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Quantization of canonical isomorphisms and the
semiclassical von Neumann theorem
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Abstract. We prove the three mutually related theorems: the theorem on the quantiz-
ability of canonical isomorphisms, the theorem on the quantizability of classical canonical
commutation relations and a semiclassical version of von Neumann’s theorem. Although
some similar results can be obtained on the basis of the deformation theory (e.g. ,
, ), here we present the proofs which involve only elementary methods and notions.
Moreover, in our approach we can easily compute the quantum corrections. Our deforma-
tion quantizations (semiclassical algebras) are additionally equipped with the deformation
involutions and we study here the algebras of entire functions and of polynomials, instead
of frequently used algebras of C°° observables.

Key words: semiclassical limit, quantization, canonical commutation relations, canonical
isomorphisms, deformation quantization.

Introduction

Canonical isomorphisms, that is the isomorphisms of a phase space
preserving its symplectic structure, play an important role in classical me-
chanics. Their quantum analogues are unitary transformations of Hilbert
space, “quantum phase space”. One of the interesting problems concerning
canonical isomorphisms and unitary transformations is their semiclassical
relationship. An important question concerns quantization of canonical
isomorphism into a unitary transformation, that is, of finding a unitary
transformation which can be treated in some sense as corresponding to a
given canonical isomorphism.

Let us note that the meaning of that correspondence cannot be trivial.
Namely, consider a phase space X, a canonical automorphism u of X and
a procedure of quantization ** (h > 0) of observables on X into operators
acting in a Hilbert space. If the transformation of operators T, given by
Tof™ = (tuf)™ with tuf = fou, had the form T, f" = Uy f"U,, where U,
is a unitary transformation, then we could call U, a quantization of u (for
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the given procedure "#). However, such U, usually does not exist, since T,
does not preserve the composition and adjoint of operators (understood in
any formal sense). Thus, it seems to be natural from the semiclassical point
of view to replace t, in the definition of T;, by t, + “quantum corrections”,
to make T, preserve the multiplication and adjoint. If this is possible, u
should be treated as a quantizable canonical transformation.

This idea can be rigorously formulated, if we use the so-called defor-
mation model of quantum mechanics instead of the traditional one. In the
deformation model the classical and the quantum algebras of observables
are the same set with different algebraic structures. The quantum struc-
ture is given by a deformation quantization — a family {*,},en of bilinear
operations in algebra, where *q is the classical multiplication of observables
and the formal operation x, = Y >° A"+, is associative and satisfies some
conditions of consistence with the classical structure. The deformed mul-
tiplication x, is an analogue of the multiplication of operators from the
traditional model of quantum mechanics, but the subtle difficulties with

domains of operators do not exist in the deformation model.

The idea of deformation quantization was first introduced by Moyal
(see [19]) and it has been developed by many authors (see e.g. [24], [1],
[14], [15], [10], [6], [13], [7], [20]). Deformation quantizations connected
with particular procedures of quantization of observables were used for the
semiclassical studies in the traditional model of quantum mechanics (see
e.g. [4] and [12]).

In our considerations we also follow the ideas of the deformation model.
Additionally, to obtain the structure which fully corresponds to the quantum
structure based on the Hilbert space, we consider also the deformations
of the classical involution. Such deformations, analogues of the adjoint
of operator, seem to be a necessary element of the deformation model of
quantum mechanics. However, in most of the literature no deformation
of involution is considered (see as an exception). Thus we introduce
here the notion of semiclassical algebra, which includes the deformations
of the classical multiplication and of the classical involution. Our studies
refer to two kinds of algebras, the polynomial and entire algebras, which
correspond to the algebras of polynomials and of entire functions of 2d-
variables, respectively.

The first of our results, [Theorem 1, is a semiclassical version of the well-
known von Neumann theorem on unitary equivalence of representations of
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commutation relations in Hilbert space (see e.g. [21, th. VIII.14]). It states
that two selfadjoint systems satisfying the same commutation relations in
two formal semiclassical algebras are (under some technical assumptions)
equivalent through a uniquely determined formal unitary transformation
of these algebras. We compute explicit recurrent formulas for the quan-
tum corrections. The second result concerns the quantization of systems
satisfying classical canonical commutation relations. We prove [Theorem 2,
stating that under some natural assumptions the appropriate quantization
exists. Our asserts that each classical canonical isomorphism is
semiclassically quantizable. This result is a direct consequence of the two
previous theorems. As an illustration we find simple recurrent formulas for
the quantum corrections to the canonical transformation induced by a linear
isomorphism of R?¢. We also give some examples showing the relationships
between the quantization in the deformation model of quantum mechanics
and in the traditional one, based on Hilbert space framework.

Some similar results can be obtained by the use of advanced methods of
the deformation (and star-product) theory. In particular, the results similar
to our were obtained by Lichnerowicz in [16]. This theorem is
also closely related to the problem of equivalence of deformations, which
is considered for instance in and [10]. All these papers use Hochschild
or Chevalley cohomology groups (see [9] and [11]) and consider the case
of arbitrary symplectic manifolds. In the present paper, in contrast, using
elementary methods, we study the relationships between the quantization
of canonical isomorphisms, the semiclassisal von Neumann theorem and the
quantization of classical canonical commutation relations. Therefore, our
results can be applied primarily to the case of the linear phase space R2¢,
which is simple from the deformation theory point of view, but is very
important for applications.

There are also some other differences between the results cited and
ours. The most important is the use of deformation involution in this paper.
Moreover, we do not deal with the commonly used algebra of C* functions,
but study the algebras of polynomials and of entire functions. Other im-
portant differences concern the assumptions on the formal deformation x;,.
Generally authors consider only the so-called star-products, which are for-
mal deformations satisfying some symmetry (parity) assumptions (see e.g.
114]). They usually also require coefficients %, to be bilinear diferential op-
erators. In our paper we consider the general (also “non-symmetric”) case of
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associative formal deformation %x;. The “non-symmetric” deformations play
an important role in quantum mechanics, and are related in a natural way
to various procedures of quantizations of observables. We also do not make
the differentiability assumption on *,-s in the case of polynomial algebras.
(Note that many important operators acting in the space of polynomials
are not differential, for instance, the operator of integration.)

In this paper some proofs are omitted or shortened (especially in Sec-
tion 1). For the details we refer the reader to and [18].

The method of quantization of canonical transformations shown here
was suggested to me by Jan Herczynski. I would like to thank him also
for his valuable remarks. I would also like to thank Janusz Grabowski for
showing me some important references to the subject of deformation theory.

1. Classical and semiclassical algebras

We introduce here some notions which will be used in this paper, with
the main notion of semiclassical algebra being the quantization of classical
algebra.

For multi-indices a, 8 € N™ we denote |a| = 37, aj, o! = [[L; oy,

(g) = [I}%, (gj), a < Bifa; <Bjforj=1,...,m; if a € C™, then
a® = HT:l a?j ; 1; is the multi-index with 1 in the j-th position and 0 at
the remaining ones (here 0 € N). The notation for systems of multi-indices
is similar, e.g., for a € (N™)* |a| = Z§=1 loj|. For z € C™ |z = >0 |2kl

In this paper algebra is a complex linear space with bilinear, associative
multiplication and with the neutral element 1. For an algebra A characters
in boldface, like e, f, are used to denote elements of A™ for some m € N;
f; is the j-th term of f, f* = f{* ... fom for & € N™ (with f° = 1 for any
f € A). We denote also f' C f for f € A™ and f' € A™ with m’ < m,
when f; = fiforj =1,...,m". Mpn(X) is the set of m x m matrices
with elements in X and for C' € M,,(X) Cj; is its element from the i-th
row and the j-th column, Cf € A™ with (Cf); = .72, Ci;f;. We use
the convention that for F': X — Y the same F denotes the product map
F:X™m—Y™ F((z1,...,2m)) = (F(z1),...,F(zm)); if F is linear we
also omit the brackets, e.g., te = (tes,...,tey,) for a linear t : A — B and
ec A™.

The typical algebras considered here are Pol(C™) and Ent(C™) — the
algebras of polynomials and of entire functions on C™ and also Pol(R™)
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and Ent(R™) — the algebra of complex polynomials on R™ and of complex
functions on R™ having an extension to an entire function on C™, with
the usual pointwise operations. For f € A™ alg(f) is the subalgebra of A
generated by f (the smallest one containing all of f;). For w € Pol(C™),
w(z) = Y Hcy War®, we set w(f) = Y a<n Waf®. If all the generators f;
commute, then alg(f) = {w(f) : w € Pol(C™)} is commutative and then we
call f independent when w(f) = 0 only for the zero w € Pol(C™). A map
* of A is an involution if it is conjugate-linear, (fg)* = ¢*f* and (f*)* = f
for f,g € A. An algebra with an involution will be called *algebra.

We denote re* f = %(f—l—f*), im* f = %(f — f*), fis real if f* = f,
f € A™ is real when all f; are real. Pol(R™) and Ent(R™) are *algebras
with * being the usual conjugation of functions and Pol(C™) and Ent(C™)
with the involution * given by the formula f*(z) = f(2). *Homomorphism
(*isomorphism) is a homomorphism (isomorphism) of algebras preserving
involution.

