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Partial regularity of solutions of nonlinear
quasimonotone systems
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Abstract. We prove partial regularity of weak solutions u of the nonlinear strictly quasi-
monotone system div A( x, u, Du)+B(x, u, Du)=0 under natural polynomial growth,
assuming that the coefficient function A(x, u, P) is H\"older continuous in (x, u) and of
class C^{1} in P, and that A(x, u, P)\cdot P\geq F(x, P) for some continuous function F which
is strictly quasiconvex at zero.

Key words: partial regularity, weak solution, nonlinear system, quasilinear system, quasi-
monotonicity, ellipticity, natural growth.

1. Introduction

We are interested in the regularity of the vector-valued weak solutions
u\in W^{1,2}(\Omega, R^{N}) of the nonlinear system

div A (x , u , Du)+B (x, u, Du)=0 , (1)

or, in components,

\sum_{\alpha=1}^{n}D_{\alpha}(A_{i}^{\alpha}(x, u, Du))+B_{i}(x, u, Du)=0 for i=1 , , N.

Here \Omega is a bounded open subset of R^{n} , n\geq 2 , N\geq 1 , and Du (x)\in R^{N\cross n}

denotes the gradient of u at a.e . point x\in\Omega . The coefficient functions A
and B are defined on the set

3=\overline{\Omega}\cross R^{N}\cross R^{N\cross n}

with values in R^{N\cross n} and R^{N} respectively.

Definition 1 We say that u\in W^{1,2}(\Omega, R^{N}) is a weak solution of the
system (1) if A (x , u , Du) and B (x , u , Du) are locally integrable and

\int_{\Omega}A (x , u , Du) D \varphi dx=\int_{\Omega}B (x, u , Du) \varphi dx (2)
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for every \varphi\in C_{c}^{\infty}(\Omega, R^{N}) . In components, (2) reads as

\int_{\Omega} ( \sum_{i,\alpha}A_{i}^{\alpha}

(x , u , Du) D_{\alpha}\varphi i) dx= \int_{\Omega}(\sum_{i}B_{i} (x , u , Du) \varphi^{i})dx .

The problem of regularity of a weak solution u\in W^{1,2}(\Omega, R^{N}) of the
nonlinear superelliptic system (1) has been intensively investigated over the
last 24 years. As we know (see Example II.3.2 of [5]), we can in general only
expect partial regularity if N>1 , i.e. H\"older continuity of the gradient Du
outside of a closed set of Lebesgue measure zero.

The standard hypotheses are that A(x, u, P) be uniformly superelliptic,
H\"older continuous in (x, u) and of class C^{1} in P, and that A(x, u, P) , its
partial derivative A_{P}(x, u, P) and B(x, u, P) have natural quadratic growth
in the variable P, i.e.

|A(x, u, P)|\leq\Gamma(1+|P|) , |A_{P}(x, u, P)|\leq\Gamma ,
|B(x, u, P)|\leq a|P|^{2}+b . (3)

Moreover, one assumes the smallness condition

2a \sup_{\Omega}|u|<\gamma ,

the constant \gamma>0 being determined by the supere11ipticity^{1} of the system:

A_{P}(x, u, P)
((, \zeta)=\sum_{i,j,\alpha,\beta}D_{P_{\beta}^{j}}A_{i}^{\alpha}(x, u, P)\zeta_{\alpha}^{i}\zeta_{\beta}^{j}\geq\gamma|\zeta|^{2}

(4)

valid for all (x, u, P)\in 3 and \zeta\in R^{N\cross n} .
We start with a short account of the development of the partial regular-

ity theory for nonlinear systems, always under the hypothesis of superellip-
ticity (see also [5]). The general method of the proof is to compare the given
solution u with a solution of a linear system with constant coefficients, for
which standard elliptic estimates are available. For the direct approach, this
comparison is carried out on an arbitrary ball under a Dirichlet boundary
condition; for the indirect approach, it is shown that a sequence of blow-up
functions w_{m}\in W^{1,2}(B, R^{N}) , rescaled to the unit ball B , converges weakly

l Superellipticity is often referred to as strong ellipticity or simply ellipticity. We reserve
the term ellipticity, which is also known as the condition of Legendre-Hadamard, for (9)
or (24).
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to such a solution.
Partial regularity of the solutions u\in W^{1,2}(\Omega, R^{N}) of the quasilinear

system

div (A(x, u) Du)+B (x, u, Du)=0 (5)

was shown, following the indirect approach, by Morrey [18] and by Giusti
and Miranda [11]. A direct proof for this result was later given by Giaquinta
and Giusti [7].

Partial regularity for the general nonlinear system (1) was obtained by
Giaquinta and Modica [8] and by Ivert [17]. Their direct proofs are based
on a reverse H\"older inequality with increasing supports for Du – P_{0} , for
any constant P_{0}\in R^{N\cross n} . This reverse H\"older inequality in turn is derived
from Caccioppoli’s second inequality by invoking the higher integrability
theorem of Gehring, Giaquinta and Modica (see Theorem 3).

As the higher integrability theorem is rather involved, it is desirable
to find a simpler partial regularity proof which avoids the use of a reverse
H\"older inequality. Such direct proofs were supplied for the quasilinear sys-
tem div (A (u) Du)=0 by Evans and Giarrusso [2], for the nonlinear sys-
tem div A (Du)=0 by Giarrusso [9], and for the general nonlinear system
(1) by Duzaar and Grotowski [1]. An indirect partial regularity proof for
(1), which does not even employ a Caccioppoli inequality, was proposed in
[14]. Nevert\dot{h}eless , at the moment it seems that our main result, Theorem 1,
is unattainable without resort to a reverse H\"older inequality.

