On the areas of geodesic triangles on a surface

Eiji Kaneda and Kazuhiro Kiso

(Received October 15, 1999)

Abstract

This paper treats geodesic triangles on two-dimensional orientable Riemannian manifolds M. Fixing two vertices A and B, we can consider the area and the interior angles of the geodesic triangle $\triangle P A B$ as smooth functions of P. Applying the Laplace operator to these functions, we obtain formulas for the area and interior angles of $\triangle P A B$. It is shown that if M is of constant curvature, the area and interior angles of geodesic triangles are harmonic.

Key words: Riemannian geometry, area of geodesic triangle, Laplace operator.

1. Notations and results

In the paper [1] they proved by direct calculations that the area function of geodesic triangles on the two dimensional sphere S^{2} is harmonic. However, this is not true for general surfaces M. In this paper, we will show formulas for the area and interior angles of geodesic triangles in M (Theorem 1), which extend the result in [1].

Let (M, g) be a two-dimensional orientable Riemannian manifold. Let A, B be two points of M. We assume that there is a geodesically convex open set D in M containing A and B. (Recall that an open set D in M is called geodesically convex if any two points P, Q of D can be joined by a unique geodesic segment $P Q$ in D, which gives the distance between P and Q.) Let $P \in D$. We denote by $\triangle P A B$ the compact, simply connected subset of D bounded by geodesic segments $P A, A B$ and $B P$. Such $\triangle P A B$ is called a small geodesic triangle.

Fixing A and B, we can consider the area of $\triangle P A B$ as a function of $P \in D$, which is denoted by $S(P)$. Similarly, the angle $\angle A P B$ may also be considered as a function of $P \in D$, which is denoted by $\Omega(P)$. We show in Theorem 1 the formula obtained by applying the Laplace operator to S and Ω.

To state Theorem 1 we prepare some notations concerning the geodesic polar coordinates around A and B. Let $\{U,(r, \theta)\}$ (resp. $\{V,(s, \varphi)\}$) be the
geodesic polar coordinate centered at A (resp. B). Since D is geodesically convex, both U and V cover D, i.e., $D \subset U \cap V$. We assume that the arguments θ and φ are normalized in the following manner: (1) the 2vectors $\frac{\partial}{\partial r} \wedge \frac{\partial}{\partial \theta}$ and $\frac{\partial}{\partial s} \wedge \frac{\partial}{\partial \varphi}$ define the same orientation on D, (2) $\theta(B)=0$, $\varphi(A)=\pi$.

Let $J=J(r, \theta)$ (resp. $H=H(s, \varphi))$ be the norm of the vector field $\frac{\partial}{\partial \theta}$ (resp. $\frac{\partial}{\partial \varphi}$), i.e.,

$$
J(r, \theta)=\sqrt{g\left(\frac{\partial}{\partial \theta}, \frac{\partial}{\partial \theta}\right)}, \quad H(s, \varphi)=\sqrt{g\left(\frac{\partial}{\partial \varphi}, \frac{\partial}{\partial \varphi}\right)} .
$$

Then Theorem 1 can be stated as follows:
Theorem 1 Let (M, g) be a two-dimensional orientable Riemannian manifold. Let D be a geodesically convex open set in M and let $\triangle P A B$ be a small geodesic triangle in D. Set $\varepsilon(P)=1$ if $0<\theta(P)<\pi$ and $\varepsilon(P)=-1$ if $\pi<\theta(P)<2 \pi$. Then it holds
(1) $\Delta S(P)=\varepsilon(P)\left\{\frac{1}{J} \frac{\partial}{\partial \theta}\left(\frac{1}{J} L_{A}(J)\right)(P)-\frac{1}{H} \frac{\partial}{\partial \varphi}\left(\frac{1}{H} L_{B}(H)\right)(P)\right\}$.

$$
\begin{equation*}
\Delta \Omega(P)=-\varepsilon(P)\left(\frac{1}{J} \frac{\partial^{2} \log J}{\partial r \partial \theta}(P)-\frac{1}{H} \frac{\partial^{2} \log H}{\partial s \partial \varphi}(P)\right) \tag{2}
\end{equation*}
$$

