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Invariant currents and automorphic forms
of an elementary Kleinian group

F. DELACROIX

(Received March 7, 2000)

Abstract. We compute the cohomology of currents invariant by some elementary

Kleinian groups. The result is used to compute the cohomology of harmonic coclosed
automorphic forms on the hyperbolic space of even dimension for such a group. This

proves that for these groups the cohomology of these forms is isomorphic to the cohomol-
ogy of the quotient space. This question is related to the Borel conjecture ( cf. Corollaries
2.14 and 3.9).
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Introduction

Let n be an integer n\geq 2 and let \mathbb{H}^{n} be the hyperbolic space of dimen-
sion n . Its boundary \partial \mathbb{H}^{n} can be identified to the unit sphere S^{n-1} of \mathbb{R}^{n} ,

or to \mathbb{R}^{n-1}\cup\{\infty\} . The group of orientation-preserving conformal transfor-
mations of S^{n-1} is denoted by Conf^{+}(S^{n-1}) . It is isomorphic to the group
Iso^{+}(\mathbb{H}^{n}) of positive isometries of \mathbb{H}^{n} . A discrete subgroup of Conf^{+}(S^{n-1})

is called a Kleinian group.

For a Kleinian group \Gamma , the cohomology of the quotient space X:=
\Gamma\backslash \mathbb{H}^{n} is defined as the homology of the complex \Omega^{\cdot}(X):=\Omega_{\Gamma}^{\cdot}(\mathbb{H}^{n}) of \Gamma-

invariant differential forms on \mathbb{H}^{n} . This cohomology is isomorphic to the
singular cohomology of X , and to its de Rham cohomology if X is a differ-
entiable manifold.

A differential form \alpha\in\Omega^{p}(X) is said to be automorphic if:
o \alpha and d\alpha have moderate growth:

\forall x_{0}\in \mathbb{H}^{n} , \exists a , b>0 , \forall x\in \mathbb{H}^{n} . max \{||\alpha(x)||, ||d\alpha(x)||\}\leq a.e^{b.\delta(x,x_{0})} ,
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where \delta denotes the hyperbolic distance and ||.|| the norm of p-linear
forms on the tangent space T_{x}\mathbb{H}^{n} , and

\circ \alpha vanishes under a non-trivial polynomial P with complex coefficients
in the laplacian: P(\triangle)(\alpha)=0 .

The space of automorphic forms is a subcomplex, denoted by A^{\cdot}(X) ,
of \Omega^{\cdot}(X) . The Borel conjecture (cf. [B]) states that the cohomology of au-
tomorphic forms is isomorphic to the cohomology of X , and more precisely
that the inclusion A^{\cdot}(X)arrow\Omega^{\cdot}(X) is a quasi-isomorphism.

Moreover, tlle space \Omega_{hc}^{\cdot}(X) of harmonic coclosed differential forms
and the space A_{hc}^{\cdot}(X) of harmonic coclosed automorphic forms are also
subcomplexes of \Omega^{\cdot}(X) .

We have the inclusions:

A_{hc}^{\cdot}(X)
\sim i_{1}

\Omega_{hc}^{\cdot}(X)

i_{2}\downarrow \downarrow

A^{\cdot}(X)
rightarrow i_{3}

\Omega^{\cdot}(X) .

The following statement is a variant of the Borel conjecture, sometimes
called Borel-Harder conjecture.

Conjecture 0.1 All the injective morphisms of complexes in the diagram
above are quasi-isomorphisms, so the cohomology of each of these complexes
is isomorphic to the cohomology of X .

The fact that the inclusion \Omega_{hc}^{\cdot}(X)arrow\Omega^{\cdot}(X) is a quasi-isomorphism is
a consequence of the Hodge theorem for non compact manifolds established
in [Ga2].

This conjecture is trivially true if \Gamma is a cocompact Kleinian group (i.e .
X is compact), in which case every harmonic form is automorphic. Recently,
J. Franke proved it when \Gamma is a lattice (cf. [Fra] and [Wai]). The goal of this
work is to study the case of an elementary group of hyperbolic isometries,
which is the simplest example where X has infinite volume.

As in [Ra] \S 5.5, we will call elementary group a Kleinian group having a
finite orbit in the closure \mathbb{H}^{n}\cup\partial \mathbb{H}^{n} of the hyperbolic space. The elementary
groups are divided into three classes.

\circ Elementary groups of elliptic type are those for which there exists a
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finite orbit in \mathbb{H}^{n} . Equivalently, there exists a fixed point in \mathbb{H}^{n} (cf. [Ra]
Theorem 5.5.1). They are the finite subgroups of Conf^{+}(S^{n-1}) .

o An elementary group is of parabolic type if the only finite orbit con-
sists of one fixed point on \partial \mathbb{H}^{n} . Equivalently, it is conjugated to an
infinite discrete subgroup of euclidian isometries of \mathbb{R}^{n-1} (cf. [Ra] The-
orem 5.5.5).

o Elementary groups of hyperbolic type are the elementary groups which
are neither of elliptic nor parabolic type. The finite orbit is then
made of two points of \partial \mathbb{H}^{n} and such a group contains an infinite cyclic
subgroup of finite index (cf. [Ra] Theorems 5.5.6 and 5.5.8).

Neither of these three situations is part of the articles listed above.
Remark that solvable subgroups of Conf^{+}(S^{n-1}) are elementary groups
(cf. [Ra] Theorem 5.5.10).

By an averaging process, we will restrict to the case of infinite cyclic
groups, generated by a loxodromy for the hyperbolic type or a translation
for the parabolic type when n=2 . Note that one can easily prove Conjec-
ture 0.1 by the same process for elementary groups of elliptic type.

The idea here is to send the objects acting on the boundary S^{n-1} inside
\mathbb{H}^{n} . For that, we use the tool introduced by P.-Y. Gaillard in [Gal]: the
Poisson transformation, which is a generalization to differential forms of the
usual Poisson transformation on functions. This idea was already expressed
in [HB].

It was proved (cf. [Gal] Theorems 1 and 2) that, if n is even, the
Poisson transformation induces an isomorphism of the hyperforms complex
(a p-hyperform on S^{n-1} is a continuous linear form on the space of (n-
1-p)-analytic differential forms) on \partial \mathbb{H}^{n} modified by the augmentation of
distributions over the complex of harmonic coclosed forms on \mathbb{H}^{n} , and that
it commutes to the action of Conf^{+}(S^{n-1}) .

1. Invariant currents

Let M be an oriented C^{\infty} manifold of dimension n . We denote by
C^{p}(M) the space of currents of degree p on M , defined as the topological
dual of the space \Omega_{c}^{n-p}(M) of compactly supported (n-p) forms on M
endowed with the Schwartz C^{\infty} topology. A p-form on M will be identified
to the regular p-current it defines. By de Rham theorem, the cohomology
of the complex of currents is isomorphic to the cohomology of M .



408 F. Delacroix

If a group \Gamma acts on M, we denote by C_{\Gamma}^{p}(M) the space of invariant
p-currents on M. The invariant currents form a subcomplex whose coh0-
mology is isomorphic to the cohomology of the quotient manifold \Gamma\backslash M in
the case the action of \Gamma is free and properly discontinuous.

Given a Kleinian group F. the limit set of \Gamma , denoted by \Lambda_{\Gamma} , is the
trace on the boundary \partial \mathbb{H}^{n} of the orbit closure of a point z\in \mathbb{H}^{n} :

\Lambda_{\Gamma}:=\overline{\Gamma.z}\cap\partial \mathbb{H}^{n} .

This set does not depend on the choice of z (cf. [Ma]); its complementary
D_{\Gamma} in \partial \mathbb{H}^{n} is the domain of discontinuity of \Gamma The group \Gamma acts properly
discontinuously on D_{\Gamma} .

Let z\in \mathbb{H}^{n} viewed as the unit ball of \mathbb{R}^{n} and s>0 ; we define the
absolute Poincar\’e series of exponent s of \Gamma in z by

\Phi_{s}(z):=\sum_{\gamma\in\Gamma}||\gamma’(z)||^{s}
.

where ||.|| is the operator norm. If this series converges in z , it will converge
uniformly on any compact set. The critical exponent of \Gamma is defined by

\delta(\Gamma) := \inf {s>0 , \Phi_{s}(z) converges}.

Let C_{\Gamma}^{p}(S^{n-1}, \Lambda_{\Gamma}) be the space of \Gamma-invariant currents on the sphere S^{n-1}

with support in \Lambda_{\Gamma} , i.e . currents vanishing on every form whose support does
not intersect \Lambda_{\Gamma} . For p\in\{0, \ldots, n-1\} , the localisation of p-currents into
the domain of discontinuity of \Gamma , denoted by L^{p} : C_{\Gamma}^{p}(S^{n-1})arrow C_{\Gamma}^{p}(D_{\Gamma})

and also called restriction of p-currents to D_{\Gamma} , is defined by:

\forall T\in C_{\Gamma}^{p}(S^{n-1}) , \forall\omega\in\Omega^{n-1-p}(D_{\Gamma}) , \langle L^{p}(T), \omega\rangle=\langle T,\overline{\omega}\rangle ,

where \overline{\omega} is \omega extended by 0 at the points of \Lambda_{\Gamma} .

