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Combining trust-region and line-search algorithms
for minimization subject to bounds1)
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Abstract. In this paper, we combine the trust-region technique with line searches to

develop an iterative method for solving minimization problems subject to bounds. The

new method is an extension of the algorithm proposed by Coleman and Li [3]. At each

iteration, the solution of the subproblem provides a descent direction of the objective func-

tion. If the trial step cannot be accepted by trust-region method, we can use backtracking

to find the next iterative point. Compared to the traditional trust-region methods, the

new algorithm need not solve the subproblem repeatedly and so it is more economical.
Under general conditions, the global convergence of the new algorithm can be proved. A
numerical example shows that the new algorithm is promising.

Key words: bound constraints, trust-region method, line search technique, global conver-
gence.

1. Introduction

In this paper we aim to develop a trust-region type method for solving
the following bound-constrained minimization problem.

minimize f(x)

subject to l\leq x\leq u , (1.1)

where f : R^{n}arrow R is continuously differentiate, l\in(R\cup\{-\infty\})^{n} , u\in(R\cup

\{\infty\})^{n} . l<u . We denote the feasible set as X=\{x|l\leq x\leq u\} and the
strict interior feasible set as X^{0}=\{x|l<x<u\} .

Trust-region methods for solving the bound-constrained minimization
problem (1.1) have been studied extensively, (see [3]-[6] ). We pay more
attention to the trust-region methods proposed by Coleman and Li [3],
Dennis and Vicente [6]. At kth iteration, by introducing a diagonal matrix,
[3] presented a trust-region subproblem, which consisted of minimizing a
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q_{11}adratic function subject only to an ellipsoidal constraint as follows:

minimize \varphi_{k}(s)=\nabla f_{k}^{T}s+\frac{1}{2}s^{T}(B_{k}+C_{k})s

subject to ||D_{k}^{-1}s||\leq\triangle_{k} , (1.2)

whe re B_{k} , C_{k} , D_{k} are given special matrixes. Hence, the subproblem pr0-
I)o_{\iota}s’ cd iI1[3] possessed the form of an unconstrained trust-region subproblem
aI1(1(1i(1 1lot handle the bound-constraints explicitly. By using a step-back
t(^{1}(.1111i(1\iota 1e , Coleman and Li computed \{x_{k}\} such that it satisfied strict feasi-
1_{)}i1ity . Elegant convergence results are obtained in [3]. Dennis and Vicente
[().](.()Ilsielere(1 another trust-region interior-point method for problem (1.1),
wllie \cdotll minimized the local quadratic function over a trust-region with the
\Gamma(^{Y}(1^{11irement} that the iterative point had to be strictly feasible, i.e.,

minimize \varphi_{k}(s)

subject to ||S_{k}^{-1}s||\leq\triangle_{k} , (1.3)
\sigma_{k}(l-x_{k})\leq s\leq\sigma_{k}(u-x_{k}) ,

wllere S_{k} is given scale matrix and chosen S_{k}=D_{k} , S_{k}=I_{n} in [6]. Nice
convergence results are also obtained. Moreover, the idea of setting sub-
problem in [6] is extended to infinite-dimensional nonconvex minimization
subject to pointwise bounds in [13] and to a class of nonlinear programming
problems in [5].

The approach of the traditional trust-region method is similar. Namely,
when the trial step is not accepted, we reduce the trust region radius and
resolve the proposed subproblem. However, it is well-known that solving
the trust-region subproblem is costly, which motivates us to study the trust-
region method again. Unlike the existing trust-region methods, in this pa-
per, a trust-region type method for solving problem (1.1) is presented. We
adopt the subproblem version of Coleman and Li in [3], combine it with
a line search technique. In particular, at each step, even if the trial step
cannot be accepted, the solution of the subproblem (1.2) provides a descent
direction of the objective function. Then we use a backtracking line-search
to determine a steplength and get the next trial point. This combina-
tion of trust-region techniques and line-search techniques was introduced by
Nocedal and Yuan in [11] for solving unconstrained optimization problems.
We extend this technique to develop an iterative method for solving bound-
constrained optimization problems. The advantage of the proposed method
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in this paper is twofold. First, it shares the advantages of trust-region nleth-
ods . Second, at each step, the subproblem is solved only once. It is then
reasonable to believe that the proposed method in this paper is cheaper
than the existing trust-region methods. Under the same conditions of [3]
and [6], we prove the convergence of the proposed algorithm. A numerical
test shows that the new algorithm proposed in this paper is promising.