In the formulas in Theorem 1, for a differentiable function f on D we mean by $L_{A}(f)$ and $L_{B}(f)$ the functions defined by

$$
\begin{aligned}
& L_{A}(f)(Q)=\int_{A Q} f d r=\int_{0}^{r(Q)} f(r, \theta(Q)) d r, \\
& L_{B}(f)(Q)=\int_{B Q} f d s=\int_{0}^{s(Q)} f(s, \varphi(Q)) d s,
\end{aligned}
$$

where Q is a point of D and $A Q$ (resp. $B Q$) is the geodesic segment joining A (resp. B) to Q.

It is remarkable that $\Delta S(P)$ can be calculated by the local properties of (M, g) around geodesic segments $A P$ and $B P$. More strongly, $\Delta \Omega(P)$ is calculated by only the local property of (M, g) around P.

As a corollary of Theorem 1 we have
Corollary Assume that $\frac{\partial J}{\partial \theta}=0$ holds on a neighborhood of AP and that $\frac{\partial H}{\partial \varphi}=0$ holds on a neighborhood of BP. Then, it holds $\Delta S=\Delta \Omega=0$ on
a neighborhood of P. In particular, if (M, g) is of constant curvature, then S and Ω are harmonic.

Theorem 1 is also valid for somewhat large geodesic triangles not contained in any geodesically convex set in M. We will prove this fact in $\S 4$.

2. Bi-angular coordinates for geodesic triangles

We now introduce a new coordinate called the bi-angular coordinate, which is, in a sense, suitable to parametrize geodesic triangles $\triangle P A B$.

Let D_{+}and D_{-}be the domains in D given by

$$
\begin{aligned}
& D_{+}=\{(r, \theta) \in D \mid 0<\theta<\pi\} \\
& D_{-}=\{(r, \theta) \in D \mid \pi<\theta<2 \pi\}
\end{aligned}
$$

We define a locally constant function ε on $D_{+} \cup D_{-}$by setting $\varepsilon(P)=1$ if $P \in D_{+}, \varepsilon(P)=-1$ if $P \in D_{-}$. Let $P \in D_{+} \cup D_{-}$. We denote by $\xi(P)$ and $\eta(P)$ the interior angles at the vertexes A and B, respectively, i.e., $\xi(P)=\angle P A B$ and $\eta(P)=\angle P B A$. Since D is geodesically convex, it can be easily shown that the angle $\Omega(P)=\angle A P B$ defined in $\S 1$ satisfies $0<\Omega(P)<\pi$.

We first prove
Lemma 2 On the domain $D_{+} \cup D_{-}$, it holds

$$
\begin{align*}
& \text { (1) } \frac{\partial}{\partial s}=\cos \Omega \frac{\partial}{\partial r}+\varepsilon \frac{\sin \Omega}{J} \frac{\partial}{\partial \theta}, \quad \frac{\partial}{\partial \varphi}=H\left(-\varepsilon \sin \Omega \frac{\partial}{\partial r}+\frac{\cos \Omega}{J} \frac{\partial}{\partial \theta}\right) \tag{1}\\
& \text { (2) } d s=\cos \Omega d r+\varepsilon J \sin \Omega d \theta, \quad d \varphi=\frac{1}{H}(-\varepsilon \sin \Omega d r+J \cos \Omega d \theta)
\end{align*}
$$

