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On the class of univalent functions starlike with
respect to N-symmetric points
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Abstract. In the present paper we study certain generalizations of the class SSP_{N} of
functions starlike with respect to N-symmetric points. We obtain a structural formula
for functions in SSP_{N} , and deduce a sharp lower bound for |f’(z)| when N is even
(this case completes the distortion theorem for SSP_{N} ). Improved estimates for Koebe
constants are also given. Further, it is proved that for any N\geq 2 the class SS\mathcal{P}_{N} contains
non-starlike functions. Finally, we characterize the class SSP_{N} in terms of Hadamard
convolution.
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1. Introduction and main results

Denote by A the class of all functions f , analytic in the unit disc \triangle

and normalized by f(0)=f’(0)-1=0. Let S be the class of functions
in A that are univalent in \triangle . A function f\in A is said to be starlike with
respect to symmetric points [8] if for any r close to 1, r<1 , and any z_{0}

on the circle |z|=r , the angular velocity of f(z) about the point f(-z_{0}) is
positive at z_{0} as z traverses the circle |z|=r in the positive direction, i.e.,

Re ( \frac{zf’(z)}{f(z)-f(-z_{0})})>0 , for z=z_{0} , |z|=r .

Denote by SS7^{\supset} the class of all functions in S which are starlike with respect
to symmetric points and, functions f in this class is characterized by

Re ( \frac{zf’(z)}{f(z)-f(-z)})>0 , z\in\triangle .

We also have the following generalization of the class SSV introduced by
K. Sakaguchi [8]. For f(z)=z+ \sum_{k=2}^{\infty}a_{k}z^{k}\in A , set

SS7_{N}^{\supset}=\{f\in S : Re ( \frac{zf’(z)}{f_{N}(z)})>0 , z\in\triangle\} ,
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where

f_{N}(z)=z+ \sum_{m=1}^{\infty}a_{mN+1^{Z^{mN+1}}-}

The elements of the class SSP_{N} are said to be starlike with respect to
N-symmetric points.

Set \epsilon :=\exp(2\pi i/N) . For f\in A we consider its weighted mean defined
by

M_{f,N}(z)= \frac{1}{\sum_{j=1}^{N-1}\epsilon^{-j}}\sum_{j=1}^{N-1}\epsilon^{-j}f(\epsilon^{j}z) .

It can be easily seen that

\frac{f(z)-M_{f,N}(z)}{N}=\frac{1}{N}\sum_{j=0}^{N-1}\epsilon^{-j}f(\epsilon^{j}z)=f_{N}(z) .

The geometric characterization of this class is that the class SSP_{N} is the
collection of functions f\in A such that for any r close to 1, r<1 , the
angular velocity of f(z) about the point M_{f,N}(z_{0}) is positive at z=z_{0} as z
traverses the circle |z|=r in the positive direction.

The case N=1 gives a well-known subclass S^{*} of univalent functions
in A such that f(\triangle) is a starlike domain with respect to the origin, i.e.,
t\omega\in f(\triangle) whenever w\in f(\triangle) and t\in[0,1] . For N=2 we get back to the
class SS\mathcal{P} .

A closely related class to SSP_{N} is defined as follows. A function f\in A

is said to belong to the class C_{N} if there exists a function g in SSP_{N} such
that

Re (e^{i\tau} \frac{zf’(z)}{g_{N}(z)})>0 , z\in\triangle , for some |\tau|<\pi/2 .

We remark that replacing g_{N}(z) by g(z) results in a different class,
which was studied in [7]. The elements of the class C_{N} are called close-t0-
convex functions with respect to N-symmetric points. The case N=1 gives
the usual class C of all functions in A that are univalent and close-t0-convex
in \triangle .

If we substitute \epsilon^{j}z for z in the above analytic characterization for the
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class SS’P_{N} , then we see that f\in SSP_{N} implies that

Re ( \frac{zf_{N}’(z)}{f_{N}(z)})>0 , z\in\triangle ,

and, therefore, f_{N}(z)\in S^{*} . Thus, every function in SSP_{N} is close-t0-
convex in the unit disc. In [8], the Maclaurin coefficients of f\in SS\mathcal{P}_{N}

for N=2 are shown to be bounded by 1. In general case, the coefficient
estimates for f\in SSP_{N} are obtained in [10].

