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On Littlewood-Paley functions and singular integrals

Yong DING, Dashan FAN and Yibiao PAN
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Abstract. In this paper, we obtain certain sufficient conditions for the LP boundedness
on Littlewood-Paley functions and on some singular integrals. As applications, we study
Marcinkiewicz integrals and singular integrals whose kernels are rough not only on the
sphere, but also in the radial direction.
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1. Introduction

Let R™ be n-dimensional Euclidean space and T™ be the n-dimensional
torus. T™ can be identified with R™/A, where A is the unit lattice which
is the additive group of points in R™ having integral coordinates. For an
L'(R™) function ® we define ®;(x) = 27" ®(x/2t), t € R. Then the Fourier
transform of @, is ®(£) = ®(2t¢). The Littlewood-Paley g-function 9a(f)
on R” is defined by

1/2
gof(x (/|<I>t*f 2dt> , (1.1)

initially, for f in the Schwartz space S(R").
The Littlewood-Paley g-function on T" can be defined similarly. For
f € C(T™), f has the Fourier series

_ Z ape2rilka)

keA

Gof(z (/ B, « f(z 2dt>1/2 (1.1)

We let

where

®, % f(z) =Y B(2'k)are k).
keA
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The theory of Littlewood-Paley functions has been an important part of
harmonic analysis, dating back as far as the early 30’s. Readers are refered

to [St1] [St2] [St3] for its history and significance. One of well-known results
is the following:

Theorem A Suppose that ® € S(R") satisfies [g, ®(x)dz = 0. Then
for any p € (1,00)

192 (F)llr®ny < AllfllLorn), (1.2)

IGo(F)lLocrny < AllFllLoeen)- (1.3)
In additional, if ® is radial and nonzero, then

| fllr @y < Bllge (£l Le@n), (1.2")

1fllo ey < BIGa(Fllzon), (1.3)

where A and B are positive constants independent of f and f

The proof of and (1.2') can be found in [Fel]. The proof of
and (1.3') is essentially the same as that in [Fel].

The main purpose of this paper is to lift the smoothness condition on
® in Theorem A, and replace it with much weaker conditions. One of our
results is the following

Theorem 1 Suppose that ® € L1(R™) satisfies
i sup [Py * ’

Q) [supi@der], .
(ii) there are a,5 >0, d € {1,2,...,n} such that

< CyllfllLany for all g > po for some py € (1, 00),

[©(6)] < C minf|ag*, [Tag] )

forall £ = (&,...,&) € R, where 1€ = (&1, ...,&4).
Then for every p, 2po(po + 1)~ < p < 2po(po — 1)7!, there exists C =
C(p) > 0 such that

190 (F)llLr(rry < Cll fllLe@n) (1.4)

and

HG‘I’(J?)HLP('IT") < CHf“LP(’JI‘n)a l<p<oo (1.5)
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for f € S(R™) and f € C®(T™).

When ® € S(R™) and [, ®(x)dz = 0, one sees easily that (i) is satisfied
and |®(¢)| < Cmin{|¢], |€]~} always holds.

We also define the operators Ty and 73 on S(R™) and C*°(T™), respec-
tively, by

Tsf(z) = /]R &, * f(z)dt, (1.6)

~

Tof(z) = /R B, « Fla)dt. (1.7)

Theorem 2 If ® satisfies the conditions in Theorem 1, then for every
p € (2po(po +1)™*,2po(po — 1)71),

|Te fller@ry < Cllfllrwny, (1.8)
7o fllLecrny < CllfllLecrmy- (1.9)

Theorems 1 and 2 will be proved in the second section. As applications
of Theorem 1, we will study the Marcinkiewicz integrals (of one dimen-
sion) in Section 3 and (of n dimension) in Section 4. As an application
of Theorem 2, in Section 5 we will reprove the LP-boundedness for certain
well-known singular integrals. Recently, by using the extrapolation theo-
rem of Rubio de Francia, S. Sato [S] obtained Theorem 1 under a different
condition from (3i).

Throughout this paper, the letter C' will denote a positive constant
that may vary at each occurrence but is independent of the essential vari-
ables. We also denote f(z) = g(x) if there exist positive constants A and
B independent of z such that Af(z) < g(z) < Bf(x).

2. Proofs of Theorems 1 and 2

2.1. Proof of Theorem 1

The proof of (1.5) is essentially the same as that of (1.4). The only
non-trivial part is to prove that the condition

Hjélﬂg | Dy * f”LP(Rn) < C|lfllze@ny
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implies

fouplsc+

< C\\fllLrerm,
sup 0 fl |, 1 < Cllfliocen

where ¢ () =} cp 27 2(27H (2 + 27k)) -

But this fact was proved by Kenig and Tomas in [KT]. For this reason, we
will prove only. Take a radial function ¥ € S(R?) such that the values
of its Fourier transform U are between 0 and 1 and it satisfies

/@(2S)ds =1,
R
supp(¥) C {y e R?: 27" < [y| < 2}.

