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Combining trust-region and line-search algorithms
for minimization subject to bounds?)

Xiaojiao TONG and Shuzi ZHOU
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Abstract. In this paper, we combine the trust-region technique with line searches to
develop an iterative method for solving minimization problems subject to bounds. The
new method is an extension of the algorithm proposed by Coleman and Li [3]. At each
iteration, the solution of the subproblem provides a descent direction of the objective func-
tion. If the trial step cannot be accepted by trust-region method, we can use backtracking
to find the next iterative point. Compared to the traditional trust-region methods, the
new algorithm need not solve the subproblem repeatedly and so it is more economical.
Under general conditions, the global convergence of the new algorithm can be proved. A

numerical example shows that the new algorithm is promising.

Key words: bound constraints, trust-region method, line search technique, global conver-
gence.

1. Introduction

In this paper we aim to develop a trust-region type method for solving
the following bound-constrained minimization problem.

minimize f(z)

subject to [ < x < wu, (1.1)

where f : R® — R is continuously differentiable, | € (RU{—o00})", u € (RU
{oo})™, | < u. We denote the feasible set as X = {z |l <z < u} and the
strict interior feasible set as X° = {x |l < z < u}.

Trust-region methods for solving the bound-constrained minimization
problem (1.1) have been studied extensively, (see [3]-[6]). We pay more
attention to the trust-region methods proposed by Coleman and Li [3],
Dennis and Vicente [6]. At kth iteration, by introducing a diagonal matrix,
presented a trust-region subproblem, which consisted of minimizing a
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quadratic function subject only to an ellipsoidal constraint as follows:

1.
minimize (s) = Vfils + ésf(Bk + Ck)s
subject to || D 's|| < Ag, (1.2)

where By, Ci, Dy are given special matrixes. Hence, the subproblem pro-
posed in [3] possessed the form of an unconstrained trust-region subproblem
and did not handle the bound-constraints explicitly. By using a step-back
technique, Coleman and Li computed {xj} such that it satisfied strict feasi-
bility. Elegant convergence results are obtained in [3]. Dennis and Vicente
[6] considered another trust-region interior-point method for problem (1.1),
which minimized the local quadratic function over a trust-region with the
requirement that the iterative point had to be strictly feasible, i.e.,

minimize  pg(s)
subject to || 's|| < Ay, (1.3)

or(l —z) < s < op(u—xk),

where Sy is given scale matrix and chosen Sy = Dg, Sy = I, in @ Nice
convergence results are also obtained. Moreover, the idea of setting sub-
problem in @ is extended to infinite-dimensional nonconvex minimization
subject to pointwise bounds in and to a class of nonlinear programming
problems in [5].

The approach of the traditional trust-region method is similar. Namely,
when the trial step is not accepted, we reduce the trust region radius and
resolve the proposed subproblem. However, it is well-known that solving
the trust-region subproblem is costly, which motivates us to study the trust-
region method again. Unlike the existing trust-region methods, in this pa-
per, a trust-region type method for solving problem (1.1) is presented. We
adopt the subproblem version of Coleman and Li in , combine it with
a line search technique. In particular, at each step, even if the trial step
cannot be accepted, the solution of the subproblem (1.2) provides a descent
direction of the objective function. Then we use a backtracking line-search
to determine a steplength and get the next trial point. This combina-
tion of trust-region techniques and line-search techniques was introduced by
Nocedal and Yuan in for solving unconstrained optimization problems.
We extend this technique to develop an iterative method for solving bound-
constrained optimization problems. The advantage of the proposed method
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in this paper is twofold. First, it shares the advantages of trust-region meth-
ods. Second, at each step, the subproblem is solved only once. It is then
reasonable to believe that the proposed method in this paper is cheaper
than the existing trust-region methods. Under the same conditions of
and [6], we prove the convergence of the proposed algorithm. A numerical
test shows that the new algorithm proposed in this paper is promising.

The paper is organized as follows. In Section 2 we give the preliminaries.
The new algorithm is stated in Section 3. Global convergence of the new
algorithm is proved in Section 4. In the last section, a numerical example
is given.

Throughout this paper, the vector and matrix norms used are /o norm
and subscripted indices k represents the evaluation of a function at kth step,
for example, frx = f(xk), etc.