The localization of currents is a morphism of complexes and its kernel is
the space of currents with support in \Lambda_{\Gamma} . The following theorem is proved
in [EMM].

Theorem 1.1 ([EMM] Theorem 2.2) If \Gamma\backslash D_{\Gamma} is compact, the localisa-
tion of currents of dimension greater than \delta(\Gamma) is surjective; therefore, for
p<n-1-\delta(\Gamma) , there is an exact sequence:

0arrow C_{\Gamma}^{p}(S^{n-1}, \Lambda_{\Gamma})\underline{i^{p}}C_{\Gamma}^{p}(S^{n-1})arrow C_{\Gamma}^{p}(D_{\Gamma})L^{p}arrow 0 .
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We will need a generalization of Theorem 3.1 in [EMM] about the 10-
calization of invariant distributions. We do not make any asumption on the
number of connected components of \Gamma\backslash D_{\Gamma} .

Lemma 1.2 Let \Gamma be a Kleinian group satisfying the following conditions:
(1) \delta(\Gamma)<1 , (2) \Gamma acts freely on D_{\Gamma} and (3) \Gamma\backslash D_{\Gamma} is the union of disjoint
compact sets. Then the image Im L^{n-1} of the localization of \Gamma invariant
distributions contains the kernel of the linear map

\overline{\Theta} : C_{\Gamma}^{n-1}(D_{\Gamma}) arrow \mathbb{C}^{C}

T \mapsto (\langle T, f_{c}\rangle)_{c\in C}

where C is the set of connected components of D_{\Gamma} and, for c\in C , f_{c} is
a function of \Omega^{0}(D_{\Gamma}) whose support is contained in c and satisfying the
conditions of Lemma 1.4 in [EMM], namely:

\circ For every compact K\subset c , { \gamma\in\Gamma , Supp(/C)\cap K\neq \emptyset } is finite;
o \sum_{\gamma\in\Gamma}f_{c}o\gamma=1_{c} .

The proof is an immediate generalization of that of [EMM] Theorem 3.1.

2. The case of an elementary group of hyperbolic type

An elementary group of hyperbolic type contains an infinite cyclic sub-
group of finite index. We shall therefore restrict to the case where \Gamma is
generated by a single loxodromy, i.e . an isometry of \mathbb{H}^{n} fixing exactly two
points on \partial \mathbb{H}^{n} .

These two points form the limit set of \Gamma Since the problem we examine
is invariant by conjugation, we consider the particular case of a loxodromy
\gamma=\gamma_{a} oR where \gamma_{a} is the homothecy z\mapsto az with coefficient a\in ]0, 1 [

and R\in SO(n-1) . (Observe that the subgroup of Iso^{+}(\mathbb{H}^{n}) generated by
R need not be discrete.) When n=2 we get \gamma=\gamma_{a} .

From now on let \Gamma be the subgroup of Conf^{+}(S^{n-1}) generated by \gamma ; it
is a Kleinian group. When identifying S^{n-1} with \mathbb{R}^{n-1}\cup\{\infty\} , its limit set
is \Lambda_{\Gamma}=\{0, \infty\}:0 is the attractor and \infty is the repeller.

A fundamental domain for the action of \Gamma on \mathbb{H}^{n} is the half-ring defined
by a\leq||x||\leq 1 . The quotient space X=\Gamma\backslash \mathbb{H}^{n} has infinite volume and has
the homotopy type of a circle.

Lemma 2.1 The \Gamma invariant p-currents on S^{n-1}=\partial \mathbb{H}^{n} with support in
the limit set \Lambda_{\Gamma}=\{0, \infty\} are:
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C_{\Gamma}^{p}(S^{n-1}, \Lambda_{\Gamma})=\{

0 if p\neq n-1

\mathbb{C}\delta_{0}\oplus \mathbb{C}\delta_{\infty} if p=n-1
where \delta_{0} and \delta_{\infty} are the Dirac masses at points 0 and \infty .

Proof. Consider \mathbb{R}^{n-1} as local map of the sphere S^{n-1} and let’s determine
the \Gamma-invariant currents with support in {0}.

Given a (n-1 - p)-tangent vector \xi at point 0 to \mathbb{R}^{n-1} , the Dirac
p-current associated to \xi , denoted by \delta_{\xi} , is defined by the evaluation of
(n – 1-p)-forms on \xi . It is a p-current with support {0}.

A p-current T\in C^{p}(S^{n-1}) can locally be written as

T= \sum_{1\leq i_{1}<\cdots<i_{p}\leq n-1}T_{i_{1}\cdots i_{p}}dx_{i_{1}}\wedge

\cdot . \wedge dx_{i_{p}} ,

where the T_{i_{1}\cdots i_{p}} are 0-currents ( c/. [Rh] Chap.3 \S 8).
From the characterization of distributions with punctual support given

in [Sch] p.lOO Theorem XXXV, we can easily find out which p-currents have
punctual support. They are the linear combinations of partial derivatives
of Dirac p-currents associated to the (n – 1-p)-vectors extracted from a
fixed basis of T_{0}\mathbb{R}^{n-1} .

We now determine which of these currents are \gamma-invariant. Let \xi\in

\Lambda^{n-1-p}(T_{0}\mathbb{R}^{n-1}) be a (n – 1-p)-vector and s=(s_{1}, . , s_{n-1})\in N^{n-1} a
multi-index, denote by |s|=s_{1}+ +s_{n-1} its length and let T=D^{s}\delta_{\xi}

where D^{s} is the differential operator \frac{\partial^{|s|}}{\partial x_{1}^{s_{1}}\cdots\partial x_{n-1}^{s_{n-1}}} . We have \gamma^{*}T=R^{*}\circ\gamma_{a}(*T)

and, for \omega\in\Omega^{n-1-p}(\mathbb{R}^{n-1}) :

\langle\gamma_{a}^{*}(D^{s}\delta_{\xi}), \omega\rangle=\langle D^{s}\delta_{\xi}, \gamma_{a}\omega\rangle*=(-1)^{|s|}\langle\delta_{\xi}, D^{s}(\gamma_{a}^{*}\omega)\rangle

Writing locally D^{s}(\gamma_{a}^{*}\omega) we can directly verify \gamma_{a}^{*}T=a^{n-1-p+|s|}T So for
every form \omega\in\Omega^{n-1-p+|s|}(\mathbb{R}^{n-1}) , we have

\langle\gamma^{*}T, \omega\rangle=a^{n-1-p+|s|}\langle T, R^{*}\omega\rangle .

Choosing a R-invariant form \omega such that \langle T, \omega\rangle\neq 0 , we get a^{n-1-p+|s|}=

1 , so p=n-1 and s=0.
Consider \mathbb{R}^{n-1} as a local map of the manifold \mathbb{R}^{n-1}\cup\{\infty\}\simeq S^{n-1} close

to \infty via the inversion map x \mapsto\frac{x}{||x||^{2}} , we get the same computation with
a^{-1} instead of a , which leads to the same result. \square

It will be necessary later to work in spherical coordinates. Let’s write
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\mathbb{R}^{n-1}\backslash \{0\}\simeq \mathbb{R}_{+}^{*}\cross S^{n-2} and denote by \pi_{1} and \pi_{2} the projections over the
first and second factors of this decomposition.

Definition 2.2 The principal value of Cauchy current is the 1-current on
S^{n-1} defined by

\forall\varphi\in\Omega^{n-2}(S^{n-1}) , \langle Vp, \varphi\rangle=\{\begin{array}{l}\lim_{\epsilonarrow 0}\int_{[-\frac{1}{\epsilon},-\in]\cup[} ]\frac{\varphi(x)}{x}dx\int_{S^{n-1}}\pi_{1}^{*}(\frac{dr}{r})\wedge\varphi\end{array} ififn=2n\nearrow>3

.

Lemma 2.3 The 1-current Vp is well-defined and is \Gamma -invariant.

Proof. First suppose that n=2 . Writing a Taylor expansion near 0 and
an asymptotic expansion near \infty of a function \varphi , we can easily prove that
the limit in the definition of \langle Vp, \varphi\rangle exists. The continuity of Vp does not
cause problems either. The invariance of Vp by \gamma is a consequence of that
of the 1-form \frac{dx}{x} and of the symmetry of the domain of integration.