The paper is organized as follows. In Section 2 we give the preliminaries.
The new algorithm is stated in Section 3. Global convergence of the new
algorithm is proved in Section 4. In the last section, a numerical example
is given.

Throughout this paper, the vector and matrix no rms used are l_{2} norm
and subscripted indices k represents the evaluation of a filllctio1l at kt,11 step,
for example, f_{k}=f(x_{k}) , etc.

2. Preliminaries

Denote g(x)=\nabla f(x) . The scaled matrix defined here is similar to t,11C

one of [3] and [6], i.e., a diagonal matrix whose diagonal elements arc give^{Y}11

by

(D(x))_{ii}=\{\begin{array}{l}(u_{i}-x_{i})^{\frac{1}{2}}. ifLq_{i}<0ar1du_{i}<\infty,(x_{i}-l_{i})^{\frac{1}{2}}. ifg_{i}\geq 0andl_{i}>-\infty,1, ifg_{i}<0andu_{l}.=\infty,1, ifg_{i}\geq 0andl_{i}=-\infty.\end{array} (2.1)

Then from [3], [6] and [2], we have tlle following propositi()n .

Proposition 2.1 x^{*}\in X is a KKT point of (1.1) if and only if
D^{2}(x^{*})\nabla f(x^{*})=0 . (2.2)

Formula (2.2) provides the motivation for our al.qoritfl7\gamma\iota . W()f_{7}\cdot an.s.-

for\cdot rn the bound-constrained problem (1.1) to a problem of fir\iota d^{J}i_{7l(]}.(" l,’)(.(\iota l

\prime minirn^{J},izer for some unconstrained problem and it shows that ffi(^{J}.\backslash \cdot(^{J}q_{l4l’’ l((’}.
\{xk\} generated by our algorithm satisfies

\lim_{karrow\infty}||D^{2}(x_{k})\nabla f(x_{k})||=() .

We^{Y} 1lotel that the ithcon1po11t^{Y}11\uparrow, ()ft,1_{1(^{Y}}f\iota 11le\cdot f,i()11D^{2}(\alpha\cdot)i_{c}s^{1}e1iff\cdot(^{Y}\Gamma t^{\backslash }11\uparrow,i_{\dot{e}1}|_{)}]_{(}\backslash

t^{Y}X( .(^{\backslash }1)t at the point where (g(.x\cdot)),\cdot=(). Ht )wt^{Y}v(^{1}r, fre)111 t11(^{Y}(1(^{Y}fi_{11}iti_{t)11}()1^{\cdot}
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D^{2}(x) , this lack of smoothness is benign. Hence, we can define a Jacobian
of D^{2}(x) as follows:

(J_{k})_{ii}\equiv(D^{2}(x))_{ii}’=\{\begin{array}{l}-1, if(g(x))_{i}<0,1, if(g(x))_{i}>0,0, otherwise.\end{array} (2.3)

For more details, we prefer to see [3], [6] and [13]. Based on the Newton step
for system (2.2), at kth iteration, we then set a trust-region subproblem of
(1.1) as

\{

minimize \psi_{k}(s)=g_{k}^{T}s+\frac{1}{2}s^{T}B_{k}s

subject to ||D_{k}^{-1}s||\leq\triangle_{k} ,
(2.4)

where B_{k}=H_{k}+C_{k} , C_{k}=D_{k}^{-1}diag(g_{k})J_{k}D_{k}^{-1} , H_{k} is an approximation
to \nabla^{2}f(x) . Let \hat{s}=D_{k}^{-1}s , note that (2.4) is equivalent to the following
subproblem:

\{

minimize \hat{\psi}_{k}(\hat{s})=\hat{g}_{k}^{T}\hat{s}+\frac{1}{2}\hat{s}^{T}\hat{B}_{k}\hat{s}=\psi_{k}(s)

subject to ||\hat{s}||\leq\triangle_{k} ,
(2.5)

where \hat{g}_{k}=D_{k}g_{k},\hat{B}_{k}=D_{k}B_{k}D_{k}=D_{k}H_{k}D_{k}+diag(g_{k})J_{k} . (2.5) is a
standard trust-region subproblem of unconstrained optimization, we thus
have the following important lemma.