Superellipticity (4) implies strict monotonicity

(A(x, u, P+Q)-A(x, u, P))\cdot Q\geq\gamma|Q|^{2} (6)

Further, (3), (6) with P=0, and the Cauchy inequality yield control from
below

A(x, u, P)P\geq F(x, P) (7)

by the function F(x, P)=\gamma|P|^{2}/2- const. In the present paper we replace
the superellipticity hypothesis by weaker versions of (6) and (7). Moreover,
as in [3], we dispense with the growth condition on A_{P} .

First, we assume strict quasimonotonicity, which is obtained by inte-
grating (6) when Q is the gradient of a test function, and x , u , P are
constants (see Hypothesis 3). Quasimonotonicity is weaker than superellip-
ticity, reducing to superellipticity for n=1 or N=1 . Also, quasiconvexity
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of a function F:3arrow R is weaker than quasimonotonicity of its partial
derivative F_{P} : 3 –

R^{N\cross n} . For a further discussion of this concept we refer
to [12] (see also Remark 1 (b)). Zhang [19] proved the existence of a weak
solution of the nonlinear quasimonotone system (1). Partial regularity of
such solutions has to date only been achieved for the quasimonotone system

div A (x , Du)+B (x, u, Du)=0 , (8)

whose leading part does not depend on the variable u . This was shown indi-
rectly by Fuchs [4], and directly by Frasca and Ivanov [3] and by Hamburger
[12].

Secondly, we assume (7) with an arbitrary continuous function F that
is strictly quasiconvex at zero (see Hypothesis 4). This estimate from below
is the analog of the coercivity condition of Hong [16] in the calculus of
variations. It will be put to use in the proof of Caccioppoli’s first inequality
and subsequent higher integrability of the gradient Du (see Theorem 4).
While Hypothesis 4 is trivially satisfied for (8) by Remark 1 (a), it is to
be considered as the missing link in the chain to partial regularity for the
general quasimonotone system (1).

Our indirect proof of partial regularity employs the method which was
introduced by Hamburger [13] in the context of minimizers of variational
integrals in establishing convergence w_{m}arrow w in W_{1oc}^{1,2} of a sequence of
blow-up functions w_{m}\in W^{1,2}(B, R^{N}) , which is known to converge only
weakly. This technique has already been applied to nonlinear superelliptic
systems in [14], and to polyconvex variational integrals in [15]. Since we are
not assuming any growth condition on A_{P} , we need to define sets E_{r,m}\subset

B_{r} , satisfying \lim_{marrow\infty}|E_{r,m}|=0 , where the functions w_{m} or Dw_{m} exceed a
certain bound (cf. [6], [10]). A reverse H\"older inequality for Du-P_{0} , for any
constant P_{0}\in R^{N\cross n} , allows us to control the error integral of a rescaled
power of |Dw_{m}| over the set E_{r,m} . We show that the blow-up functions
w_{m} are approximate solutions of suitable rescaled systems. This has two
consequences. First, passing to the limit as marrow\infty we infer that w solves
a linear elliptic system with constant coefficients. Secondly, we derive the
key estimate

\lim_{marrow}\sup_{\infty}\int_{B_{r}}\zeta^{2}G(Y_{0}) (Dw_{m}, Dw_{m})dz \leq\int_{B_{r}}\zeta^{2}G(Y_{0}) (Dw, Dw)dz .

Here \zeta is a cut-0ff function, the bilinear form G(Y) depends continuously
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on Y. and the constant function Y_{0} is the limit in L^{2} of a suitable sequence
of functions \{Y_{m}\} . We finally deduce from this estimate with the help of
strict quasimonotonicity that w_{m}arrow w in W_{1oc}^{1,2} . In this manner we achieve
partial regularity of weak solutions of fully nonlinear quasimonotone systems
in divergence form.

For the coefficient function A:3arrow R^{N\cross n} we shall assume the following
hypotheses, for an exponent q\geq 2 .

Hypothesis 1 We suppose that A(x, u, P) is of class C^{1} in P and of
polynomial growth

|A(x, u, P)|\leq\Gamma(1+|P|^{q-1}) ,

and we assume that A_{P} is continuous.

Hypothesis 2 We suppose that (1+|P|^{q-1})^{-1}A(x, u, P) is H\"older con-
tinuous in (x, u) uniformly with respect to P :

|A(x, u, P)-A(y, v, P)|\leq(1+|P|^{q-1})\omega(|u|, |x-y|+|u-v|)

for all (x, u, P) , (y, v, P)\in 3 . \# ere \omega(s, t)=K(s) min (t^{\delta}, 1) for 0<\delta<1

and for a nondecreasing function K(s) ; we note that \omega (s, t) , for fixed s , is
concave, nondecreasing and bounded in t .

Hypothesis 3 We suppose that A is uniformly strictly quasimonotone

\int_{R^{n}}A(x_{0}, u_{0}, P_{0}+D\varphi)D\varphi dx\geq\int_{R^{n}}(\kappa|D\varphi|^{2}+\gamma|D\varphi|^{q})dx

for some \kappa , \gamma>0 , and all (x_{0}, u_{0}, P_{0})\in 3 and \varphi\in C_{c}^{\infty}(R^{n}, R^{N}) .