1.1. Polynomial and entire algebras

Definition 1.1 Let A be a commutative algebra. A is a polynomial al-
gebra if for some m € N, m > 0 there exists an independent e € A™ such
that A = alg(e). Each e satisfying the above conditions is an algebraic
base of the polynomial algebra A. An algebra A with a given topology of
Fréchet space is an entire algebra if the multiplication is joint continuous
(i.e. continuous as a map from A x A into A) and

(i) there exists a family of seminorms {|| ||;};en inducing the topology in
A such that Ve 4 jenTes0 suppen ™[ "] < +o0;

(i) for some m € N, m > 0 there exists e € A™ such that each f € A
can be uniquely expressed as a sum of series ) ym fo€® convergent
in A, with f, € C, and Ve 4 ¢>03050%aenm| fal < Cell.

Each e satisfying (ii) is an analytic base of the entire algebra A. The number

m is the dimension of A for the both cases of algebras.

The dimension of polynomial and entire algebra is well-defined. Pol(R™)
and Pol(C™) are m-dimensional polynomial algebras and we can choose
algebraic bases as x = (xi,...,Xm), where xj(z) = z; for x € R™ or
C™ respectively. Moreover, each m-dimensional polynomial algebra A is
isomorphic to Pol(C™) — for any algebraic base e of A we can define the
isomorphism ¢, : Pol(C™) — A by
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de(w) = w(e) (1.1)

for w € Pol(C™). Polynomial algebras are in some sense the poorest alge-
bras (by the Baire theorem it is impossibile to define there an interesting
topology of a complete space). Note that the first part of (ii) means that
{e®}4enm is a topological base of A and thus it is also a Schauder base —
see e.g. [5]. Note also that each family of seminorms inducing the topology
of an entire algebra satisfies the estimate from (i). In Ent(C™) we choose
the topology of almost uniform convergence, which is induced by the family
| fll; = supp<;|f(2)], 7 € N. In Ent(R™) we consider the similar for-
mula for | f||;, but in place of f € Ent(R™) we put fexy € Ent(C™), the
unique analytic extension of f onto the whole C'™. With these topologies
Ent(C™) and Ent(R™) become m-dimensional entire algebras, and for an
analytic base we can also choose x. The series from (ii) is then the usual
Taylor expansion with the origin in 0. From now on, Ent(C™) and Ent(R™)
will designate these algebras with the above defined topologies. Each m-
dimensional entire algebra is isomorphically homeomorphic to Ent(C™); we
can define ¢ : Ent(C™) — A by [1.1), where for w € Ent(C™) with
w(T) = ) cnym Waz® we denote w(e) = > ym Wae® (note that the am-
biguous sense of the symbols ¢, and w(e) does not lead to confusion). The
above series is convergent in A and by the Banach-Steinhaus theorem it is
easily seen that ¢ is an isomorphism and a homeomorphism of Ent(C™)
onto A.
The following simple proposition will be used in the next section.

Proposition 1.1 If B is an algebra, A an m-dimensional polynomial al-
gebra with an algebraic base e and f € B™ has commuting elements, then
there exists exactly one homomorphism of algebras ¢ : A — B satisfying
the condition p(e) = f.

We now consider operators acting in these two kinds of algebra. Let A
be a polynomial or entire algebra and e € A™ an algebraic or respectively
analytic base. Define A’ = alg(e). We have A" = A in the polynomial
case. In the analytic case A’ is a dense polynomial subalgebra of 4 with an
algebraic base e. For a € N the symbol 92 denotes the operator from A
into A in the polynomial case, and from A’ into A’ or from A into A in the
analytic case, given by the formula

0% = ¢e0%¢. ", 1.2
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where ¢, is defined for A or A’ and 0% = 2% We also use the symbol

33511...35]7?
0“ to denote 02 when the choice of e is clear (e.g. usually e == x for Pol(C™)
and Ent(C™)). For a = 1; we write 0, instead of 3. When a € (N™)*

and f € A* (or A'%), we denote 82f = ]—[;“7:1 O’ fj- Consider a k-linear
operator L given by
Lf= ) l.02f (1.3)
ac(Nm)k
for f € (A')*, wherel, € A. This is a well-defined operator L : (A')* — A.

Proposition 1.2 FEach k-linear L : (A')* — A has the unique form
(1.3).

Definition 1.2 Let A be a polynomial or entire algebra. A k-linear L :
AP — A is a differential operator if

L= 1,08, (1.4)

acF
for an algebraic or respectively, analytic base e and a finite set F' C (N™)*.

The choice of the base e is not essential in the above definition. When
A is an entire algebra, then any differential operator L is joint continuous.

We introduce the operation Z. transforming bilinear operators into
linear operators. If S(f,g) = ). icnm Sy,y0ef -0 g for f,g € A' (s, €
A), we set

, 1 o
Z(S)f =3 <.2_|.a|__§ 3 sw>def, (1.5)
|a|>2 Y+ =

which is well-defined in two cases. First, when f € A’ i.e. Z,(S) : A" — A.
Second, when S is differential — then Z.(S) : A — A (with the same
notation) and Z(S) is differential.

1.2. Classical algebras

Definition 1.3 A commutative *algebra with a bilinear, antisymmetric
operation { , } : A x A — A is a classical algebra if
(i) (Leibnitz formula) for any f,g,h € A

{fg,h} = f{g,h} + {f, h}g, (1.6)
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(ii) (Jacobi formula) for any f,g,h € A

{{f.9},h} + {{h, f},9} + {{g, R}, f} = 0, (1.7)
(iii) (nondegeneracy) for any f € A if Vyea{f,g9} = 0, then f = c1 for
some ¢ € C,
(iv) (*invariance) for any f,g € A
{f,.9}"={f.g} (1.8)

The operation {, } in a classical algebra we call the Poisson bracket.

In literature the above defined classical algebras may also be referred to
as Poisson algebras with involutions, but here, for simplicity and because
of the semiclasical context, we shall use the former name. The algebras
Pol(R??), Ent(R??), Pol(C??) and Ent(C?9) are classical algebras with the
Poisson bracket

{f.9}= 8;Dfaqg — 0pg0, f, (1.9)
S . < _ _ 0 _
where 9y, 9, are the systems of d operators with (0,); = 9,, = By, (Op); =
Op;, = 5‘:—_, and the coordinates in R?¢ and C2¢ are denoted (q1,---,94,
J
p1,...,pa). We also write fg=3"", f;g; for f,g € A™

Definition 1.4 A system e € A™ in a classical algebra A satisfies classical
canonical commutation relations (abbreviated to ccer) if there exists D €
M (C) such that {e;,e;} = D;;1 for i,j =1,...,m. We define cr(e) = D
then. When e satisfies cccr and cr(e) = D, we say that e satisfies ccer of
D-type.

If e satisfies cccr of the D-type then D' = —D. In this paper we
consider polynomial and entire classical algebras. Note that these notions
are not simple intersections of the notions of polynomial or entire algebras
with the notion of classical algebra.

Definition 1.5 A classical algebra is a polynomial classical algebra if it is
a polynomial algebra with an algebraic base satisfying cccr; it is an entire
classical algebra if it is an entire algebra with an analytic base satisfying cccr,
the involution is continuous and the Poison bracket is joint continuous. Each
algebraic (analytic) base satisfying cccr in a polynomial (entire) classical
algebra is called a canonical base.
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The dimension of any polynomial or entire classical algebra is even.
If e € A™ is a canonical base, then detcr(e) # 0 and for a nonsingular
C € Mp(C) the formula f = Ce defines also a canonical base, which
satisfies

cr(f) = Cer(e)C". (1.10)
Pol(R??), Pol(C??) and Ent(R??), Ent(C??) are our main examples of poly-
nomial and entire classical algebras. The system x = (xi,...,Xpq) is a

real canonical base for all of them. We denote (q,p) = x, where q =
(ai,-..,44), p=(py,-..,py) and

ar)=(§ )

The Poisson bracket is a bilinear differential operator in each polynomial
or entire classical algebra A, since for any canonical base e € A™ with
cr(e) = D and

{f.gy= D> Di;jef 0Oe,g (1.11)
1,j=1,...,m
for f,g € A. A transformation of a phase spaces preserving the symplectic
structure is called canonical. For canonical u we can define the transforma-
tion ¢,, of algebras of observables by t,, f = fou, and t,, preserves the Poisson
bracket. In this paper we use the name canonical also for transformations
of observables. |

Definition 1.6 A transformation of classical algebras t : 4 — B is
canonical, if it is a *homomorphism of *algebras and t{f,g} = {tf,tg}
for f,g € A. If t is invertible, we call it a canonical isomorphism.