2. Preliminaries

Denote g(x) = V f(x). The scaled matrix defined here is similar to the
one of [3] and [6], i.e., a diagonal matrix whose diagonal elements are given

by

((ui — xz)%, if g; <0 and u; < oo,
1
x; — 1)z, if gi >0 and [; > —o0,
(D(e))ss = T 1)
1, if g <0 and u; = oo,
\1’

Then from [3], and [2], we have the following proposition.
Proposition 2.1 z* € X s a KKT point of (1.1) if and only if

D*(z*)V f(z*) = 0. (2.2)

if g,ZO and li:—OO.

Formula (2.2) provides the motivation for our algorithm. We trans-
form the bound-constrained problem (1.1) to a problem of finding a local
minimazer for some unconstrained problem and it shows that the sequence
{xr} generated by our algorithm satisfics

klim | D?(xx)V f(21)]| = 0.

We note that the ith component of the function D?(z) is differentiable
except at the point where (g(x)); = 0. However, from the definition of
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D?(z), this lack of smoothness is benign. Hence, we can define a Jacobian
of D%(x) as follows:

-1, if (g(x)): <O,
(Ji)is = (D*(2))i; = {1, if (g(x))i >0, (2.3)

0, otherwise.

For more details, we prefer to see [3], [6] and [13]. Based on the Newton step
for system [2.2), at kth iteration, we then set a trust-region subproblem of
(1.1) as

1
C T T
minimize S)=gqg.s+ —s Bgs
Yr(s) = gj 55 B (2.4)
subject to || Dy 's|| < Ay,

where By = Hp + Ci, C, = D;ldiag(gk)JkD,zl, Hy, is an approximation
to V2f(z). Let 8 = D_'s, note that (2.4) is equivalent to the following
subproblem:

~ 1
minimize $)=qi. 8+ — 5

Vr(8) = g8+ 3 (2.5)
subject to  ||$|| < Ag,

where gr = Dy, Bk = DipByDy = DiyHiDy + diag(gk)Jk. (2.5) is a
standard trust-region subproblem of unconstrained optimization, we thus
have the following important lemma.

Lemma 2.1 If § is a solution of (2.5), then

lmin{Ak, Hg]f“ } (2.6)
2|| B |

Equivalently, the solution of (2.4) s satisfies

AT ~

< 1
S — —
9k Sk > 9

A

9k

' 1 | Drgi
T .
ook < 3 IDig min{ & . (2.7
K 2 2| DBy Dy||
The lemma above is a key result for us to construct new algorithm.
Moreover, in order to ensure that all iterates are strictly feasible, we use a
step-back technique, which is similar to the method proposed by Coleman
and Li in [3]. When the trial step comes from (2.4) or (2.5), we solve the
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following problem to get a solution 7,

minTE[O,min{l,ak}] ¢(7-) = ¢k(73k)- (28)

where aj expresses the stepsize along the direction dg, i.e.,

e S 205

Li— (k)i wi — (Tk)i o i L
dr)i  (dw)i oo, I (dg)i =0, (2.10)

ap = +00, if |=—-00 and u = +o0,

where (di); and (zx); express the ith component of dy, and zg. From
(2.10) we can easily prove that zj + 77s; € X. Finally we use step-back

method to choose 85 such that
O € [01,1), Ok —1=0(|skll), zx+ Ox7isk € XO, (2.11)

where 6, > 0 is a constant. We denote v} (sx) = Yr(Ok7f sk ).

On the other hand, to analyze the convergence of the trust-region
method, a sufficient reduction of the quadratic model 1x(s) is required. Here
we consider the scaled gradient direction for subproblem of (2.4), which is
considered by many researchers (for example, [3], [5], [6], [10]) and often
called “Cauchy step” associated with the trust-region subproblem (2.4). In
addition, we also require strict feasibility for the point generated by the
scaled gradient direction and we deal with the problem by using the same
technique mentioned above. The following problem is solved first,

min’rE[O,min{Ak,ak}] ¢k(7-pk), (212)

where p = —Dkng—’;“ € Span{—D32g;}. Denote the solution of as Ty.

Then choose 8, such that
ék € [0, 1], é}c —1= O(“pk“), Tk + ékﬂ:pk e X0 (2.13)
We denote wZ(—ngk) = wk(ék'?gpk).