Suppose now that n\geq 3 . We can write, in \mathbb{R}^{n-1} seen as local map of
S^{n-1}=\mathbb{R}^{n-1}\cup\{\infty\} near 0:

\varphi=\sum_{i=1}^{n-1}\varphi_{i}dx_{1}\wedge
\wedge\overline{dx}_{i}\wedge

\wedge dx_{n-1}

where the \varphi_{i} are functions. Since

\pi_{1}^{*}(\frac{dr}{r})=\sum_{i=1}^{n-1}x_{i}dx_{i}

\sum_{i=1}^{n-1}x_{i}^{2}

it remains to prove that the function

\psi=\sum_{i=1}^{n-1}(-1)^{i-1}x_{i}\varphi_{i}

\sum_{i=1}^{n-1}x_{i}^{2}

is integrable near 0. We use the spherical coordinates, which can be written
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as:

\{\begin{array}{l}x_{1} =rcos\theta_{1}cos\theta_{2}\cdots cos\theta_{n-3}cos\theta_{n-2}x_{2} =rcos\theta_{1}cos\theta_{2}\cdots cos\theta_{n-3}sin\theta_{n-2}......x_{n-2}=rcos\theta_{l}sin\theta_{2}x_{n-1}=rsin\theta_{l}\end{array}

and whose jacobian is r^{n-2}\cos^{7\iota-3}\theta_{1}\cos^{n-4}\theta_{2}\cdots cos \theta_{n-3} . We get the fol-
lowing function (taking \theta_{n-1}=\frac{\pi}{2} ):

r^{n-3} \sum_{i=1}^{n-1}(-1)^{i-1} cos \theta_{1} . cos \theta_{n-i-1} sin \theta_{n-i}\cos^{n-3}\theta_{1}\cos^{n-4}\theta_{2}

. cos \theta_{n-3}\varphi_{i}(x_{1}, \ldots, x_{n-1}) .

Since n\geq 3 , this function is integrable near 0.
Changing the 1-form \pi_{1}^{*}(\frac{dr}{r}) by its conjugate by the inversion x \mapsto\frac{x}{||x||^{2}} ,

the integrability near infinity is true as well. Once again the continuity and
the \gamma_{a}-invariance of Vp can easily be checked. Finally, Vp is R-invariant
because R preserves the euclidian norm: \pi_{1}\circ R=\pi_{1} . \square

Proposition 2.4 The image Im L^{n-1} of the localization of \Gamma -invariant
distributions on S^{n-1} is the kernel of the linear form

\hat{\theta}=\{

\overline{\Theta} if n\geq 3

\hat{\theta}_{+}-\hat{\theta}_{-} if n=2

where \hat{\theta}_{+} and \hat{\theta}_{-} denote the two components of \overline{\Theta} when n=2 (cf. Lemma
1.2), associated respectively to the two connected components \mathbb{R}_{+}^{*} and \mathbb{R}_{-}^{*} of
D_{\Gamma}=\mathbb{R}^{*}

Proof. The case n\geq 3 is proved in [EMM] Theorem 3.2; we shall adapt
the proof here to the case n=2 . From Lemma 1.2 we have

ker \overline{\Theta}\subset{\rm Im} L^{1}

We also have ker \overline{\Theta}\subset ker\hat{\theta} and, more precisely

ker \hat{\theta}=ker\overline{\Theta}\oplus \mathbb{C}\frac{dx}{x} .

Indeed, \frac{dx}{x} is an invariant distribution on \mathbb{R}^{*} . ker \overline{\Theta} has codimension 1 in
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ker \hat{\theta}, and

\hat{\theta}_{+}(\frac{dx}{x})=\int_{\mathbb{R}^{*}}\frac{f_{+}(x)}{x}dx>0

but, choosing f_{-}(x)=f_{+}(-x) (which satisfies the conditions of Lemma 1.4
in [EMM] ) :

\hat{\theta}(\frac{dx}{x})=\int_{\mathbb{R}^{*}}\frac{f_{+}(x)}{x}dx-\int_{\mathbb{R}^{*}}\frac{f_{-}(x)}{x}dx=0 .

Since we have \frac{dx}{x}=L^{1}(Vp) where Vp is the element of C_{\Gamma}^{1}(S^{1}) defined
above, we conclude that \mathbb{C}\frac{dx}{x}\subset{\rm Im} L^{1} and so

ker \hat{\theta}\subset{\rm Im} L^{1} .

Now we prove the inclusion Im L^{1}\subset ker\hat{\theta} by constructing a generator
of a supplementary of ker \hat{\theta} in C_{\Gamma}^{1}(D_{\Gamma}) which does not belong to Im L^{1} .
Consider therefore the distribution

T= \sum_{m\in \mathbb{Z}}\delta_{a^{m}}
.

Since \hat{\theta}(T)=1 , T generates such a supplementary. One can then take
without modification the arguments of the proof of Theorem 3.2 in [EMM],
implying that T cannot be extended into an invariant distribution at 0 and
\infty . This ends the proof of Proposition 2.4. \square

Theorem 2.5 The cohomology of \Gamma -invariant currents on \partial \mathbb{H}^{n} is:

H^{p}(C_{\Gamma}^{\cdot}(S^{n-1}))=\{\begin{array}{l}\mathbb{C}[1] ifp=0\mathbb{C}[Vp] ifp=1andn\geq 3\mathbb{C}[\delta_{0}+\delta_{\infty}] ifp=n-10 else.\end{array} (n\geq 3)

H^{p}(C_{\Gamma}^{\cdot}(S^{1}))=\{\begin{array}{l}\mathbb{C}[1] ifp=0\mathbb{C}[Vp]\oplus \mathbb{C}[\delta_{0}+\delta_{\infty}] ifp=10 else.\end{array}

Proof. The case n=2 is special since the discontinuity domain is not
connected. First suppose that n=2 . We compute the critical exponent of
\Gamma using the complex structure of \mathbb{H}^{2} .
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We need the expression of the loxodromy \gamma_{a} in the unit disc D^{2} of \mathbb{C} .
Let’s denote by \sigma : z – \frac{z-i}{z+i} the biholomorphism taking the upper half
plane \mathbb{H}^{2} to D^{2} . Let m\in \mathbb{Z} ; we have

(a^{m}-1)w+a^{m}+1
\varphi_{a}^{m}=\sigma 0\gamma_{a}^{m}0\sigma^{-1} : w\mapsto

\overline{(a^{m}+1)w+a^{m}-1}
.

Choose w=0 to test the convergence of the absolute Poincar\’e series, by
computing the derivative of \varphi_{a}^{m} as a holomorphic function on D^{2} :

( \varphi_{a}^{m})’(0)=\frac{-4a^{m}}{(a^{m}-1)^{2}} .

For s>0 , we have

||(\varphi_{a}^{m})’(0)||^{s}\sim 4^{s}a^{|m|s}marrow\pm\infty .

which implies that \Phi_{s}(0) converges for each s>0 , so that \delta(\Gamma)=0 . Thus,
by Theorem 1.1, the localization of \Gamma-invariant 0-currents is surjective.
Proposition 2.4 says that the image of the localization of distributions is
the kernel of the linear form \hat{\theta}.

Consider the following diagram:

0 0 0
\downarrow \downarrow \downarrow

0 —-

C^{0}(r_{d1}S^{1}, \Lambda_{\Gamma})
\underline{i^{0}}c_{d}^{0}(r_{I}S^{1})

arrow L^{0}C_{\Gamma}^{0}(D_{\Gamma})
—- 0

0 —
C_{\Gamma}^{1}(S^{1}, \Lambda_{\Gamma})\underline{i^{1}}C_{\Gamma}^{1}(S^{1}) arrow L^{1} ker \hat{\theta} arrow 0

\downarrow \downarrow \downarrow

0 0 0.

and set:

C^{p}:=C_{\Gamma}^{p}(S^{1}, \Lambda_{\Gamma}) S^{p}:=C_{\Gamma}^{p}(S^{1}) \{

Q^{0}:=C_{\Gamma}^{0}(D_{\Gamma})

Q^{1}:=ker\hat{\theta}

Endowed with the differential d , C^{\cdot} et S^{\cdot} are differential complexes.
But we still have to prove that d(Q^{0})\subset Q^{1} to add the missing vertical
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arrow in the above diagram.
The sum \sum_{\gamma\in\Gamma}f_{+}\circ\gamma=1_{\mathbb{R}_{+}}* is locally finite, we can then write

\sum_{\gamma\in\Gamma}d(f_{+}\circ\gamma)=\sum_{\gamma\in\Gamma}\gamma^{*}(df_{+})=0 . Given T\in Q^{0} . we get
\sum_{\gamma\in\Gamma}\langle T, \gamma(*df_{+})\rangle=0 and, since T is \Gamma-invariant, \sum_{\gamma\in\Gamma}\langle T, df_{+}\rangle=0 . This
proves that \langle T, df_{+}\rangle=0 , i,.e.\hat{\theta}_{+}(dT)=\langle dT, f_{+}\rangle=0 .