Proposition 1.3 Let A and B be both polynomial or both entire classical

algebras. If t : A — B is continuous in the entire case and e is a canonical

base of A, then

a) if t is a canonical isomorphism, then te is a canonical base of B and
cr(te) = cr(e);

b) if e is real, te is a real canonical base of B with cr(te) = cr(e) and t
1s a homomorphism of algebras, then t is a canonical isomorphism.

The restriction: tf = fges is a a canonical isomorphism of Pol(C?9)
onto Pol(R??) or of Ent(C2?) onto Ent(R%4) and ¢t ™1 f = fexs.
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Example 1.1 For m,n € N consider a map v, ) of R? or C? given by
U(n,m) (¢, D) = (¢ + (p+¢")™,p+q"). This is an analytical diffeomorphism
and ui! (q,p) = (q = p™,p — (¢ — P™)"). Define sum)f = f 0 tym) for
a function f on R? or C2. By Proposition 1.3 b) S(n,m) can be treated as a

canonical isomorphism of Pol(R?), Pol(C?), Ent(R?) or Ent(C?).

1.3. Semiclassical algebras

We now introduce semiclassical notions, which in some sense are the
quantizations of the classical notions. We consider semiclassical algebras
— classical algebras with deformation product or deformation quantization
(see e.g. [1], [7], [14], [20]) and deformation involution (see e.g. [23]) being
classical multiplication and involution with quantum corrections. Semiclas-
sical algebras are analogues of quantum “algebras” of operators acting in a
Hilbert space. We also use the parallel approach with the notion of formal
semiclassical algebra, an *algebra of the formal power series in the Planck
constant A with the coefficients in a classical algebra. The multiplication
and the involution correspond there to the operator product and adjoint
from the quantum model. The linear space of formal series in A with the
coefficients in a linear space A we denote by A[[A]] and its elements by
fr, gn etc., the coefficient of f, of A" is denoted by f(™ and we write
fo= 20 hnf0) = fO 4 B 4 K252 ... We often identify f € A
with its image under the embedding: A > f — f+h0+A20+--- € A[[A]].

We set the hierarchy of some operations: the “strongest” are operations
of the type of *, *»; the next linear operators like ¢, t,, s; the next %, %, -
and the weakest +, —. For instance t; f x3tg*™ —tof*h = [(t1.f) *3 (t(g*7))] —
[(2o(f*)) - A].

Definition 1.7 A classical algebra A with a family {x,},en of bilinear
operations and a family {**},cn of conjugate-linear operations in A is a
semiclassical algebra if

(i) for any f,g,he€ A, neN

S (frg) xh= > fx(g*kh); (1.12)

j+k=n jt+k=n
(ii) forany fe Aandn >0

Dx, f=f*x, 1=0; (1.13)
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(iii)
_’{’}1={a}’ (1.14

where for f,g € A
{f,9}n=1(f *n g — g *n f); (1.15)
(iv) for any f,ge A, neN
Yoo(fxg =Y g (1.16)
jtk=n j+k+l=n
(v) forany fe AineN

> () ={ f for n=0 (1.17)

ihn 0 for n> 0

(vi)
YO =¥, (1.18)
The family {*,}nen is called a deformation product or deformation quan-

tization in A and {**},en — a deformation involution in A. A family
{f™} en of elements of A is selfadjoint when for any n € N

Yo (B = s (1.19)

k+l=n

a family {£™},.en of elements (f 5"), L f ) € A™ is selfadjoint when all
{f z(-n) }nen are selfadjoint.

To simplify the notation we shall usually denote a semiclassical alge-
bra by a single letter. Let .4 be an algebra, {*,},en a family of bilinear

operations and {*"},en a family of conjugate-linear operations in A. For
fr,,,gn € A[[h“ define

frn*ngn = Zhn Z f(k)*jg(l)7 (1.20)

n=0 Jj+k+l=n

Z Ay (R (1.21)

n=0 k+l=n
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Proposition 1.4 If A is a classical algebra, xo, *1 and *° satisfy
and (1.18), then A with the families {xp }nen and {*" }nen is a semiclassical
algebra iff A[[h]] is an *algebra with the multiplication x,, the unity 1 € A
and the involution **. Moreover, an element f, of this *algebra is real iff
{f™},en is selfadjoint in A.

We define a formal semiclassical algebra as an *algebra A[[h]] related
to a semiclassical algebra A by the above proposition.

Example 1.2 Consider a matrix M € My(R) and let A be one of the
classical algebras Pol(R2?), Pol(C2?), Ent(R??), Ent(C?9). Define

ptg = Y o ((maeals) ((Ma)Pags),

13!
Wewni alf!

f*£§4 — Z %(Gaq)aagf*

for f,g € A, where E = I+ M, G = I +2M. {A {x"}nen, {* }nen}
is a semiclassical algebra (see [17]). We denote it respectively Poly, (R24),
Pol,, (C??), Ent,,(R??), Ent,,(C?¢) and we call them M -semiclassical alge-
bras. The best known semiclassical algebras which can be obtained this way
are the following (see e.g. [3])

a) Pol,,(R??), etc. — g-p semiclassical algebras, when M = —1I:

- (—Z)n o p oo x TP (_,L)n a Qo p*
f*%”g=]4|‘: —— 05079, f =HZ 050y £

b) Polpq(Rgd), etc. — p-q semiclassical algebras, when M = O:
" g P " .
PElg= ) =05 foge, fm =) =000 f"
|a|=n la|=n

¢) Poly (R%?), etc. — Weyl semiclassical algebras, when M = —31:

—1)Blgm N
frng = Z %%Tﬁ!—(@q@ﬁf)(ﬁé’@pg),
la+Bl=n

W * for n=0
r={}

0 for n>0.
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Example 1.3 Let Pol,¢(C??) and Ent,¢(C??) be classical algebras given
as follows. As algebras they simply are Pol(C?¢) and Ent(C?¢) respectively,
for Ent,¢(C??) the Fréchet space topology is the same as in Ent(C?%). The
Poisson bracket is given by the formula {f, g} = (0,09 — 8,90¢ f), where
the coordinates in C2? are denoted here by (7, £). We completely change the
formula for involution: f*(n,€) = f (§,7) for (n,£) € C?4. Pol,e(C*) is a
polynomial and Entng((CM) an entire classical algebra. As a canonical base
we can take the system x denoted here by (7, £). This canonical base is not
real, but n* = &, £* = 7. The né-Weyl semiclassical algebras Pol,e.y, (C?%),
Ent¢.w (C??) are given by

) —1)i8 N N
= 3 o (05021)(00559),
a+8|=n
f*zf-W _J ff for n=0
10 for n>0.

The above examples are related to some procedures of quantizations
of observables: ¢-p, p-¢ and Weyl semiclassical algebras to ¢-p, p-¢ and
Weyl quantizations (see ); né-Weyl semiclassical algebra to Weyl quan-
tization in Bargmann space (see [4]) and M-semiclassical algebras to the
quantization given by the so called T-symbol (see , ), where T =

(i A;B) € My4(R) for some A, B € My(R) with |det A| = 1, and

M= (A"1B)".

Definition 1.8 A semiclassical algebra A is a polynomial semiclassical
algebra if A is a polynomial classical algebra; it is an entire semiclassical
algebra if A is an entire classical algebra, all *» are continuous and x,, are
joint continuous. A polynomial or entire semiclassical algebra is differential
if all %,, are differential.

All the semiclassical algebras from the examples 1.2 and 1.3 are differ-
ential. However, it is easy to construct non-differential examples.

The quantum commutator %[ , | in A[[A]] is a counterpart of the Poisson
bracket:

%[fn,gn]=zﬁ" > {f®, 90y, (1.22)

n=0 jt+k+l=n
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for fr,gn € A[[B]] (where { , }, is given by (1.15)). Thus, informally,
#1fn9n) = £(fr *n gn — g *n fr). The well-known Moyal bracket (see e.g.

[1], ) is the quantum commutator for Weyl semiclassical algebras.

Proposition 1.5 Let A be a semiclassical algebra. We have
(i)  (Jacobi formula in A[[R]]) for fr,gn, hn € A[[A]]

%[%[fhagh]?hh] + %l:%[hhafh]’gh] + %[%[gn,hn]vfh] = 0; (1-23)

(ii) for any f,g,h € A, n €N

> {{fghm b+ (B Pk g+ {{g hbw, Fhin = 0;

Sl
(1.24)
(iii)
I = 1. (1.25)
(iv) for any fn, gn € A[[R]]
(Umo) " = 2l gi) (1.26)

Definition 1.9 Let A be a semiclassical algebra. A family {f™},en
of elements of A™ satisfies quantum canonical commutation relations with
corrections (abbreviated to gccr+c) if for some D € M,,(C) and for all
,7=1,...,m

D;;1 f =0
= g P o

ket an 0 for n> 0.

If (1.27) holds we say that { f(")}neN satisfies qccr+c of D-type. A system
f € A™ satisfies quantum canonical commutation relations (abbreviated to
gcer) if for some D € M, (C) and for all 4,5 =1,...,m

Dij]l for n=1

1.28
0 for n > 1. ( )

Analogically, when (1.28) holds we say that f satisfies qccr of D-type. A
system f € A™ is quantizable if there exists { f(")}neN satisfying qccr+c
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with £ = f; a family {f™}nen is then a quantization of f and Fr)
for n > 1 are quantum corrections to f. We say that f is selfadjoint
quantizable if it has a quantization which is a selfadjoint family (which we
call a selfadjoint quantization).

