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Sheaves on the category of periodic observation
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Abstract. A Grothendieck topology on the subgroup category of the additive group of
integers is defined and the sheafification of the presheaves induced from discrete dynamical
systems are determined.
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Introduction

Suppose various observers record the activity of one object periodically
with their own time units and each obtains his own dynamical model of the
object. How should we obtain a comprehensive model of the object starting
from these personal models?

This question may be regarded as a special case of the universal problem
of recovering the global information from coherent pieces of local informa-
tion, which is often analyzed succinctly by the sheaf theory.

In this paper, we introduce a Grothendieck topology on the category
of observers with different time units and show that the sheafification pro-
cedure gives us an effective method of synthesizing the personal dynamical
models of observers whose time units generates the unit ideal of the integer.

1. The category of observers with different time units

1.1. The category N©

Let N© be the category whose objects are natural integers and whose
arrows are generated by { Bpm :m —n|njm}and {a,:n —>n|neN}
with the following relations:

/Bnn = ]-n
/Bf,mﬁm,n = B@,n
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and

a?nﬁm,mn = 6m,mn04mn
for m € N and n > 1. The latter relation can be expressed as the commu-
tativity of the diagram

an

m
m-——-1m

Tﬂm,mn Tﬁm,mn

mna—>mn

mn

The following picture illustrates this category.
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The object n stands for the observer with time unit n. The arrow o, is the
time flow of the observer n and the arrow Gy, pm : "M — m means that the
observer mn can obtain his own data via the observer m.

Alternatively we can define N© as follows: Its objects are natural num-
bers and for each m and its divisor d, there are countable arrows

a"gﬂd’m:mﬂd, p=0,1,2,....

We often write them as aP(3 when there is no danger of confusion. When
d = m, we write o3 simply as a?. We also denote o®3 by 5.

For each n, the identity arrow is a® = agﬁn,n.

The composition is defined by

(o Byar) o (a?8) = aPTI*3.

Lemma 1.1 The composition satisfies the axioms of category.
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Proof.  The identity axiom is obvious. A simple calculation shows that

both (apl ﬁd,dnl 0o apzﬁdnl,dnlng) oaP3f3 and o Bd,dnl © (a’pzﬁdnl,dnlnz © apaﬂ)
coincide with

aPl +p2ni+p3ning ﬁ

U

We note that of o 8 = oP(, which shows our notation for arrows con-
forms with the composition and the abbreviation. Hereafter we omit the
composition symbol o.

1.2. The categories Q° and R®

When the multiplicative monoid N* acts on a set X by z — n.z (n €
N), we can define a category X© as follows. Its objects are elements of X.
For each element x of X, there is an arrow

Qp : T — X

which is aperiodic, namely, for every natural number k, of # 1,. For each
element z of X and a natural number n, there is an arrow

Bem i NT — X
satisfying
ﬁm,n © ﬁn.x,m = ﬁm,mn

for each x € X and n,m € N and

O‘Z o ﬁx,n = ﬁx,n O O0ng

for each x € X and n € N.

Note that when X = N with the action n.x = nx, the two meanings of
N© coincide.

When N* acts on the sets of rational numbers and real numbers by
multiplication, we obtain categories Q° and RC respectively.

1.3. Localization of N©

We also consider the category N© which can be obtained from N© by
inverting the a’s. Its objects are natural numbers and arrows nd — n are
described as a?3 with p € Z now. The composition is defined by the same
formulas as before. Hence, N© is a full and faithful subcategory of N©.
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1.4. N@ as the subgroup category of the additive group Z

Every group G induces a category Sub(G) called the subgroup category.
Its objects are nontrivial subgroups of G and if H; C Hjy then an element
h of Hy gives an arrow (Hy,h,Hs) : H) — Hy. If (Hy,h,Hs) : HA — Ho
and (Hq, k, H3) : Hy — Hs, then its composition is (Hy,kh, H3) : Hy — H3
where the product kh is possible since h € Hy C Hj.

If G = Z, then the subgroups are {nZ |n € N} and kZ C nZ iff
n|k and arrows kZ — nZ are {nf | ¢ € Z}. Hence there is an isomorphic
functor J : Sub(Z) — N® defined by

J(nZ) = n,
J((nkZ,np,nZ)) = of By k.