3. Combining algorithm

In this section, we give the steps of the new algorithm. The idea of our
algorithm comes from [Lemma 2.1, which implies that any solution of the
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subproblem (2.4) provides a descent direction of objective function at zy.
Moreover, the step-back technique never affects the descent. Therefore, if
the trial step is accepted, we can obtain the next iteration. Otherwise, we
can use Armijo line search to find the next iterative point. We state our
algorithm as follows:

Algorithm 3.1
Step 0. Given zg € X% 3 € (0,1), p € (0,1/2),0 < m < mp < 1,
Amax 2> Ag > Apin > 0, 0 < 71 < 1 < rg, the symmetric matrix
Hye R™™, ¢ >0,k :=0.
Step 1. Compute gk, Bi, Dg. If ||Dxgr| < € stop and output z.

Step 2. Solve subproblem (2.5) and to obtain s; and 7. Choose

Ok to satisfy [2.11). Let dy = 6,7 sk. Solve to obtain 7} and
choose 6y to satisfy [2.13), let di = 0,7 px.

Step 3. If @D;(Sk) > ?ﬂ,:(—Dkgk), set dx = (Zk.

f(zk) = f(xr+di)— 2 dT Crdy It
—Y (di) )

Pk > M, (3.1)

Step 4. Compute pp =

set Tx11 = xk + di and goto Step 6.
Step 5. (Armijo line-search) Find the minimum positive integer iy
such that
flar) = flan + Bdy) > —pB'dpV f(ay). (3.2)

Set Try1 =k + B%dk, Apy1 € [[[Te41 — 7], 71A%] and goto Step 7.

Step 6. If pr < 79, set Agy1 € [r1Ag,Ag]. Otherwise Agyi; €
min{roAg, Amax }-

Step 7. Update Hy as Hry1, k:= k + 1 goto Step 1.

Remarks

1. We do not need to solve the subproblem (2.5) exactly and only need
that sy satisfies (2.6). The paper gave an algorithm to compute this
approximate solution.

2. From step 3 of Algorithm 3.1 , for all k¥ we have

Vi (dk)
—_— > . (3.3)
¥3i(—Digk) =120 53
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3. The main difference between the Algorithm 3.1 with , @ and
other traditionary trust-region methods is that we need not to solve the
subproblem (2.4) or (2.5) repeatedly when does not hold.

4. Global convergence for Algorithm 3.1

First we give general global assumptions as follows:

AS.1 fe C%X).

AS.2 Forzge X° L= {r|re X, f(z) < f(zo)} is compact.

AS.3 For all k, there exists a constant My > 0 such that ||Hy|| < My.

AS.4 there exists a constant M, > 0 such that for allz € L, ||g(z)]| <
M,.
From the above assumptions, there exist constants Mp > 0, Mg > 0
such that for all £ we have

IDk|l < Mp, ||Bell < M. (4.1)

From now on, we always suppose that the above assumptions
hold. Denote an index set as

K = {k | zp41 = zx + B dy}, (4.2)

which expresses the index of using line search method.
The next lemma shows that Algorithm 3.1 is well-defined.

Lemma 4.1 There exists a minimum positive integer iy such that (3.2)
holds.

Proof. From Algorithm 3.1, the trial step is chosen as dy = @y7)s; or
dj, = éki',:pk. Since the algorithm does not stop, we know that ||Drgxl| > €.
Consider two cases:

Casel: dy = 07} sk. From we have

HDkak”}
2|| B ||

which, combined with ||DeV fil| > €, yields

1 . .
—di Vi > Ok |1 DV fi mm{Ak,

1
_d£ka > §0szemin{Ak, 2]\6/13} > 0. (4.3)
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Then, from directional derivative arguments, we know that there exists iy

such that holds.
s - D2
Case Il dy = OrT . = —Qka%, we have
——dZka = ékﬂ:”Dkvfk” > ék’l_',;ke > 0. (4.4)
Similar to the case I, there exists i; such that holds. O

The following lemma is proved by Coleman and Li (see Lemma 3.1 in
[3]), and gives the reduction of the quadratic model which plays an impor-
tant role in convergence of trust-region method.

Lemma 4.2 Assume that di is computed by Algorithm 3.1. Then,

_wk(dk)zlungmin{A gl gkl }

ky —=
1By Ngklloo

From the global assumptions, we get the following lemma.

Lemma 4.3 There exists a constant M > 0 such that for all k we have

1
| f(zk) = flag + di) — idgckdk — (—Yr(de))| < M||dill>.  (4.6)
The next two lemmas can show some properties of the sequence.