Hypothesis 4 We suppose that

A(x, u, P)P\geq F(x, P)

for all (x, u, P)\in 3 , and for some function F(x, P) , satisfying |F(x, ())|\leq c\cdot ,
which is strictly quasiconvex at P=0, and for which (1+|P|^{q})^{-1}F(x, P)

is continuous in x uniformly with respect to P :

\int_{R^{r\iota}}(F(x_{0}, D\varphi)-F(x_{0},0))dx\geq\tilde{\gamma}\int_{R^{r\iota}}|D\varphi|^{q}dx

fc)r. some \overline{\gamma}>0 , and all x_{0}\in\overline{\Omega} and \varphi\in C_{c}^{\infty}(R^{n}, R^{N}) ;

|F(x, P)-F(y, P)|\leq(1+|P|^{q})\overline{\omega}(|x-y|)
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for all x , y\in\overline{\Omega} and P\in R^{N\cross n} , where \tilde{\omega} is continuous and nondecreasing
with \tilde{\omega}(0)=0 .

Remark 1 (a) If A(x, P) is independent of the variable u then Hypoth-
esis 4, with F(x, P)=A(x, P)P, is already a consequence of Hypotheses
2 and 3.

(b) If A(x, u, P)=A(x, u) P is linear in the variable P, i.e. for the
quasilinear system (5), Hypothesis 3 is equivalent to uniform ellipticity

A(x, u) (\eta\otimes\xi, \eta\otimes\xi)\geq\gamma|\eta\otimes\xi|^{2} (9)

for all (x, u)\in\overline{\Omega}\cross R^{N} and \eta\in R^{N} . \xi\in R^{n} (see [12]). In general, ellipticity
is weaker than quasimonotonicity.

(c) If A(x, P)=A(x) P is independent of the variable u and linear
in the variable P, i.e. for the semilinear system

div (A (x) Du)+B (x, u, Du)=0 ,

Hypotheses 1 to 4 are equivalent to H\"older continuity and uniform ellipticity
(9) of the coefficient matrix A (x) . This follows from (a) and (b).

Example 1 (a) If a coefficient function A verifies Hypotheses 1 to 4,
with n=N\leq q , then so does

A_{1}(x, u, P)=A(x, u, P)+b(x) cof P,

where b is of class C^{0,\delta} . and cof P denotes the matrix of co- factors^{2} of P.
Here we set F_{1}(x, P)=F(x, P)+nb(x) det P in Hypothesis 4. By the
Piola identity div cof Du=0, the added expression only contributes a lower
order term to (1) if b is Lipschit continuous.

(b) A nonlinear coefficient function verifying Hypotheses 1 to 4, with
n=N=2, q=4 and F(x, P)=(1+\gamma)|P|^{4} . is given by

A(x, u, P)=\kappa P+(1+\gamma)|P|^{2}P+\eta(x, u) det P cof P,

where \kappa , \gamma>0 , and \eta of class C^{0,\delta} satisfies 0\leq\eta\leq 4 (see [12], (1. 13)).

2It may be helpful to recall the formula

cof Du \cdot D\varphi dx^{1}\wedge\cdots\wedge dx^{n}=\sum_{i=1}^{n}du^{1}\wedge\cdots\wedge du^{i-1}\wedge d\varphi i\wedge du^{i+1}\wedge\cdots\wedge du^{n} .
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We also assume the coefficient function B : 3 – R^{N} has natural poly-
nomial growth. In order to save ourselves a separate treatment of the case
B=0, we agree that 2aM=0 if a=0 and M=\infty . Of course, the
condition (11) for M=\infty is void.

Hypothesis 5 We suppose that B(x, u, P) is a Caralh\’eodory function,
i.e . measurable in x and continuous in (u, P) . Moreover, we assume that,

for constants a , b\in[0, \infty [ and M\in[0, \infty] ,

|B(x, u, P)|\leq a|P|^{q}+b and 2aM< \min\{\gamma,\tilde{\gamma}\} (10)

for all (x, u, P)\in 3 with |u|\leq M .

Our first result concerns the fully nonlinear system (1).

Theorem 1 Let A and B satisfy Hypotheses 1 to 5, with exponent q\geq 2 .
Let u\in W^{1,q}(\Omega, R^{N}) , with

\sup_{\Omega}|u|\leq M , (11)

be a weak solution of the system

div A (x , u , Du)+B (x, u, Du)=0 .

T/ien there exists an open set \Omega_{0}\subset\Omega , whose complement has Lebesgue
measure zero, such that the gradient Du is locally H\"older continuous in \Omega_{0} ,
with the exponent 0<\delta<1 of Hypothesis 2:

u\in C^{1,\delta}(\Omega_{0}, R^{N}) and \mathcal{L}^{n}(\Omega\backslash \Omega_{0})=0 .

Moreover, the regular set is characterized by

\Omega_{0}=\{x_{0}\in\Omega : \sup_{r>0}(|u_{x_{0},r}|+|Du_{x_{0},r}|)<\infty

and \lim_{r\backslash }\inf_{0}f_{B_{r}(x_{0})}|Du-Du_{x_{0},r}|^{q}dx=0\} .

We now turn to the quasilinear case with A(x, u, P)=A(x, u)P, for
which we restate Hypotheses 1 to 4 with exponent q=2 .

Hypothesis 1* We suppose that A is continuous and bounded:

|A(x, u)|\leq\Gamma
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Hypothesis 2* We suppose that A is H\"older continuous with exponent
0<\delta<1 .

Hypothesis 3* We suppose that A is uniformly elliptic:

A(x, u) (\eta\otimes\xi, \eta\otimes\xi)\geq\gamma|\eta\otimes\xi|^{2}

for some \gamma>0 , and all (x, u)\in\overline{\Omega}\cross R^{N} and \eta\in R^{N} . \xi\in R^{n} .