2. Some properties of N©

2.1. Comma category NO Ip

A remarkable property of N© is that the comma categories are all
isomorphic. In fact, for each p € N, there is an isomorphic functor

I,:N® - N° | p
defined by
Ip(n) = np,

Ip(an) = Qnp,
Ip(ﬁn,nk) = ﬁnp,nkp-

2.2. Relation with N+

Let N*™ denotes the thin category whose objects are natural numbers
and n — m if and only if n is divided by m. There is a functor

. NT — NO

which is identity on objects and maps n — m to By, ».
There is a right inverse to ¢

7:NO 5 N*

which is the identity map on objects and maps Bmn to n — m and a, to
the identity arrow of n.
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2.3. Properties of arrows
Proposition 2.1 FEvery arrow is both monic and epic.

Proof. Let f:nd — n. Suppose f o hy = f o hy for some h; : nde — nd
(i=1,2). If f=a%8, hy=ab (i=1, 2), then foh; = a3 (i =1, 2).
Hence dt; + s = dtgs + s which implies h; = hs.

Similar arguments show that every arrow is an epic. O

Proposition 2.2 {ndl onLp n 2P ndz} has a pull-back in N® if and

only if p1 — pa is divisible by the greatest common divisor of dy, ds.

apl/ﬂ QPZﬂ

Proof. Let {nd1 — n «— nds } If there is its pull-back, it must be of

allg 928 ) o
the form {ndl — nd — ndy } with d the common least multiplier of d;

and dz. The necessary condition for this is the commutativity of the square,
which means

di1q1 + p1 = daga + p2. ()

Hence p; — p2 must be divisible by GCD(dy,ds2). Suppose now that this
condition is satisfied. Then there are g1, g2 which satisfy (x).

Let {ndl P ndu ke ndg} be any arrow which makes the square
commutative, namely

dir1 + p1 = darg + pa.
Then we have
di(qr — 1) = da(gz — 72).
We have to show the existence of r such that
alifoa"f=a"p (i=1, 2),
which means
er=ri—¢q (i=1,2), (%)

where e; = d/d; (i =1, 2). Since ej, ey are mutually prime, we can solve
(*%). The uniqueness of r is obvious. O

We note that pull-backs may not exist in N© since the equation (**)
has no positive solutions when the right hand side is negative.
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Proposition 2.3 The category N© does not have the followings:
wnitial objects,

terminal objects,

products,

pull-backs,

coproduct,

equalizers,

coequalizers.

—

N e LN

Proof. ~ We have no arrows from m to 2m for any m, whence there are no
initial objects.

The only candidate for the terminal object is 1, but 1 has non trivial
endoarrows af.

The products do not exist in general. For example, the product cone
of 2 and 3 if existed must be of the form

akﬁ ot

2 — 6 — 3.
Let o3 :12 — 6. Then

k ¢
oF Ba6af Bs 12 = ¥ By 19, alB360PBe12 = At TP B3 10

Hence, if we take f := O{k+1/82,12 :12 — 2 and any g : 12 — 3, there are no
h:12 — 6 with o*8oh = f.
Let f,g : m — n be parallel arrows. If foh = goh for some h : p — m,
then f = g. Hence there are no equalizers except for the trivial case f = g.
Similarly parallel arrows f, g with f # g have no coequalizers.

We can show similarly that coproducts and coequalizers do not exist in
general. l

3. Presheaves on N©

3.1. Presheaves

A presheaf on N© is a family of discrete dynamical systems with dif-
ferent time units with comparison morphisms from one with time unit &k to
another with time unit nk. More precisely, a presheaf over N© is given by
the following data:

o A family of sets { X, | n € N } indexed by natural numbers,

e a family of endomaps 7, : X;, —» X, for n € N,
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e a family of maps oy mn 1 X5y = Xp, for myn € N,
satisfying
(P4) Omntmn © Onmn = On tmn,
(PB) Onjno© ’rff = Tkn O On kn-
Hence, for each n € N, we have a discrete dynamical system! (X, ),
which we regard as the model conceived by the observer n.

Note that Pp means that o,k : Xp — Xi, induces a morphism of
dynamical systems?