In [10], P. Singh and R. Chand defined some generalizations of the class
SS\mathcal{P}_{N} and found tw0-sided estimates for |f(z)| on it. In particular, they
have proved the following

Theorem 1.1 ([10, Theorem 2.3]) If f\in SSVN , then

\int_{0}^{r}\frac{1-t}{(1+t)(1+t^{N})^{2/N}}dt\leq|f(z)|\leq\int_{0}^{r}\frac{1+t}{(1-t)(1-t^{N})^{2/N}}dt ,

|z|=r<1 . (1.2)

While the upper estimate in (1.2) appears to be sharp, the lower one
is sharp only if N is odd. Similar comments apply for their estimates of
|f’(z)| . Therefore, our main aim is to obtain sharp estimates of the modulus
both for f(z)\in SSP_{N} and its derivative f’(z) . Now, we state the distortion
theorems for the class SSP_{N} .

Theorem 1.3 Let f\in SS’\mathcal{P}_{N} .
(1) If N\geq 1 is odd, then we have

\frac{1-r}{(1+r)(1+r^{N})^{2/N}}\leq|f’(z)|\leq\frac{1+r}{(1-r)(1-r^{N})^{2/N}} ,

0\leq|z|=r<1 . (1.4)

(2) For any even N\geq 2 the upper estimate in (1.4) holds, while the lower
one should be replaced either by

|f’(z)| \geq\frac{1-r}{(1+r)(1-r^{N})^{2/N}} , for 0\leq r\leq r_{N} , (1.5)

or by

|f’(z)| \geq\frac{1-r^{2}}{(1+2r\cos\theta_{N}+r^{2})(1-2r^{N}\cos N\theta_{N}+r^{2N})^{1/N}} ,

for r_{N}<r<1 . (1.6)
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Here r_{N} is a unique root of the equation

1+r^{2N}-Nr^{N-1}(1+r^{2})-(N+1)r^{N}=0 (1.7)

in the interval 0<r<1 , and \theta_{N} is a unique root of the equation

sin \theta(1+r^{2N})-r^{N-1}(1+r^{2}) sin N\theta-r^{N}\sin(N+1)\theta=0 (1.8)

in the interval 0<\theta<\pi/N . provided that r>r_{N} . All the above estimates
are sharp.

According to a result of Privalov [3, Vol. I , p. 67], we can integrate the
estimates for |f’(z)| to derive the following

Corollary 1.9 If f\in SSVn , N being odd, then

\int_{0}^{r}\frac{1-t}{(1+t)(1+t^{N})^{2/N}}dt\leq|f(z)|\leq\int_{0}^{r}\frac{1+t}{(1-t)(1-t^{N})^{2/N}}dt ,

(1.10)

for all |z|=r<1 . If N is even, then the upper estimate holds, whereas
the lower estimate is given either by

|f(z)| \geq\int_{0}^{r}\frac{1-t}{(1+t)(1-t^{N})^{2/N}}dt , for 0\leq r\leq r_{N} , (1.11)

or by

|f(z)| \geq\int_{0}^{r_{N}}\frac{1-t}{(1+t)(1-t^{N})^{2/N}}dt

+ \int_{r_{N}}^{r}\frac{1-t^{2}}{(1+2t\cos\theta_{N}+t^{2})(1-2t^{N}\cos N\theta_{N}+t^{2N})^{1/N}}dt

for r_{N}\leq r<1 . (1.12)

The estimates in (1.10) and (1.11) are sharp.

Since SSP_{1}=S^{*} , it is therefore interesting to know whether there
exists an inclusion result between the classes SSP_{N} and S^{*} for N\geq 2 . It
is easy to construct examples of functions in SSP_{N}(N\geq 2) but not in S^{*} .

Theorem 1.13 If N\geq 2 , then the inclusion SS’\mathcal{P}_{N}\subset S^{*} does not hold.

In a particular case, for N=2, Theorem 1.3 and Corollary 1.9 are
obtained in [6] while Theorem 1.13 is proved in [5].
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2. Structural Formulae for \mathcal{S}\mathcal{S}\mathcal{P}_{N} and \mathcal{C}_{N}

To prove Theorem 1.3 we need the following structural formula for
functions in SSVn, and this theorem is obtained by the second author
in his Ph.D thesis work [7, Chapter V]. Since the following lemmas are
unavailable elsewhere, we recall its proofs from there.

Lemma 2.1 A function f\in A is in SSP_{N} if and only if

f(z)= \int_{0}^{z}p(t) exp \{q(t)\}dt , q(t)= \int_{0}^{t}\frac{1}{N\eta}(\sum_{j=0}^{N-1}p(\epsilon^{j}\eta)-N)d\eta

(2.2)

where \epsilon=e^{2\pi i/N} , and p\in P . Here \mathcal{P} denotes the class of all analytic
functions in \triangle with p(0)=1 and Rep(z)>0 for z\in\triangle .