Hypothesis 4* We suppose that

A(x, u) (P, P)\geq F(x, P)

for all (x, u, P)\in 3 , and for some function F(x, P) , satisfying |F(x, 0)|\leq

c , which is strictly quasiconvex with constant \tilde{\gamma}>0 at P=0, and for which
(1+|P|^{2})^{-1}F(x, P) is continuous in x uniformly with respect to P .

Remark 2 Hypothesis 4* reduces for F(x, P)=\gamma|P|^{2} to uniform su-
perellipticity of A.

For the quasilinear system (5) we then have

Theorem 2 Let A and B satisfy Hypotheses 1*, 3*, 4* and 5. Let u\in

W^{1,2}(\Omega, R^{N}) , with

\sup_{\Omega}|u|\leq M ,

be a weak solution of the quasilinear system

div (A(x, u) Du)+B (x, u, Du)=0 .

then there exists an open set \Omega_{0}\subset\Omega , whose complement has Haus-
dorff dimension less than n-2 , such that the solution u is locally H\"older

continuous in \Omega_{0} , with any exponent 0<\alpha<1 :

u\in 0<\alpha<1\cap C^{0,\alpha}(\Omega_{0}, R^{N})
and \dim_{H}(\Omega\backslash \Omega_{0})<n-2 .

Moreover, the regular set is characterized by

\Omega_{0}=\{x_{0}\in\Omega : \sup_{r>0}|u_{x_{0},r}|<\infty

and \lim_{r\backslash }\inf_{0}f_{B_{r}(x_{0})}|u-u_{x_{0},r}|^{2}dx=0\} .
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If A also satisfies Hypothesis 2* with exponent 0<\delta<1 then the
gradient Du is locally H\"older continuous in \Omega_{0} , with the same exponent \delta :

u\in C^{1,\delta}(\Omega_{0}, R^{N})

Proof The proofs of Theorems VI.1.3 and VI.1.5 of [5] hold verbatim with
ellipticity in place of superellipticity, once the reverse H\"older inequality

\{f_{B_{R/2}(x_{0})}|Du|^{2(1+\epsilon)}dx\}^{1/(1+\epsilon)}\leq cf_{B_{R}(x_{0})}(1+|Du|^{2})dx ,

for some \epsilon>0 and every ball B_{R}(x_{0})\subset\subset\Omega , is known. Here we derive this
inequality from Hypotheses 1*, 4* and 5 (see Theorem 4 for q=2). \square

2. A decay estimate for the excess

In what follows, all constants c may depend on the data and on the
number L from the proof of Proposition 1. The Landau symbol o(1) stands
for any quantity for which \lim_{marrow\infty}o(1)=0 ; this may in Section 4 also
depend on the numbers 0<s<r<1 and \beta>0 . We write B_{r}(x_{0})=

\{x\in R^{n} : |x-x_{0}|<r\} , B_{r}=B_{r}(0) , and B=B_{1} for the unit ball (we also
used the symbol B in (1) ) . We denote the mean of a function f on the ball
B_{r}(x_{0}) by

f_{x_{0},r}=f_{B_{r}(x_{0})}fdx= \frac{1}{\mathcal{L}^{n}(B_{r}(x_{0}))}\int_{B_{r}(x_{0})}fdx .

In this section we assume Hypotheses 1 to 5 with q\geq 2 . We let u\in

W^{1,q}(\Omega, R^{N}) , subject to (11), be a weak solution of the system (1). For the
positive exponent \alpha<\delta/2 appearing in Theorem 5, we define the excess of
Du on the ball B_{r}(x_{0})\subset\subset\Omega :

U(x_{0}, r)=r^{2\alpha}+f_{B_{r}(x_{0})}(|Du-Du_{x_{0},r}|^{2}+|Du-Du_{x_{0},r}|^{q})dx .

The conclusions of Theorem 1, as yet with exponent \alpha instead of \delta ,
follow in a routine way from the next proposition (see [5], pp. 197-199, [6],
Section 3, [10], pp. 349-352, [12], Section 5).

Showing that u\in C^{1,\delta}(\Omega_{0}, R^{N}) with the optimal exponent \delta requires
a second step. For any open set \Sigma\subset\subset\Omega_{0} , we consider u\in W^{1,q}(\Sigma, R^{N})
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as a solution of the system

div \tilde{A} (x , Du)+B (x, u, Du)=0

with the composite coefficient function \tilde{A}(x, P)=A(x, u(x), P) . We note
that \tilde{A} : \overline{\Sigma}\cross R^{N\cross n}

–
R^{N\cross n} satisfies Hypotheses 1 to 4 with the same

exponent \delta , as soon as we know that u\in C^{0,1}(\Omega_{0}, R^{N}) . Thus, by invoking
Theorem 1.2 of [12], we conclude that u\in C^{1,\delta}(\Sigma, R^{N}).3

Proposition 1 Let L>0 and \tau\in ] 0,1 [ be given. Then there exist
positive constants c_{1}(L) and \epsilon(L, \tau) such that if

B_{r}(x_{0})\subset\subset\Omega , |u_{x_{0},r}|\leq L , |Du_{x_{0},r}|\leq L and U(x_{0}, r)\leq\epsilon

then

U(x_{0}, \tau r)\leq c_{1}\tau^{2\alpha}U(x_{0}, r) .