(Xna Trlf) - (ana Tkn)-

This morphism compares the model of the observer n with that of the
observer kn, which is possible because we can extract, from the model
of the observer n, the information at the time intervals nk,2nk,3nk, ...
and compare them with the information extractable from the model of the
observer nk.

For example, the periodic points of (X, 7,,) with periods dividing k are
mapped to fixed points of (Xy,k, Tni) by on kn-

3.2. Presheaf induced by a discrete dynamical systems

Suppose we know a dynamical system model of an object. Then we
obtain a presheaf as follows: Let D = (X,7) be the discrete dynamical
system. For each natural number n, put Pp(n) = X and Pp(a,) = ™.
Furthermore define Pp(83; ) = id for every x, n. Then Pp is a presheaf on
NO, called the presheaf induced by the dynamical system Pp.

3.3. Fixed point functor

Each presheaf X = (Xpn,7n,0nkn) Over N© induces the presheaf
Fix(X) = (Fix(Xn, ™), Onkn) over N7, where Fiz(Xn, ) = {z € X, |
T =T }.

' A pair (X, 7) is called a discrete dynamical system, if X is a set and 7: X — X is an
endomap. X is called the state space and 7 the transition map.

*When (X;,7:) (i =1, 2) are discrete dynamical systems, a map f : X; — X2 is called
a morphism of dynamical systems when fo7 =m0 f.
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The category of presheaves on N©

Topos structure
op
The presheaves on N© form a category SetN° , which is the functor

category from NO to Set. An arrow F : X — Y is a family of morphisms

F, :

Xn — Y, of dynamical systems which commute with the comparison

operators, i.e.,

2.
3.

an o X(ﬁnm,n) = Y(,Bnm,n) o Fn-

The category SetN°” has the following properties.
It is complete and cocomplete, with pointwise limit and colimit opera-
tions. For example, a product of X and Y is defined as (X, x Yy, T,f( X
).

It has an exponentiation.

It has a subobject classifier.

Hence it is a topos. See [2] for generalities on topos.

4.2,

Yoneda embedding
We first write explicitly the Yoneda embedding y : N© — SetN°”

9

which we need to describe the subobject classifier. The presheaf y(n) is
defined by

0 if n/m

— NO -
y(n)m =N (m,n)—{ {agﬁn,m]p:()al’Q"”} if njm

Since N© is a small category, we identify

The

Y(n) - NO(_’ n)

arrows with codomain n are written uniquely as o8, o with (p, k) €

Z, x N. Denote the bijection Z; x N — NO(—,n) by I',:

Fn(p7 k) = ap/@n,nk-

We will identify y(n) with Z, x N by the bijection I',,.

Lemma 4.1 For (p,k) € y(n), we have

(p, k) oank = (p+k,k),
(p, k) © Brknke = (p, k£).



Sheaves on the category qf periodic observation 571

Proof. These are just the following identities:

_ +k
afzﬁn,nkank = Ozﬁ /Bn,nka

b B nkBrknke = b Bn nke.

Define transformations on Z, x N as follows:

A:Z, xN3 (k) — (p+k k),
By:Z, xN>(p,k) — (p,kl) (£€N)

Then the composition of o from the right is described by A and that of
Brknke from the right is by B,.

The functoriarity of the Yoneda embedding y is described by

Lemma 4.2 1. S ,.((p,k)) = (ps, ks), where the map Bhns : Y(Brns)
y(ns) — y(n) is the induced map.

2. o*(p,k) = (p+ 1,k), where the map o : y(an) : y(n) — y(n) is
the induced map.

4.3. Sieves

We describe the subobject classifier {2 of the presheaf topos SetN°”
using the Yoneda lemma:

Q ~ SetNoop(Ynag)
~ Sub(y(n)).

A subobject S of y,, is a subset of NO(—,n) = Z, x N closed by composi-
tions from the right, which is called a sieve on n in N©.

Proposition 4.3 Sieves on n are the subsets of Z, x N which are closed
under the transformations A, By.

Proof.  Obvious from O

By Lemma 4.2, the action of arrows on sieves can be described as
follows:

Lemma 4.4 1. Qg:Q, — Qs induced by B : ns — n is given by
Qp(S) = { (n,k) | (ns,ks) € S }).
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2. Qy:Qp — Qy induced by a, : n — n is given by

Q(S) = {(n, k) | (n+1,k) € S }.