Proof. We note that the Riemannian metric g can be written in the form

$$
g=d r^{2}+J^{2} d \theta^{2}=d s^{2}+H^{2} d \varphi^{2}
$$

Let $P \in D_{+} \cup D_{-}$. Since the angle between the vectors $\left(\frac{\partial}{\partial r}\right)_{P}$ and $\left(\frac{\partial}{\partial s}\right)_{P}$ equals $\Omega(P)$, we have $g\left(\left(\frac{\partial}{\partial r}\right)_{P},\left(\frac{\partial}{\partial s}\right)_{P}\right)=\cos \Omega(P)$. Moreover, since the angle between the vectors $\left(\frac{\partial}{\partial \theta}\right)_{P}$ and $\left(\frac{\partial}{\partial s}\right)_{P}$ equals $\Omega(P)-\frac{\varepsilon(P)}{2} \pi$, we have $g\left(\left(\frac{\partial}{\partial \theta}\right)_{P},\left(\frac{\partial}{\partial s}\right)_{P}\right)=\varepsilon(P) J(P) \sin \Omega(P)$. This proves the first equality of (1). Similarly, we can show the second equality of (1).

The assertion (2) is just the dual version of (1) and hence can be immediately obtained by (1).

As is easily seen, any point P of the domain D_{+}(or D_{-}) can be completely parametrized by two angles $(\xi(P), \eta(P)$), which is called the geodesic bi-angular coordinate of D_{+}(or D_{-}) with respect to the pair (A, B). Concerning this coordinate (ξ, η), the vector fields $\frac{\partial}{\partial \xi}, \frac{\partial}{\partial \eta}$, the Riemannian metric g and the area element $d A$ are written as follows:

Proposition 3 (1) $\frac{\partial}{\partial \xi}=J \cot \Omega \frac{\partial}{\partial r}+\varepsilon \frac{\partial}{\partial \theta}=\frac{J}{\sin \Omega} \frac{\partial}{\partial s}$, $\frac{\partial}{\partial \eta}=\frac{H}{\sin \Omega} \frac{\partial}{\partial r}=H \cot \Omega \frac{\partial}{\partial s}-\varepsilon \frac{\partial}{\partial \varphi}$.
(3) $d A=-\varepsilon \frac{J H}{\sin \Omega} d \xi \wedge d \eta$.

Proof. Let $P=(r, \theta)=(s, \varphi) \in D_{+} \cup D_{-}$. Then we have $\xi=\varepsilon(\theta-\pi)+\pi$, $\eta=\varepsilon(\pi-\varphi)$ and hence $d \xi=\varepsilon d \theta, d \eta=-\varepsilon d \varphi$. By (2) of Lemma 2, we easily have $d r=J \cot \Omega d \theta+\frac{H}{\sin \Omega} d \eta$. Putting this into the formulas $g=d r^{2}+J^{2} d \theta^{2}, d A=J d r \wedge d \theta$, we easily get (2) and (3).

Finally, we prove the assertion (1). Since $\frac{\partial \theta}{\partial \xi}=\varepsilon \frac{\partial \xi}{\partial \xi}=\varepsilon, \frac{\partial \varphi}{\partial \xi}=-\varepsilon \frac{\partial \eta}{\partial \xi}=$ 0 , it follows from (2) of Lemma 2 that $\frac{\partial r}{\partial \xi}=J \cot \Omega, \frac{\partial s}{\partial \xi}=\frac{H}{\sin \Omega}$. This gives the expression of $\frac{\partial}{\partial \xi}$. Similarly, we can get the expression of $\frac{\partial}{\partial \eta}$.

We now represent the Laplace operator Δ in terms of the bi-angular coordinate (ξ, η).

Theorem 4 Let F be a differentiable function on $D_{+} \cup D_{-}$. Then:

$$
\Delta F=\varepsilon\left\{\frac{1}{J} \frac{\partial}{\partial \theta}\left(\frac{1}{J} \frac{\partial F}{\partial \xi}\right)-\frac{1}{H} \frac{\partial}{\partial \varphi}\left(\frac{1}{H} \frac{\partial F}{\partial \eta}\right)\right\}
$$