The same holds for f_{-} and \hat{\theta}_{-} , which shows that dT\in ker\overline{\Theta}\subset Q^{1} .
Finally, we get the desired commutative diagram:

0 0 0
\downarrow \downarrow \downarrow

0 arrow
C^{0}\downarrow

rightarrow i^{0}

s_{1}^{0}

arrow L^{0}

Q^{0}\downarrow

arrow 0

0 arrow C^{1}
rightarrow i^{1}

S^{1} arrow L^{1}
Q^{1} arrow 0

\downarrow \downarrow \downarrow

0 0 0

where the rows are exact sequences and the columns are complexes. This
gives rise to an exact sequence in cohomology:

0arrow H^{0}(C^{\cdot})arrow H^{0}(S^{\cdot})i_{*}^{0}arrow H^{0}(Q^{\cdot})L_{*}^{0}arrow H^{1}(C^{\cdot})c^{0}arrow H^{1}(S^{\cdot})i_{*}^{1}

arrow H^{1}(Q^{\cdot})L_{*}^{1}arrow 0 .

From Lemma 2.1, we have C^{0}=0 and C^{1}=\mathbb{C}\delta_{0}\oplus \mathbb{C}\delta_{\infty} , implying that
H^{0}(C^{\cdot})=0 and H^{1}(C^{\cdot})=\mathbb{C}[\delta_{0}]\oplus \mathbb{C}[\delta_{\infty}] .

Since D_{\Gamma}arrow\Gamma\backslash D_{\Gamma} is a regular covering, C_{\Gamma}^{0}(D_{\Gamma}) and C_{\Gamma}^{1}(D_{\Gamma}) are re-
spectively isomorphic to C^{0}(\Gamma\backslash D_{\Gamma}) and C^{1}(\Gamma\backslash D_{\Gamma}) . By de Rham theorem,
the cohomology of C^{\cdot}(\Gamma\backslash D_{\Gamma}) is isomorphic to that of \Omega^{\cdot}(\Gamma\backslash D_{\Gamma}) . Here,
\Gamma\backslash D_{\Gamma} is made of two circles, its cohomology is isomorphic to \mathbb{C}^{2} in degrees
0 and 1.

From this it follows that H^{0}(Q^{\cdot})=\mathbb{C}[1_{\mathbb{R}_{+}}*]\oplus \mathbb{C}[1_{\mathbb{R}_{-}}*] . The generators of
H^{1}(C_{\Gamma}^{\cdot}(D_{\Gamma})) are the regular 1-currents \frac{dx}{x} on each connected component of
\mathbb{R}^{*} . We have \frac{dx}{x}=L^{1}(Vp)\in Q^{1} , but \frac{dx}{x}1_{\mathbb{R}_{+}}*\not\in ker \hat{\theta}={\rm Im} L^{1} , so H^{1}(Q^{\cdot})=

\mathbb{C}[\frac{dx}{x}] .
Finally, the exact sequence becomes:

0arrow H^{0}(S^{\cdot})arrow \mathbb{C}[1_{\mathbb{R}_{+}^{*}}]\oplus \mathbb{C}[1_{\mathbb{R}_{-}^{*}}]L_{*}^{0}arrow \mathbb{C}[c^{0}\delta_{0}]\oplus \mathbb{C}[\delta_{\infty}]
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arrow H^{1}(S^{\cdot})i_{*}^{1}arrow \mathbb{C}L_{*}^{1}[\frac{dx}{x}]arrow 0 .

The only closed 0-currents on a connected manifold being constants
(which are \Gamma-invariant), we get H^{0}(S^{\cdot})=\mathbb{C}[1] .

The distribution \delta_{0}+\delta_{\infty} is not exact (it does not vanish on constants),
so we have 0\neq \mathbb{C}[\delta_{0}+\delta_{\infty}]\subset H^{1}(S^{\cdot}) . Moreover, L^{1}(Vp)= \frac{dx}{x} . Since \frac{dx}{x} is
not exact in Q^{\cdot} and L^{\cdot} is a morphism of complexes, the distribution Vp is
not exact in the complex S^{\cdot} . So we get 0\neq \mathbb{C}[Vp]\subset H^{1}(S^{\cdot}) .

We have \mathbb{C}[\delta_{0}+\delta_{\infty}]\oplus \mathbb{C}[Vp]\subset H^{1}(S^{\cdot}) , and since the alternated sum of
dimensions in an exact sequence is 0, we have the inclusion H^{1}(S^{\cdot})\subset \mathbb{C}[\delta_{0}+

\delta_{\infty}]\oplus \mathbb{C}[Vp] . Without using the characterization of closed 0-currents, we
could also conclude by describing the connecting homomorphism c^{0} . This
argument will be detailed in the following proof of the theorem for n\geq 3 .
This ends the proof of the theorem when n=2 .

Now suppose n\geq 3 . As in the case n=2 , the critical exponent of \Gamma is
0. We get the following diagram, in which the rows are exact sequences:

0 0 0
\downarrow \downarrow \downarrow

0 arrow
C^{0}\downarrow

\underline{i^{0}}

s_{1}^{0}

arrow L^{0}

Q^{0}\downarrow

arrow 0

0 arrow
C^{1}\downarrow

\underline{i^{1}}

s_{1}^{1}

arrow L^{1}

Q^{1}\downarrow

arrow 0

\downarrow.\cdot

.
\downarrow.\cdot

.
\downarrow.\cdot

.

0 arrow C^{n-2} \underline{i^{n-2}} S^{n-2} arrow L^{n-2} Q^{n-2} arrow 0
\downarrow \downarrow \downarrow

0 arrow C^{n-1} rightarrow i^{n-1} S^{n-1} arrow L^{n-1} Q^{n-1} arrow 0
\downarrow \downarrow \downarrow

0 0 0

the complexes C^{\cdot} , S^{\cdot} et Q^{\cdot} being defined by

C^{p}=C_{\Gamma}^{p}(S^{n-1}, \Lambda_{\Gamma}) S^{p}=C_{\Gamma}^{p}(S^{n-1}) Q^{p}=\{

C_{\Gamma}^{p}(D_{\Gamma}) if p\in\{0, \ldots , n-2\}

ker \hat{\theta} if p=n-1 .
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We then know by Proposition 2.4 that the map L^{n-1} is surjective and
we prove as above that d(Q^{n-2})\subset Q^{n-1} . We get an exact sequence in
cohomology:

0arrow H^{0}(C^{\cdot})arrow H^{0}(S^{\cdot})i_{*}^{0}arrow H^{0}(Q^{\cdot})L_{*}^{0}arrow c^{0}

H^{1}(C^{\cdot})arrow H^{1}(S^{\cdot})i_{*}^{1}arrow H^{1}(Q^{\cdot})L_{*}^{1}arrow c^{1} . .

c^{p-1}arrow H^{p}(C^{\cdot})arrow H^{p}(S^{\cdot})i_{*}^{p}arrow H^{p}(Q^{\cdot})L_{*}^{p}arrow c^{p} (p\in\{2, , _{n}-3\})

c^{n-3}i_{*}^{n-2}L_{*}^{n-2}arrow H^{n-2}(C^{\cdot})arrow H^{n-2}(S^{\cdot})arrow H^{n-2}(Q^{\cdot})

c^{n-2}arrow H^{n-1}(C^{\cdot})arrow H^{n-1}(S^{\cdot})arrow i_{*}^{n-1}L_{*}^{n-1}H^{n-1}(Q^{\cdot})arrow 0

From Lemma 2.1, C^{p}=0 for p\in\{0, \ldots, n-2\} so H^{p}(C^{\cdot})=C^{p}\cap kerd

for each p, which implies that H^{p}(C^{\cdot})=0 for p\leq n-2 and H^{n-1}(C^{\cdot})=

\mathbb{C}[\delta_{0}]\oplus \mathbb{C}[\delta_{\infty}] .
Since D_{\Gamma}arrow\Gamma\backslash D_{\Gamma} is a regular covering the cohomology of C_{\Gamma}^{\cdot}(D_{\Gamma}) is

isomorphic to that of C^{\cdot}(\Gamma\backslash D_{\Gamma}) and then to the de Rham cohomology of
\Gamma\backslash D_{\Gamma} . A fundamental domain for the action of \Gamma on D_{\Gamma}=\mathbb{R}^{n-1}-\{0\} is:

R_{D}=\{x\in \mathbb{R}^{n-1}. a\leq||x||\leq 1\}\simeq S^{n-2}\cross[a, 1]

so \Gamma\backslash D_{\Gamma}\simeq S^{n-2}\cross S^{1} whose cohomology is isomorphic to \mathbb{C} in degrees 0, 1,
n-2 and n-1 if n\geq 4 , \mathbb{C} in degrees 0 and 2 and \mathbb{C}^{2} in degree 1 if n=3.
However, notice that a generator of H^{n-1}(C_{\Gamma}^{\cdot}(D_{\Gamma})) is the (n-1)-differential
form

\pi_{1}^{*}(\frac{dr}{r})\wedge\pi_{2}^{*}\omega

where \omega is the volume form on S^{n-2} . But this form does not belong to
ker \hat{\theta}. This implies that H^{n-1}(Q^{\cdot})=0 and the exact sequence becomes, for
n\geq 4 :

0arrow H^{0}(S^{\cdot})arrow \mathbb{C}L_{*}^{0}[1] - arrow 0arrow H^{1}(S^{\cdot})arrow \mathbb{C}L_{*}^{1}[\pi_{1}^{*}(\frac{dr}{r})] – 0

arrow , . – 0arrow H^{p}(S^{\cdot})arrow 0arrow\cdot\cdotarrow 0arrow H^{n-2}(S^{\cdot})

L_{*}^{n-2}c^{n-2}i_{*}^{n-1}arrow \mathbb{C}[\pi_{2}^{*}(\omega)]arrow \mathbb{C}[\delta_{0}]\oplus \mathbb{C}[\delta_{\infty}]arrow H^{n-1}(S^{\cdot})arrow 0 .