Define maps Ms,0:Zy x N — Z, x N by
M;(n, k) == (sn, sk) o(n, k) =(n+1,k).
Then the above lemma can be written as
Lemma 4.5 1. Qp:Q, — Q,, induced by B : ns — n is given by
Qs(8) = M7(9).

2. Qq:Qp — Qy induced by o, : 1 — n is given by

Q.(S) = o7 1(9).

Let T' € Q, C P(Z, x N). We have a smallest subsieve T containing 7.
In fact we add to T' those elements obtained by A and B, (¢ € N) actions.
This operation is a closure operator T — T on P(Z; x N) and its closed

sets are precisely the sieves. Hence the set of sieves forms a complete meet
sublattice of P(Z, x N).

Proposition 4.6 The lattice structure of €, is given by
1. Sl < SQ A Slg.gg,

2. Si A\ Se = Si(Se
3. S1V S =8 U S

4.4. Canonical sieves

For a finite subset K C N, we denote by S(n; K) € J(n) the sieve
generated by the arrows { a®Bpnkt | $,t €N, k€ K } This can be written
also as

S(m; K)={(p,) | LeN, L e K*}.

Here K™ denotes the multipliers of elements of K. A sieve is called canonical
if it can be expressed as S(n; K) with a finite K C N.

Lemma 4.7 S(n,K;)()S(n,K2) = S(n, K1 \ K2), where

K1 \ Ko ::{kl/\kglkieKi (i =1, 2)}
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with ki )\ k2 denoting the least common multiplier.

Proof. ~ The right hand side obviously is contained in the left hand side.
Suppose (m, k) is in the left side hand. Then there are k; with k;|k and
k; € K; for i = 1,2. Hence k1 A\ k2|k and (m, k) is in the right hand side.

O

We describe the actions of o, and 3, 1 on canonical sieves.

From [Lemma 4.2, we have obviously the following

Proposition 4.8 The arrow o, leaves the canonical sieves invariant,
namely, a;S(n; K) = S(n; K).

Similarly, we have

Proposition 4.9 The arrow B, ns maps S(n, K) to S(ns, K/s), where

K/s::{—k-—lkeK},

kVs
with k V s denoting the greatest common divisor of k and s.
Proof.  Since
nnsS(n, K) = { (p,£) | (ps,£s) € S(n, K) }

and (ps,fs) € S(n, K) is equivalent to k|¢s for some k € K, the assertion
follows from

k|ls < (k/kANs)|L.

5. A Grothendieck topology on N©

5.1. Definition
Let S be a sieve on n identified with a subset of Z, x N. Define

u(S):={keN|(pk)cSforall peZ,}.

A sieve S is called dense if \/ u(S) =1, i.e., the greatest common divisor of
p(S) is 1. Let J(n) be the set of dense sieves on n.

Proposition 5.1 J is a Grothendieck topology on NO.

Proof.  Obviously t, = y(n) = Z4 x N is dense since u(t,) = N.



574 Cho Cho Than and T. Tsujishita

Let f : ns — n and S € J(n). We show that f*S € J(ns). Since f is
the composition of ak :n — n and By ns 1 NS — n, it suffices to show that
a,S € J(n) and 3}, ;S € J(ns).

By Lemma 4.4, we have obviously u(afS) = u(S), whence oS € J(n).
By the same lemma,

w(BrnsS) 2 { k| ks € u(S) } 2 u(S)

since su(S) C u(S) obviously. Hence from \/ (S) = 1, we have

VIJ’( n,ns ) 1'

Finally, we have to show the transitivity of J. Let S € J(n) and
R be a sieve on n. Suppose, for every f € S, f*R € J(dom(f)). Let
S1y...,5m € pu(S) with \/;s; = 1. For each ¢ and ¢ € {0,1,...,s;, — 1} we
have a‘g nBnns; € S, whence pu(8;, ns o’ R) has the greatest common divisor 1.
This means there are t;5; € p(5;; . K*R) (J € Iig) such that \/ ;. tig; = 1.
Since (p, ntye;) € By ps, o R for all p € Z,, we have

(*) (psi + £, tigjs:) € R for all p.

Let I; = 2";01 Iy and, for J = (jJo,j1,.--,7s;_y) € I;, define t;5 :=
s;i—1

veo tiej,- Then by the distributivity of the poset N™, we have
\/ tig=1.