Lemma 2.1 If \hat{s}_{k} is a solution of (2.5), then

\hat{g}_{k}^{T}\hat{s}_{k}\underline{<}-\frac{1}{2}||\hat{g}_{k}|| min \{\triangle_{k} , \frac{||\hat{g}_{k}||}{2||\hat{B}_{k}||}\} . (2.6)

Equivalently, the solution of (2.4) s_{k} satisfies

g_{k}^{T}s_{k} \leq-\frac{1}{2}||D_{k}g_{k}|| min \{\triangle_{k} , \frac{||D_{k}g_{k}||}{2||D_{k}B_{k}D_{k}||}\} (2.7)

The lemma above is a key result for us to construct new algorithm.
Moreover, in order to ensure that all iterates are strictly feasible, we use a
tb^{1tep}-back technique, which is similar to the method proposed by Coleman
and Li in [3]. When the trial step comes from (2.4) or (2.5), we solve t11t^{1}
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(2.9)

following problem to get a solution \tau_{k}^{*} ,

\min_{\tau\in[0,\min\{1,\alpha_{k}\}]}\phi(\tau)=\psi_{k}(\tau s_{k}) . (2.8)

where \alpha_{k} expresses the stepsize along the direction d_{k} , i.e.,

\alpha_{k}=\min\{\max\{\frac{l_{i}-(x_{k})_{i}}{(d_{k})_{i}} , \frac{u_{i}-(x_{k})_{i}}{(d_{k})_{i}}\} , 1\leq i\leq n\} ,

\{\begin{array}{l}\frac{l_{i}-(x_{k})_{i}}{(d_{k})_{i}}=\frac{u_{i}-(x_{k})_{i}}{(d_{k})_{i}}=+\infty,\alpha_{k}=+\infty,\end{array} ififl=-\infty and(d_{k})_{i}=0,u=+\infty,(2.10)

where (d_{k})_{i} and (x_{k})_{i} express the ith component of d_{k} and x_{k} . From (2.8)
(2.10) we can easily prove that x_{k}+\tau_{k}^{*}s_{k}\in X . Finally we use step-back
method to choose \theta_{k} such that

\theta_{k}\in[\theta_{l}, 1] , \theta_{k}-1=O(||s_{k}||) , x_{k}+\theta_{k}\tau_{k}^{*}s_{k}\in X^{0} , (2.11)

where \theta_{l}>0 is a constant. We denote \psi_{k}^{*}(s_{k})=\psi_{k}(\theta_{k}\tau_{k}^{*}s_{k}) .
On the other hand, to analyze the convergence of the trust-region

method, a sufficient reduction of the quadratic model \psi_{k}(s) is required. Here
we consider the scaled gradient direction for subproblem of (2.4), which is
considered by many researchers (for example, [3], [5], [6], [10]) and often
called “Cauchy step” associated with the trust-region subproblem (2.4). In
addition, we also require strict feasibility for the point generated by the
scaled gradient direction and we deal with the problem by using the same
technique mentioned above. The following problem is solved first,

\min_{\tau\in[0,\min\{\triangle_{k},\alpha_{k}\}]} \psi_{k}(\tau p_{k}) , (2.12)

where p_{k}=-D_{k} \frac{\hat{9}k}{||\hat{g}_{k}||}\in Span\{-D_{k}^{2}g_{k}\} . Denote the solution of (2.12) as \overline{\tau}_{k}^{*} .
Then choose \overline{\theta}_{k} such that

\overline{\theta}_{k}\in[\theta_{l}, 1] , \overline{\theta}_{k}-1=O(||p_{k}||) , x_{k}+\overline{\theta}_{k}\overline{\tau}_{k}^{*}p_{k}\in X^{0} . (2.13)

We denote \psi_{k}^{*}(-D_{k}^{2}g_{k})=\psi_{k}(\overline{\theta}_{k}\overline{\tau}_{k}^{*}p_{k}) .

3. Combining algorithm

In this section, we give the steps of the new algorithm. The idea of our
algorithm comes from Lemma 2.1, which implies that any solution of the
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subproblem (2.4) provides a descent direction of objective function at x_{k} .
Moreover, the step-back technique never affects the descent. Therefore, if
the trial step is accepted, we can obtain the next iteration. Otherwise, we
can use Armijo line search to find the next iterative point. We state our
algorithm as follows:

Algorithm 3.1
Step 0. Given x_{0}\in X^{0} , \beta\in(0,1) , \mu\in(0,1/2) , 0<\eta_{1}<\eta_{2}\leq 1 ,

\triangle_{\max}\geq\triangle 0\geq\triangle\min>0,0<r_{1}<1\leq r_{2} , the symmetric matrix
H_{0}\in R^{n\cross n} . \epsilon>0 , k:=0 .