Proof We first prove the necessity of (2.2). Suppose that f\in SSP_{N} .
Then by the definition it follows that

\frac{zf’(z)}{f_{N}(z)}=p(z) (2.3)

where p\in P . Writing (2.3) as f_{N}(z)=zf’(z)/p(z) and then differentiating
it, we obtain

f_{N}’(z)=- \frac{p’(z)}{p^{2}(z)}zf’(z)+\frac{zf’(z)+f’(z)}{p(z)} (2.4)

Replacing z by \epsilon^{j}z in (2.3), we get

f’( \epsilon^{j}z)=\frac{f_{N}(\epsilon^{j}z)}{z}p(\epsilon^{j}z)=\frac{f’(z)}{p(z)}p(\epsilon^{j}z)

and therefore

f_{N}’( \epsilon^{j}z)=\frac{1}{N}\sum_{j=0}^{N-1}f’(\epsilon^{j}z)=\frac{f’(z)}{p(z)}(\frac{1}{N}\sum_{j=0}^{N-1}p(\epsilon^{j}z)) .

Comparing this equation with (2.4) we find that

\frac{f’(z)}{f’(z)}=\frac{p’(z)}{p(z)}+\frac{1}{Nz}(\sum_{j=0}^{N-1}p(\epsilon^{j}z)-N) .



66 I.R. Nezhmetdinov and S. Ponnusamy

(2.6)

Integrating this equation and then exponentiating both sides of the resulting
equation we obtain the desired integral representation:

f’(z)=p(z) exp \{q(z)\} , q(z)= \int_{0}^{z}\frac{1}{N\eta}(\sum_{j=0}^{N-1}p(\epsilon^{j}\eta)-N)d\eta .

(2.5)

The structural formula (2.2) easily follows from (2.5).
Next we prove the sufficiency. Suppose that (2.2) holds for some p\in P .

Then the function f defined by (2.2) is obviously in A. Differentiation of
(2.2) gives the representation (2.5), so f’(z) is nonzero in \triangle . From (2.2)
and the fact that \epsilon^{N}=1 , it can be easily seen by change of variables that

f_{N}(z)= \int_{0}^{z}\frac{1}{N}\sum_{j=0}^{N-1}p(\epsilon^{j}\zeta)q(\zeta)d\zeta ,

q( \zeta)=\exp\{\int_{0}^{\zeta}\frac{1}{N\eta}(\sum_{j=0}^{N-1}p(\epsilon^{j}\eta)-N)d\eta\} .

The following identity can be verified by differentiation

z exp \{q(z)\}=\int_{0}^{z}\frac{1}{N}\sum_{j=0}^{N-1}p(\epsilon^{j}\zeta)q(\zeta)d\zeta . (2.7)

In view of (2.5) and (2.7), the formula (2.6) is equivalent to f_{N}(z)=

zf’(z)/p(z) , thus proving the sufficiency of (2.2). \square

The case N=1 of Lemma 2.1 gives a well-known representation for
functions in S^{*} while the case N=2 yields the structural formula obtained
by Stankiewicz [9].

Next we prove the following structural formula for functions in C_{N} .

Lemma 2.8 A function f belongs to the class C_{N} with respect to g\in

SSP_{N} if and only if there exist two functions p_{1} , p_{2} in P such that

f(z)= \int_{0}^{z} [\cos\tau p_{1}(t)+i sin \tau] exp \{q(t)\}dt and

g(z)= \int_{0}^{z}p_{2}(t) exp \{q(t)\}dt , (2.9)
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where

q(t)= \int_{0}^{t}\frac{1}{N\eta}(\sum_{j=0}^{N-1}p_{2}(\epsilon^{j}\eta)-N)d\eta , \epsilon=e^{2\pi i/N}

Proo/. If f belongs to C_{N} with respect to g\in SSVn , then by definition it
follows that

e^{i\tau} \frac{zf’(z)}{g_{N}(z)}=\cos\tau p_{1}(z)+i\sin\tau (2.10)

and

\frac{zg’(z)}{g_{N}(z)}=p_{2}(z) , (2.11)

where p_{1} , p_{2}\in P . From (2.10) it follows that

g_{N}(z)=e^{i\tau} \frac{zf’(z)}{\cos\tau p_{1}(z)+i\sin\tau} (2.12)

and

e^{i\tau} \frac{f’(z)}{g’(z)}=\frac{\cos\tau p_{1}(z)+i\sin\tau}{p_{2}(z)} . (2.13)

As in the proof of Lemma 2.1, the equation (2.11) implies that

g_{N}’(z)= \frac{g’(z)}{p_{2}(z)}(\frac{1}{N}\sum_{j=0}^{N-1}p_{2}(\epsilon^{j}z)) (2.14)

Differentiating both sides of (2.12), we find that

g_{N}’(z)=- \frac{e^{i\tau}\cos\tau p_{1}’(z)}{(\cos\tau p_{1}(z)+i\sin\tau)^{2}}zf’(z)+\frac{e^{i\tau}(zf’(z)+f’(z))}{\cos\tau p_{1}(z)+i\sin\tau} .