Proof. We will determine the constant c_{1} later on. If the proposition were
not true then there would exist a sequence of balls B_{r_{m}}(x_{m})\subset\subset\Omega such
that, setting

u_{m}=u_{x_{m},r_{m}} , P_{m}=Du_{x_{m},r_{m}} , \lambda_{m}^{2}=U(x_{m}, r_{m}) . (12)

we have

|u_{m}|\leq L , |P_{m}|\leq L , \lambda_{m}\searrow 0 , (13)

but

U(x_{m}, \tau r_{m})>c_{1}\tau^{2\alpha}\lambda_{m}^{2} . (14)

We define the rescaled functions

w_{m}(z)= \frac{u(x_{m}+r_{m}z)-u_{m}-r_{m}P_{m}z}{r_{m}\lambda_{m}}

for z\in B . We notice that

Dw_{m}(z)= \frac{Du(x_{m}+r_{m}z)-P_{m}}{\lambda_{m}} , (15)

(w_{m})_{0,1}=0 , (Dw_{m})_{0,1}=0 . (16)

3Theorem1.2 of [12] has only been proved under a growth condition on \tilde{A}_{P} , which may
however be eliminated following [6].



Nonlinear quasimonotone systems 301

Then (12) and (14) become

\lambda_{m}^{-2}r_{m}^{2\alpha}+f_{B}|Dw_{m}|^{2}dz+\lambda_{m}^{q-2}f_{B}|Dw_{m}|^{q}dz=1 , (17)

c_{1}\tau^{2\alpha}<\lambda_{m}^{-2}r_{m}^{2\alpha}\tau^{2\alpha}+f_{B_{\tau}}|Dw_{m}-(Dw_{m})_{0,\tau}|^{2}dz

+\lambda_{m}^{q-2}f_{B_{\tau}}|Dw_{m}-(Dw_{m})_{0,\tau}|^{q}dz . (18)

From (16), (17) and the Poincar\’e inequality we immediately have

\lambda_{m}^{-1}r_{m}^{\alpha}\leq 1 , ||w_{m}||_{W^{1,2}(B)}\leq c , \lambda_{m}^{(q-2)/q}||w_{m}||_{W^{1,q}(B)}\leq c . (19)

Since \alpha<\delta/2 , we infer from (13) and (19) that

r_{m}\searrow 0 and \lambda_{m}^{-1}r_{m}^{\delta/2}\searrow 0 . (20)

By assumption (11) on u , we also note that

\sup_{B}|r_{m}\lambda_{m}w_{m}|\leq 2M+o(1) (21)

We denote the rescaled quantity (x, u, sDu+(1-s)P_{m})\in 3 :

Z_{m}(s, z)

=(x_{m}+r_{m}z, u_{m}+r_{m}P_{m} z+r_{m}\lambda_{m}w_{m}, P_{m}+s\lambda_{m}Dw_{m})

It follows from (13) and (19) that, on passing to a subsequence and
relabelling, we have

Dw_{m}arrow Dw weakly in L^{2}(B, R^{N\cross n}) ,

w_{m}arrow w in L^{2}(B, R^{N}) .
\lambda_{m}Dw_{m}arrow 0 in L^{2}(B, R^{N\cross n}) ;

\lambda_{m}^{(q-2)/q}Dw_{m}arrow 0 weakly in L^{q}(B, R^{N\cross n}) , (22)
\lambda_{m}^{(q-2)/q}w_{m}arrow 0 in L^{q}(B, R^{N}) (for q>2 );

(x_{m}, u_{m}, P_{m}) – Z_{0}=(x_{0}, u_{0}, P_{0}) in 3,
Z_{m}arrow Z_{0} in L^{2}([0,1]\cross B, 3)1
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Now suppose that we can show that w\in W^{1,2}(B, R^{N}) is a weak solu-
tion of the following linear system with constant coefficients:

div (A_{P}(Z_{0}) Dw)=0 . (23)

We infer from Hypothesis 1 and (13) that

|A_{P}(Z_{0})|\leq c ,

and from Hypothesis 3 that (23) is uniformly elliptic (see [12]):

A_{P}(Z_{0}) (\eta\otimes\xi, \eta\otimes\xi)\geq\gamma|\eta\otimes\xi|^{2} for all \eta\in R^{N} . \xi\in R^{n}

(24)

Hence, from the relevant regularity theory (see [5], Theorem III.2.1, Re-
Remarks III.2.2, III.2.3) we conclude that w is smooth and

f_{B_{\tau}}|Dw-Dw_{0,\tau}|^{2}dz\leq c_{2}\tau^{2}f_{B}|Dw-Dw_{0,1}|^{2}dz , (25)

where by (16), (17) and (22)

Dw_{0,1}=0 and i_{B}|Dw|^{2}dz \leq\lim_{marrow}\inf_{\infty}f_{B}|Dw_{m}|^{2}dz\leq 1 . (26)

On the other hand, if we also know that

Dw_{m}arrow Dw in L_{1oc}^{2}(B, R^{N\cross n}) , (27)

\lambda_{m}^{(q-2)/q}Dw_{m}arrow 0 in L_{1oc}^{q}(B, R^{N\cross n}) (for q>2 ) (28)

then it would follow from (18) and (19) that

c_{1}\tau^{2\alpha}\leq\tau^{2\alpha}+f_{B_{\tau}}|Dw-Dw_{0,\tau}|^{2}dz .

If we now choose c_{1}>1+c_{2} , we obtain a contradiction to (25) and
(26). This proves the proposition. \square

The remainder of this work is devoted to showing (23), and (27), (28),
which are the assertions of Lemmas 4 and 5 respectively.