Step 1. Compute g_{k} , B_{k} , D_{k} . If ||D_{k}g_{k}||\leq\epsilon step and output x_{k} .

Step 2. Solve subproblem (2.5) and (2.8) to obtain s_{k} and \tau_{k}^{*} . Choose
\theta_{k} to satisfy (2.11). Let d_{k}=\theta_{k}\tau_{k}^{*}s_{k} . Solve (2.12) to obtain \overline{\tau}_{k}^{*} and
choose \overline{\theta}_{k} to satisfy (2.13), let \overline{d}_{k}=\overline{\theta}_{k}\overline{\tau}_{k}^{*}p_{k} .

Step 3. If \psi_{k}^{*}(s_{k})>\psi_{k}^{*}(-D_{k}g_{k}) , set d_{k}=\overline{d}_{k} .

Step 4. Compute \rho_{k}=\frac{f(x_{k})-f(x_{k}+d_{k})-\frac{1}{2}d_{k}^{T}C_{k}d_{k}}{-\psi_{k}(d_{k})} . If

\rho_{k}\geq\eta_{1} , (3.1)

set x_{k+1}=x_{k}+d_{k} and goto Step 6.
Step 5. (Armijo line-search) Find the minimum positive integer i_{k}

such that

f(x_{k})-f(x_{k}+\beta^{i}d_{k})\geq-\mu\beta^{i}d_{k}^{T}\nabla f(x_{k}) . (3.2)

Set x_{k+1}=x_{k}+\beta^{i_{k}}d_{k} , \triangle_{k+1}\in[||x_{k+1}-x_{k}||, r_{1}\triangle_{k}] and goto Step 7.
Step 6. If \rho_{k}<\eta_{2} , set \triangle_{k+1} \in [r_{1}\triangle_{k}, \triangle_{k}] . Otherwise \triangle_{k+1} \in

\min\{r_{2}\triangle_{k}, \triangle_{\max}\} .

Step 7. Update H_{k} as H_{k+1} , k:=k+1 goto Step 1.

Remarks
1. We do not need to solve the subproblem (2.5) exactly and only need

that s_{k} satisfies (2.6). The paper [11] gave an algorithm to compute this
approximate solution.

2. From step 3 of Algorithm 3.1, for all k we have

\frac{\psi_{k}(d_{k})}{\psi_{k}^{*}(-D_{k}^{2}g_{k})}\geq 1\geq\beta . (2.8)
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3. The main difference between the Algorithm 3.1 with [3], [6] and
other traditionary trust-region methods is that we need not to solve the
subproblem (2.4) or (2.5) repeatedly when (3.1) does not hold.

4. Global convergence for Algorithm 3.1

First we give general global assumptions as follows:
AS.1 f\in C^{2}(X) .

AS.2 For x_{0}\in X^{0} , L=\{x|x\in X, f(x)\leq f(x_{0})\} is compact.

AS.3 For all k , there exists a constant M_{H}>0 such that ||H_{k}||\leq M_{H} .

AS.4 there exists a constant M_{g}>0 such that for all x\in L , ||g(x)||\leq

M_{g} .
From the above assumptions, there exist constants M_{D}>0 , M_{B}>0

such that for all k we have

||D_{k}||\leq M_{D} , ||\hat{B}_{k}||\leq M_{B} . (4.1)

From now on, we always suppose that the above assumptions
hold. Denote an index set as

K=\{k|x_{k+1}=x_{k}+\beta^{i_{k}}d_{k}\} , (4.2)

which expresses the index of using line search method.
The next lemma shows that Algorithm 3.1 is well-defined.

Lemma 4.1 There exists a minimum positive integer i_{k} such that (3.2)
holds.