Let 0 be the Dirac delta function on R*~¢. Then by checking the Fourier
transforms, it is easy to see that for any test function f € S(R"),

f /R(\IJ8®5)*fds. (2.1)

Also, by Theorem A, it is easy to see that
< C||fllLo®n)-

|(fo-z0sita) ] ,,,

By and Minkowski inequality, we have that

@) = ([ ([(teri00) 520 f(w)d8)2 it -

< /R I f(z)ds

where

1/2
I;f(z) = (/R |[(Usit ® 0) * By % f(:z:)|2dt> : (2.2)

By Minkowski inequality again, for any p € (1, 00)

oo N1y < C [ 1T Slloqunds

Now we prove that there exists a constant C' = (), independent of s such
that for p € (2po(po +1)~", 2po(po — 1)71),

I s fllp ey < Cll £l Le@n)- (2.3)
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We define a linear operator T’ on any function F(x,t) by TF(z,t) = ®; *
F(z,t) and want to prove the mixed norm inequality

””TFHL2(R)HLP(R") <C HHfHLQ(R)HLp(Rn)' (2.4)
From the definition, it is easy to see that

T F| 12 < Cy ||I1F]I

(R) HLl(Rn) (R)HLI(Rn) '

By (i), we have
NTF N oo @) | oy < C2 IF N zoo@) | o eny

for any q > pg. Clearly the above constants C7 and Cy are independent of
the essential variables. Thus by interpolation and duality we obtain
for all p € (2po(po + 1) 1),2po(po — 1)~ 1). In particular, letting F(x,t) =
(Vsyt ® 0) * f(x), then we obtain

e fllzo@ny = [ITFll 2@ gy < € NIFN 2@l o ggeny
= Cllge(H)llzr@ny < Cllf |l Lorn)-

(2.3) is proved.
If s > 0, by Plancherel’s theorem

2 FOteNI12] T 2
igso [ [ Berifordd

where
Epo={neR: 2751 < || < 27t=5+1),
Thus by (ii), we know that if I1;€ € E; 5 then
[@(2%)] < C|2'Tyg]* < C 27

Thus
ILfIE < C 22 / / Fle)2de dt.
R JE, ; xR~

By the definition of E , it is easy to see that

I £1I3 < C 272 f5 = C 272 £3,
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which shows that
sl 22 < C27%5. (2.5)

Noting 2 € (2po(po+1)~1,2po(po—1)~!), we now use interpolation between
(2.3) and to obtain a # > 0 such that

IZsfllp < C 27| f1l,. (2.6)

Thus we have, for all p € (2po(po + 1)1, 2po(po — 1)71),

/0 1o llpds < ClIf1lp (2.7)

If s < 0, we have

Isf:/R|(<I>t*(\Ils+t®5)*f|2dt)1/2.

Thus
2 = 21 7 9
s [ f @R P

Similar to [2.5), by (ii), it is easy to see
sl p2—p2 < C 2. (2.8)
We now use interpolation to obtain that

ILsfll < C 21 £l (2.9)

for some 6 > 0. This shows that, for all p € (2po(po + 1)1, 2po(po — 1)71),

0
| Wflds <l (2.10)

Clearly, the constant C' above is independent of the essential variables.
is proved.

2.2. Proof of Theorem 2

Similar to the proof of [Theorem 1, we prove only. Choose the
function ¥ as in the proof of Theorem 1. Then by (1.2)

1T fllLegn) < Cllge(To(f))lLrwn)
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where

gu(Taf)(@) = ( /R /R ‘I’s*<bt+s*f(x)dt2ds)1/2

1/2
* * 2 .
< /R(/RI\PS Pyt x f(z)] dS) dt

Therefore, using the same argument as that in [Theorem 1, we obtain The-
orem 2.

and has the following corollary.

Corollary Let m,n € N and A : R® — R™ be a linear transformation.
Suppose that ® € L1(R") satisfies

) sup i@l 7], o < O oy for a> o,

(it) |B(€)] < Cominf|A¢|, |A¢|~7}

for some a,3 > 0 and all £ € R™. Then (1.4) and (1.8) remain true with a
constant C' independent of the linear transformation A.