We introduce some further notation. We define the set

\mathfrak{Y}=\overline{\Omega}\cross R^{N}\cross R^{N}\cross R^{N\cross n}\cross R^{N\cross n} .
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Next, we define a bilinear form G(Y) on R^{Nxn} , for Y=(x, u, v, P, Q)\in \mathfrak{Y} ,
by

G(Y)= \int_{0}^{1}A_{P}(x, u, P+sQ)ds-2a|u-v||Q|^{q-2}I ,

where I=\langle\cdot, \cdot\rangle denotes the inner product on R^{N\cross n} . By Hypothesis 1, the
bilinear form G(Y) depends continuously on Y\in \mathfrak{Y} . We observe that

G(x, u, u, P, Q) \cdot Q=\int_{0}^{1}A_{P}(x, u, P+sQ) Qds

=A(x, u, P+Q)-A(x, u, P) . (29)

Therefore, by Hypothesis 1 and Young’s inequality, we infer that

| \int_{0}^{1}A_{P}(x, u, P+sQ) (Q, R)ds|

=|(A(x, u, P+Q)-A(x, u, P)) R|

\leq c(1+|P|^{q}+|Q|^{q}+|R|^{q})
( (30)

We end this section by showing that w_{m} is, to order zero as marrow\infty , a
weak solution of a rescaled system of inequalities.

Lemma 1 Suppose that A and B satisfy Hypotheses 1, 2, 3 and 5. For
\varphi\in W_{0}^{1,q}(B, R^{N}) , with \sup_{B}|\varphi|<\infty if a\neq 0 , we then have

\int_{B}\int_{0}^{1}A_{P}(Z_{m}(s, z)) (Dw_{m}, D\varphi)dsdz

\leq 2a\int_{B}\lambda_{m}^{q-2}|Dw_{m}|^{q}r_{m}\lambda_{m}|\varphi|dz+c\lambda_{m}^{-1}r_{m}^{\delta/2}||\varphi||_{W^{1,2}} (31)

Proof. Rescaling the system (1) we find

\int_{B}A(Z_{m}(1, z)) D \varphi dz=r_{m}\int_{B}B(Z_{m}(1, z)) \varphi dz

for every \varphi\in C_{c}^{\infty}(B, R^{N}) . So it follows from (29) that

\int_{B}\int_{0}^{1}A_{P}(Z_{m}(s, z)) (Dw_{m}, D\varphi)dsdz

= \lambda_{m}^{-1}\int_{B}(A(Z_{m}(1, z))-A(Z_{m}(0, z))) D\varphi dz
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= \lambda_{m}^{-1}r_{m}\int_{B}B(Z_{m}(1, z))\varphi dz

- \lambda_{m}^{-1}\int_{B}(A(x_{m}+r_{m}z, u_{m}+r_{m}P_{m}z+r_{m}\lambda_{m}w_{m}, P_{m})

-A(x_{m}, u_{m}, P_{m})) D\varphi dz=(I)+(II)

By virtue of Hypothesis 2, we estimate the term (II) as follows (using (13),
(19), H\"older’s and Jensen’s inequalities in combination with the bounded-
ness and concavity of \omega(L, \cdot) , and the inequality \omega(L, t)\leq ct^{\delta}) :

(II)\leq c(1+|P_{m}|^{q-1})\lambda_{m}^{-1}f_{B}\omega(|u_{m}|. r_{m}+r_{m}|P_{m}|+r_{m}\lambda_{m}|w_{m}|)|D\varphi|dz

\leq c\lambda_{m}^{-1}(f_{B}\omega(L, r_{m}+r_{m}L+r_{m}\lambda_{m}|w_{m}|)dz)^{1/2}||\varphi||_{W^{1,2}}

\leq c\lambda_{m}^{-1}\omega (L , r_{m}+r_{m}L+r_{m}\lambda_{m}f_{B}|w_{m}|dz) ||\varphi||_{W^{1,2}}

\leq c\lambda_{m}^{-1}r_{m}^{\delta/2}||\varphi||_{W^{1,2}}

We next apply the estimate (10) to the term (I) and we use the inequal-
ity (x+y)^{q}\leq 2x^{q}+cyq . This gives

(I) \leq\lambda_{m}^{-1}r_{m}\int_{B}(a|P_{m}+\lambda_{m}Dw_{m}|^{q}+b)|\varphi|dz

\leq 2a\int_{B}\lambda_{m}^{q-2}|Dw_{m}|^{q}r_{m}\lambda_{m}|\varphi|dz+c\lambda_{m}^{-1}r_{m}||\varphi||_{L^{2}}

\square

3. Caccioppoli and reverse H\"older inequalities

We recall a simple algebraic lemma (see [5], Lemma V.3.1, [10], Lemma
6.1) and the higher integrability theorem of Gehring, Giaquinta and Modica
(see [5], Proposition V. 1.1, [10], Theorem 6.6).

Lemma 2 Let f(t) be a bounded nonnegative function defined for R/2\leq

t\leq R . Suppose that

f(t)\leq\theta f(s)+A(s-t)^{-2}+B(s-t)^{-q}+C

for R/2\leq t<s\leq R , where \theta , A , B , C are nonnegative constants with
\theta<1 . Then
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f( \frac{R}{2})\leq c(\theta, q)(AR^{-2}+BR^{-q}+C)

Theorem 3 Let \Omega be a bounded open subset of R^{n} , and let f\in L_{1oc}^{1}(\Omega)

and g\in L_{1oc}^{t}(\Omega) be nonnegative functions with 0<s<1<t<\infty . Suppose
that

f_{B_{R/2}(x_{0})}fdx\leq b\{f_{B_{R}(x_{0})}f^{s}dx\}^{1/s}+f_{B_{R}(x_{0})}gdx (32)

for every ball B_{R}(x_{0})\subset\subset\Omega with R\leq R_{0} . Then f\in L_{1oc}^{1+\epsilon}(\Omega) for any
0\leq\epsilon<\epsilon_{0} , and

\{f_{B_{\mu R}(x_{0})}f^{1+\epsilon}dx\}^{1/(1+\epsilon)}\leq cf_{B_{R}(x_{0})}fdx+c\{f_{B_{R}(x_{0})}g^{1+\epsilon}dx\}^{1/(1+\epsilon)}

for every ball B_{R}(x_{0})\subset\subset\Omega with R\leq R_{0} , and 0<\mu<1 , where \epsilon_{0}=

\epsilon_{0}(n, s, t, b) and c=c(n, s, t, b, \mu, \epsilon) are positive constants.