Proof. From Algorithm 3.1, the trial step is chosen as d_{k}=\theta_{k}\tau_{k}^{*}s_{k} or
d_{k}=\overline{\theta}_{k}\overline{\tau}_{k}^{*}p_{k} . Since the algorithm does not stop, we know that ||D_{k}g_{k}||>\epsilon .
Consider two cases:

Case I : d_{k}=\theta_{k}\tau_{k}^{*}s_{k} . From Lemma 2.1 we have

-d_{k}^{T} \nabla f_{k}\geq\frac{1}{2}\theta_{k}\tau_{k}^{*}||D_{k}\nabla f_{k}||\min\{\triangle_{k} , \frac{||D_{k}\nabla f_{k}||}{2||\hat{B}_{k}||}\} .

which, combined (4.1) with ||D_{k}\nabla f_{k}||\geq\epsilon , yields

-d_{k}^{T} \nabla f_{k}\geq\frac{1}{2}\theta_{k}\tau_{k}^{*}\epsilon min \{\triangle_{k} , \frac{\epsilon}{2M_{B}}\}>0 . (4.3)
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Then, from directional derivative arguments, we know that there exists i_{k}

such that (3.2) holds.

Case II : d_{k}= \overline{\theta}_{k}\overline{\tau}_{k}^{*}p_{k}=-\overline{\theta}_{k}\overline{\tau}_{k}^{*}\frac{D_{k^{9k}}^{2}}{||D_{k9k}||} , we have

-d_{k}^{T}\nabla f_{k}=\overline{\theta}_{k}\overline{\tau}_{k}^{*}||D_{k}\nabla f_{k}||\geq\overline{\theta}_{k}\overline{\tau}_{k}^{*}\epsilon>0 . (4.4)

Similar to the case I , there exists i_{k} such that (3.2) holds. \square

The following lemma is proved by Coleman and Li (see Lemma 3.1 in
[3] ) , and gives the reduction of the quadratic model which plays an impor-
tant role in convergence of trust-region method.

Lemma 4.2 Assume that d_{k} is computed by Algorithm 3.1. Then,

- \psi_{k}(d_{k})\geq\frac{1}{2}||\hat{g}_{k}|| min \{\triangle_{k} , \frac{||\hat{g}_{k}||}{||\hat{B}_{k}||} , \frac{||\hat{g}_{k}||}{||g_{k}||_{\infty}}\} . (4.8)

From the global assumptions, we get the following lemma.

Lemma 4.3 There exists a constant M>0 such that for all k we have

|f(x_{k})-f(x_{k}+d_{k})- \frac{1}{2}d_{k}^{T}C_{k}d_{k}- (-\psi_{k}(d_{k}))|\leq M||d_{k}||^{2} . (4.6)

The next two lemmas can show some properties of the sequence.

Lemma 4.4 Let K be defined by (4.2). If there is a subset K_{1}\subset K such
that for all k\in K_{1} , ||D_{k}g_{k}||>\epsilon , then there exist \triangle*>0 and \tau^{*}>0 such
that for all k\in K_{1} we have

\triangle_{k}\geq\triangle* (4.7)

\min\{\tau_{k}^{*},\overline{\tau}_{k}^{*}\}>\tau^{*} (4.8)

Proof. From the definition of K we know that the trial step is not accepted,
i.e. ,

| \frac{f(x_{k})-f(x_{k}+d_{k})-\frac{1}{2}d_{k}^{T}C_{k}d_{k}}{-\psi_{k}(d_{k})}-1|>1-\eta_{1} . (4.9)

For the two cases ( d_{k}=\theta_{k}\tau_{k}^{*}s_{k} and d_{k}=\overline{\theta}_{k}\overline{\tau}_{k}^{*}p_{k} ), we have ||d_{k}||\leq M_{D}\triangle_{k} ,
which combines (4.9) with Lemma 4.2 and Lemma 4.3 to yield

1- \eta_{1}<\frac{MM_{D}^{2}\triangle_{k}}{\frac{1}{2}\epsilon\min\{1,\frac{\epsilon}{M_{B}\triangle_{\max}},\frac{\epsilon}{M_{g}\triangle_{\max}}\}} .
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This implies that

\triangle_{k}>\frac{(1-\eta_{1})\frac{1}{2}\epsilon\min\{1,\frac{\epsilon}{M_{B}\triangle_{\max}},\frac{\epsilon}{M_{g}\triangle_{\max}}\}}{MM_{D}^{2}}\equiv\triangle*

So (4.7) is proved. Now we prove (4.8). From Lemma 4.2 and (4.7) we have

\frac{1}{2}\epsilon min \{1 , \frac{\epsilon}{M_{B}\triangle_{\max}} , \frac{\epsilon}{M_{g}\triangle_{\max}}\}\triangle*\leq-\psi_{k}(d_{k}) . (4.10)