Proof. Let Δ_{0} be the differential operator given in the right side of the above equality. By Proposition 3, we have $\frac{\partial}{\partial \theta}=\varepsilon\left(\frac{\partial}{\partial \xi}-\frac{J}{H} \cos \Omega \frac{\partial}{\partial \eta}\right)$, $\frac{\partial}{\partial \varphi}=\varepsilon\left(-\frac{\partial}{\partial \eta}+\frac{H}{J} \cos \Omega \frac{\partial}{\partial \xi}\right)$. Putting these equalities into $\Delta_{0} F$, we have

$$
\begin{aligned}
\Delta_{0} F=\frac{1}{J^{2} H^{2}}\left(H^{2} \frac{\partial^{2} F}{\partial \xi^{2}}-2 J H \cos \Omega\right. & \left.\frac{\partial^{2} F}{\partial \xi \partial \eta}+J^{2} \frac{\partial^{2} F}{\partial \eta^{2}}\right) \\
& +(\text { lower order derivatives }) .
\end{aligned}
$$

By the definition of the Laplace operator Δ, we know that the part of second
order derivatives of ΔF is just the same form stated above (see [4] and (2) of Proposition 3). Therefore, if we set $\Delta_{1}=\Delta-\Delta_{0}$, then Δ_{1} is a first order differential operator. It may be written in the form

$$
\Delta_{1} F=u(\xi, \eta) \frac{\partial F}{\partial \xi}+v(\xi, \eta) \frac{\partial F}{\partial \eta}+w(\xi, \eta) F
$$

where $u(\xi, \eta)=\Delta_{1} \xi, v(\xi, \eta)=\Delta_{1} \eta, w(\xi, \eta)=\Delta_{1} \mathbf{1} ; \mathbf{1}$ denotes the function identically equals 1 .

To show the theorem it suffices to prove $u(\xi, \eta)=v(\xi, \eta)=w(\xi, \eta)=0$. By use of the expression of Δ in the geodesic polar coordinate (r, θ), we have

$$
\begin{aligned}
\Delta \xi & =\frac{1}{J}\left\{\frac{\partial}{\partial r}\left(J \frac{\partial \xi}{\partial r}\right)+\frac{\partial}{\partial \theta}\left(\frac{1}{J} \frac{\partial \xi}{\partial \theta}\right)\right\} \\
& =\frac{1}{J}\left\{\frac{\partial}{\partial r}\left(J \frac{\partial(\varepsilon \theta)}{\partial r}\right)+\frac{\partial}{\partial \theta}\left(\frac{1}{J} \frac{\partial(\varepsilon \theta)}{\partial \theta}\right)\right\} \\
& =\frac{\varepsilon}{J} \frac{\partial}{\partial \theta}\left(\frac{1}{J}\right) .
\end{aligned}
$$

On the other hand, we can easily have $\Delta_{0} \xi=\frac{\varepsilon}{J} \frac{\partial}{\partial \theta}\left(\frac{1}{J}\right)$. This proves $u(\xi, \eta)=\Delta_{1} \xi=0$. Similarly, we can also verify $v(\xi, \eta)=w(\xi, \eta)=0$. This completes the proof of the theorem.

3. Multiple integration on geodesic triangles

Before proceeding to the proof of Theorem 1 we make some criteria concerning the multiple integration on geodesic triangles from a somewhat general viewpoint.

Let f be a differentiable function on $D_{+} \cup D_{-}$. Let us denote by $V(f)$ the function given by integrating f over $\triangle P A B$, i.e.,

$$
V(f)(P)=\iint_{\triangle P A B} f d A, \quad P \in D_{+} \cup D_{-} .
$$

We first prove
Proposition 5 Let $P \in D_{+} \cup D_{-}$. Then

$$
V(f)(P)=\int_{0}^{\xi(P)} L_{A}(J f)(\xi, \eta(P)) d \xi
$$

$$
=\int_{0}^{\eta(P)} L_{B}(H f)(\xi(P), \eta) d \eta .
$$

To prove the proposition we show
Lemma 6 Let $Q \in D_{+} \cup D_{-}$. Then

$$
\begin{aligned}
L_{A}(f)(Q) & =\int_{0}^{\eta(Q)}\left(\frac{H f}{\sin \Omega}\right)(\xi(Q), \eta) d \eta \\
L_{B}(f)(Q) & =\int_{0}^{\xi(Q)}\left(\frac{J f}{\sin \Omega}\right)(\xi, \eta(Q)) d \xi
\end{aligned}
$$

