proposition 6.2, it suffices to show that if a sequence (x_{i})_{i\in N}\in X^{N}

satisfies

\tau^{nn_{j}}x_{i}=x_{i+n_{j}}

for all i\in Z_{+} and j=1, , k , then

x_{i}=\tau^{ni}x_{0} \forall i\in N ,

which is valid by Lemma 6.4. Hence we conclude that the matching family
x comes from x_{0}\in P_{D}(1) . \square

7. Sheafification of discrete dynamical systems

7.1. Sheafification operation
There is a general method of converting presheaves to sheaves.
For a presheaf P , we can define another presheaf P^{+} by

P^{+}(n):= co\lim_{S\in J(n)} Match(S, P) .
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Note that if S\subseteq T, then there is a natural restriction map

Match(T, P) arrow Match(S, P),

and the colimit is taken with respect to the poset of sieves on n ordered by
the inclusion order.

The \kappa s ’s induce

\kappa(n) : P(n)arrow P^{+}(n) .

If P is separated, then \kappa(n) is injective for all n and if P is a sheaf then
\kappa is bijection for all n . In fact the converse is true.

Proposition 7.1 [2] A presheaf is separated if \kappa is injective and a sheaf
for the Grothendieck topology J , if \kappa is bijective.

Theorem 7.2 [2, Lemma 4, Lemma 5, p.131] The presheaf P^{+} is sepa-
raled. If P is already separated, then P^{+} is a sheaf.
7.2. Discrete dynamical systems

Let D be a discrete dynamical system. Since P_{D} is separated, the
presheaf P_{D}^{+} is a sheaf.

In this section, we examine the sheafification of the presheaf P_{D} induced
from some concrete discrete dynamical systems D .

The following lemma gives us a method of calculating the matching
family. We note that the arrow \alpha_{n} leaves the canonical sieves invariant and
whence induces an endomap of Match(S(n, K), P).

Obviously we have the following.

Lemma 7.3 Let K=\{p, q\} with p<q , then a matching family in
Match(S(n, K), P_{D} ) is determined by the sequence \langle x_{0}, x_{1}, \ldots, x_{p-1}\rangle which
satisfies

\tau^{nq}x_{i}= (\tau^{p})^{s}x_{t}

where i+q\equiv t mod p with 0\leq t<p and s= \frac{i+q}{p} .
The arrow \alpha_{n} acts on Match(S(n, K), P) by

(x_{0}, x_{1}, . , x_{p-1}).\alpha_{n}= (x_{1}, x_{2}, \ldots, x_{p-}1, \tau^{p}x_{0}) .

Example Suppose D is as in Figure 1.
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D

D_{1}

D_{2}

Fig. 1. Example of sheafification

When K= {2, 3}, then x\in Match(5(1, K) , P_{D}) is determined by
(x, y)\in X^{2} with

\tau^{3}x_{0}=\tau 2x_{1} ,

whence \tau^{2}(\tau x_{0})=\tau^{2}(x_{1}) . It is easy to show that the discrete dynamical
system (Match(S(l, K), P_{D} ), \alpha 1 ) is given by D_{2} in Figure 1.

7.3. Sheafification of P_{D}

Let D= (X, \tau) be a discrete dynamical system.
Define first its reduced dynamical system \overline{D} as follows. Let \pi : Xarrow\overline{X}
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be the quotient map of the equivalence re1ation\sim_{1} introduced in \S 6.2. Then
\tau induces \overline{\tau} : \overline{X}arrow\overline{X} by \overline{\tau}([x]) := [\tau x] .

Define a discrete dynamical system \hat{D} as follows. Let \hat{X} be the set of
sequences (x_{0}, x_{1}, \cdot .)\in X^{N} which satisfy the following two conditions:

\overline{\tau}[x_{i}]=[x_{i+1}] for all i\in N,

and there is a natural number N such that

(*) \tau^{i}x_{j}=x_{i+j} for all i , j with i+j>N.
Define \hat{\tau}(X, x_{1}, x_{2}, \cdots) =(x_{1}, x_{2}, x_{3}, \cdot.) .

Example Let D be as in Figure 1. Then D_{1}=\overline{D} and D_{2}=\hat{D} .

Theorem 7.4 Let D= (X, \tau) be a discrete dynamical system, then
P_{D}^{+}(n)=(\overline{X,\tau^{n}}) .