On the other hand, we have two choices for d_{k} in Algorithm 3.1. For d_{k}=

\theta_{k}\tau_{k}^{*}s_{k} we have

- \psi_{k}(d_{k})=-\theta_{k}\tau_{k}^{*}g_{k}^{T}s_{k}-\frac{1}{2}\theta_{k}^{2}(\tau^{*}k)^{2}\hat{s}_{k}^{T}\hat{B}_{k}\hat{s}_{k}

\leq\tau_{k}^{*}M_{g}M_{D}\triangle_{\max}+\frac{1}{2}(\tau_{k}^{*})^{2}M_{B}\triangle_{\max}^{2}

\leq(M_{g}M_{D}\triangle_{\max}+\frac{1}{2}M_{B}\triangle^{2}\max)\tau_{k}^{*} ,

which combines with (4.10) to yield

\tau_{k}^{*}\geq\frac{\frac{1}{2}\epsilon\min\{1,\frac{\epsilon}{M_{B}\triangle_{\max}},\frac{\epsilon}{M_{g}\triangle_{\max}}\}}{M_{g}M_{D}\triangle_{\max}+\frac{1}{2}M_{B}\triangle_{\max}^{2}}\equiv\tau_{1}^{*} (4.11)

For d_{k}=\overline{\theta}_{k}\overline{\tau}_{k}^{*}p_{k} , p_{k}=-D_{k} \frac{\hat{g}_{k}}{||\hat{g}_{k}||} , we deduce that

- \psi_{k}(d_{k})=\overline{\theta}_{k}\overline{\tau}_{k}^{*}||g_{k}||-\frac{1}{2}\overline{\theta}_{k}^{2}(\overline{\tau}_{k}^{*})^{2}\frac{\hat{g}_{k}^{T}\hat{B}_{k}\hat{g}_{k}}{||\hat{g}_{k}||^{2}}

\leq(M_{D}M_{g}+\frac{1}{2}M_{B})\overline{\tau}_{k}^{*} .

From (4.10) again we have

\overline{\tau}_{k}^{*}\geq\frac{\frac{1}{2}\epsilon\min\{1,\frac{\epsilon}{M_{B}\triangle_{\max}},\frac{\epsilon}{M_{g}\triangle_{\max}}\}\triangle*}{M_{D}M_{g}+\frac{1}{2}M_{B}}\equiv\tau_{2}^{*} . (4.12)

Denote \tau^{*}=\min\{\tau_{1}^{*}, \tau_{2}^{*}\}>0 . Then (4.8) follows. \square

Lemma 4.5 Under the conditions of Lemma 4.4, there exist constants
\delta^{*}>0 and \beta^{*}>0 such that for all k\in K_{1}

d_{k}^{T}\nabla f_{k}\leq-\delta^{*}<0 , (4.13)
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\beta^{i_{k}}\geq\beta^{*}>0 . (4.14)

Proof. From (4.3), (4.4) in the proof of Lemma 4.1, the choice of \theta_{k} and
\overline{\theta}_{k} we have

-d_{k}^{T}\nabla f_{k}\geq\theta_{l}\epsilon min \{\frac{1}{2}\tau_{k}^{*} min \{\triangle_{k} , \frac{\epsilon}{2M_{B}}\},\overline{\tau}_{k}^{*}\} (4.15)

Then (4. 13) follows from (4.7) and (4.8).
From the global assumptions and ||d_{k}||\leq M_{D}\triangle_{k}\leq M_{D}\triangle_{\max} we have:

f(x_{k})-f(x_{k}+\beta^{i}d_{k})

=-\beta^{i}d_{k}^{T}\nabla f_{k}-(\beta^{i})^{2}d_{k}^{T}\nabla^{2}f(\xi_{k})d_{k}

\geq-\beta^{i}d_{k}^{T}\nabla f_{k}-M_{f}M_{D}^{2}\triangle_{\max}^{2}(\beta^{i})^{2}

=-\mu\beta^{i}d_{k}^{T}\nabla f_{k}-(1-\mu)\beta^{i}d_{k}^{T}\nabla f_{k}-M_{f}M_{D}^{2}\triangle_{\max}^{2}(\beta^{i})^{2} (4.16)

where \xi_{k}\in(x_{k}, x_{k}+\beta^{i}d_{k}) . Hence, if \beta^{i} satisfies that

(1-\mu)\beta^{i}(-d_{k}^{T}\nabla f_{k})\geq M_{f}M_{D}^{2}\triangle_{\max}^{2}(\beta^{i})^{2} (4.17)

(3.2) holds in Algorithm 3.1. Obviously, if \beta^{i}<\frac{(1-\mu)\delta^{*}}{M_{f}M_{D}^{2}\triangle_{\max}^{2}} , (4.17) holds
since (4.13). On the other hand, From the definition of i_{k} , the following
statement holds.