The first line implies that L_{*}^{0} et L_{*}^{1} are isomorphisms. Since \pi_{1}^{*}(\frac{dr}{r})=

L^{1}(Vp) , we have H^{1}(S^{\cdot})=\mathbb{C}[Vp] . The second line gives H^{p}(S^{\cdot})=0 for
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each p\in\{2, \ldots, n-3\} , and the third one implies that

dim H^{n-2}(S^{\cdot})+1=\dim H^{n-1}(S^{\cdot})\in\{1,2\} .

Now let’s describe the connecting homomorphism c^{n-2} : H^{n-2}(Q^{\cdot})arrow

H^{n-1}(C^{\cdot}) . Let T\in Q^{n-2} such that H^{n-2}(Q^{\cdot})=\mathbb{C}[T] , for example T=
\pi_{2}^{*}(\omega) . Since the localization L^{n-2} is surjective, there exists S\in S^{n-2} such
that T=L^{n-2}(S) . By commutativity of the diagram, we have

L^{n-1}(dS)=dT=0

so that dS\in kerL^{n-1}={\rm Im} i^{n-1} , that is dS\in C^{n-1}=\mathbb{C}\delta_{0}\oplus \mathbb{C}\delta_{\infty} . Then
there exist constants \alpha , \beta\in \mathbb{C} such that

dS=\alpha\delta_{0}+\beta\delta_{\infty} .

Moreover, we have \langle dS, 1\rangle=0=\alpha+\beta . Suppose \alpha=0 . Then S is closed
and, since H^{n-2}(C^{\cdot}(S^{n-1}))\simeq H^{n-2}(S^{n-1})=0 , there exists U\in C^{n-3}(S^{n-1})

such that S=dU. So we have:

\pi_{2}^{*}(\overline{\omega})=T=L^{n-2}(S)=L^{n-2} (dU)=d (L^{n-3}(U))

which is absurd. We can therefore conclude that c(H^{n-2}(S^{\cdot}))=\mathbb{C}[\delta_{0}-\delta_{\infty}] .
Finally, we have:

dim H^{n-1}(S^{\cdot})=rg(i_{*}^{n-1})=2-\dim ker(i_{*}^{n-1})=2-rg(c^{n-2})=1

which ends the proof in the case n\geq 4 .
Now suppose n=3. We have H^{0}(Q^{\cdot})=\mathbb{C}[1] , H^{1}(Q^{\cdot})= \mathbb{C}[\pi_{1}^{*}(\frac{dr}{r})]\oplus

\mathbb{C}[\pi_{2}^{*}(\omega)] and H^{2}(Q^{\cdot})=0 , the exact sequence gives

0arrow H^{0}(S^{\cdot})arrow \mathbb{C}[1]L_{*}^{0}arrow 0

0 arrow H^{1}(S^{\cdot})arrow \mathbb{C}L_{*}^{1}[\pi_{1}^{*}(\frac{dr}{r})]\oplus \mathbb{C}[\pi_{2}^{*}(\omega)]

arrow \mathbb{C}[c^{1}\delta_{0}]\oplus \mathbb{C}[\delta_{\infty}]arrow H^{2}(S^{\cdot})i_{*}^{2}arrow 0 .

Once again, H^{0}(S^{\cdot})=\mathbb{C}[1] , but dim H^{1}(S^{\cdot})=\dim H^{2}(S^{\cdot})\in\{1,2\} . As
before, we can show that the rank of the connecting homomorphism c^{1}

is equal to 1, implying that dim H^{1}(S^{\cdot})=\dim H^{2}(S^{\cdot})\in\{1,2\}=1 and
ending the proof of the theorem. \square

In the following statement, \pi_{1} is again the map \mathbb{H}^{n}arrow \mathbb{R}_{+}^{*} defined by
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\pi_{1}(x)=||x|| .

Corollary 2.6 The cohomology of harmonic coclosed automorphic forms
with respect to the group \Gamma generated by a single loxodromy of \mathbb{H}^{n} satisfies:

H^{p}(A_{hc}^{\cdot}(X))=\{\begin{array}{l}\mathbb{C}[\mathbb{C}[0\end{array}

1] if p=0

\pi_{1}^{*}(\frac{dr}{r})] if p=1

if p\geq 1 and p \neq\frac{n+1}{2} .

Proof When n is even, the Poisson transformation \Phi. is an isomorphism
(up to a multiplicative factor, which depends only on the dimension n of the
space and the degree p of the current) from the complex of invariant currents
on \partial \mathbb{H}^{n} “completed” over that of the harmonic coclosed automorphic forms.
Here, “completed” means that the augmentation of distributions \int:T\mapsto

\langle T, 1\rangle is appended to the complex. The Poisson transformation can thus be
written as:

0arrow C_{\Gamma}^{0}(S^{n-1})\underline{d}C_{\Gamma}^{1}(S^{n-1})arrow d1 . arrow C_{\Gamma}^{n-1}(S^{n-1})d\int_{arrow} \mathbb{C} arrow 0

\downarrow\Phi^{0} \downarrow\Phi^{1} \downarrow\Phi^{n-1} \downarrow\Phi^{n}

0arrow A_{hc}^{0}(X)arrow dA_{hc}^{1}(X)arrow d arrow d A_{hc}^{n-1}(X) arrow dA_{hc}^{n}(X)arrow 0 .

More precisely, the Poisson transformation \Phi^{p} (for p\leq n-1 ) is given
by a Schwartz kernel \phi_{p} which is a (p, n - 1 - p)-double form ( c/. [Rh] \S 7
p.35) on \mathbb{H}^{n}\cross\partial \mathbb{H}^{n} (for the explicit expression of \phi_{p} see [Gal] \S 3 Lemmas 1
and 3). Then, if T is a p-current on \partial \mathbb{H}^{n} , we have:

\Phi^{p}(T)(x)=\int_{\{x\}x\partial \mathbb{H}^{n}}\phi_{p}\wedge(1\otimes T)

(where \int still denotes the aug_{1nentation} of distributions, which extends the
integration of (n-1) forms on \partial \mathbb{H}^{n} ). Finally, \Phi^{n} is defined as \Phi^{n}(1)=\omega

where \omega is the hyperbolic volume form on \mathbb{H}^{n} .
The cohomology of harmonic coclosed automorphic forms is thus is0-

morphic to that of the complex D^{\cdot} defined by D^{p}=C_{\Gamma}^{p}(S^{n-1}) for p\in

\{0, \ldots, n-1\} and D^{n}=\mathbb{C} :

0arrow D^{0}arrow D^{1}arrow dd . 1 arrow D^{n-1}D^{n}d\int_{arrow}arrow 0 .
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When n is odd, the isomorphism H^{p}(A_{\dot{h}c}(X))\simeq H^{p}(D^{\cdot}) remains true
except for p= \frac{n+1}{2} ( c/. [Gal] Theorem 1).

For p\in\{0, \ldots, n-2\} , we have H^{p}(D^{\cdot})=H^{p}(C_{\Gamma}^{\cdot}(S^{n-1})) . Since \int\delta_{0}=

\int\delta_{\infty}=1 , the augmentation \int is a non-vanishing linear functionnal so
H^{n}(D^{\cdot})=0 .

The distribution \delta_{0}+\delta_{\infty} (which generates H^{n-1}(C_{\Gamma}^{\cdot}(S^{n-1})) when n\geq 4 )
does not belong to ker \int . so H^{n-1}(D^{\cdot})=0 for n\geq 4 . If n=2 , H^{1}(C_{\Gamma}^{\cdot}(S^{1}))

is generated by \delta_{0}+\delta_{\infty} , which is not closed for the augmentation \int.
, and

by Vp which vanishes on constants (as the integral of an odd function on a
0-centered interval). We then have H^{1}(D^{\cdot})=\mathbb{C}[Vp] .