Proof. Let us show the first equality. We note that on the geodesic segment $A Q, \xi$ identically equals $\xi(Q)$. Therefore, by (2) of Lemma 2 we have $d r=\frac{H}{\sin \Omega} d \eta$ on $A Q$. Hence, we immediately have

$$
L_{A}(f)(Q)=\int_{A Q} f d r=\int_{0}^{\eta(Q)}\left(\frac{H f}{\sin \Omega}\right)(\xi(Q), \eta) d \eta
$$

The second equality can be similarly dealt with.
Proof of Proposition 5. In the bi-angular coordinate $(\xi, \eta), \triangle P A B$ is denoted by the subset $\{(\xi, \eta) \mid 0 \leq \xi \leq \xi(P), 0 \leq \eta \leq \eta(P)\}$. Hence by (3) of Proposition 3, we have

$$
\begin{aligned}
V(f)(P) & =\int_{0}^{\xi(P)}\left(\int_{0}^{\eta(P)}\left(\frac{J H}{\sin \Omega} f\right)(\xi, \eta) d \eta\right) d \xi \\
& =\int_{0}^{\eta(P)}\left(\int_{0}^{\xi(P)}\left(\frac{J H}{\sin \Omega} f\right)(\xi, \eta) d \xi\right) d \eta
\end{aligned}
$$

Consequently, our proposition follows from Lemma 6.
We now start the proof of Theorem 1.
Proof of Theorem 1. It is easily seen that the area function S is given by $S=V(\mathbf{1})$, where $\mathbf{1}$ is the function identically equals 1. By Proposition 5 we have

$$
\frac{\partial V(\mathbf{1})}{\partial \xi}=L_{A}(J), \quad \frac{\partial V(\mathbf{1})}{\partial \eta}=L_{B}(H)
$$

Therefore, by Theorem 4 we obtain (1) of Theorem 1.

We now prove (2). Let K be the Gaussian curvature of g. Applying the Gauss-Bonnet formula to the geodesic triangle $\triangle Q A B\left(Q \in D_{+} \cup D_{-}\right)$, we have

$$
\Omega(Q)=V(K)(Q)-\xi(Q)-\eta(Q)+\pi
$$

Applying Δ to both sides, we get

$$
\begin{aligned}
\Delta \Omega= & \varepsilon\left\{\frac{1}{J} \frac{\partial}{\partial \theta}\left(\frac{1}{J} L_{A}(J K)\right)-\frac{1}{H} \frac{\partial}{\partial \varphi}\left(\frac{1}{H} L_{B}(H K)\right)\right\} \\
& -\varepsilon\left\{\frac{1}{J} \frac{\partial}{\partial \theta}\left(\frac{1}{J}\right)-\frac{1}{H} \frac{\partial}{\partial \varphi}\left(\frac{1}{H}\right)\right\} .
\end{aligned}
$$

Since $K=-\frac{1}{J} \frac{\partial^{2} J}{\partial r^{2}}=-\frac{1}{H} \frac{\partial^{2} H}{\partial s^{2}}$ and $\frac{\partial J}{\partial r}(A)=\frac{\partial H}{\partial s}(B)=1$ (see [4]), we have

$$
\begin{aligned}
L_{A}(J K)(Q) & =-\int_{0}^{r(Q)} \frac{\partial^{2} J}{\partial r^{2}}(r, \theta(Q)) d r=-\frac{\partial J}{\partial r}(Q)+1, \\
L_{B}(H K)(Q) & =-\int_{0}^{s(Q)} \frac{\partial^{2} H}{\partial s^{2}}(s, \varphi(Q)) d s=-\frac{\partial H}{\partial s}(Q)+1
\end{aligned}
$$