\beta^{i_{k}}\geq\frac{\beta(1-\mu)\delta^{*}}{M_{f}M_{D}^{2}\triangle_{max}^{2}}\equiv\beta^{*}

Therefore (4. 14) is proved. \square

Next we state the main convergence results of Algorithm 3.1.

Theorem 4.1 Let \{x_{k}\} be generated by Algorithm 3.1. Under the global
assumptions, we have

\lim_{k}\inf||D_{k}g_{k}||=0 . (4.18)

Proof. We consider the two cases to prove the theorem: K is both finite
and infinite.

Case I : K is finite. We know that, in this case, there exists a positive
integer \overline{k} independent of k such that for all k>\overline{k} , each trial step can be
accepted by the trust region method. Then our algorithm reduces to the
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algorithm in [3]. The conclusion of (4.18) follows from the Theorem 3.4
in [3].

Case II : K is infinite. We first prove the following result.

\lim_{k\in K}||D_{k}g_{k}||=0 . (4.19)

The statement (4.19) is proved by contradiction. Assume that there exist
an infinite set K_{1}\subset K and \epsilon>0 such that ||D_{k}g_{k}||\geq\epsilon for all k\in K_{1} .
From Lemma 4.5 and Algorithm 3.1 we have, for k\in K_{1} ,

f(x_{k})-f(x_{k+1})\geq-\mu\beta^{i_{k}}d_{k}^{T}\nabla f_{k}\geq\mu\beta^{*}\delta^{*}

Since \{f(x_{k})\} is monotonically decreasing and bounded below, we deduce:

\infty>\sum_{k=0}^{\infty}(f(x_{k})-f(x_{k+1}))\geq\sum_{k\in K}(f(x_{k})-f(x_{k+1}))

\geq\sum_{k\in K_{1}}(f(x_{k})-f(x_{k+1}))\geq\sum_{k\in K_{1}}\mu\beta^{*}\delta^{*}=\infty
,

which is a contradiction. So (4.19) holds. (4.18) directly follows (4.19).
\square

Theorem 4.2 Let \{x_{k}\} be generated by Algorithm 3.1. Under the global
assumptions, the following statement holds:

\lim_{karrow\infty}||D_{k}g_{k}||=0 . (4.20)

Proof. The proof is given by contradiction. Assume that there exist an
infinite sequence \{m_{i}\} and a constant \epsilon_{1}\in(0,1) such that for all k\in\{m_{i}\}

||D_{m_{i}}g_{m_{i}}||>\epsilon_{1} . (4.21)

On the other hand, from Theorem 4.1, for any \epsilon_{2}\in(0, \epsilon_{1}) , there exists a
subsequence of \{l_{i}\} (also called, without loss of generality, \{l_{i}\} ) such that

||D_{k}g_{k}||\geq\epsilon_{2} , m_{i}\leq k<l_{i} , ||D_{l_{i}}g_{l_{i}}||<\epsilon_{2} . (4.22)

Let us consider the kth iteration. If the trial step is accepted by the trust-
region method, i.e., k\not\in K , from (3.1) in Algorithm 3.1 and Lemma 4.2 we
have
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f(x_{k})-f(x_{k+1}) \geq\frac{1}{2}\eta_{1}\epsilon_{2} min \{1 , \frac{\epsilon_{2}}{M_{B}\triangle_{\max}} , \frac{\epsilon_{2}}{M_{g}\triangle_{\max}}\}\triangle_{k}

\equiv\kappa_{1}\epsilon_{2}\triangle_{k} , (4.23)

where \kappa_{1}=\frac{1}{2}\eta_{1}\min\{1, \frac{\epsilon_{2}}{M_{B}\triangle_{\max}}, \frac{\epsilon_{2}}{M_{g}\triangle_{\max}}\}>0 . If k\in K , from (3.2) in
Algorithm 3.1, (4.15), Lemma 4.4 and Lemma 4.5 we get

f(x_{k})-f(x_{k+1})

\geq-\mu\beta^{i_{k}}d_{k}^{T}\nabla f(x_{k})