Now we determine the generators of the cohomology of the complex
A_{hc}^{\cdot}(X) . It is clear that the constants are 0-closed and coclosed automorphic
forms. Then we have H^{0}(A_{hc}(X))=\mathbb{C}[1] . It remains to prove that the 1-
fo r \pi_{1}^{*}(\frac{dr}{r}) (which is \Gamma-invariant) is automorphic, closed and coclosed. It
is trivially closed and a direct computation proves that, where \langle |\rangle denotes
the euclidian scalar product:

\forall x\in \mathbb{H}^{n} , \forall u\in T_{x}\mathbb{H}^{n} , \pi_{1}^{*}(\frac{dr}{r})_{x}.u=\frac{\langle x|u\rangle}{||x||^{2}}

so \pi_{1}^{*}(\frac{dr}{r}) has moderate growth.
Now let’s show that its codifferential is zero by using \underline{the} * Hodge

operator defined on 1-forms by*dx_{i}=(-1)^{i-1}\frac{1}{x_{n}^{n-2}}dx_{1}\wedge\cdot\cdot\wedge dx_{i}\wedge\cdots\wedge dx_{n} .
We have:

d* \pi_{1}^{*}(\frac{dr}{r})

=d*[ \frac{1}{||x||^{2}}\sum_{i=1}^{n}x_{i}dx_{i}]

=d[ \frac{1}{x_{n}^{n-2}||x||^{2}}\sum_{i=1}^{n}(-1)^{i-1}x_{i}dx_{1}\wedge\cdot\cdot\wedge\overline{dx}_{i}\wedge \wedge clx_{n}]

=d( \frac{1}{x_{n}^{n-2}||x||^{2}})\wedge\sum_{i=1}^{n}(-1)^{i-1}x_{i}dx_{1}\wedge
\wedge\overline{dx}_{i}\wedge\cdot\cdot\wedge dx_{n}

+ \frac{1}{x_{n}^{n-2}||x||^{2}}\sum_{i=1}^{n}(-1)^{i-1}dx_{i}\wedge dx_{1}\wedge
\wedge\overline{dx}_{i}\wedge\cdot\cdot\wedge dx_{n}
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=(- \frac{2}{x_{n}^{n-2}||x||^{4}}\sum_{i=1}^{n}x_{i}dx_{i})\wedge(\sum_{i=1}^{n}(-1)^{i-1}x_{i}dx_{1}\wedge
\wedge\overline{dx}_{i}\wedge

\cdot . \wedge dx_{n})

-( \frac{(n-2)}{x_{n}^{n-1}||x||^{2}}dx_{n})\wedge(\sum_{i=1}^{n}(-1)^{i-1}x_{i}dx_{1}\wedge \cdot . \wedge\overline{dx}_{i}\wedge\cdot\cdot\wedge dx_{n})

+ \frac{n}{x_{n}^{n-2}||x||^{2}}dx_{1}\wedge
\wedge dx_{n}

= \frac{1}{x_{n}^{n-2}||x||^{2}}[-2-(n-2)+n]dx_{1}\wedge \wedge dx_{n}

=0.

Consequently, \pi_{1}^{*}(\frac{dr}{r})\in A_{hc}^{1}(X) . The 1-form \pi_{1}^{*}(\frac{dr}{r}) is not exact because
its primitives are the functions x\mapsto log ||x||+K with K constant, and that
none of those functions is \Gamma-invariant. \square

When n is even, the generators of the cohomology of the complex
A_{hc}^{\cdot}(X) are also the generators of the cohomology of X (which has the
homotopy type of a circle), the inclusion A_{hc}^{\cdot}(X)arrow\Omega^{\cdot}(X) is therefore a
quasi-isomorphism.

Corollary 2.7 Conjecture 0.1 holds for a group of loxodromies of the hy-
perbolic space of even dimension.

Now consider an elementary Kleinian group \Gamma with hyperbolic type.
From [Ra] Theorem 5.5.8, it contains a subgroup \Gamma_{0} with finite index gen-
erated by a loxodromy. For p\in\{0, \ldots, n-1\} , let m^{p} be the map:

m^{p} : C_{\Gamma_{0}}^{p}(S^{n-1}) arrow C_{\Gamma}^{p}(S^{n-1})

T \mapsto \frac{1}{h}\sum_{i=1}^{h}\gamma_{i}^{*}T

where h=[\Gamma : \Gamma_{0}] and \{\gamma_{1}, \ldots\gamma_{h}\} is a system of representatives of right
cosets modulo \Gamma_{0} .

Lemma 2.8 The map m^{p} is well defined, does not depend on the choice

of the representatives \gamma_{1} , \ldots , \gamma_{h} and defines a retraction of complexes and
then a surjection in cohomology.

Proof. The fact that m^{p} does not depend on the system of representa-
tives is clear and the \Gamma-invariance of m^{p}(T) follows from the fact that the
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composition of elements of \Gamma induces a permutation of right cosets modulo
\Gamma_{0} .

The map m. is a morphism of complexes because all the \gamma_{i}^{*} commute
with the differential d. Finally, it is clear that m^{p}(T)=T if T is F-invariant.

\square

Theorem 2.9 If n\geq 3 , the average m. is a quasi-isomorphism from
C_{\Gamma_{0}}^{\cdot}(S^{n-1}) on C_{\Gamma}^{\cdot}(S^{n-1}) . Particularly, the cohomology of \Gamma -invariant cur-

rents on S^{n-1} is:

H^{p}(C_{\Gamma}^{\cdot}(S^{n-1}))=

/\mathbb{C}[1] if p=0
\mathbb{C}[m^{1}(Vp)] if p=1
\mathbb{C}[\delta_{0}+\delta_{\infty}] if p=n-1

\backslash 0 else.

Proof By using a conjugation in Iso^{+}(\mathbb{H}^{n}) we can suppose that \Lambda_{\Gamma}=

\{0, \infty\} . We just apply the average m^{p} to each of the generators of the
cohomology of the complex C_{\Gamma_{0}}^{\cdot}(S^{n-1}) listed in Theorem 2.5. Lemma 2.8
then implies that their images generate the cohomology of the complex
C_{\dot{\Gamma}}(S^{n-1}) .

Since \Gamma is an elementary group of hyperbolic type whose finite orbit is
\{0, \infty\} , the distribution \delta_{0}+\delta_{\infty} is \Gamma-invariant, thus equal to its average.

Suppose now p=1 . Because \overline{\omega} is the Euclidean volume form on S^{n-2} ,
\pi_{2}^{*}(\overline{\omega}) is \Gamma_{0}-invariant. Indeed, we have, for \gamma\in\Gamma_{0} :

\gamma^{*}(\pi_{2}^{*}(\overline{\omega}))=(\pi_{2}0\gamma)^{*}(\overline{\omega})

with \pi_{2}0\gamma=\pi_{2} . Since R is an euclidian isometry, \pi_{2}^{*}(\overline{\omega}) is also R-invariant.
We can then consider its average \omega=m^{n-2}(\pi_{2}^{*}(\overline{\omega})) . Then we get

\langle m^{1}(Vp), \omega\rangle=\langle Vp, m^{n-2}(\omega)\rangle=\langle Vp, \omega\rangle

= \frac{1}{h}\sum_{\gamma\in\Gamma_{0}\backslash \Gamma}\int_{\mathbb{R}^{n-1}-\{0\}}\pi_{1}^{*}(\frac{dr}{r})\wedge\gamma^{*}(\pi_{2}^{*}(\overline{\omega}))

Since every \gamma\in\Gamma preserves the orientation, each of these integrals is that
of a positive function. We can then conclude that \langle Vp, \omega\rangle\neq 0 , thus m_{*} is
an isomorphism. \square

The result does not hold for n=2, as we shall show. We begin with
the characterization of elementary discrete subgroups of Conf^{+}(S^{1}) of hy-
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perbolic type.

Proposition 2.10 Every elementary discrete subgoup of Iso^{+}(\mathbb{H}^{2}) of hy-
perbolic type is conjugated to one of the following groups:

o an infinite cyclic group \Gamma=\langle\gamma_{a}\rangle generated by z\mapsto az with a\in ]0, 1 [;
\circ a group generated by such a map and the inversion \sigma : z \mapsto-\frac{1}{z} .