By (2.13), we have from (2.14)

g_{N}’(z)= \frac{e^{i\tau}f’(z)}{\cos\tau p_{1}(z)+i\sin\tau}(\frac{1}{N}\sum_{j=0}^{N-1}p_{2}(\epsilon^{j}z))

Comparing the last two equations, we deduce that

\frac{f’(z)}{f’(z)}=\frac{\cos\tau p_{1}’(z)}{\cos\tau p_{1}(z)+i\sin\tau}+\frac{1}{Nz}(\sum_{j=0}^{N-1}p_{2}(\epsilon^{j}z)-N)
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Repeated integration yields the desired integral representation.
Sufficiency part of this theorem can be proved on the same lines as

those of Lemma 2.1. So we omit its proof. \square

3. Convolution theorems

For -1\leq B<A\leq 1 , we define

\mathcal{P}(A, B)=\{p\in A : p(0=1 and p(z) \prec\frac{1+Az}{1+Bz} , z\in\triangle\} ,

where\prec denotes the usual subordination [3, Vol. I , p. 85]. Note that
\mathcal{P}(1, -1)=P . Using this, we define

SS7^{2_{N}}(A, B)=\{f\in S : \frac{zf’(z)}{f_{N}(z)}\in \mathcal{P}(A, B)\} .

SSP_{N}(1-2\beta, -1)=SS\mathcal{P}_{N}(\beta) , and SSVN(0)=SSVN. Further, set

C_{N}(A, B)=\{f\in S : \frac{1}{\cos\tau}(e^{i\tau}\frac{zf’(z)}{g_{N}(z)}-i sin \tau)\in P(A, B) ,

for some g\in SSP_{N}\} .

In fact, one can define a more general class than C_{N}(A, B) by allowing 9
to belong to SS\mathcal{P}_{N}(A’, B’) with -1\leq B’<A’\leq 1 . In such cases we
say that f belongs to C_{N}(A, B, A’, B’) , but we shall avoid the use of too
many parameters. In any case, the above two definitions generalize several
well-known subclasses of SSV studied, for instance, in [9, 10, 11]. It would
be interesting to note that the proof of Lemmas 2.1 and 2.8 immediately
yields the following structural formula for functions in SSP_{N}(A, B) and
C_{N}(A, B, A’, B’) respectively.

Theorem 3.1 A function f\in A is in SSVN(0)B) if and only if there
exists a p\in P(A, B) such that (2.2) holds.

Theorem 3.2 A function f\in A is in the class C_{N}(A, B, A’, B’) with
respect to g\in SSP_{N}(A’, B’) if and only if there exist two functions p_{1}\in

\mathcal{P}(A, B) and p_{2}\in P(A’, B’) such that (2.9) holds.

Next, we give the following simple characterization of functions in
SSVN (0)B) in terms of Hadamard product/convolution (see [3, Vol. II ,
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p. 122]).

Theorem 3.3 A function f is in SSP_{N}(A, B) if and only if,

\frac{1}{z}[f(z)*\frac{z+\{Ax+(1+Bx)A_{N-1}(z)\}(B-A)^{-1}x^{-1}z^{2}}{(1-z)^{2}A_{N}(z)}]\neq 0 ,

z\in\triangle , |x|=1 ,

where A_{N}(z)=(1-z^{N})/(1-z) .

Proof. A function f is in SSP_{N}(A, B) if and only if

\frac{zf’(z)}{f_{N}(z)}\neq\frac{1+Ax}{1+Bx} for all z\in\triangle and |x|=1 ,

which, because of the normalization of f , is equivalent to the condition that

\frac{1}{z}[(1+Bx)zf’(z)-f_{N}(z)(1+Ax)]\neq 0 , z\in\triangle .

Since

zf’(z)=f(z)* \frac{z}{(1-z)^{2}} and f_{N}(z)=f(z)* \frac{z}{1-z^{N}} ,

the last relation reduces to the desired convolution condition. \square

In particular, for N-1=A=-B=1 , the last theorem gives a
convolution characterization for univalent functions starlike with respect to
symmetric points:

f\in SSP \Leftrightarrow\frac{1}{z}[f(z)*\frac{z-x^{-1}z^{2}}{(1-z)^{2}(1+z)}]\neq 0 , z\in\triangle , |x|=1 .