Proof. Let d = rank(A). Then there are nonsingular linear transfor-
mations G : R — R" and H : R? — R? such that |HII;G¢| < |Ag| <
m|HIIZGE| for all € € R™. Let U = G710 (H™! ® idgn-4) and

U(z) = ®((UH) 'z)|det U| L.

Then by ¥(£) = B(UE), we obtain |U(£)| < Cs min{|I4|°, ITLz¢| 7).
It is easy to see that (i) in m remains valid when ® is replaced by
U. By letting F(z) = f((U?)"'z), we obtain

o flfpiany < | IToF(U'0)Pda

< G | 1Pyl det(V) ™" = Cyllf s gy

which proves [1.8). A similar argument can be used to obtain [1.4). O
3. One dimensional Marcinkiewicz functions

In [M], in order to study boundary values of analytic functions,
Marcinkiewicz introduced the function p(f) on the one-dimensional
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torus T:
1/2

2w
p(f)(x) = (/0 |F(z+t)+ F(x —t) — 2F(a:)|2t_3dt> (3.1)

where F(x fo s)ds. Marcinkiewicz conjectured, and Zygmund proved

[Z], that
H/i(f)HLP(T) < CHﬂ'LP(T)v 1 <p<oo. (3.2)

An analog of Marcinkiewicz function on R is defined by

00 1/2
v(f) = ( /0 |F(z+t)+ F(z —t) — 2F(a:)|2t_3dt) (3.3)

where F(x fo s)ds. Waterman [W] extended Zygmund’s method,
without essentlal change to prove that
(P ew) < CllfllLow)- (3.4)

The arguments in either case, however, used the complex function theory
such as Blaschke product decompositions of analytlc functions, are far from
simple. Recall F(z +t) + F(z — t) — 2F(z f“t f(s)ds — [7, f(s)ds
Then it is easy to see that v(f)(z) = go(f)(z ) and p(f)(z) = Gg f(z) where
®(x) =signz if z € [-1,1] and ®(z) =0 if z ¢ [~1,1]. Also it is easy to
check that & satisfies all conditions in [Theorem 1. So using
we Teprove and [3.4). Moreover, we can extend the Marcinkiewicz
function to more general functions (g)f)(z), where A(z) = A(z,a,b) =
sign z|z|%(1—|z|)® if z € (~1,1), and A(z) = 0if z ¢ (—1,1) with a,b > —1.
Clearly gxf(z) = v(f)(z) and Gxf(z) = u(f)(z) if @ = b = 0, we have the

following theorem
Theorem 3 Let v = min{a,b}. Then we have
lgrfllLr®) < Cll fllLew), (3.5)
||GAﬂ|LP(T) < CHfHLp(T) (3.6)
forall1 <p<ooify>0;andforallpe (2/(2+7),—-2/7) if -1 <~ <O0.

Proof.  The proof for the case v > 0 is easy, we prove the case v € (—1,0)
only. To this end, it suffices to check that A(x) satisfies (i) and (ii) in
Theorem 1. For fixed 7’ such that ry > —1, by Hélder’s inequality, for any
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9t
Al % f(z) < CZ_t/ (Is127)%(1L = |s]27)°f (z — s)ds

<clx [ 1sa=oras) " <conse

where C is independent of ¢, and M f is the one-dimensional Hardy-
Littlewood maximal function. This shows that if ¢ > 7’ then || sup;cg | ¢ *
fllzawy < CllfllLam)- So A(z) satisfies (i) in for po = r’. On the
other hand, that A(x) is an odd function implies that

&) /01 s%(1 — s)®sin s& ds

and |X(§)| < Ol if €] < 1. If |€] > 1, without loss of generality, we assume
|€] > 4 and let

~ 1-f¢l~t 1
)| < / s2(1 — 5)° sin s€ ds| + C (1— s)ds
1/2 1-|¢~1
1/2 [
+ C‘/ s*(1 — s)°sin s€ ds| + C/ s%ds.
[l 0
Then an easy computation shows that [A(€)| < C|¢€|~1~7. Noting 1+ A =
B > 0, we prove that \(x) also satisfies (i) in [Theorem 1. Noting that
po=7r>(1+~)"1 by we obtain [Theorem 3. O

Some similar version of was also obtained by Sunouchi [S]
and by Sato [Sa2]. In particular, recently Sato used a different proof to
obtain some better estimates for g, f in the cases —1 < b < 0 and a =0, 1,

due to the elegance of his proof (see [Theorem 4 in [Sa2)).