The next lemma is similar to [6], Lemma 2.1, [10], Lemma 9.1.

Lemma 3 There exists a constant c such that the estimate

|A(x_{0}, u_{0}, P_{0}+P)-A(x_{0}, u_{0}, P_{0})|\leq c(|P|+|P|^{q-1})

holds for all P\in R^{Nxn} , and (x_{0}, u_{0}, P_{0})\in 3 with |u_{0}|\leq L and |P_{0}|\leq L .

Proof. We let K= \sup_{3_{L}}|A_{P}| for the compact set

3_{L}=\{(x, u, P)\in 3 : |u|. |P|\leq L+1\}

For |P|\leq 1 , we then have

|A(x_{0}, u_{0}, P_{0}+P)-A(x_{0}, u_{0}, P_{0})|

=| \int_{0}^{1}A_{P}(x_{0}, u_{0}, P_{0}+sP) Pds|\leq K|P| ,

while for |P|\geq 1 ,

|A(x_{0}, u_{0}, P_{0}+P)-A(x_{0}, u_{0}, P_{0})|\leq c(1+|P|^{q-1})\leq c|P|^{q-1}

\square

We first prove a reverse H\"older inequality for Du (cf. [6], Proposition 2.2
and (2.18), [10], Theorem 6.7 and Proposition 9.1).
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Theorem 4 Let u\in W^{1,q}(\Omega, R^{N}) be a weak solution of the system (1),
whose coefficient functions A and B satisfy Hypotheses 1, 4 and 5.

Then Du\in L_{1oc}^{q(1+\epsilon’)}(\Omega, R^{N\cross n}) for any 0\leq\epsilon’<\epsilon_{1} , and

\{f_{B_{\mu R}(x_{0})}(1+|Du|^{q})^{1+\epsilon’}dx\}^{1/(1+\epsilon’)}\leq cf_{B_{R}(x_{0})}(1+|Du|^{q})dx

for every ball B_{R}(x_{0})\subset\subset\Omega with R\leq R_{0} , and 0<\mu<1 , where \epsilon_{1} , R_{0}

and c(\mu, \epsilon’) are positive constants.

Proof We fix some ball B_{R}(x_{0})\subset\subset\Omega with R\leq R_{0} , and we set u_{0}=

u_{x_{0},R} . For R/2\leq t<s\leq R , we let \zeta\in C_{c}^{\infty}(B_{s}(x_{0})) be a cut-0ff function
with 0\leq\zeta\leq 1 , \zeta=1 on B_{t}(x_{0}) and |D\zeta|\leq c(s-t)^{-1} We set \varphi=

\zeta(u-u_{0}) , which by (11) satisfies |\varphi|\leq 2M . By Hypothesis 4 and (2), we
then have

\tilde{\gamma}\int_{B_{s}}|D\varphi|^{q}dx\leq\int_{B_{s}}(F(x_{0}, D\varphi)-F(x_{0},0))dx

\leq\int_{B_{s}}F(x, D\varphi)dx+\tilde{\omega}(R_{0})\int_{B_{s}}|D\varphi|^{q}dx+cR^{n}

\leq\int_{B_{s}} (A (x , u , D\varphi)-A(x, u , Du)) D\varphi dx

+ \int_{B_{s}}B (x , u , Du) \varphi dx+\tilde{\omega}(R_{0})\int_{B_{s}}|D\varphi|^{q}dx+cR^{n} .

Thus, by Hypotheses 1 and 5, and Young’s inequality, we obtain

\int_{B_{t}}|Du|^{q}dx\leq c_{1}\int_{B_{s}\backslash B_{t}}|Du|^{q}dx+\frac{2aM+2\tilde{\omega}(R_{0})}{\tilde{\gamma}}\int_{B_{s}}|Du|^{q}dx

+c(s-t)^{-q} \int_{B_{R}}|u-u_{0}|^{q}dx+cR^{n} .

We now “fill the hole”, that is, we add c_{1} times the left hand side to both
sides and we divide the resulting inequality by 1+c_{1} . This yields

\int_{B_{t}}|Du|^{q}dx\leq\theta\int_{B_{s}}|Du|^{q}dx+c(s-t)^{-q}\int_{B_{R}}|u-u_{0}|^{q}dx+cR^{n} .

where by (10)

\theta=\frac{\frac{2aM+2\overline{\omega}(R_{0})}{\tilde{\gamma}}+c_{1}}{1+c_{1}}<1



Nonlinear q\tau\iotaasimonotone systems 307

for sufficiently small R_{0} . By an application of Lemma 2, we arrive at
Caccioppoli ’s first inequality

\int_{B_{R/2}}|Du|^{q}dx\leq cR^{-q}\int_{B_{R}}|u-u_{0}|^{q}dx+cR^{n} .