Therefore we have

$$
\Delta \Omega=-\varepsilon\left\{\frac{1}{J} \frac{\partial}{\partial \theta}\left(\frac{1}{J} \frac{\partial J}{\partial r}\right)-\frac{1}{H} \frac{\partial}{\partial \varphi}\left(\frac{1}{H} \frac{\partial H}{\partial s}\right)\right\} .
$$

This proves (2) of Theorem 1.
Finally we prove Corollary of Theorem 1. If $\frac{\partial J}{\partial \theta}=0$ on a neighborhood of $A P$, then it is clear that $\frac{\partial L_{A}(J)}{\partial \theta}=0$ holds around P. Similarly, if $\frac{\partial H}{\partial \varphi}=0$ on a neighborhood of $B P, \frac{\partial L_{B}(H)}{\partial \varphi}=0$ holds on a neighborhood of P. Then by Theorem 1 we have $\Delta S=\Delta \Omega=0$ around P. If (M, g) is of constant curvature, then by the symmetry around A (resp. B) we know that J (resp. H) does not depend on the argument θ (resp. φ). Consequently, we have $\frac{\partial J}{\partial \theta}=\frac{\partial H}{\partial \varphi}=0$. This shows the corollary. Moreover, it is easily seen that under the same condition the interior angles ξ and η satisfy $\Delta \xi=\Delta \eta=0$ (see the formulas in the proof of Theorem 4).

4. Somewhat large geodesic triangles

We now consider geodesic triangles not contained in any geodesically convex open set in M.

Let A, B and P be three points of M such that there is no geodesically convex open set of M containing all A, B and P simultaneously. We assume that A and B are not so distant, i.e., A and B are joined by a geodesic segment $A B$; and the geodesic polar coordinates $\{U,(r, \theta)\}$ and $\{V,(s, \varphi)\}$ centered at A and B have a non-trivial intersection and $P \in U \cap V$. We join P to A (resp. B) by the geodesic segment $A P$ (resp. $B P$) originated at A (resp. B). The geodesic triangle bounded by $A P, B P$ and $A B$ is called a somewhat large geodesic triangle, which may contain more complicated figures than those considered in $\S 2$.

We say that our geodesic triangle defined above is in good condition if it satisfies the following: (1) The curve composed of $A P, B P$ and $A B$ divide M into two distinct domains and at least one of them is compact. One of the compact domains of this division is denoted by $\triangle P A B$. (In case both sides are compact, then any side can be selected as $\triangle P A B$ as desired. The interior angles $\xi(P), \eta(P)$ and $\Omega(P)$ may exceed π.) (2) $\Omega(P) \neq 0, \pi$.

Let Q be a point of $U \cap V$ sufficiently close to P. Then $\triangle Q A B$ is defined in the same manner as above. We promise that $\triangle Q A B$ is synchronized with $\triangle P A B$, i.e., $\triangle Q A B$ can be continuously deformed to $\triangle P A B$ and is homeomorphic to $\triangle P A B$. Accordingly, the area of $\triangle Q A B$ and the interior angle $\Omega(Q)$ can be considered as continuous functions of Q.

We now show that the formulas in Theorem 1 also hold for our somewhat large geodesic triangles in good condition. As in $\S 1$ we may assume that $\frac{\partial}{\partial r} \wedge \frac{\partial}{\partial \theta}$ and $\frac{\partial}{\partial s} \wedge \frac{\partial}{\partial \varphi}$ define the same orientation of M. Since $\Omega(P) \neq 0, \pi$, the bi-angular coordinate (ξ, η) is effective on a sufficiently small neighborhood W of P. It can be verified that Lemma 2 and hence Theorem 4 are valid even in the case where $\Omega(P)>\pi$. Here $\varepsilon(P)$ is determined as follows: $\varepsilon(P)=1$ (resp. $\varepsilon(P)=-1$) if the interior angle $\xi(P)$ is measured in the positive (resp. negative) direction with respect to the argument θ. In other words, $\varepsilon(P)$ is determined by the ratio between $d \theta$ and $d \xi$ at P.