For a family {f(™ }ncn consider a system (fris---, fam) € (A[[R])™
given by

fri= > H M. (1.29)
n=0

Proposition 1.6 If A is a semiclassical algebra, then {f™}ncn satisfies
geer+c of D-type iff £[fri, frj] = Dijll for i,j=1,...,m.

Thus gcer+c are analogue of operator canonical commutation relations
in a Hilbert space. Note that f satisfies qccr of D-type iff the family
{f™},en given by FO = fand f£™ = 0 for n > 0 satisfies qcer+c of
D-type. Roughly speaking, qccr is qcer+c with zero corrections. Hence, if
f satisfies qcer, then f is quantizable. If {f(™},cn satisfies qcer+c of D-
type, then f ) satisfies ccer of D-type. The inverse fact on quantizability of
systems satisfying cccr is one of the main problems considered in this paper
(see [Theorem 2). The system (q, p) in M-semiclassical algebras and (7, §)
in n&-Weyl semiclassical algebra are quantizable since they satisfy qccr.

We define now semiclassical unitary transformations, which are in some
sense quantizations of canonical transformations. In the quantum case, for
a unitary operator U acting in a Hilbert space, we can consider the trans-
formation Ty, Ty A = UL AU, acting on quantum observables (operators)
A. Thus Ty preserves the algebraic structure of “observables algebra”. A
similar property defines semiclassical unitary transformations.

Definition 1.10 A family {¢, } nen of linear transformations between semi-
classical algebras A and B is a semiclassical unitary transformation of A
into B if

(i) forany f,ge A, neN

> t(fr9)= Y. tefxitig; (1.30)

jt+k=n jt+k+l=n
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1 f =0
tn(1) = . (1.31)
0 for n>0,

(ili) forany fe A, neN

S oart= Y (wh). (132)

Jjt+k=n j+k=n

A transformation t : A — B is quantizable if there exists a semiclassical
unitary transformation {¢, },en of A into B such that tg = t; {t, }nen is then
a quantization of t. The transformations t, for n € N are coefficients of the

semiclassical unitary transformation or, for n > 0, the quantum corrections
to t.

Let {tn}nen be a family of linear transformations of A into B. We
consider the transformation ¢, : A[[A]] — BJ[[A]] given by

tnfn = ihn > %, (1.33)

Proposition 1.7 If A and B are semiclassical algebras, then {t,}nen is a
semiclassical unitary transformation of A into B iff t, is a *homomorphism
of the formal semiclassical algebra A[[R]] into B[[h]].

If {t,}nen is a semiclassical unitary transformation, then we call ¢, a
formal unitary transformation. By [Proposition 1.7

1 1
tr (ﬁ[fmgn}) = ﬁ[thfmthgh] (1-34)
for fn,gn € A[[R]] or, equivalently, for f,g € A, n €N

Y telfighiy= Y. {teftigha. (1.35)

jt+k=n Jj+k+l=n

In particular we obtain canonicity of to. The inverse fact on quantizability
of canonical transformations is one of the main subjects of this paper (see
Theorem 3).

Consider semiclassical algebras A, B. Let {e(™},cy and { f(")}neN
be families of elements of A™ and B™ respectively and let {t,},cn be a
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family of linear transformations of A into B. Then {f (" en is an image
of {e(n)}nEN by {tn}nen if

3 tre? = £V (1.36)

jt+k=n

fori=1,...,m, n € N. The above can be also written in the form t,ep; =
Fri where en,i, frn; are given by (1.29). Hence, if {e( )}nEN satisfies qcer+c
of D-type, {tn}nen is a semiclassical unitary transformatlon and {f™}nen
is an image of {€(™}, e by {tn}nen, then by [1.34) { F™1 N also satisfies
qcer+c of D-type.

Consider semiclassical algebras A, B, C with a family {t,}nen of linear
transformations of A into B and {s;, }nen of B into C. The family {un}nen =
{Zj+k_n 8j otk bnen is the superposition of {sn}nen and {t, }rnen; we denote
it by {sn}nen © {tn}nen. On the level of formal semiclassical algebras the
above simply means that u, = s, o t;, hence superposition is associative.
When A = C, then the family {s, }nen is the inverse of {t,}nen, if {Sn}neno
{tn}neN = {IdA,n}neN and {tn}nEN 0 {Sn}nEN = {IdB,n}nEN, where Id.A,n =
Idy for n = 0 and Id4, = 0 for n > 0 and similarly for B. If the inverse
of {t,}nen exists, then we denote it by {tn}nEN and We say that {t,}nen is
invertible. Obviously, {sn}nen = {tn}nEN iff s, = t;!. By [Proposition 1.7
superpositions and the inverses of semiclassical unitary transformations are
also semiclassical unitary transformations.

Definition 1.11 An invertible semiclassical unitary transformation is a
semiclassical unitary isomorphism. The formal unitary transformation cor-
responding to a semiclassical unitary isomorphism is a formal unitary iso-
morphism.

If {tn}nen is a semiclassical unitary isomorphism, then ¢o is a canonical
isomorphism. Moreover we have:

Proposition 1.8 If {t,}nen is a quantization of a canonical isomorphism
to, then {tn}nen is a semiclassical unitary isomorphism and {tn};éN is a
quantization of tg 1

2. The semiclassical von Neumann theorem

In this section we prove a semislassical version of von Neumann theo-
rem on unitary equivalence of quantum operator commutation relations in
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Hilbert space (see [21, th. VIIL.14]), below.

In formal semiclassical algebras terms the idea of the semiclassical von
Neumann theorem may be expressed as follows: under some “technical as-
sumptions”, if (en1,-..,€nm), (fr1,---, frnm) are real systems of elements
of formal semiclassical algebras A[[h]], B[[h]] respectively and the commuta-
tion relations
%[eh,i,eh,j] = D;;1, %[fﬁ,iyfﬁ,j] = D; ;1
hold for i,j = 1,...,m and some D € M,,(C), then there exists a formal
unitary transformation t, : A[[R]] — BI[A]], such that tren; = fr; for
t = 1,...,m. We thus need a tool to construct a proper semiclassical

unitary transformation.

2.1. The inductive lemma

The following lemma is our main technical tool. We shall say that
a condition with a natural parameter n is satisfied on the level s, if it is
satisfied for n = s.

Lemma 2.1 (The inductive lemma) Suppose that {€™},en, {f™ }nen
satisfy qcer+c of the same type in semiclassical algebras A, B respectively
and that €©) € A™ is independent. If n>1 and forany k =0,...,n—1
there exist linear transformations ty, : A — B satisfying (1.30), (1.31) and
on the levels 0,...,n — 1, then there exists the exactly one linear
transformation ty, : A' — B, where A’ = alg(e(?)), satisfying

(1) t;z(fg) - t;?,f - tog + tOf ’ t;lg - Pn(f’g) fO’f‘ fag € AI; where Pn :

Ax A — B,

Pu(f,9)= D t(fxig)— Y tafxitig (2.1)

jt+k=n j+k+l=n
k+#n k,l#n
(i) ¢,1=0;
(iii) the® = £ where F(W) € Bm, f0) = £(0) _ Z tpel),
Jjt+k=n
k#n

Proof. The uniqueness of the choice of #,, is immediate, since alg(e(®)) =
A’. We prove the existence of t, employing the idea from the theory of ordi-
nary differential equations, where the extended phase space is constructed
to replace the problem of solving of a non-autonomous equation by the
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problem of solving of the corresponding autonomous equation. Therefore
we first find the linear transformation ¢ : A — A, where 4 = A x B,
satisfying

(i) o(fg) = o(f)Oplg) for f,g € A, where the operation ® : Ax A — A
is defined for f,g € A, f',¢' € B by

(f, fH)o(g9,9) = (fg, [ -tog+tof -9 — Pu(f.9)); (2.2)

(i) (1) = (1,0);

(iii') cp(ego)) = (e, () f( )) for any i = 1,.

If ¢ is as above, then it has the form ¢ = (gol,cpz), and by (i) and (ii)
¢1 : A — A is a homomorphism of the algebras. Since A’ = alg(e(®)) and
(iii") holds, ¢1(f) = f for f € A'. We can thus define t;, = @2 and by (i),
(it'), (iil’) it satisfies the conditions (i), (ii), (iii).

We have to prove the existence of ¢. Suppose that A is the algebra
with the multiplication ® and with the unity (1,0), in which (e; ©) f(n))
commute for i = 1,...,m. Then the above conditions on ¢ exactly mean
that ¢ is a homomorphism of the algebras with values on e(©) fixed by (iii).
Observe that by the independence of e(® the algebra A’ is a polynomial
algebra and e(® is its algebraic base. The existence of ¢ follows then from
[Proposition 1.1, provided our suppositions on A are true.