4. Marcinkiewicz function on R, n > 2

Let Q(z) be a function which is homogeneous of degree 0, and which
satisfies

/ Q(z)do(z) = 0 (4.1)
Sn—l
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where S"~! is the unit sphere on R™, n > 2 and do(z) is the normalized
Lebesque measure of S"~1. In [St1], Stein defined the function Fj(z) by
Fi(z) = f|y|<t flx — y)Qy )|yl " 1dy where 3 = y/|y|. It was noted that
when n = 1, Q(y') = signy, so that Fy(z) = F(z +t) + F(z — t) — 2F(z).
Stein defined the Marcinkiewicz function on R™ by

va(f) = (/Ooo IFt(:v)lzt_Bdt) " (4.2)

and proved, by using the “real method”, that

lva(FH)llrwey < CIlfllrwn) (4.3)

provided that () satisfies a Lipschitz condition of order o,0 < o < 1. Let
®(z) = xp(z)|z|"T1Q(z) where xp is the characteristic function of the
unit ball B = {|z| < 1}. It is easy to see that vof = gof and that ®
satisfies all conditions on [Theorem 1. So by [Theorem 1, we reprove (4.1).
Actually, the smoothness condition on ® in Stein’s theorem can be replaced

by certain roughness condition (see following [Theorem 4).
For a measurable function b(t) on R, we say that b € A,, ¢ > 1, if

R
|16]la. = sup R_l/ 1b(t)|dt < oo. (4.4)
R>0 R/2

Theorem 4 Let ®(z) = 7(|z|)Q('). Suppose that Q € LI(S™1), ¢ >
1 satisfies (4.1), and that |7(s)] < Cb(s)s™ P if 0 < s < 1, |7(s)] <
Cb(s)s ™ P if s > 1, for some p € (0,n) and b € A, for some e > 1. Then
9o fllLe@ny < CllfllLe@ny and |Go fllp(rny < CI fllLe(Tn)-

Proof. By [Theorem 1, we need to check that the function ® satisfies (i)
and (i) in [Theorem 1. For f(z) >0

0« £(2) < 027 [ b iyl RIS~ )y
)

Lo /| P D01~ )y
y > t

— ®} f(a) + B2 f(2).
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For fixed t > 0, let ¢ be an integer such such that t < { < t+ 1. Then

¢
o/ f(z)<C27% Y 2Po*f(z) < Co* f(x)

j=—00

where the constant C' is independent of ¢ and

o f@) =sup2 ™ [ e iaw)l e - vy
JEL 207 1< y|<2

Let B(s) = b(27%s). It is easy to check that ||B||a, = ||b]|a.. So by The-

orem 8.1 in [FP1], we know that ||o* f|z»®&r) < C| f|lLp(rn), Which shows

that

s @is]| o < Gl (45)

Using the same argument, we have

Bf(x) <020 3 20 (0) < Cotf(z)

j=¢-1
where C' is independent of ¢. This shows that

Jrupats]

< C||fllze®n)- (4.6)
teR

LP(R™)

By and [4.6), we know that & satisfies (i) in [Theorem 1.

Next we check that ® satisfies (ii) in [Theorem 1. In fact, by the can-
celiation condition on §2,

el <c [ uss ds

[ 069 - Doty

1
+C/ b(s)s"~1 ds.
0

209 = 1)day)

Note that ‘fsn—l Q(y) (e?¥'6) — 1)da(y’)l < Cmin{l,s|¢|}. It is easy to
see that we can choose a @ > 0 and a < p such that

B(¢)| < Clel°.

For any fix £ # 0, we choose a rotation 0 such that 0(§) = [£|1 =
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1€](1,0,...,0). Let ¢ = (s, 5,95, ...,y,). Then it is easy to see that
o0
50 = [ rwu [ a0 e 90 oy

where 07! is the inverse of 0. Now Q(0~!(y')) is again an L9 function, so
we still write it by ©Q(y’). Thus, using Holder’s inequality and by changing
variables, we have

B(e)| < Clele /M T bu/ €])u"~ (o) du

(3 L
+Cle* [ bla/lghe ! ) fdu
= ClE]PJ1(§) + ClE|7PJ2(8),
where h is the Fourier transform of
) = (1= "D (o) [ Qs (1= ).
(4.7)

h(s) is an L"(R) function for some r € (1,¢] and its L"-norm is bounded by
the L-norm of Q (see page 141 of [LTW]). Since ||b]la, < C|b]|a, if € > 6,
we may assume that € > 1 is sufficiently close to 1 such that ¢ < r, and
e(p—1) > —1. Now by Hoélder’s and Hausdorff-Young’s inequalities,

00 1/e
EP(E) < |§|p( /K | b<u/|sr>€u-€<p+l>du) 1l ey

0o 1/e
e G O
1
Thus it is easy to see

E1PT1(€) < Clel~V Ib)1 K= (4.8)