Finally, it is natural to ask whether the results related to SSP_{1}(A, B) and
C_{1}(A, B, A’, B’) can be generalized to these classes for all N\in \mathbb{N} . In partic-
ular, we conclude our paper with the following

Problem 3.4 State and prove the counterparts of Theorems 1.3, 1.13 and
Corollary 1.9 for the above general classes.

4. Proofs of Main Results

4.1. Proof of Theorem 1.3
Consider the following extremal problem: find the minimum of |f’(z)| ,

where z\in\triangle is fixed and f\in SS\mathcal{P}_{N} . It is easy to show that the class SS\mathcal{P}_{N}
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is compact (cf., e.g., [4, Theorem 4.1]), so the problem has a solution, say,
f_{0}\in SSP_{N} . Choosing a suitable \gamma\in \mathbb{R} , we have

Re (, \frac{e^{i\gamma}}{f_{0}(z)})=\frac{1}{|f_{0}’(z)|}\geq\frac{1}{|f’(z)|}\geq{\rm Re}(,\frac{e^{i\gamma}}{f(z)}) , f\in SSP_{N} .

Thus, f_{0}\in SSP_{N} also gives the maximum to the functional {\rm Re}[e^{i\gamma}/f’(z)]

on SSVn. We apply a variational method of Goluzin [2, p.504-506].
To this end, we first use the Herglotz integral formula to deduce from

Lemma 2.1 the following representations

p(z)= \int_{-\pi}^{\pi}\frac{e^{it}+z}{e^{it}-z}d\mu(t) , q(z)=- \frac{2}{N}\int_{-\pi}^{\pi}\log(1-e^{-iNt}z^{N})d\mu(t) ,

(4.2)

\mu(t) being a probability measure on [-\pi, \pi) .
Now, by applying the Goluzin variation of the first type, we get

Re ( \frac{e^{i\gamma}}{f_{*}’(z)})

= Re,\frac{e^{i\gamma}}{f(z)}-2i\lambda\int_{t_{1}}^{t_{2}} Re \{,\frac{e^{i\gamma}}{f(z)}[ \frac{e^{it}z}{p(z)(e^{it}-z)^{2}}

+ \frac{z^{N}}{e^{iNt}-z^{N}}]\}|\mu(t)-c|dt+O(\lambda^{2}) ,

where -1\leq\lambda\leq 1 , -\pi\leq t_{1}<t_{2}<\pi , and c is a constant. Consequently, if
f(z) is an extremal function and the equation

Re \{,\frac{e^{i\gamma}}{f(z)}[\frac{e^{it}z}{p(z)(e^{it}-z)^{2}}+\frac{z^{N}}{e^{iNt}-z^{N}}]\}=0 (4.3)

has no root on the interval t_{1}<t<t_{2} , then \mu(t)\equiv c for t_{1}<t<t_{2} . Since
(4.3) can be reduced to an algebraic equation of 2(N+1)-th degree with
respect to e^{it} , it follows that \mu(t) is a step function with at most 2(N+1)
jumps.

Moreover, after considering the Goluzin variation of the second type,
we conclude that there is a root of (4.3) between any two of the jumps
of \mu(t) . Hence, the required extremum is attained when \mu(t) is a convex
combination of at most N+1 point masses on [-\pi, \pi) .

We observe that, for any f\in SS’P_{N} and \varphi\in \mathbb{R} , the rotation e^{-i\varphi}f(e^{i\varphi}z)

is also in SSVn, and, therefore, it suffices to study the case when z=r\in
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(0, 1) . Assuming that f is an extremal function, we can write that

f’(r)= \prod_{j=1}^{N+1}\frac{1}{(1-e^{-iNt_{j}}r^{N})^{\mu_{j}}}\sum_{j=1}^{N+1}\mu_{j^{\frac{e^{it_{j}}+r}{e^{it_{j}}-r}}} , (4.4)

where -\pi\leq t_{j}<\pi , \mu_{j}\geq 0,1\leq j\leq N+1 , \sum_{j=1}^{N+1}\mu_{j}=1 . Evidently,

|f’(r)| \geq\prod_{j=1}^{N+1}a_{j}^{\mu_{j}}\sum_{j=1}^{N+1}\mu_{j}b_{j}=:G(\mu, a, b) , (4.5)

with

a_{j}=| \frac{1}{1-e^{-iNt_{j}}r^{N}}| , b_{j}={\rm Re}( \frac{e^{it_{j}}+r}{e^{it_{j}}-r}) , 1\leq j\leq N+1 .