We first check that (e,(p), $ )) and (eg ), fir )) commutes under ©. By
(2.2) we can write this as P, (er ,ego)) = (e§°), e,(no)) and this is, by (2.1)
and (1.15), equivalent to

Z ti{e,(ﬁo), ego)}1+j = Z {tieﬁo),tkego)}lﬂ. (2.3)

i+j=n—1 i+k+z=n—1

The above condition corresponds to on the level n — 1 for e,(p), ego)
(thus it would follow from (1.30) on the level n, but we assumed (1.30) only
on the levels 0,...,n —1). To prove (2.3), consider first the case n > 1 and
transform the LHS of (2.3) using the fact that {e(™},en satisfies qcer+c
and that ¢;1 = 0 for j > 0, and next using on the levels 0,...,n — 2
(which holds by (1.30) on the levels 1,...,n — 1):

Z ti{ego),ego)}uj = — Z t; Z {ev(}t)aegw)}lﬂ

i+j=n—1 i+j=n—-1 utwtz=j
2#i
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=- > t{eMehy.

t+utw+z=n—1
u+w7#0

= — Z Z ti{efg'u)a egw)}l-i—z

O<utw<n—1 i4+z=n—1—(u+w)

- Z {t:el), trel) }1 ..
i+k+z+tutw=n—1
u+w#0

Using on the levels 0,...,n — 1 and the fact that { (™}, satisfies
qccr+c, we also have

0= Z {fgj)’ fgl)}1+z = Z Z {tiefg'u)a tkegw)}1+z

j+z+l=n—1 j+z+Hl=n—1k+w=l
i+u=j
0 0
= E {tieﬁu),tkegw)}m + E {ti6$ ), tke£ )}1+z,
i+k+z+utw=n—1 i+k+z=n—1
u+w#0

and this equality together with the previous one implies (2.3) for n > 1.
When n = 1 it is sufficient to use the condition tpe® = £ and the fact
that e@, £(© satisfy cccr of the same type.

The bilinearity of © and the neutrality of (1,0) € Ais evident, so it
remains to prove the associativity of ®. By the equality to(fg) = tof - tog
((1.30) on the level 0) it suffices to show that for f,g,h € A

Pn(fga h’) - Pn(f’ gh) - tO.f : Pn(g7 h) + Pn(f, g) : tOh =0. (24)
Thus, by (2.1) we must prove that L; + L;; + Ry + Ryr = 0, where

Lr = Y til(fg)xih — fxi(gh));
i+j=n
i#n
Lir = ) ti(fxjg) - toh —tof - ti(gx;h);
i+j=n
i#n
Rr = ) tifxjti(gh) — te(fg)xstih;
i+j+k=n
i,k#n
Rip = Y tof - (tigxjteh) — (tefxjtig) - toh.

i+j+k=n
i,k#n
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Using (1.12) for f, g, h we have

n—1 n—1

0= 0= Y tl(f9) *n-i) h = f *n-s) (gh)]
1=0 1=0
n n—k
+) Z ti[(f*k9) *(n—i—k) b — f *(n—i-k) (g*kh)]
k=1 i=0

= Lr+ Z Z (f*kg)*utsh - tsf*utr(g*kh),

=1 r+uts=n—=k

where the last equality follows from (1.30) on the levels 0,...,n—1 for fxxg,
h and for f, gxxh. Thus we have

Y te(fxrg)xutsh — tsfrute(g *x ) = =L, (2.5)
(ryu,s,k)EA

where A = {(r,u,s,k) € N*: r +u+s+k=mn, k> 0}. By (1.12) for txf,
tig, tmh we also have

O—Z > o Z Yo ST (tefrrtig)rutsh — tr fru(tigritsh)

1=0 r+l+s=i 1=0 r+l+s=i k+u=n—1
r,l,s#n r,l,8#£n
= Z (t'f‘f*ktlg)*utsh - tsf*u(trg*ktlh)a (2'6)

(ryu,s,k,l)eCUD
with
CZ{(T’,U,S,]C,Z)ENS:T—{—u—{—s-}-k-{-l:n, ’I“+k+l7én, S;én},
D={(ruskl)eN:r+k+l=n,s=0k=0,r#n,l#n},

where in the last equality we have used the symmetry in r, [, s and the
formula

CubD
= {(r,u,8,k,) EN°:r+u+s+k+l=n,r#n, l #£n, s#n}

By (1.30) on the levels 0, ...,n—1 for f, g and for g, h we have respectively

Z 0= Z Z tr(f*kg) - Z tr fxrtig *utsh;

Jjtuts=n Jtuts=n Lr+k=j r+k+l=j
J#N,SEN J#N,8FN
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Z 0= Z tsfxy Z g*kh Z trgxitih|.
jtuts=n jtu+s=n r+k=j r+k+l=j
J#n,s#En J#n,s#n

Since C'N D = {), substracting the above equalities and using (2.6), we get

STt (frrg)xutsh — b frute(g # B)

(r,u,s,k)eB
= Z (tv‘f*ktlg)*utsh - tsf*u(trg*ktlh>
(ru,s,k,lyeC
- Z (trf*ktlg)*utsh - tsf*u(trg*ktlh) - RIIa (27)
(ryu,s,k,l)eD

where B = {(r,u,s,k) e N*:r +u+s+k=mn, r+k#n, s#n}. Let

=A\B={(r,u,s,k)eN*:r+k=mn, k>0, u=s =0},
=B\A={(r,u,s,k)eN*:r+u+s=n, r#n, s#n, k=0}.

As A\ A; = AN B = B\ Aj, we can replace the sum “}° (rusk)cA 1D the

LHS of (2 ’5) by “Z (ryu,s,k)€B + Z(r u,s,k)€EA; Z(F,U,S,k)EAQ” and then, by
(2.7), this sum is equal to RH + Lir + Ry, which establishes (2.4). O

Note, that if A = A’ and ¢t is invertible, then (2.4) from the above
proof means, that t;'P, is a Hochschild 2-cocycle and (i) of Lemma 2.1
means, that this 2-cocycle is exact (see e.g. [14]

We can prove now the corollary, a “simple version” of the semiclassical
von Neumann theorem.

Corollary 2.1 Consider a semiclassical algebra B and a polynomial semi-
classical algebra A. If {e™},en, {F™ Inen are selfadjoint families satisfy-
ing qcer+c of the same type in A and B respectively and €® is a canonical
base of A, then there exists a unique semiclassical unitary transformation

{tn}nen such that {f™}en is an image of {e™}en by {tn}nen.

Proof. Since we have A’ = A, using [Proposition 1.1 and the inductive
lemma we can obtain the existence of ¢ty and then of t,-s, such that the
corresponding ¢, is the unique homomorphism of A[[A]] into B[[A]] of the
form (1.33), for which tyen; = fr; (where ep;, fr; are connected with
{e™}en, {F™ }nen by (1.29)). Moreover, by Proposition 1.4 all er; and
fn,i are real. By [Proposition 1.7, it suffices to prove that t,fi" = (t, fr)*"
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for f, € A[[R]]. Consider s, : A[[h]] — B[R] given by sxfn = (tnfr")*"
for f, € A[[h]]. From the properties of an ivolution we see that s, is also
a homomorphism of A[[A]] into B[[A]] satisfying s,en; = fr; and it has the
form (1.33). Thus, by the unicity, we have s, = t,, which finishes the proof.

U

This corollary doesn’t give the explicit formulas for the coefficients ¢,
of the semiclassical unitary transformation. We shall obtain such formulas
in the “main” semiclassical von Neumann theorem.

2.2. The explicit formulas for polynomial and entire algebras

We formulate here the main result of this section.

Theorem 1 (The semiclassical von Neumann theorem) Suppose that A
and B are both polynomial semiclassical algebras or both entire differential
semiclassical algebras, {e(")}neN and {f (n)}nEN are selfadjoint families sat-
isfying geer+c of the same type in A and B respectively and e(©), f(o) are
canonical bases of A and B respectively. Then there exists a unique semi-
classical unitary transformation {t,}nen with continuous coefficients in the
entire differential case such that { F™Y e s an image of {€™}en by
{tn}nen. Moreover, ty is a canonical isomorphism of A onto B given by the
formula

to = ¢f(0) ¢e_(g) (2'8)

and t, for n € N have the form t, = tqD,, where D, : A — A are
recurrently defined by

m
Do=1Ida, Dn=—Zy0(Ra)+ Y &0 o (2.9)

j=1

for n>1, where Ry : AX A — A,

Y Dilfx9) = Y (Def)%i(Dig), (2.10)
gung g

with x; : A x A — A given for f,ge A, j €N by

Fxig = tg" (tof*jtog) (2.11)
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and where €™ € A™ are given by

e =1 f™M — 3" Dreld). (2.12)
j+k=n
k#n

In the entire differential case D, are differential operators.