Similarly,
1 1/e
€0 a(6) < c(mrf“—f’)*l—ff’ / b(u)fudp—”du)
0

—_ ! 1
< Clel™ [bllEE (4.9)
By and [(4.9), we obtain that ® satisfies (ii) in [Theorem 1. O
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5. Singular integrals

Let Q € L1(S™!) satisfy (4.1) and b € L°(R,.). The singular integral
with rough kernel is defined by

Tf) =pv. [ Wyl Q) ~ )iy

The study of the operator T'f began with Calderén-Zygmund’s pioneer-
ing papers and subsequently by many other authors (see [Fel],

ILTW|, [FT1], [FP2]). The best result known so far, concerning the
size of €, is that if  is in the Hardy space H*(S"~!) then T is bounded on

LP(R™) (see [FP2]). The Hardy space is defined by
HY(S" ) ={Qe L'(S" ™) : |19 < o0}

where |2 = [[supocrca |fo-s Q) Prar(0)do ) [ 3gsny and P is
the Poisson kernel on S™~1. It is well- known that on the sphere H'! contains
the space Llog™ L as a proper subspace.

We observe that

/ / B(lyl2 )90 )yl f (@ - y)dy dt.
2t<|yl<2t+1

where B(|y|) = b(2'|y|) is again an L™ function such that ||Bllcc = ||b]|co-
So let

w(y) = B(lyDIy| 7" ) x 1< jyi<23 (¥),
then

Tf(z) = /R wi % f(z)dt = T, f(z).

We consider a more general function ®(z) = I'(|z|)Q(z’), where Q €
LY(S™ 1) with [Q =0, |T(s)| < Cs™*if 0 < s < 1and |[(s)] < Cs P
if s > 1 for some p > 0. Clearly the function w is a special case of such ®.
Using [Theorem 2, we can reprove the following known result in [FP2].

Theorem 5 If Q€ H'(S™!) then Ty is a bounded operator on LP(R™).

Proof.  From , we know that (2 has an atomic decomposition

Qy') = erar(y)) (5.1)
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where ) [cx| < C||Q| g1 (sn-1) and each ay is an L™ atom. Recall that an
L9 atom a(y’) is a function that satisfies

supp(a) C B((, ) (5.2)

where B(¢,r) = S" 1n{y € R* : |y — ¢| < r for some ¢ € S"! and
2>r>0}

/S a(y)do(y) =0 (5:3)

lalloo < rin=H/a=1), (5.4)

So, to prove the theorem, without loss of generality, it suffices to assume
that 2 is an L atom supported in B(1,7) and to prove that ||Tg f|| p(rr) <
C||f|l L»(rn) with C independent of r. To this end, we check that the function
® satisfies (i) and (ii’) in

Using the same argument as proving [Theorem 4, we have

8O = [ T [ 007 @)e 0 oy )au,

where 07! is the inverse of 0. Now Q(07!(y')) is again an oo-atom with
support in B(¢,r) N S™!, where ¢ = ¢’. Thus we have

®(¢) = /O h T(u)u™? /R h(s)e ™Esds du (5.5)

where h(s) is the function as in (4.7). By Lemma 2.1 in [FP2|, we know
that h(s) is a g-atom on R with support in (&} — A,(¢'), &) +Ar(€')) for some
g € (1,2), where A, is the linear transform diag [r?,r,,...,7]. Thus, by the

cancellation condition of h(s) and the the condition on I'(u) we have

/ u"_lf‘(u)/ h(s)(e~uléls — g=iullygs | du,
0 R
< C|Ax£|%,

(6)|

(AN

where o > 0 and a < p.

By the same arguments as obtaining and [4.9), we have |®(¢)| <
C|A-£|'/971 for some ¢ > 1. Thus the function ® satisfies (ii).

Checking that ® satisfies (i) is exactly the same as those for and

(4.6), but using Theorem 7.4 of [FP1] instead of Theorem 8.1 in [FP1]. We
\\ /

omit the details. O
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A final Remark For an ® € L'(R") the fractional operator T 4 is de-
fined by

Toof(z) = /R2t°‘<I>t x f(z)dt, «a€R. (5.6)

The fractional g-functions are defined by

9.0 (F)(x) = ( /R 2, + f(x)|2dt> "

We remark that if ® € S(R™) satisfies certain conditions then

([ oo o) v

is the norm of the Friebel-Lizorkin space 5 ?(R") (see [FTW]).

= |I£ll 0

LP(R")

Acknowledgment The authors would like to express their gratitude to

the referee for pointing out a mistake in [Theorem 3 in an earlier version of
the paper.
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