Lemma 4.4 Let K be defined by (4.2). If there is a subset K1 C K such
that for all k € Ky, ||Drgk|| > €, then there exist A* > 0 and 7* > 0 such
that for all k € K1 we have

A > A", (4.7)
min{7;, 7} > 77 (4.8)

Proof. From the definition of K we know that the trial step is not accepted,
le.,

flxr) — flar + di) — %dZdek B
—k(dk)

For the two cases (di = 07} sk and dj, = ékf,’gpk), we have ||dg|| < MpAk,
which combines with Cemma 4.2 and Cemma 4.3 to yield

MM?2 A

1>1-n. (4.9)

1_771 < 1 ]
gemm{l

€ € }
’ MBAmax’ MgAmax
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This implies that

(1 o nl Gmln{l, MBAma.x MgAemax}

Ay > = A",
g MM?
So is proved. Now we prove [4.8). From and we have
Lemind1 — ¢ ¢ A* < —aby(dy) 4.10
—emin — . .
2 ’ MBAmax’ MgAmax - RATH ( )

On the other hand, we have two choices for di in Algorithm 3.1. For d; =
Ok 7L sk, we have

* 1 N2 TH 2
—r(di) = —OkTiegi sk — ‘2‘91%(%)25531@%

max

) 1

1
(M MpApax + 2M3Amax>

which combines with (4.10) to yield

1
x 26mm{17MBAmax’MAemax} L
MMDAmax+ MBA

max

For dj = ék%gpk, P = _Dkn?}_in’ we deduce that

B
(i) = Bt llgnll — S ()2 okt ’l]i’“

19
1 — %

From (4.10) again we have

1 : € € *
semini 1, , A
7> 2 { MBA‘“"IMQA’““} = 72, (4.12)
MDMg + §MB
Denote 7* = min{7{, 75} > 0. Then follows. O

Lemma 4.5 Under the conditions of Lemma 4.4, there exist constants
0* > 0 and B* > 0 such that for all k € K,

diV fi < 6% <0, (4.13)
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g% > g > 0. (4.14)

Proof. From (4.3), in the proof of Lemma 4.1, the choice of 8 and
6;, we have

. € _x
—dgik > @e min {§Tk mln{Ak, %}, Tk} . (4.15)

Then (4.13) follows from (4.7) and [4.8).
From the global assumptions and ||dk|| < MpAx < MpApax we have:

fzk) — f(an + B'd)
= —ﬁidTka — (8")?di V? f (&) ds
—B'd;V fi = MyMp AL (6
= —uﬁldfvfk = (1= @)B'dgV fio = MfMBAZ, (6% (4.16)
where & € (zx, 2k + 3'di). Hence, if 3 satisfies that
(1= ) B (—di V fr) > MyMBAZ,. () (4.17)

holds in Algorithm 3.1. Obviously, if 5* < M, M2 A2 m (4.17) holds
since (4.13). On the other hand, From the deﬁnltlon of zk, the following
statement holds.

i B(L—p)o*
& 2MM?A2

max

Therefore (4.14) is proved. O

= 5.

Next we state the main convergence results of Algorithm 3.1.

Theorem 4.1 Let {z} be generated by Algorithm 3.1. Under the global
assumptions, we have

lirr}cinf | Digr|| = 0. (4.18)
Proof. We consider the two cases to prove the theorem: K is both finite
and infinite.

Case I: K is finite. We know that, in this case, there exists a positive
integer k independent of k such that for all k& > k, each trial step can be
accepted by the trust region method. Then our algorithm reduces to the
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algorithm in [3]. The conclusion of follows from the Theorem 3.4
in [3].

Case II: K is infinite. We first prove the following result.

im || Dgx| = 0. .
Lim || Digxl| = 0 (4.19)

The statement is proved by contradiction. Assume that there exist

an infinite set K; C K and ¢ > 0 such that |Dggg| > € for all k € Kj.
From and Algorithm 3.1 we have, for k € K,

f(zr) = fzegr) = —pB™di V fr > pB* s,
Since {f(zk)} is monotonically decreasing and bounded below, we deduce:

o0 > Z(f(ivk) — f(xp41)) > Z(f(ka) — f(®k41))
k=0

keK

> > (flar) = fleen)) > Y upo™ = oo,

ke Ky ke K,

which is a contradiction. So [(4.19) holds. (4.18) directly follows [(4.19).
U

Theorem 4.2 Let {xy} be generated by Algorithm 3.1. Under the global
assumptions, the following statement holds:

lim || Degil| = 0. (4.20)
k—oo

Proof. The proof is given by contradiction. Assume that there exist an
infinite sequence {m;} and a constant €; € (0, 1) such that for all k£ € {m;}