Proof. Observe first that e(® and f () are real and thus, by Proposition 1.3,
to defined by (2.8) is a canonical isomorphism of A onto B and by definition
is a homeomorphism in the entire differential case. We prove by induction
that {t,}nen is well-defined, that it satisfies (1.30), (1.31), [1.36), and that
D,, are differential in the entire differential case. The zero step is already
done; suppose that the above is true on the levels 0,...,n — 1. By Lemma
2.1 there exists t}, : A’ = alg(e(?)) — B satisfying (i), (ii), (iii). By (2.1),
and by our inductive assumptions we have R, =t 1p.. Let us define
Dp: A — Aand R, : A’ x A’ — A by the formulas

D), = talt;,,, R, = Rn|A’><.A’-
By (i) we have
Dy(fg) — Dunf-g—f- Dng = —Rn(f.9) (2.13)

for f,g € A'. By [Proposition 1.2 the operators Dj;, and Rj, can be written
in the form

Dyf = Z daOg0) [ Rn(f,9) = Z T’y,’y’BZ(o)f‘az(O)%
aeNm™ v,y ENT
with do, 7 € A for f,g € A'. Thus we can rewrite as
dyor (VT 00 107 = &y f -0,
Z v+ ~ e(O)f' e9 = — Z Ty e(O)f' e®9

v, #0 v,y EN™

and hence, by the uniqueness of the form (1.3) of an operator, we have
dytry! (717) = —r, for v, € N*\ {0} and r, ,» =0if y =0o0r v = 0.
Therefore, for any o € N™ \ {0}

- Z Ty = — Z Ty = da Z (:)

7Y =a Yy =a vHy=a
7Y #0 ¥,Y'#0
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a3 ()-aen-n

v#0,a

Lo
By the above, we can express D, by R, and by a first-order differential
operator using the operation Z_) (see (1.5)). We have

D = —Z,0)(Rn) + Z daOg0)-

lal<1

The coefficients do for |a| < 1 are determined by the conditions (ii) and
(iii) of Lemma 2.1, which imply that D1 = 0 and Dje® = 5! f( with
(™ defined in (iii) of Lemma 2.1. Thus do = 0 and by dy; = é(jn).
Finally we obtain

D}, =—Z_0) (Rn) + Z “ﬁ")a (0) (2.14)

Jj=1
Observe that in the polynomial case the above means that D;, = D,, (since
A’ = A and R;, = R, then) and that ¢, = t,,. Therefore, we obtain (1.30),
(1.31) and which completes the induction in this case. In the entire
differential case we have to prove first that R, is a differential operator. By
and by the inductive assumption it is enough to prove that for any
J € N %x; is a differential operator, which is easy to check by remarks after
Definition 1.4. By |(2.9), the operator D,, and then also t, is well-defined,
since R, is differential and we can apply Z_«) to it. Moreover, D, is also
differential. Since differential operators are continuous we may complete
the induction in this case by the standard continuity arguments. To prove
(1.32) we proceed analogously to the proof of Corollary 2.1. The uniqueness
immediatelly follows from Lemma 2.1. OJ

Remarks

(i) and [Corollary 2.1 can be somewhat generalized. We can
assume o -selfadjointness of {€™},en and {f (”)}neN for any permuta-
tion o of {1,...,m} (the same for A and B) instead of selfadjointnes,
where we call a system f € A™ o-real for a *algebra A if f7 = f,, for

t=1,...,m and we call a family {f (n)}nEN o-selfadjoint in a semiclas-
sical algebra A if the corresponding system (fx 1, ..., fam) € (A[[R]])™
is o-real. Note that f,2;) = f;fori =1,...,mand for a o-real f. The
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canonical base (1,£) in Ent,¢(C2?) is an example of a o-real system
for o given by o(j) = (j + d) mod 2d for j € {1,...,2d}.

(ii) By [Proposition 1.8 the family {t,}nen from is a semiclas-
sical unitary isomorphism and in the entire differential case {tn};elN
has continuous coeflicients.

We use the formulas from to compute the operator D; in a
simple but nontrivial case.

Example 2.1 Let A = B be a two-dimmensional g-p or p-q or Weyl semi-
classical algebra (polynomial or entire) and consider e® = x = (q,p),

f© = (q,p + q?). Both systems satisfy qccr of <(1) _01 )—type in A,

hence taking e™ = £ =0 for n > 1 we obtain {e(™},en and {f™}nen
satisfying geer+c. Since e(® is a canonical base, f ©) = 8(2’0)6(0) (see Exam-
ple 1.1) is also a canonical base by Proposition 1.3. We also have to = 5(2,9)

and, moreover, 1) = 0 and R (f,g) = f*1g— f¥*1g for f,g € A. Therefore
we compute

D1 = Zx(;’l — *1).

Let us denote D, for the considered cases by ng'p ), D§p' q), DgW) respec-
tively. In g-p case we have

for f,g € A, hence
f*x19 = —i0pf(2q0pg + 0,9),
which follows that
D{7?) = _iqd,d,.
Analogously, for p-¢ and Weyl cases, we find
D" = iqo,8,, D) =o.
The following result is an important (and immediate) consequence of
Theorem 1.

Corollary 2.2 Suppose that two structures of polynomial or of entire dif-
ferential semiclassical algebras are defined in a polynomial or, respectively,
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in an entire classical algebra and that there exists a real canonical base of
this classical algebra being selfadjoint quantizable in the both semiclassical
algebras. Then these semiclassical algebras are semiclassically unitary iso-
morphic.

This proves the semiclassical “equivalence” of all M-semiclassical al-
gebra structures (see Example 1.2) defined in one of Pol(R??), Pol(C??),
Ent(R??) and Ent(C??), since the canonical base x = (q, p) is selfadjoint
quantizable in all these semiclassical algebras. However, as we shall see
soon, the quantizability assumption in the above corollary is not necessary!

3. Quantization of classical canonical commutation relations

We consider here the problem of quantization of systems satisfying clas-
sical canonical commutation relations.

Let A be an m-dimmensional polynomial or entire classical algebra and
e a canonical base of A. For s = 1..., m we denote

Ve,sg = ({gael}’ s {gaes}) € AS’

Ve,sgl
De,sg = ({gi7 ej})i,j:l,...,s = : e Ms(A)
VE,SgS

for g € A and for g € A°. When s = m, we shall also write 7. and D,
instead of /e s and De 5. For C € M (A) and ' = 1,...,s we denote by
Cls the s’ x ' matrix with (Cen)ij = Cij, i, =1,...5"

3.1. Equations D.g = C and D.g — (D.g)" =C
In the present subsection we study solvability of some equations arising
in the quantization of cccr.

Proposition 3.1 Consider an m-dimmensional polynomial or entire clas-
sical algebra with a canonical base e and matrices C € My, (A) and C' €
Msi1(A) for some s € {1,...,m —1}.
a) The equation Deg = C has a solution g € A™ iff {C; j,ex} ={Cik, €;}
fori,j5,k=1,...,m.
b) If C'" = ~C' and

{Cz{,j’ ek} + {Cllc,ia ej} + {C.;',k’ ei} =0 (31)
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fori,jk=1,...,s+1 and g € A° satisfies (De sg) — (Desg)" = C’fs],
then there exists g € AST! such that § C g and

(De,s+19) — (De,s419)" = C'. (3.2)
c) The equation
(Deg) — (Deg)' =C (3.3)
has a solution g € A™ iff CT = —C and for i,5,k=1,...,m
{Cij,ex} +{Cki e} +{Cjk, e} =0.
This proposition can be easily proved using the following lemma (we
omit here the details and also the proof of the lemma — see or [18]).

Lemma 3.1 Suppose that g € A’ for some j =1,...,m. Then the equa-
tion

Veif =9 (3.4)
has a solution f € A iff

De,jg = (De,jg)T- (3'5)

3.2. Quantization of canonical bases

We prove here the following theorem on the quantization of canonical
bases:

Theorem 2 FEach canonical base of a polynomial or entire semiclassical
algebra is quantizable and moreover it is selfadjoint quantizable if it is real.

To prove this theorem we need a recursive lemma.

Lemma 3.2 Suppose that A is an m-dimmensional polynomial or entire
semiclassical algebra with a canonical base e and that é C é C e, where
éc At éc A forsomes=1,...,m—1. If {é(n)}nEN is a quantization
of &, then there exists {é(n)}neN being a quantization of & and satisfying
é™) c &M for n € N. Moreover, if & is real and {€™}nen is selfadjoint,
then the above {&™},cn can be also choosen selfadjoint.

Sketch of the proof. We have to prove that for any n € N there exists
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&™) € A5t satisfying 8® = & and for n > 1 & > é(™ € A% and

Z {egr)a ugt)}1+v =0

r+t+v=n
for any ¢,7 = 1,...,8 + 1. We recurrently construct é(™ . Suppose that
n > 1 and that 8® for k =0,...,n — 1 satisfying the above conditions are

already constructed. Thus the needed (™ should satisfy &™) > é™ and
the matrix equation

(De,5+1é(n)) - (De,s+1é(n))T = C(n),
with C(™) € Mgy1(A),

Cz'(;'l) Z {e(r) eV Hto-

r+t+v=n
rt#£n

As {é(")}neN satisfies qcer+c, we have
(Des€™) = (Des&™) = C.