Proof. This proposition follows from the fact that, among the elements
of PSL (2, \mathbb{R}) , the only homographies preserving \{0, \infty\} of finite order are
identity and \sigma . \square

Proposition 2.11 Let \Gamma=\langle\gamma_{a}, \sigma\rangle the elementary Kleinian group of hy-
perbolic type generated by \gamma_{a} : z\mapsto az and the inversion \sigma : z \mapsto-\frac{1}{z} . The
cohomology of \Gamma -invariant currenls on S^{1} is

H^{p}(C_{\Gamma}^{\cdot}(S^{1}))=\{\begin{array}{l}\mathbb{C}[1]\mathbb{C}[\delta_{0}+\delta_{\infty}]0\end{array} ifp=0ifp=1else

.

Proof. From Lemma 2.8, this cohomology is generated by the average of
each of the generators of the cohomology of \gamma_{a}-invariant currents listed in
Theorem 2.5. In the same manner, 1 and \delta_{0}+\delta_{\infty} are \Gamma-invariant thus
equal to their image under m. . But an elementary computation shows that
\sigma^{*}Vp=-Vp , implying that m^{1}(Vp)=0 . \square

As before, the average map on \Gamma_{0}-invariant forms on \mathbb{H}^{n}m. : \Omega^{\cdot}(X_{0})arrow

\Omega^{\cdot}(X) is defined by

m^{p}( \omega)=\frac{1}{h}\sum_{\overline{\gamma}\in\Gamma_{0}\backslash \Gamma}\gamma^{*}(\omega)

and it can be proved likewise that it is well defined and is a retraction of
complexes.

Corollary 2.12 If n\geq 3 , the complex of harmonic coclosed automorphic
forms with respect to an elementary Kleinian group of hyperbolic type has
the same p-cohomology as a circle for p \neq\frac{n+1}{2} . More precisely, such a

group is conjugated to a group \Gamma satisfying
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H^{p}(A_{hc}^{\cdot}(X))=\{

\mathbb{C}[1] if p=0
\mathbb{C}[m^{1}(\pi_{1}^{*}(\frac{dr}{r}))] if p=1

0 if p\geq 1 and p \neq\frac{n+1}{2} .

Proof. We can show in the same manner as in Corollary 2.6 that the p-
cohomology space (p \neq\frac{n+1}{2}) of the complex A_{hc}^{\cdot}(X) is that of S^{1} . To
show that a generator of H^{1}(A_{hc}^{\cdot}(X)) is the one we announced, we only
need to see that it is a closed and coclosed automorphic form that is not
exact; this follows from the fact that the Poisson transformation is linear
and commutes to hyperbolic isometries and from the same properties of the
1-current m^{1}(Vp) . \square

The same method applied to the result of Proposition 2.11 yields the
following result.

Corollary 2.13 The cohomology of harmonic coclosed automorphic forms
with respect to an elementary Kleinian group with hyperbolic type, which is
not infinite cyclic, is the cohomology of a point:

H^{p}(A_{hc}^{\cdot}(X))=\{

\mathbb{C}[1] if p=0
0 else.

Corollary 2.14 If n is even, Conjecture 0.1 holds for an elementary
Kleinian group \Gamma\subset Iso^{+}(\mathbb{H}^{n}) with hyperbolic type.

Proof. The morphism of complexes m. induces a surjection from H^{p}(X_{0})

to H^{p}(X) , with X_{0}=\Gamma_{0}\backslash \mathbb{H}^{n} . Since X_{0} has the homotopy type of a circle,
we have H^{p}(X)=0 for p\geq 2 and dim H^{p}(X)\leq 1 for p\in\{0,1\} . Of
course H^{0}(X)=\mathbb{C}[1] and we only need to examine p=1 . Suppose once
again that \Gamma_{0} is a group of loxodromies fixing 0 and \infty , conjugating \Gamma in
Iso^{+}(\mathbb{H}^{n}) if needed. Then H^{1}(X_{0})= \mathbb{C}[\pi_{1}^{*}(\frac{dr}{r})] so H^{1}(X) is generated by
m^{1}( \pi_{1}^{*}(\frac{dr}{r})) . It is \^a so a generator of the cohomology of A_{\dot{h}c}(\mathbb{H}^{n}) for n\geq 4

as seen at Corollary 2.12.
Suppose n=2. Since the Poisson transformation is linear and com-

mutes with hyperbolic isometries, it also commutes with the average map
m^{1} , so we have

m^{1}( \pi_{1}^{*}(\frac{dr}{r}))=m^{1}(\Phi^{1}(Vp))=\Phi^{1}(m^{1}(Vp))=0
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from Proposition 2.11.
In both cases, the inclusion A_{hc}^{\cdot}(X)arrow\Omega^{\cdot}(X) is a quasi-isomorphism.

\square

3. The case of a translation in \mathbb{H}^{2}

Now let \Gamma be the Kleinian group generated by the translation t:z\mapsto

z+b in the upper half space \mathbb{H}^{n} , with b= (b_{1}, \ldots, b_{n-1},0)\in \mathbb{R}^{n-1}\cross\{0\}

fixed. The limit set of \Gamma is \Lambda_{\Gamma}=\{\infty\} and its domain of discontinuity is
D_{\Gamma}=\mathbb{R}^{n-1} . A fundamental domain for the action of \Gamma on \mathbb{H}^{n} is the region

B= \{(x_{1}, . , _{x_{n})}\in \mathbb{H}^{n}. \forall i\in\{1, , n-1\}, 0\leq x_{i}\leq b_{i}\}

The quotient X=\Gamma\backslash \mathbb{H}^{n} has infinite volume and the homotopy type of a
circle.

It is well known that every elementary Kleinian group \Gamma\subset Iso^{+}(\mathbb{H}^{2})

with parabolic type is conjugated to such a group ( c/. [Fre] Lemma 1.9
p. 12).

The following lemma holds in every dimension and can be proved by
direct computation.

Lemma 3.1 The critical exponent of the group \Gamma i,s

\delta(\Gamma)=\frac{1}{2} .

Definition 3.2 Let s= (s_{1}, \ldots, s_{n-1})\in N^{n-1} be a multi-index whose
length is denoted by |s| and let \xi be a (n – 1-p)-tangent vector at 0 to
\mathbb{R}^{n-1} . We define

D^{s}\delta_{\xi}^{\infty}:=\sigma^{*}(D^{s}\delta_{\xi})

where \sigma is the inversion x \mapsto\frac{x}{||x||^{2}} and D^{s} the partial derivative operator

\frac{\partial^{|s|}}{\partial x_{1}^{s_{1}}\cdots\partial x_{n-1}^{s_{n-1}}} .

These are the partial derivatives of Dirac p-currents at \infty . Of course,
the linear combinations of these currents are the only currents on S^{n-1} with
support in \{\infty\} .

From now on, we assume that n=2 and, without loss of generality, we
can also suppose b=1 .
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Lemma 3.3 The \Gamma -invariant currents on S^{1}=\partial \mathbb{H}^{2} with support in the
limit set \Lambda_{\Gamma}=\{\infty\} are:

C_{\Gamma}^{p}(S^{1}, \Lambda_{\Gamma})=\{\begin{array}{l}\mathbb{C}\delta_{\infty}\oplus \mathbb{C}\delta_{\infty}’\mathbb{C}\delta_{\frac{\infty_{\partial}}{\partial x}}\end{array} ififp=0p=1
.

Proof. We shall find out which of the currents introduced at Definition 3.2
are invariant by the translation t , or, equivalently, which of their images by
\sigma^{*} are invariant by \tau=\sigma\circ t\circ\sigma .

First let’s assume p=1 : we are looking for derivatives of \delta_{0} which
are \tau-invariant. We use a result about the derivatives of a composition of
functions, for which the proof is immediate by induction: for m\in \mathbb{N}^{*} ,

( \varphi 0\tau)^{(m)}=\sum_{p=1}^{m}a_{p}^{m}\varphi^{(p)}\circ\tau

where each coefficient a_{p}^{m} is a homogeneous polynomial of degree p in
\tau’ , \tau’ , . , \tau^{(m-p+1)} . More precisely, we have, for m\geq 1 :

\{\begin{array}{l}a_{l}^{m}=\tau^{(nl)} a_{m}^{m}=(\tau’)^{m}\forall p\in\{2,. ,m\}, a_{p}^{m+1}=(a_{p}^{m})’+a_{p-1}^{m}\tau’a_{m-1}^{m}=\frac{m(m-1)}{2}(\tau’)^{m-2_{\mathcal{T}}},,sim\nearrow>2.\end{array}

The computation of \tau^{*}\delta_{0}^{(m)} gives, for m\geq 1 , \tau^{*}\delta_{0}^{(m)}=\sum_{p=1}^{m} (-1)^{m-p}

a_{p}^{m}(0)\delta_{0}^{(p)} In particular, the vector subspace V=\oplus_{p=1}^{m}\mathbb{C}\delta_{0}^{(p)} is stable by
\tau^{*} .