Supposing that all a_{j}\neq a_{N+1},1\leq j\leq N , we can deduce that

\frac{\partial^{2}}{\partial\mu_{j}^{2}} (log G) <0 .

Therefore, if all the variables except for \mu_{j} are fixed, then G(\mu, a, b) as a
function of \mu_{j} attains its minimum on the interval 0\leq\mu_{j}\leq 1 at either of
the endpoints. Thus,

|f’(r)| \geq\min_{t}\frac{1-r^{2}}{(1-2r\cos t+r^{2})(1-2r^{N}\cos Nt+r^{2N})^{1/N}} ,

and we have to maximize the function

g(t)=(1-2r cos t+r^{2})^{N} ( 1-2r^{N} cos Nt+r^{2N} )

over the interval -\pi\leq t\leq\pi . Since g(t) is even, assume that 0\leq t\leq\pi .
Note that the second factor of g(t) is 2\pi/N-periodic, increasing on [\pi-

2\pi/N , \pi-\pi/N] and decreasing on [\pi-\pi/N, \pi] , whereas the first factor
increases everywhere on [0, \pi] . Consequently, the global maximum for g(t)
on the latter interval is attained somewhere on the interval [\pi-\pi/N, \pi] .

Logarithmic differentiation of g yields

\frac{g’(t)}{g(t)}=\frac{2Nrh(t)\sin t}{(1-2r\cos t+r^{2})(1-2r^{N}\cos Nt+r^{2N})} ,

where

h(t)=1+r^{2N}-2r^{N} \frac{\sin(N+1)t}{\sin t}+r^{N-1}(1+r^{2})\frac{\sin Nt}{\sin l} .
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In view of a well-known estimate | sin Nt|\leq N|\sin t| , we have

h(t)\geq 1+r^{2N}-2(N+1)r^{N}-Nr^{N-1}(1+r^{2}) .

Clearly, the right-hand side polynomial of the last inequality has a unique
root r_{N} on the interval (0, 1) . Therefore, if r\leq r_{N} , then h(t)\geq 0 , and the
maximum of g(t) is attained at t=\pi so that

g(t)\leq g(\pi)=(1-r^{N})^{2}(1+r)^{2N}

Otherwise, let r_{N}<r<1 . If we put t=\pi-\theta , where 0<\theta<\pi/N , then
we have

h(t)=1+r^{2N}-2r^{N} \frac{\sin(N+1)\theta}{\sin\theta}-r^{N-1}(1+r^{2})\frac{\sin N\theta}{\sin\theta}=:\kappa(\theta) .

Next, we show that both functions \mu_{N}(\theta)=\sin N\theta/\sin\theta and \mu_{N+1}(\theta)

decrease on the interval (0, \pi/N) . It is easy to verify when N=1,2 . If
N\geq 3 , then we get

\lambda_{N}(\theta)=\mu_{N}’(\theta) sin2 \theta=N cos N\theta sin \theta- sin N\theta cos \theta ,

so that

\lambda_{N}’(\theta)=-(N^{2}-1) sin N\theta sin \theta .

Clearly, \lambda_{N}’(\theta)<0 for 0<\theta<\pi/N and \lambda_{N}’(\theta)>0 for \pi/N<\theta<\pi/(N-

1)\leq 2\pi/N . Since \lambda_{N}(0)=0 and

\lambda_{N}(\frac{\pi}{N-1})=-(N+1) sin ( \frac{\pi}{N-1})\cos(\frac{\pi}{N-1})\leq 0

for N\geq 3 ,

we find that \lambda_{N}(\theta)\leq 0 , and \mu_{N}(\theta) decreases on [0, \pi/(N-1)] . Hence, there
is a unique \theta_{N}=\theta_{N}(r) such that 0<\theta_{N}<\pi/N and \kappa(\theta_{N})=0 , which
corresponds to the maximum of g(t) .

In order to prove the sharpness of the estimates (1.5) and (1.6), we
construct an appropriate example of a function from SSVn, N being even.
Set

\mu(t)=\frac{1}{2}[\delta_{\alpha}(t)+\delta_{-\alpha}(t)] ,

where \delta_{\alpha}(t) is the point mass at t=\alpha , 0\leq\alpha\leq\pi . Then from Lemma 2.1
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and the relation (4.2) we obtain that

f_{N,\alpha}’(z)= \frac{1-z^{2}}{(1+2z\cos\alpha+z^{2})(1-2z^{N}\cos N\alpha+z^{2N})^{1/N}} . (4.6)

If 0\leq r\leq r_{N} , then the estimate (1.4) is attained by this function for
\alpha=0 , z=r , otherwise we take \alpha=\theta_{N} , z=r . \square

Here it is easy to give an example proving the sharpness of all estimates
in (1.10)-(1.11), while for (1.12) this is not the case.