From it follows that (C™)T = —C(™). Using the Jacobi identity
(1.24) and the inductive assumption we can check that (3.1) holds for
C = C™ (see or [18]). Therefore the existence of (™ follows from
Proposition 3.1 b). Suppose now that & is real and {é(™}, cy, is selfadjoint,
and choose an arbitrary {&(™},cn satisfying the conditions of the already
proved first part of the lemma. Let &,; =) -  h"é ( ) for i = 1,...,s+1
and €,; = Y o0, h”égn) fori=1,...,5 (&ns, €ns € .A[[ h]]). Thus we have
éni = éh,i fori=1,...,s. Moreover (éh,i)*h = éﬁ,i fori=1,...,s and

3 [Enis Eny] = (cr(€))y1 (3.6)

for i, = 1,...,s+ 1. By [1.25), (1.26) and since (cr(é));; € R (which
holds by reahty of & and by [1.8)) we have %[é,;, €,s11) = (cr(€))i,s+11
for i = 1,...,s. Hence by (3.6) %[&n, re*"€nst1] = (cr(8))is+11. By
antisymmetricity of %[ , ] and of cr(é), the family {f™}nen of systems
from A°t! given by the conditions fl(- " = f ™) for i = 1,...,s and by
PRy fg:i)l = re*"éy s41, is selfadjoint, it satisfies ém ¢ f(") forn e N
and it is a quantization of é. O
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Proof of [Theorem 2. Let A be a polynomial or entire m-dimmensional
semiclassical algebra and e its canonical base. We recurrently construct
quantizations of all € C e having the dimmension between 1 and m. The
recursion is possible by [Lemma 3.2, provided that é = e; € A! is quantiz-
able (or selfadjoint quantizable for real e). To obtain a quantization only,
we can take arbitrary elements of A as eg") for n > 1, since (1.27) always
holds when ¢ = j (e.g. by antisymmetricity of { },). By (1.19) the family

{egn)}neN will be selfadjoint if for any n € N

2iim*(e{”) = ef” — (e{")0 = 3 (ef?)n.
k+l=n
k#n

If e is real, the above condition holds for n = 0 (since ** = *). We shall
obtain it also for n > 1 defining recurrently

n n 1 k)\x
e =13 Y (e
k+l=n
k#n
where f(™ are arbitrary real elements of A. O

Remarks

(i)  As can be seen from the proof of and of Lemma 3.2, quanti-
zation (and salfadjoint quantization) of canonical bases is non-unique.
This non-uniqueness is a consequence of the fact that solutions of the
equation are defined up to the term of the form <. f for f € A
(see Lemma 3.1).

(i) From we immediately obtain quantizability (or salfadjoint
quantizability) of “subsystems” of canonical bases, that is, of such
systems f € A° that f; € {e1,...,en} forj=1,... s, wheree € A™
is a canonical base of A (real for salfadjoint quantizability).

We now present an example of a family satisfying gccr+c with non-
trivial quantum corrections.

Example 3.1 Consider a two-dimmensional Weyl semiclassical algebra
with the canonical base

e=(q+(p+d"), p+d) =suy(a p),

k,l € N, (s(k,l) is a canonical isomorphism from Example 1.1 and p = p,
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q = qy, since d = 1). Proceeding as in the proof of we construct
the quantum corrections e(™ to e. These corrections cannot be all equal to
zero, since e does not satisfy qccr, e.g. for k=1=3

3
{er,ex}s ={(p+ Q) q3}3 =35 # 0.
We can quantize e; taking zero corrections, that is,
eg") =0 (3.7)

for n > 1 (it is a selfadjoint quantization, since *» = 0 for n > 1). A family
{e(™},cn will be a quantization of e, if for n > 1

{el er} = {el”,es} — > (e, e }11. (3.8)
r—}-t—l—; =n
ri#n

Using the canonical isomorphism s(_kll), by we obtain

{p, s (kl) )} *Skl) Z{el y Pt q }1+(n —t)»

and since {p,-} = 0; and {:, p}; = 0 for j > 1, we can choose

n—1
e = 504 /q sty S, @i (3.9)
t=0

for n > 1, where the operetor | g Ent(C?) — Ent(C?) (or Ent(R?) —
Ent(R?)) is given for f = ZijEN fiid'P?, fij € C by the formula

Finally {e(n)}neN with e® = e and with e(™ given recurrently for n > 1
by and is a selfadjoint quantization of e, since * =*° and *» =0
forn >1and { },, sx,; and [ o commute with * (being the usual conjugation
of function here).

4. Quantization of canonical isomorphisms

We prove here our result concerning quantizability of canonical isomor-
phisms of polynomial and entire algebras. As an illustration we find simple
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recurrent formulas for the quantum corrections in the case of linear canon-
ical isomorphisms of the phase space for M-semiclassical algebras. We also
find corresponding unitary transformations acting in Hilbert space.

4.1. The quantizability theorem
We can combine the results of and of to obtain

the following result.

Theorem 3 Suppose that A and B are both polynomial semiclassical al-
gebras or both entire differential semiclassical algebras and that A possesses
a real canonical base. If t : A — B is a canonical isomorphism, contin-
uous in the entire differential case, then t is quantizable and in the entire
differential case the quantum corrections to t can be choosen continuous.

Proof. Let e be a real canonical base of A. By proposition 1.3 te is a real
canonical base of B with cr(te) = cr(e) and thus by e and te are
selfadjoint quantizable. Therefore there exist selfadjoint families {e(")}neN,
{ f(")}neN satisfying qccr+c of the same type in A and B respectively such
that e® = e, £ = te. By there exists a semiclassical unitary
transformation {¢, }nen (with continuous coefficients in the entire differen-
tial case) such that {f(™},cn is an image of {€(™},en by {tn}nen. In
particular tge = tge®) = f(O) = te and since ty and ¢ are homomorphisms
of algebras, we have to = ¢. Thus {t, }nen is a quantization of . d

Remarks

(i) Quantum corrections for ¢ are not uniquely determined (see also the
remark (i) after the proof of Theorem 2).

(ii) If a canonical base e and some selfadjoint quantizations of e and te
are choosen, then there is a unique choice of quantum corrections t,,.

They are given by the formulas from Theorem 1|, that is, t, = tD,, for
n > 1 and D, are recurrently defined by [2.9), [2.10), (2.11),
with to = t and e(®) = e. The remark (ii) after the proof of
is also valid here.

(ili) The existence of a real canonical base of A is an important assumption
of [Theorem 3. It can be proved (see or [18]) that if A possesses
o-real canonical base for some permutation o (see remark (i) after the
proof of [Theorem 1/), then A possesses also a real canonical base.
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4.2. The case of linear isomorphisms of R24
Consider an m-dimmensional polynomial or entire classical algebra with
a real canonical base e. Let C' € M,,(R) satisfy

cr(e) = Cer(e)C" (4.1)
and denote t, : A — A
tc = b5 o2, (4.2)

where f = Ce. Since C has real coefficients, f is a real system and thus
by and Proposition 1.3 f is a real canonical base. Therefore, by
Proposition 1.3, t¢ is a canonical isomorphism of A (and a homeomorphism
in the entire case).

We define now some classes of multilinear differential operators for A.
By Of:,z we denote the set of all k-linear operators P : A¥ — A of the form

P = Z paag7

a€(N™)k
la|=n
where p, € C (in particular these operators have “constant coeflicients

relatively to e€”). For instance, the multiplication - in A is in (‘Jgg, and

{, }e (‘)g% by (1.11). Note that all operators from |J,cn OE:; commute.

We shall define also the operation Z, which transforms bilinear dif-
ferential operators into linear operators in 4. It is defined by the formula
which is similar to (1.5):

Z(S)f = D syyOef
a€EN™ y4vy'=a
for f € A, where S is a bilinear differential operator,
S(f9)= Y syy0lf -0y
vy ENT

for f,g € A. For instance

~

Ze(r) = Md. (4.3)
Note that if S € (‘)g’g for n > 2, then Z¢(S) € Ogg and

L Z.(9) (4.4)

2(8) = g 2e
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For linear operators D, D’ and a bilinear P, we define bilinear operators
Pc, P(D,D’) and a linear D¢ by the formulas

Pc(f,9) = t5'P(tcf,tcg), Do =t5'Dte,
P(D,D')(f,9) = P(Df,D'g),

f,g € A.

Lemma 4.1 Under the previous assumptions on A, e and C, if P € off%,
De 0¥ and D' € OF), then

el
a) DPec 0% and Z.(DP) = 2'DZ.(P);
b) P(D,D') e 0% and Z,(P(D, D)) = DD'Z.(P);
¢) Pce0f) and Zo(Pc) = (Ze(P))c.

We can now formulate a result concerning quantization of canonical
isomorphism ..