Hsz‘gmiH > €1. (4'21)

On the other hand, from Theorem 4.1, for any €5 € (0,¢;), there exists a
subsequence of {/;} (also called, without loss of generality, {l;}) such that

”Dkng > €2, m; < k<, ”DligliH < €2. (4'22)

Let us consider the kth iteration. If the trial step is accepted by the trust-

region method, i.e., k ¢ K, from in Algorithm 3.1 and we
have
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1 . €2 €2
f(zr) = fzrsr) 2 o €2 min {1’ MpAmax” MgAmax } Ak

= hjlegAk, (423)

where k; = 1m min{l, ;-%—, T Z—} > 0. If £k € K, from in
Algorithm 3.1, (4.15), Lemma, 4.4 and Lemma. 4.5 we get

flz) — f(zry)
> —pB*d]V f(z)

1
2 ’u’/B*glEQT* min {5 min{l, 2MB€2AmaX}, Aiax } Ak
= Ko€ea Ay, (4.24)
where ko = ug*O;7* mm{ 3 mln{l, ST Amx }, Anlm} > 0. Hence, from
(4.23) and [4.24), if each k satisfied [4.22) we have

f(l’k) — f($k+1) Z min{m, EQ}EQA/C. (425)

On the other hand, from Algorithm 3.1 and the assumptions we know that
there exists a constant k3 > 0, for all k, ||xx — zk+1]| < K3Ak, which
combining with (4.25) to yield

f(zk) = f(Tr1) > €3l — zi, (4.26)

min{:—"@} The next proof follows the same steps as the proof

of Theorem 3.5 in 3] and the proof of convergence in [10]. So the theorem
is proved. U

where €3 = €9

5. Numerical example

In this section we show a numerical example to illustrate the advantage
of Algorithm 3.1. Two algorithms are considered. One is the pure trust-
region algorithm, denoted by PTR, which uses the traditional trust-region
method, i.e., if pp < m; in Algorithm 3.1, we then reduce the trust-region
radius Ax = 0.5A% and goto step 2 to resolve the trust-region subproblem
(2.4) or (2.5). Another algorithm is Algorithm 3.1, i.e., combining trust-
region method and line search method, denoted by CTL. The numerical
example comes from [8] problem 38.
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minimize f(x)=100(z2 — 22)? + (1 — x1)%? + 90(x4 — 22)? + (1 — x3)?
+10.1((z2 — 1)2 + (24 — 1)?) + 19.8(wy — 1) (x4 — 1)
subject to -10<2; <10, (i=1,2,...,4)
The optimal point of this example is z* = (1,1,1,1).

A MATLAB subroutine has been coded. The constants for the two
algorithms are chosen as follows:

B=005 p=04, n =0.25 1o =0.75 Amax = 100,
Amin = 1.0e — 4, AO = 3, T = 0.5, To = 2.

The stop condition is € = 1.0e — 5. The subproblem is solved in truncated
conjugate gradient method proposed by Yuan [14]. The computing results
are reported in Table 5.1. The CPU (sec.) time is only used to compare
two algorithms.

Table 5.1.
start point CTL algorithm | PTR algorithm
xo k ks | CPU | k ks | CPU
[0,0,0,0] 60 | 60 | 0.66 | 81 | 89 | 0.94
[1,—-1,—1,—1] | 259 | 259 | 2.91 | 212 | 341 | 3.57
[5,5,5,5] 76 | 76 | 0.71 | 76 | 76 | 0.76
2,8,2,8] 26 | 26 | 0.27 | 105 | 108 | 1.10

[~1,9,9,9] | 164 | 164 | 1.71 | 160 | 203 | 2.09
[—1,-1,0,0] | 143 | 143 | 1.82 | 194 | 251 | 2.58
8,8,8,8] 199 | 199 | 1.60 | 199 | 199 | 1.60
6,0, 6,0] 38 | 38 | 049 | 38 | 38 | 0.49

where k denotes the iterative numbers, ks expresses the total iterative num-
bers for solving the trust-region subproblem (2.4), CPU denotes the time
taken for solving the example from different start point. From Table 5.1 we
can see that, in most cases, the iterative number of CTL algorithm is less
than PTR algorithm. In some cases, though the main iterative number of
CTL algorithm is more than PTR, the time of solving subproblem and the
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time taken of CPU are less than PTR algorithm. This shows Algorithm 3.1
is effective.
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