Example 4.7 Integration of (4.6) yields

f_{N,\alpha}(z)= \int_{0}^{z}\frac{1-t^{2}}{(1+2t\cos\alpha+t^{2})(1-2t^{N}\cos N\alpha+t^{2N})^{1/N}}dt ,

0< \alpha<\frac{\pi}{N} ,

and by selecting a suitable \alpha we can obtain the upper bounds for Koebe
constants of SS\mathcal{P}_{N} , N being even.

We present the following tables, the first of them containing the precise
values of the Koebe constants, denoted by k(SSP_{N}) , in the case of odd
N . The second table gives the lower k_{N}^{-} and the upper k_{N}^{+} estimates of the
constants together with the values of \alpha for which the latter are attained.
We also present the lower estimates k_{N,0}^{-} obtained in [10].

Let \mathcal{R}(\beta) be the class of functions from A such that Re f’(z)>\beta , z\in

\triangle . From the above tables one may conjecture that the constant k(SSP_{N})

tends to k(\mathcal{R}(0))=2\log 2-1=0.38629 . (see [1]). Note that for a fixed

f , f_{N} converges to z as Narrow\infty . This observation shows that the condition
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for f to be in \mathcal{R}(0) is the limiting case of that for SSP_{N} as N - \infty .
We can also use the representation (2.5) to investigate relations be-

tween the class SSP_{N} and some other well-known subclasses of univalent
functions. Choose the measure in (2.5) to be equal to

\mu(t)=\frac{1+a}{2}\delta_{0}(t)+\frac{1-a}{2}\delta_{-\pi}(t)

with -1<a<1 . Then we obtain

g_{N,a}(z)= \int_{0}^{z}\frac{(1+2at+t^{2})dt}{(1-t^{2})(1-t^{N})^{(1+a)/N}(1-(-1)^{N}t^{N})^{(1-a)/N}} , (4.8)

g_{N,a}(z) being in SS\mathcal{P}_{N} . It is a well-known fact that \mathcal{R}(0)\subset C . As observed
in the introduction (see also [8]), for each N\geq 1 , SSP_{N} is also contained in
C . Assuming, without loss of generality, that N is even, we get from (4.8)
that g_{N,a}’(z)\approx(1-z)^{-1-2/N} as zarrow 1 , therefore, the real part of g_{N,a}’(z)

cannot be bounded from below in \triangle . This observation shows that for no
real \beta the class SSP_{N} is contained in \mathcal{R}(\beta) .

4.9. Proof of Theorem 1.13
It is easy to verify that g_{N,a}(z) is a Schwarz-Christoffel integral mapping

\triangle onto a polygonal domain. For even N , here the angle at f(-1) equals
-2\pi/N , since this vertex is at the infinity. Assume that 0<\alpha<\pi/N .
Since the function g_{N,a}(z) is univalent in \triangle and is real-valued on the real
axis, the image of the arc z=e^{i\phi} , 0<\phi<\alpha , is a ray beginning at g_{N,a}(e^{i\alpha})

and forming an angle \pi/N with the real axis. The image domain g_{N,a}(\triangle)

has the interior angle 2\pi at g_{N,a}(e^{i\alpha}) , so it can be starlike with respect to
the origin only if arg g_{N,a}(e^{i\alpha})=\pi/N . However, if we set \alphaarrow 0 , then the
left-hand side is infinitesimal, so the identity is not possible here and for
even N the inclusion SSP_{N}\subset S^{*} fails.

Assume now that N\geq 3 is an odd integer. We consider the mapping
given by the function (4.8) where \alpha is determined as above but lies between
[N/2] \frac{\pi}{N} and ([N/2]+1) \frac{\pi}{N} , [x] standing for the entire part of x . Moreover,
suppose that \alpha=\pi/2+\gamma with \gammaarrow 0 . Again, g_{N,a}(z) maps the unit disc
onto a polygonal domain, the angle at the vertex g_{N,a}(e^{i\alpha}) being equal to
2\pi . Therefore, the image domain has a slit starting at g_{N,a}(e^{i\alpha}) , and the
function (4.8) is not starlike provided that the angle \sigma_{N} between the slit
and the positive real axis is not equal to arg g_{N,a}(e^{i\alpha}) .