Since \tau’(0)=1 and \tau’(0)=-2 , we get a_{m}^{m}(0)=1 and a_{m-1}^{m}(0)=

-m(m-1) . Hence the matrix of the endomorphism of V induced by \tau with
respect to the basis (\delta_{0}^{(p)})_{p=1}^{m} llas the following form:

M=(\begin{array}{l}1 -2 *0 1 -600... 00... 01... || ..*....0 0 0 0\end{array} -m(m_{1}*.\cdot..\cdot. _{-1)}*)
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The matrix M-id_{V} has rank m-1 so the subspace associated to the
eigenvalue 1 is generated by \delta_{\infty}’ . This ends the proof of C_{\Gamma}^{1}(S^{1}, \Lambda_{\Gamma})=\mathbb{C}\delta_{\infty}\oplus

\mathbb{C}\delta_{\infty}’ .
Now assume p=0. Let m\in N and T=(\delta_{\partial}^{\infty})^{(m)} . An elementary

computation shows that dT=-\delta_{\infty}^{(m+1)} . Since the^{\overline{\partial x}}spacesC_{\Gamma}^{p}(S^{1}, \Lambda_{\Gamma}) form
a differential complex, for T to be \Gamma-invariant, it is necessary for dT to be
invariant too. From the case p=1 studied above we have m+1\in\{0,1\} ,
implying m=0.

Conversely, if \omega\in\Omega^{1}(S^{1}) is locally expressed as \omega=\varphi dx , we get

\langle\delta_{\frac{\partial}{\partial x}}, \tau^{*}\omega\rangle=\langle\delta_{\frac{\partial}{\partial x}}.’\varphi 0\tau\tau’dx\rangle

=\varphi\circ\tau(0)\tau’(0)=\varphi(0)=\langle\delta_{0}, \varphi\rangle=\langle\delta_{\frac{\partial}{\partial x}}, \omega\rangle

which shows that \delta_{\frac{\partial}{\partial x}} is \tau-invariant. \square

Lemma 3.4 The cohomology of \Gamma -invariant currents on S^{1} with support
in \Lambda_{\Gamma}=\{\infty\} is:

H^{p}(C_{\Gamma}^{\cdot}(S^{1}, \Lambda_{\Gamma}))=\{

\mathbb{C}[\delta_{\infty}] if p=1
0 else.

Proof. The distribution \delta_{\infty} is not exact because it does not vanish on
constant functions. But d(\delta_{\frac{\infty_{\partial}}{\partial x}})=-\delta_{\infty}’ as seen in the previous lemma. This
implies that [\delta_{\infty}’]=0 and that

\delta_{\frac{\infty_{\partial}}{\partial x}} is not closed. \square

Definition 3.5 The finite part of dx , denoted by Pf(dx) , is defined for
every \varphi\in\Omega^{0}(S^{1}) by

\langle Pf(dx), \varphi\rangle=\lim_{Aarrow\infty}\int_{-A}^{A}[\varphi(x)-\varphi(\infty)]dx .

Lemma 3.6 Pf(dx) is a \Gamma -invariant distribution on S^{1} .

Proof. By using an asymptotic expansion of a function \varphi\in\Omega^{0}(S^{1}) near \infty ,
we can show that the limit of the integral exists a,sAarrow\infty . The continuity
of Pf(dx) for the Schwartz topology is not a problem either.

This expansion also proves that the integrals

\int_{A}^{A+1}[\varphi(x)-\varphi(\infty)]dx and \int_{-A+1}^{-A}[\varphi(x)-\varphi(\infty)]dx
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tend to 0 as Aarrow\infty , implying the invariance of Pf(dx) by t^{*} \square

Proposition 3.7 The localization map of \Gamma -invariant distributions L^{1} :
C_{1^{\urcorner}}^{1}(S^{1}) – C_{\Gamma}^{1}(D_{\Gamma}) is surjective.

Proof. The group \Gamma acts freely on D_{\Gamma}=\mathbb{R} and the quotient \Gamma\backslash D_{\Gamma}\simeq S^{1}

is compact and connected so, by Lemma 1.2, we have ker \hat{\theta}\subset{\rm Im} L^{1} where
\hat{\theta}:T\mapsto\langle T, f\rangle . Moreover, we have

C_{\Gamma}^{1}(\mathbb{R})=ker\hat{\theta}\oplus \mathbb{C}dx .

Indeed, f is continuous, positive so \hat{\theta}(dx)>0 . Because the subspace ker \hat{\theta}

is an hyperplane of C_{\Gamma}^{1}(\mathbb{R}) , dx generates a supplementary.
But Pf(dx) is an element of C_{\Gamma}^{1}(S^{1}) satisfying L^{1}(Pf(dx))=dx then

this implies that \mathbb{C}dx\subset{\rm Im} L^{1} , and Im L^{1}=C_{\Gamma}^{1}(\mathbb{R}) . \square

Theorem 3.8 The cohomology of \Gamma -invariant currents on \partial \mathbb{H}^{2} is

H^{p}(C_{\Gamma}^{\cdot}(S^{1}))=\{\begin{array}{l}\mathbb{C}[1]\mathbb{C}[\delta_{\infty}]\oplus \mathbb{C}[Pf(dx)]0\end{array} ifp=1ifp=0else

.

Proof. By Lemma 3.1, \delta(\Gamma)=\frac{1}{2} so the localization map of p-currents with
p<2-1- \delta(\Gamma)=\frac{1}{2} , i.e . p=0, is surjective. By Proposition 3.7, the
localization of distributions is also surjective. The situation is that of the
following commutative diagram, where the rows are exact sequences:

0 0 0

\downarrow \downarrow \downarrow

0 arrow C^{0}
c_{--}\underline{i^{0}}

S^{0} arrow L^{0}
Q^{0} arrow 0

\downarrow d \downarrow d \downarrow d

0 arrow C^{1}
rightarrow i^{1}

S^{1} arrow L^{1}
Q^{1} arrow 0

\downarrow 0 \downarrow 0 \downarrow 0
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The complexes C^{\cdot} , S^{\cdot} and Q^{\cdot} respectively denote C_{\Gamma}^{\cdot}(S^{1}, \Lambda_{\Gamma}) , C_{\Gamma}^{\cdot}(S^{1}) and
C_{\Gamma}^{\cdot}(D_{\Gamma}) . This induces an exact sequence in cohomology:

0arrow H^{0}(C^{\cdot})arrow H^{0}(S^{\cdot})i_{*}^{0}arrow H^{0}(Q^{\cdot})L_{*}^{0}arrow H^{1}(c^{0}C^{\cdot})arrow H^{1}(S^{\cdot})i_{*}^{1}

arrow H^{1}(Q^{\cdot})L_{*}^{1}arrow 0 .

Lemma 3.4 gives the cohomology of the complex C^{\cdot} and the cohomology
of Q^{\cdot} is isomorphic to the de Rham cohomology of the manifold \Gamma\backslash D_{\Gamma} . It
can then easily be shown that H^{0}(Q^{\cdot})=\mathbb{C}[1] and H^{1}(Q^{\cdot})=\mathbb{C}[dx] (by
noticing that dx is not exact in Q^{\cdot} ). The exact sequence then reduces to

0arrow H^{0}(S^{\cdot})arrow \mathbb{C}L_{*}^{0}[1]arrow \mathbb{C}c^{0}[\delta_{\infty}]arrow H^{1}(S^{\cdot})i_{*}^{1}arrow \mathbb{C}L_{*}^{1}[dx] –0

The constants are the only closed 0-currents on S^{1} and are F-invariant,
so H^{0}(S^{\cdot})=\mathbb{C}[1] . The map L_{*}^{0} is thus an isomorphism. The connecting
homomorphism is therefore zero by exactness of the sequence and the fact
that i_{*}^{1} is injective. Since L_{*}^{1}([Pf(dx)])=[dx] , we have H^{1}(S^{\cdot})=\mathbb{C}[\delta_{\infty}]\oplus

\mathbb{C}[Pf(dx)] . \square

Corollary 3.9 The cohomology of harmonic coclosed automorphic forms
with respect to the group \Gamma generated by a translation of \mathbb{H}^{2} is:

H^{p}(A_{hc}^{\cdot}(X))=\{\begin{array}{l}\mathbb{C}[1]\mathbb{C}[dx]0\end{array} ifp=0ifp=1else

.

In particular, Conjecture 0.1 holds in this case.

The proof is similar to that of Corollary 2.6.

Final note:
by a method of average very similar to the one detailed in paragraph 2,

it is easy to compute the cohomologies when \Gamma is elementary of elliptic type
( i.e . finite) and show that Conjecture 0.1 also holds in this case.

P.-Y. Gaillard gave me a proof of Conjecture 0.1 for the quotient of a
simple non compact Lie group G with rank 1 and trivial center by a maximal
compact subgroup and for a finite subgroup \Gamma of G . He uses the theory of
representations and the theory of Casselman-Wallach.
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