Proof. We show P_{D}^{+}(1)=\overline{(X,\tau)} . The general case can be shown similarly.
Let x=(x_{i})\in P_{D}^{+}(1) . Then x\in Match(S(1, \{n_{1}, \ldots, n_{k}\}, P_{D})) for

some n_{1}< \cdot . <n_{k} . Then by Lemma 6.4, \tau x_{i}\sim_{1} x_{i+1} for all i . Since the
second condition (*) is obvious if we take N=n_{1} , we have x\in\hat{D} .

Conversely suppose x\in\hat{D} . Let N be an integer such that (*) holds.
Let p, q>N be relatively prime integers so that S(1, {p, q\} ) \in J_{(}’1) . Then,
by (*) , we have \tau^{p}x_{i}=x_{i+p} and \tau^{q}x_{i}=x_{i+q} for all i . This shows x\in

Match(5(1, {p, q\} ), P_{D} ). \square

8. Concluding remarks

We considered the problem of reconstructing the dynamic behavior of an
object from the data of observers who observe it periodically with mutually
prime periods. We analyzed this problem by introducing the base category
N^{O} with a natural Grothendieck topology.

It turned out that when the original dynamics has no states which
merge, then the original structure is recovered from the observations. If the
observed system has merging states, then the presheaf P_{D} is not a sheaf, but
the sheafification procedure recovers the structure of the quotient dynamical
system obtained by identifying two states which eventually coincides.

We will consider in future the general case when the comparison maps
\beta are not identities. Then the sheafification procedure gives rise to the new
state spaces which are fibred products of the local observers
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Finally we note that the Grothendieck topology J is not the unique
one. We show another natural Grothendieck topology in the appendix,
whose sheafification operator however destroys the transition information
among the transient states.
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A. Another Topology on Set^{N^{O^{op}}}

There is another natural Grothendieck topology on N^{O} , which we define
as a Lawvere-Tierney topology j on the presheaf topos Set^{N^{O^{op}}}

Recall [2, p.219] that a Lawvere-Tierney topology j is an endo arrow of
the subobject classifier \Omega satisfying
LT1 jo true = true,
LT2 j\circ j=j,

LT3 j o\wedge=\wedge\circ(j\cross j) .

Here true : 1arrow\Omega is the arrow classifying the identity arrow 1_{1} . The
arrow

\wedge : \Omega\cross\Omegaarrow\Omega

is the meet operation and j\cross j : \Omega\cross\Omegaarrow\Omega\cross\Omega is the product of j .
Define now j_{n} : \Omega_{n}arrow\Omega_{n} by

j_{n}(S)=\overline{S} ,

where S\subseteq Z_{+}\cross N is a sieve and \overline{S} is defined as follows: First

|S|:= { n\in z_{+}| (n , p)\in S for some p }.
For a subset W\subseteq Z_{+} we define

\overline{W}:= { (n, k ) |n+k.N\subseteq W }.

Lemma A.l \overline{W} is a sieve.

Proof. Suppose (n, k)\in\overline{W} Then obviously (n+k, k)\in\overline{W} . Moreover
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(n, k\ell)\in\overline{W} since n+k\ell.N\subseteq n+k.N\subseteq W. \square

Finally we define, for S\subseteq Z_{+}\cross N,

\overline{S}:=\overline{|S|} .

Lemma A.2 1. \overline{S} is a sieve containing S .
2. |\overline{S}|=|S| .

3. If S_{1}\subseteq S_{2} , Then \overline{S_{1}}\subseteq\overline{S_{2}} .
4. \overline{\overline{S}}=\overline{S} .

Proof. By Lemma A. I , \overline{S} is a sieve. Suppose (n, k)\in S. Then n\in|S| .
Moreover, (n+tk, k)\in S(t\in N) implies, n+k.N\subseteq|S| , which means
(n, k)\in\overline{S} .

By definition,

n\in|\overline{S}|\Leftrightarrow(n, k)\in\overline{S}n+k.N\subseteq|S|n\in|S| .

Hence |\overline{S}|\subseteq|S| . On the other hand, we have proved that S\subseteq\overline{S} , whence
|S|\subseteq|\overline{S}| .

Hence

\overline{\overline{S}}=\overline{|\overline{S}|}=\overline{|S|}=\overline{S} .
\square

Lemma A.3 j=(j_{n}) : \Omegaarrow\Omega is a presheaf map.