\geq\mu\beta^{*}\theta_{l}\epsilon_{2}\tau^{*}\min\{\frac{1}{2} min \{1, \frac{\epsilon_{2}}{2M_{B}\triangle_{\max}}\} , \frac{1}{\triangle_{\max}}\}\triangle_{k}

\equiv\kappa_{2}\epsilon_{2}\triangle_{k} , (4.24)

where \kappa_{2}=\mu\beta^{*}\theta_{l}\tau^{*}\min\{\frac{1}{2}\min\{1, \frac{\epsilon_{2}}{2M_{B}\triangle_{\max}}\}, \frac{1}{\triangle_{\max}}\}>0 . Hence, from
(4.23) and (4.24), if each k satisfied (4.22) we have

f(x_{k})-f(x_{k+1}) \geq\min\{\kappa_{1}, \kappa_{2}\}\epsilon_{2}\triangle_{k} . (4.25)

On the other hand, from Algorithm 3.1 and the assumptions we know that
there exists a constant \kappa_{3}>0 , for all k , ||x_{k}-x_{k+1}||\leq\kappa_{3}\triangle_{k} , which
combining with (4.25) to yield

f(x_{k})-f(x_{k+1})\geq\epsilon_{3}||x_{k+1}-x_{k}|| , (4.26)

where \epsilon_{3}=\epsilon_{2}\frac{\min\{\kappa_{1},\kappa_{2}\}}{\kappa_{3}} . The next proof follows the same steps as the proof
of Theorem 3.5 in [3] and the proof of convergence in [10]. So the theorem
is proved. \square

5. Numerical example

In this section we show a numerical example to illustrate the advantage
of Algorithm 3.1. Two algorithms are considered. One is the pure trust-
region algorithm, denoted by PTR, which uses the traditional trust-region
method, i.e., if \rho_{k}<\eta_{1} in Algorithm 3.1, we then reduce the trust-region
radius \triangle_{k}=0.5\triangle_{k} and goto step 2 to resolve the trust-region subproblem
(2.4) or (2.5). Another algorithm is Algorithm 3.1, i.e., combining trust-
region method and line search method, denoted by CTL. The numerical
example comes from [8] problem 38.
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minimize f(x)=100(x_{2}-x_{1}^{2})^{2}+(1-x_{1})^{2}+90(x_{4}-x_{3}^{2})^{2}+(1-x_{3})^{2}

+10.1 ((x_{2}-1)^{2}+(x_{4}-1)^{2})+19.8(x_{2}-1) (x_{4}-1)

subject to -10\leq x_{i}\leq 10 , (i=1,2, . . ’ 4)

The optimal point of this example is x^{*}=(1, 1, 1, 1) .
A MATLAB subroutine has been coded. The constants for the two

algorithms are chosen as follows:

\beta=0.5 , \mu=0.4 , \eta_{1}=0.25 , \eta_{2}=0.75 , \triangle_{\max}=100 ,

\triangle\min=1.0e-4 , \triangle_{0}=3 , r_{1}=0.5 , r_{2}=2 .

The stop condition is \epsilon=1.0e-5 . The subproblem is solved in truncated
conjugate gradient method proposed by Yuan [14]. The computing results
are reported in Table 5.1. The CPU (sec.) time is only used to compare
two algorithms.

Table 5.1.

start point

x_{0}

CTL algorithm PTR algorithm

k k_{s} CPU k k_{s} CPU

[0, 0, 0, 0] 60 60 0.66 81 89 0.94

[-1, -1, -1, -1] 259 259 2.91 212 341 3.57

[5, 5, 5, 5] 76 76 0.71 76 76 0.76

[2, 8, 2, 8] 26 26 0.27 105 108 1.10

[-1, 9, 9, 9] 164 164 1.71 160 203 2.09

[-1, -1, 0, 0] 143 143 1.82 194 251 2.58

[8, 8, 8, 8] 199 199 1.60 199 199 1.60

[6, 0, 6, 0] 38 38 0.49 38 38 0.49

where k denotes the iterative numbers, k_{s} expresses the total iterative num-
bers for solving the trust-region subproblem (2.4), CPU denotes the time
taken for solving the example from different start point. From Table 5.1 we
can see that, in most cases, the iterative number of CTL algorithm is less
than PTR algorithm. In some cases, though the main iterative number of
CTL algorithm is more than PTR, the time of solving subproblem and the
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time taken of CPU are less than PTR algorithm. This shows Algorithm 3.1
is effective.
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