From (%), we have
(psi +4,t;5s8;) € R forall p and J € I; and ¢,
since for all £ there is a j with t;|t;;;. Hence we have
(p,tigs;) € R for all p,
which implies t;;s; € u(R) for all ¢ and J € I;. Since
\/ \/ tmsz—\/sz— 1,
1 Jel;
we conclude that R € J(n). O

5.2. Canonical dense sieves

Since u(S(n, K)) is generated multiplicatively by K, the canonical sieve
S(n; K) is dense if and only if \/ K = 1.



Sheaves on the category of periodic observation 575

Lemma 5.2 FEvery dense sieve contains a canonical dense sieve.

Proof.  Let S be a dense sieve. Since \/ u(S) = 1, there are finite K C u(S)
with \/ K = 1. Hence S contains the canonical dense sieve S(n, K). O

6. Sheaves

6.1. Matching family

Let P be a presheaf over N©. Let S € Q, be a sieve. A matching

family z is described as follows. It is a family (zik)(ik)es satisfying, for
1€ Nand k, /e K,

(M1) =z, € P(nk),
(M2) ik - Ok = Tigk ks
(M3) k- Brk,nkp = Ti kp-
Each € P(n) defines a matching family kz := (Zik)(ik)es, Where
Tk = T - 0 Bp nk, Whence we have

(%) ks : P(n) — Match(S, P).

A presheaf P is called separated if and only if kg is injective for every
n and for every dense sieve S on n. A presheaf P is called a sheaf for the

Grothendieck topology J if and only if & is bijective for every n and for every
dense sieve S on n.

Lemma 6.1 A presheaf P is a sheaf if kg is bijective for canonical sieves

S.

Proof.  In fact, if S contains a dense S(n, K), then we have

Pp(n) -1 Match(S, Pp) ~% Match(S(n, K), Pp).

Since f and g are obviously injective, if go f is bijective then f is surjective
and hence bijective. 0

6.2. Presheaves Pp

Let D = (X,7) be a discrete dynamical system and let Pp be the
induced presheaf defined in §3.2.

Then Pp(n) = X for every n and 3’s act as the identity and o, : 1 — 1
acts as 7" by definition.

We have the following description of matching families.
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Proposition 6.2 If K = {nj,ng,...,n}, then matching families
x € Match(S(n, k), Pp)

correspond bijectively to the sequences
(zi)ien € XN

satisfying
T"™T; = Titn, forall i€ N and je{1,2,...,k},

by the correspondence x; = z; A x fori € N, where \ K is the least common
multiplier. Moreover the kg, k) : Pp(n) — Match(S(n, K), Pp) is given
by

2 kn )

v (x,7"c, 7"x,..., 72, ...).

Hence it is obviously injective and we have the following proposition.
Proposition 6.3 The presheaf Pp is separated.

We introduce an equivalence relation ~, on X by

d
T~y Ll ey 7"y for some m € N.

It is obvious that ~,, is in fact an equivalence relation.

Lemma 6.4 Let S(n,{ni,...,nt}) € J(n). If a sequence (z;)ien € XN
satisfies

T L = Tign,
foralli1€Z, and j=1,...,k, then

T~ Titl Vi € N.

Proof. Since 1 = Zlgigk ¢;n;, with £; € Z, we have
1+ Z |€Z|nz = Z Emi,
;<0 £;>0
which we denote by m. Then, for all p € N,

nm _ £;inn; _ _
T "Ip= (H T 1>-rp = $p+zei>0€¢n¢ = Zp+m
£;>0
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and
nm-— 7 le|nn; - —
£;<0
Hence
nm—n n mn—n
T (t"zp) =T Tp+1,
which implies 7"z, ~, Tpy1. U

When 7 is injective, the equivalence relation ~,, is the identity relation.
Hence we have the following theorem.

Theorem 6.5 The presheaf Pp induced from a discrete dynamical system
D = (X, 1) is a sheaf if T is injective.

Proof. In fact we show that
Pp(n) — Match(S, Pp)

is a bijection for n € N© and S € J(n). By Lemma 6.1, we may also assume
that

S=S8(nK)e Jn).