For odd N we deduce from (4.8) that the point z=1 is mapped into



Starlike with respect to N-symmetric points 75

infinity, the corresponding ray forming the angle -(1+a)\pi/N with the real
axis. The points \pi/N , 3\pi/N , 5\pi/N , . . (called points of the first kind) are
mapped into vertices whose interior angles equal \pi(1-(1-a)/N) , whereas
the points 2\pi/N , 4\pi/N , (points of the second kind) go into vertices with
interior angles \pi(1-(1+a)/N) .

If N=4m+1 , m\in \mathbb{N} , then there are m points of the first and the
second kind lying between t=0 and t=\alpha=\pi/2+\gamma , provided that \gamma is
small enough. Then we have \sigma_{N}=\pi/2+\pi a/(2N)=\pi/2+\pi\gamma/(2N)+o(\gamma) ,
\gammaarrow 0 .

On the other hand, by a substitution t=e^{i\alpha}\rho , we get from (4.8) that

arg g_{N,a}(e^{i\alpha})= \frac{\pi+2\gamma}{2}

+ \arg\int_{0}^{1}\frac{(1-\rho)(1+\rho e^{2i\gamma})}{(1+\rho^{2}e^{2i\gamma})(1+\rho^{2N}e^{2iN\gamma})^{1/N}}(\frac{1+i\rho^{N}e^{Ni\gamma}}{1-i\rho^{N}e^{iN\gamma}})^{\frac{\sin\gamma}{N}}d\rho .

(4.10)

For \gammaarrow 0 the following asymptotic formula can be derived from (4.10).

arg g_{N,a}(e^{i\alpha})= \frac{\pi}{2}+\gamma(1-2\frac{I_{1}}{I_{2}})+o(\gamma) , (4.11)

where

I_{1}= \int_{0}^{1}g_{N}(\rho)h_{N}(\rho)d\rho , I_{2}= \int_{0}^{1}g_{N}(\rho)d\rho , (4.12)

the integrands being defined as follows:

g_{N}( \rho)=\frac{1-\rho^{2}}{(1+\rho^{2})(1+\rho^{2N})^{1/N}} , h_{N}(\rho)=h_{N,1}(\rho)+h_{N,2}(\rho) ,

(4.13)

with

h_{N,1}( \rho)=\frac{\rho^{2}(1-\rho)}{(1+\rho)(1+\rho^{2})} , and h_{N,2}( \rho)=\frac{\rho^{2N}}{1+\rho^{2N}}-\frac{1}{N}\arctan\rho^{N}

In view of the mean value theorem from the integral calculus, it suffices
to prove that

h_{N}( \rho)\leq h_{N}(1)=\frac{1}{2}-\frac{\pi}{4N} , on 0\leq\rho\leq 1 . (4.14)
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In fact, for \rho close to 0 the bound is not attained, therefore, the ratio of the
integrals in (4.11) is strictly less that h_{N}(1) . Hence, the coefficients at the
first order terms in the asymptotic expansions for \sigma_{N} and arg g_{N,a}(e^{i\alpha}) do
not coincide.

Since

h_{N,1}’( \rho)=-\frac{2\rho(\rho^{3}+\rho^{2}+\rho-1)}{(1+\rho)^{2}(1+\rho^{2})^{2}} , (4.15)

it is clear that h_{N,1}(\rho) attains its maximum value on 0\leq\rho\leq 1 at \rho_{0}=

0.6424 . ., and h_{N,1}(\rho 0)=\delta_{0}=0.0674 . Thus, if \rho^{2N}/(1+\rho^{2N})\leq 0.5-

\delta_{0}-\pi/20=\epsilon_{0}=0.2755\ldots , or, equivalently,

\rho^{N}\leq\eta_{0}=\sqrt{\frac{\epsilon_{0}}{1-\epsilon_{0}}}=0.6167 . . , (4.16)

then (4.14) clearly holds. On the other hand, if \rho^{N}>\eta_{0} , then we have the
following estimates

h_{N,2}’( \rho)=\frac{\rho^{N-1}(2N^{N}\rho-1-\rho^{2N})}{(1+\rho^{2N})^{2}}\geq\frac{1}{2}\eta_{0}(N\eta_{0}-1)\geq 0.6424 . ..’

(4.17)

and h_{N,1}’(\rho)\geq-0.25 for all 0\leq\rho\leq 1 . Therefore, h_{N}’(\rho)\geq 0 , and the
inequality (4.14) is verified.

The case N=4m+3 is studied in a similar way, so, the proof is
complete. \square
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