Corollary 4.1 Let A be an m-dimmensional polynomial or entire semi-
classical algebra with a real canonical base e and suppose that (i) e satisfies
geers (ii) e = 0 for n > 0; (iii) % € 07 forn € N. If C € Mp(R)
satisfies and the operators D, : A — A are given by the recurrent
formula

-1 k

Do=1Ida, Dn=gi—s| > 4Dils— 3 DiDilly)o
j+k=n J+k+l=n
k#n k,l#n

(4.5)
for n > 1, where
L' = Ze(*j))

then D, € O(zn) and the family {t,}nen with t, = tcD, is a quantization
of to (with continuous coefficients in the entire case).

Proof. By (iii) L; € Og{) and thus D,, given by (4.5) are in O( ") for any
n € N. On the other hand, by the remark (ii) after the prof of Theorem 3 m,
the recurrent formulas [2.9), [2.10), (2.11) and with tg = t are valid
for quantization of t.. Thus define e = (™ =0 for n > 0 and e© = e,
f© = ¢ e. Obviously, by (i) and (ii) {€™}nen is a selfadjoint quantization
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of e. We have
{fkafl}n - Z CkiCl]—{ek,el}n =0

i,j=1,...m

for n > 0, thus analogously { f(”)}neN is a selfadjoint quantization of the
canonical base f. By [2.12), the RHS of the recurrent formula reduces
to —Ze(Ry). Hence by (4.4) and Lemma 4.1, the two definitions of operators
D,, are equivalent. O

Example 4.1 Consider the classical algebra A = Pol(R??) or Ent(R??)
and an arbitrary linear canonical transformation C' of the phase space R24
(that is, a linear transformation preserving the standard symplectic form
dg A dp in R??). If we identify C with the element of Ma4(R), then this

property of C' is just defined by with e = (q, p) = x (see e.g. [8]). We
can rewrite in the form of the system of matrix equations

KL' =LK', MN" =NM", KN' —LM'" =1,

where C has the block form

c:(g f,) (4.6)

with K,L, M, N € M4(R). By [4.2), the canonical isomorphism t. (acting
on the algebra A level) satisfies tof = fo C for f € A.

We can compute now a family of quantum corrections for ¢, in M-
semiclassical algebras Poly (R?¢) or Ent s (R?4) (see Example 1.2) using the
above corollary. Note that the only terms in (4.5) depending on the choice
of semiclassical algebra are operators L;, hence it is enough to compute
these operators. Denote the operator L; by L;-” for a given M-semiclassical

algebra. By and Lemma 4.1 we have

N

t (87 (81
Ly Z a!—ﬂ!(an) (M,)PoetP

I

o+l =n
" g —a
— Z — Z( )(an)a(Man ]a;
rl=n T Lagy \*
" in
= > J(anjuMaq)'vag = ; —(Gd,)9}.
lv|=n lv|=n
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Usually the corrections t,, for t- are compositions of t- and of some
quite complicated differential operators with constant coefficients depending
on C and M. Hovever, when we deal with Weyl semiclassical algebras,
then G = 0 and thus all the corrections ¢, are zero for n > 1. This is
the well-known result and the invariance of all x)7 from Weyl deformation
quantization for linear canonical transformations of the phace space is an
immediate consequence of it (see [3] V §1.4). When G # 0, then quantum
corrections are usually nonzero. For instance, in ¢-p semiclassical algebra
(for G=—I) for C = ( ? _I> we have t) = it:0p0,.

Observe also that by the above formula for LY and by the formulas for
deformations in M-semiclassical algebras, in each algebra of this type x~
and *n are closely related by the equality

M

fr =L (f") = ZX(*n)(f*)

4.3. Connections with unitary transformations of Hilbert space

It would be interesting to find a relationship between semiclassical uni-
tary isomorphisms considered in this paper and unitary transformations of
Hilbert space. To do this we need some map between semiclassical algebra
and “algebra” of quantum observables (operators) in the appropriate Hilbert
space. We consider here the simple case of the semiclassical unitary isomor-
phism being the quantization of canonical transformation ¢, (from the pre-
vious subsection) in the semiclassical algebra .A = Pol, ,(R??) or Pol,, ,(R%?)
or Poly, (R??). The natural Hilbert space corresponding to A is L?(R%) and
the natural map between .A and operators in L?(R?) is the procedure "* of
quantization of observables from 4 — ¢-p, p-q or Weyl quantization respec-
tively (see e.g. [3]). In particular we have "* : A —s Diff(R%) for A > 0
(note that  is no longer a formal parameter here), where Diff (R?) is a set of
differential operators with polynomial coefficients in L?(R¢) with the (invari-
ant) domain $(R?) — the space of Schwartz functions. Note that Diff (R%)
with the composition of operators, with the identity operator in $(R?) and
with the adjoint being the restriction of the usual Hilbert adjoint of oper-
ators to S(R?) forms a *algebra. Using Proposition 1.4 it is easy to prove
that {Pol(R24), %, 1,*® } with %@, : Pol(R??) x Pol(R??) — Pol(R??)
and *® : Pol(R??) — Pol(R?%) given by
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0 xO
Fxmg=Y W'frng, fr®=> hrfm
n=0 n=0

is also a *algebra for any A > 0 (note that by the formulas from Exam-
ple 1.2 the above sums are finite for fixed f,g € A). Moreover, from the
construction of the semicalssical structure in A (see [3]) it follows that "
is a *isomorphism of this *algebra onto Diff (R?) for any & > 0 and

9" =Qn, P" =P, (4.7)

where (Qn¢) (¢) = 2j¢(a), (Prje) (@) = B iop(a) for o € S(RY), @ € R

We denote by V* the inverse *isomorphism. Let {t,},en be the quantization
of t- constructed in Example 4.1. It is easily seen from Propositipon 1.7
that for A > 0 the transformation ¢, : Pol(R??) — Pol(R??) given for
f € Aby

o0
toyf =Y W'tnf
n=0

is a *isomorphism of {Pol(R??), x,, 1,*® } (the above sum is finite for any
f by Corollary 4.1) and

tam(a, p) = te(q, p) = C(q, p) (4.8)

(since Dpq; = Dpp; =0forn>1,i=1,...,d). For h > 0 consider now
the transformation T 5 : Diff(R?) — Diff(R?), Ton ="* otnyoV*, which
is a *isomorphism by the above considerations. By and (4.8) we have

(-Tc,n(Qru Pn) = C(Qh, Pn)- (4-9)

We can now precisely formulate our problem as the question about the
exisistence of such a unitary transformation U ,, of L?(R?) preserving $(R%)
that for any X € Diff(R?) and A > 0 T, X = U5LX Ucn. The ansver
is positive for all C. To find the appropriate U.  we shall use the fact
that any linear canonical transformation C of the phase space R%? has a
decomposition of the form

D1 0 I 0 P. P, I R Dl 0
0 D' R I ~P. P J\o I o D)’
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where r € {0,...,d}, D,D,R, R € My(R) satisfy det D,det D # 0, R’ =
R, R" = R and P,., P, are projections in R? given by P,z = (z1,...,2r,
0,...,0) and Pz = (0,...,0,2p41,...,24) (in particular Py = P’y = 0)
(see for the proof). We first restrict our considerations to the cases of
C being one of the terms of the above decomposition. Since the condition
uniquely determines the *isomorphism of Diff(R?), we can easily find

Ue » in these cases:

) ) P. P, )

i) ifC = P p with » € {0,...,d}, then Uy, = F,p, where
F,n is the quantum Fourier transform in LQ(Rd) in the last d — r

coordinates, that is, F,, = I when 7 = d and for r < d, ¢ € §(R%)
and r € R?

(Frnp)(x) = (Qwh)—(d—r)/Q/
JR(d-7)

1
exp(_—h“(xv"-}—la <o ,.’Ed)S) (p(xlv sy Ipy S) ds

(and it is uniquely extended to the unitary transformation of the whole
L*(RY));
(il) lf C - ( é ? ) Wlth R — RT, then uC’h - MR,h? Whel"e MR,h iS the

operator of multiplication by the function gg , : R — C, gpn(z) =
exp (35 (Rz)z) for z € RY;

(111) if C = (I R) with R = RT, then uC’h - VR,h) where VR,h =

D™t 0
0 D'
is the normalized change of variables connected with D, that is, for
¢ € L2(R?) 8,0 = |detD|%<,0 oD.
Using these special cases and the decomposition (4.10) we can define U¢ 5
for A > 0 for an arbitrary C by the formula

(iv) if C = ( ) with det D # 0, then Us, = 8, where 89

Ue,n = S5 Vﬁ,hgr,hMR,hS?j°

It seems natural to treat the obtained family of unitary transformation Ue
as a quantization of the canonical map C. Similar construction can be made
when we take an arbitrary semiclassical algebra Pol,,(R??) as A. In this
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case the quantization "* should be defined by T-symbol (see for the
details).

Unfortunatelly, the case of quantizations of nonlinear canonical iso-

morphisms of the phase space is much more difficult. It remains an open
problem to rigorously construct in like manner a family of unitary transfor-
mations corresponding to a given semiclassical unitary transformation in a
more general case.
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