Proof. By Lemma 4.5, we have to show, for S\subseteq Z_{+}\cross N,

\overline{M_{s}^{-1}S}=M_{s}^{-1}\overline{S} (1)
\overline{\sigma^{-1}S}=\sigma^{-1}\overline{S} (2)

First we note that

Lemma A.4

|M_{s}^{-1}S|= \frac{1}{s}|S|\cap Z+\cdot

Proof. In fact

n\in|M_{s}^{-1}S|\Leftrightarrow\exists k[(n, k)\in M_{s}^{-1}S]

\Leftrightarrow\exists k [(sn, sk)\in S]
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\Rightarrow ns \in|S|\Rightarrow n \in\frac{1}{s}|S|\cap Z+\cdotS

Conversely let n \in\frac{1}{s}|S|\cap Z+\cdot Then ’ns, k ) \in S for some k , whence
(ns, nk)\in S, which implies (n, k)\in M_{s}^{-1}S. Hence n\in|M_{s}^{-1}| . \square

Hence

(n, k) \in\overline{M_{S}1S}\Leftrightarrow n+k.N\subseteq|M_{S}1S|=\frac{1}{s}|S|\cap Z_{+}

\Leftrightarrow n +k.N \subseteq\frac{1}{s}|S|

\Leftrightarrow sn +sk.N \subseteq|S|

\Leftrightarrow (sn, sk) \in\overline{S}\Leftrightarrow(n, k)\in M_{S}1S .

Lemma A.5

|\sigma^{-1}S|= (|S|-1) \cap Z+ ,

whence |S|-1 :=\{s-1|s\in|S|\} .

Froo/.

n\in|\sigma^{-1}S|\Leftrightarrow\exists k[(n, k)\in\sigma^{-1}S]

\Leftrightarrow\exists k [(n+ 1, k)\in S]\Leftrightarrow n+1 \in|S|

\square

Hence

(n, k)\in\overline{\sigma^{-1}S}\Leftrightarrow n+k.N\subseteq|\sigma^{-1}S|

\Leftrightarrow n +1 +k.N \subseteq|S|

\Leftrightarrow (n+ 1, k)\in\overline{S}

\Leftrightarrow(n, k)\in\sigma^{-1}S

\square

Proposition A.6 The endo arrow j : \Omegaarrow\Omega is a Lawvere-Tierney topol-
ogy.

Proof. The conditions (LT1) and (LT2) follows from Lemma A.2. It
remains to show that

S_{1}\cap S_{2} =\overline{S_{1}}\cap\overline{S_{2}} ,
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for S_{1} , S_{2}\subseteq Z_{+}\cross N. Since

S_{1}\cap S_{2} \subseteq\overline{S_{1}}\cap\overline{S_{2}}

is obvious, we have to show the other inclusion.
Let (n, k)\in\overline{S_{1}}\cap\overline{S_{2}} . Then n\in|S_{1}|\cap|S_{2}| and

n+k.N\subseteq|S_{1}| n+k.N\subseteq|S_{2}| .

Then

n+k.N\subseteq|S_{1}|\cap|S_{2}|

and we have (n, k)\in\overline{S_{1}\cap S_{2}} , since we have

|S1|\cap|S_{2} |=|S1\cap S_{2}| .

In fact, n\in|S_{1}|\cap|S_{2}| means (n, k_{1})\in S_{1} and (n, k_{2})\in S_{2} for some k_{1} , k_{2}\in

N. Then (n, k_{1}k_{2})\in S_{1}\cap S_{2} and hence we have n\in|S_{1}\cap S_{2}| . \square

Cho Cho Than
Department of Mathematics
Faculty of Science
Hokkaido University
Sapporo 060-0810, Japan
And
Department of Mathematics
Yangon University

Toru Tsujishita
Department of Mathematics
Faculty of Science
Hokkaido University
Sapporo 060-0810, Japan
E-mail: tujisita@math.sci.hokudai.ac.jp


	Introduction
	1. The category of observers ...
	1.1. The category N^{O}
	1.2. The categories Q^{O} ...
	1.3. Localization of N^{O}
	1.4. N^{\circ} as the ...

	2. Some properties of ...
	2.1. Comma category N^{O}\downarrow ...
	2.2. Relation with N^{\div}
	2.3. Properties of arrows

	3. Presheaves on N^{O}
	3.1. Presheaves
	3.2. Presheaf induced ...
	3.3. Fixed point functor

	4. The category of presheaves ...
	4.1. Topos structure
	4.2. Yoneda embedding
	4.4. Canonical sieves

	5. A Grothendieck topology ...
	5.2. Canonical dense sieves

	6. Sheaves
	6.1. Matching family
	6.2. Presheaves P_{D}
	Theorem 6.5 ...


	7. Sheafification of discrete ...
	7.1. Sheafification operation
	7.2. Discrete dynamical ...
	7.3. Sheafification of ...
	Theorem 7.4 ...


	8. Concluding remarks
	References
	A. Another Topology on ...