By [Proposition 6.2, it suffices to show that if a sequence (z;);en € XN
satisfies

T = Tign,
forallie Z, and j =1,...,k, then

z; = ™"z Vie N,
which is valid by Lemma 6.4, Hence we conclude that the matching family
x comes from xg € Pp(1). O
7. Sheafification of discrete dynamical systems

7.1. Sheafification operation
There is a general method of converting presheaves to sheaves.
For a presheaf P, we can define another presheaf P+ by

P*(n) := colimge j(n) Match(S, P).
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Note that if S C T, then there is a natural restriction map
Match(T, P) — Match(S, P),

and the colimit is taken with respect to the poset of sieves on n ordered by
the inclusion order.
The «g’s induce

k(n) : P(n) — P*(n).

If P is separated, then k(n) is injective for all n and if P is a sheaf then
k is bijection for all n. In fact the converse is true.

Proposition 7.1 [2] A presheaf is separated if k is injective and a sheaf
for the Grothendieck topology J, if k is bijective.

Theorem 7.2 [2, Lemma 4, Lemma 5, p.131] The presheaf Pt is sepa-
rated. If P is already separated, then PT is a sheaf.

7.2. Discrete dynamical systems

Let D be a discrete dynamical system. Since Pp is separated, the
presheaf PB is a sheaf.

In this section, we examine the sheafification of the presheaf Pp induced
from some concrete discrete dynamical systems D.

The following lemma gives us a method of calculating the matching
family. We note that the arrow «,, leaves the canonical sieves invariant and
whence induces an endomap of Match(S(n, K), P).

Obviously we have the following.

Lemma 7.3 Let K = {p,q} with p < q, then a matching family in
Match(S(n, K), Pp) is determined by the sequence (zo,z1,...,Zp-1) which
satisfies

™, = (7P)°xy

where i +q=t mod p with0 <t <p andSZHTq.
The arrow oy, acts on Match(S(n, K), P) by

(0,215, Tp—1).Qn = (1,2, ..., Tp—1, T T0).

Example Suppose D is as in Figure 1.
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.
D a_l‘\

g 0
el

D1 0_2 >0_1 HO Nl >.2 +?3 >

Fig. 1. Example of sheafification

When K = {2,3}, then z € Match(S(1,K), Pp) is determined by
(z,y) € X? with
320 = 7211,
whence 7'2(7'330) = 72(51;1). It is easy to show that the discrete dynamical
system (Match(S(1, K), Pp),a1) is given by D5 in Figure 1.

7.3. Sheafification of Pp
Let D = (X, 7) be a discrete dynamical system.
Define first its reduced dynamical system D as follows. Let 7: X — X
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be the quotient map of the equivalence relation ~; introduced in §6.2. Then
7 induces 7 : X — X by 7([z]) := [rz].

Define a discrete dynamical system D as follows. Let X be the set of
sequences (o, z1,---) € XN which satisfy the following two conditions:

Tlzi] = [ziy1] for all i € N,
and there is a natural number N such that
(%) Tiz; = x;y; forall 4,5 with i+ j > N.
Define 7(zg, z1, 2, ) = (z1, 22,23, ).
Example Let D be as in Figure 1. Then Dy = D and D = D.

Theorem 7.4 Let D = (X,7) be a discrete dynamical system, then
Pj(n) = (X 7).
Proof.  We show P} (1) = m The general case can be shown similarly.
Let z = (z;) € P£(1). Then z € Match(S(1,{n1,...,nt}, Pp)) for
some n; < --- < ng. Then by Lemma 6.4, 7z; ~; x;41 for all 3. Since the
second condition (x) is obvious if we take N = ny, we have z € D.
Conversely suppose = € D. Let N be an integer such that (*) holds.
Let p, g > N be relatively prime integers so that S(1,{p,q}) € J{1). Then,
by (x), we have 7Pz; = Tiyp and 79x; = x,44 for all . This shows z €
Match(S(1,{p,q}), Pp). O

8. Concluding remarks

We considered the problem of reconstructing the dynamic behavior of an
object from the data of observers who observe it periodically with mutually
prime periods. We analyzed this problem by introducing the base category
N© with a natural Grothendieck topology.

It turned out that when the original dynamics has no states which
merge, then the original structure is recovered from the observations. If the
observed system has merging states, then the presheaf Pp is not a sheaf, but
the sheafification procedure recovers the structure of the quotient dynamical
system obtained by identifying two states which eventually coincides.