Let f be a differentiable function on a neighborhood of $\triangle P A B$. As in $\S 3$, we denote by $V(f)(Q)$ the value given by integrating f over $\triangle Q A B$. Since the bi-angular coordinate (ξ, η) does not cover the whole interior of $\triangle P A B, V(f)$ cannot be expressed in terms of the coordinate (ξ, η), however, the partial derivatives of $V(f)$ can be calculated. In fact, we can prove the following equalities:

$$
\frac{\partial V(f)}{\partial \xi}=L_{A}(J f), \quad \frac{\partial V(f)}{\partial \eta}=L_{B}(H f)
$$

Let $Q \in W$. For a real number σ sufficiently close to 0 we define a point $Q_{\sigma} \in W$ by setting $\xi\left(Q_{\sigma}\right)=\sigma+\xi(Q)$ and $\eta\left(Q_{\sigma}\right)=\eta(Q)$. If $\sigma>0$ then we easily have $\triangle Q_{\sigma} A B=\triangle Q A B \cup \triangle Q_{\sigma} A Q$ and if $\sigma<0$ we have $\triangle Q_{\sigma} A B=\triangle Q A B \backslash \triangle Q_{\sigma} A Q$. Consequently, we have

$$
V(f)\left(Q_{\sigma}\right)=V(f)(Q)+\int_{0}^{\sigma}\left(\int_{0}^{r\left(Q_{\tau}\right)}(J f)\left(r, \theta\left(Q_{\tau}\right)\right) d r\right) d \tau
$$

Therefore, we easily get

$$
\frac{\partial V(f)}{\partial \xi}(Q)=\int_{0}^{r(Q)}(J f)(r, \theta(Q)) d r=L_{A}(J f)(Q)
$$

Similarly, we can get

$$
\frac{\partial V(f)}{\partial \eta}(Q)=L_{B}(H f)(Q)
$$

Now in the almost same manner as in $\S 3$, we can get the formula (1) in Theorem 1 for our somewhat large geodesic triangles in good condition. The formula (2) can be also shown by the extended form of Gauss-Bonnet formula

$$
\Omega(Q)=V(K)(Q)-\xi(Q)-\eta(Q)-2 \pi \chi(\triangle Q A B)+3 \pi,
$$

where $\chi(\triangle Q A B)$ denotes the Euler characteristic of the triangle $\triangle Q A B$ (see [2]). Since $\triangle Q A B$ is homeomorphic to $\triangle P A B, \chi(\triangle Q A B)$ is identically equal to $\chi(\triangle P A B)$ around P. Consequently, we get the formula (2).

We can resume the above result in the following
Theorem 7 Let $\triangle P A B$ be a somewhat large geodesic triangle in a twodimensional orientable Riemannian manifold (M, g). If $\triangle P A B$ is in good condition, then the formulas (1) and (2) hold for $\triangle P A B$, where $\varepsilon(P)$ is determined by the ratio of $d \theta$ and $d \xi$ at P.

Finally, we note that Corollary in $\S 1$ is also holds for a somewhat large geodesic triangle in good condition.

References

[1] Hasebe N., Kiso K., Kaneda E. and Doke T., General method to determine the position-charge relationship for position-sensitive detectors with variously shaped resistive anodes. Japan J. Appl. Phys. 32 (1993), 2162-2166.
[2] Ogiue K., Manifolds. Kyouritsu-Shuppan, (1997), (in Japanese).
[3] Sternberg S., Lectures on Differential Geometry. Prentice-Hall, Inc., (1964).
[4] Stoker J.J., Differential Geometry. John Wiley \& Sons, Inc., (1969).

Eiji Kaneda
Department of International Studies
Osaka University of Foreign Studies
8-1-1 Aomadani-Higashi, Minoo-shi
Osaka 562-8558, Japan
E-mail: kaneda@post01.osaka-gaidai.ac.jp
Kazuhiro Kiso
Department of Mathematical Sciences
Faculty of Science
Ehime University
Bunkyou-cho, Matsuyama-shi
Ehime 790-8577, Japan
E-mail: kkiso@dpc.ehime-u.ac.jp