We will consider in future the general case when the comparison maps
3 are not identities. Then the sheafification procedure gives rise to the new
state spaces which are fibred products of the local observers.
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Finally we note that the Grothendieck topology J is not the unique
one. We show another natural Grothendieck topology in the appendix,
whose sheafification operator however destroys the transition information
among the transient states.
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A. Another Topology on SetN"”

There is another natural Grothendieck topology on N©, which we define
as a Lawvere-Tierney topology j on the presheaf topos SetN°” .

Recall [2, p.219] that a Lawvere-Tierney topology j is an endo arrow of
the subobject classifier §2 satisfying

LT1 jotrue = true,
LT2 joj=yj,
LT3 joA=Ao( x ).
Here true : 1 — € is the arrow classifying the identity arrow 1;. The
arrow

/\:QXQ—>Q

is the meet operation and j x j: Q x Q — Q x Q is the product of j.
Define now j, : Q0,, — Q, by

Jn(S) =8,
where S C Z, x N is a sieve and S is defined as follows: First
S| :=={n€Zi|(np)eS forsome p}.
For a subset W C Z, we define

W:={(nk)|n+kNCW}.

Lemma A.1 W is a sieve.

Proof.  Suppose (n,k) € W. Then obviously (n + k,k) € W. Moreover
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(n,kf) € W sincen+ k. NCn+kENCW. O
Finally we define, for S C Z, x N,

S =19

Lemma A.2 1. S is a sieve containing S.

2. |S|=19|.
3. If 51 C Sy, then -S_l C S_2
4. §=38.

Proof. By [Lemma Al1, S is a sieve. Suppose (n,k) € S. Then n € |S|.
Moreover, (n + tk,k) € S (t € N) implies, n + k.N C |S|, which means
(n,k) € S.

By definition,

n € |S| < (n,k) € Sn+ kN C |S|n € |S].

Hence |S| C |S|. On the other hand, we have proved that S C S, whence
S| S [S].

Hence
S_F-F-3 .
Lemma A.3 j = (jn): 2 — Q is a presheaf map.
Proof. By [Lemma 4.5, we have to show, for S C Z, x N,
M;'S = M;71'S (1)
01§ = o718 (2)

First we note that

Lemma A.4

_ 1
M) = <1| () 2.

Proof. In fact

ne|M1S| < Ik |[(n, k) € M]19]
<= 3k [(sn, sk) € 5]
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1
= nse S| = ne s ) Z+.S

Conversely let n € 1|S| | Z;. Then (ns,k) € S for some k, whence
(ns,nk) € S, which implies (n,k) € M;'S. Hence n € |M;1|. O

Hence

1
(n,k) € Mg'S <= n+kNC |Mg!S| = 8] () Z+

1
< n+kNC -|S|

s
<= sn+sk.N C |S]

> (sn,sk) € S <> (n,k) € Mg'S.

Lemma A.5

o781 = (181 - 1) () Z+,

where |S]| —1:={s—1|s€|S]}.

Proof.
n€lo"!S| <= 3k [(n, k) € 07|
< Jk[(n+1,k)eS] <= n+1¢€|S|
O
Hence
(n,k) € 0718 <= n+EkNC |o715|
= n+1+kNC|S|
<~ (n+1,k)eS
< (n,k)eo™1s
O
Proposition A.6 The endo arrow j : Q — Q is a Lawvere- Tierney topol-
0gy.

Proof. ~ The conditions (LT1) and (LT2) follows from Lemma A.2. It
remains to show that

51ﬂ52=S_1ﬂ:9;,
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for S1,S, C Z, x N. Since

Si()SC8 ()%

is obvious, we have to show the other inclusion.
Let (n,k) € S1 (| S2. Then n € |S1|N]S2| and

n+kNC|S| n+kNC|Sy
Then
n+kNCI[S|( ]S

and we have (n,k) € S1[) Se, since we have

[Sy] () 1S2] = 151 () Sal-

In fact, n € |S1|()|S2] means (n, k1) € S; and (n, kg) € Sy for some ky, ko €
N. Then (n, k1ks) € S1()S2 and hence we have n € |S1[) Sa|. O
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