By the Poincar\’e-Sobolev inequality, we deduce the estimate (32) with f=
1+|Du|^{q} , g=0 and s=q_{*}/q=n/(n+q)<1 . The result now foll()ws\iota’ }).Y

Theorem 3. \square

We are ready for a reverse H\"older inequality for D\tau x - P_{0}p1u_{\iota}s’ an (^{Y}rr()r

t_{1}er111 ( cf. [12], Corollary 4.1, [6], Theorems 2.2 and 2.5)^{4} . It I) rovi(1e^{1}sc. a
\iota 11lifornl bound ill L_{1oc}^{2(1+\epsilon)} for the gradients of the blow-up functions u)_{7}, ,
(see Corollary 1).

Theorem 5 Let u\in W^{1,q}(\Omega, R^{N}) be a weak solution of the system (1),
whose coefficient functions A and B satisfy Hypotheses 1 to 5.

Then there exist positive constants \epsilon , \alpha<\delta/2 , R_{0} and c(\mu) such that

\{f_{B_{\ell\iota R}(x_{()})}(|Du-P_{0}|^{2}+|Du-P_{0}|^{q})^{1+\epsilon}dx\}^{1/(1+\epsilon)}

\leq cf_{B_{R}(x_{0})}(|Du-P_{0}|^{2}+|Du-P_{0}|^{q})dx

+cR^{2\alpha}\{f_{B_{R}(x_{0})}(1+|Du|^{q})dx\}^{1+2\alpha/q}

holds for every ball B_{R}(x_{0})\subset\subset\Omega , 0<\mu<1 and P_{0}\in R^{N\cross n} , with R\leq

R_{0} , |u_{x_{0},R}|\leq L and |P_{0}|\leq L .

Proo/. We fix B_{R}(x_{0})\subset\subset\Omega and P_{0}\in R^{N\cross n} , subject to the conditions
R\leq R_{0} , |u_{0}|\leq L and |P_{0}|\leq L , where u_{0}=u_{x_{0},R} .

We next fix some ball B_{r}(y_{0})\subset\subset B_{R}(x_{0}) . For r/2\leq t<s\leq r , we let
\zeta\in C_{c}^{\infty}(B_{s}(y_{0})) be a cut-0ff function with 0\leq\zeta\leq 1 , \zeta=1 on B_{t}(y_{0}) and

4The efforts of both Giusti and Hamburger to simplify the argument in [6] are fruitless:
the estimate in line 14 on p. 337 of the excellent book [10] is incorrect; in the proof of [13],
Theorem 4.3, we need to define P(x) by (33) in line 4 on p. 274, to add an extra term
|u-P| to the second argument of \omega in line 18 on p. 275, and thereafter to complete the
proof as in [6]. This extra term does not occur in our proof of Theorem 5, so here we can
follow [13].
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|D\zeta|\leq c(s-t)^{-1} We set

P(x)=u_{y_{0},r}+P_{0} (x-y_{0}) .

\varphi=\zeta(u-P) . \psi=(1-\zeta)(u-P) . (33)

for which

\varphi+\psi=u-P, D\varphi+D\psi=Du-P_{0} ,

and

a|\varphi|\leq 2aM+cr . (34)

Hypotheses 2, 3 and 5, (2) and Lemma 3 assert that

\int_{B_{s}}(\kappa|D\varphi|^{2}+\gamma|D\varphi|^{q})dx

\leq\int_{B_{s}}(A(x_{0}, u_{0}, P_{0}+D\varphi)-A(x_{0}, u_{0}, P_{0}+D\varphi+Dt_{r}/))) D\varphi dx

+ \int_{B_{s}} (A ( x_{0} , u_{0} , Du) – A (x, u , Du ) D\varphi dx

+ \int_{B_{s}}B (x , u , Du) \cdot\varphi dx

\leq c\int_{B_{s}\backslash B_{t}}(|D\varphi|+|D\varphi|^{q-1}+|D\psi|+|D\psi|^{q-1})|D\varphi|dx

+ \int_{B_{s}}\omega(|u_{0}|, |x-x_{0}|+|u-u_{0}|)(1+|Du|^{q-1})|D\varphi|dx

+ \int_{B_{s}}(a|Du|^{q}+b)|\varphi|dx .

We estimate the last term, using the inequality (x+y)^{q}\leq(1+\epsilon)x^{q}+

c(\epsilon)y^{q} , (34), the Poincar\’e inequality for \varphi on B_{s}(y_{0}) and the Young in-
equality, as

\int_{B_{s}}(a|Du|^{q}+b)|\varphi|dx\leq((1+\epsilon)2aM+c(\epsilon)R_{0})\int_{B_{s}}|D\varphi|^{q}dx

+c( \epsilon)\int_{B_{s}}|D\psi|^{q}dx+c(\epsilon)r^{rl+1} .

By choosing \epsilon and R_{0} sufficiently small so that (1+\epsilon)2aM+c(\epsilon)R_{0}<\gamma ,
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we conclude that

\int_{B_{t}}fdx\leq c_{1}\int_{B_{s}\backslash B_{t}}fdx+c(s-t)^{-2}\int_{B_{r}}|u-P|^{2}dx

+c(s-t)^{-q} \int_{B_{r}}|u-P|^{q}dx+c\int_{B_{r}}gdx

for the functions

f=|Du-P_{0}|^{2}+|Du-P_{0}|^{q} ,
g=\omega(|u_{0}|, |x-x_{0}|+|u-u_{0}|)(1+|Du|^{q})+R .

We note that the definitions of f and g do not involve y_{0} or r . “Filling
the hole” and applying Lemma 2, with \theta=c_{1}/(1+c_{1})<1 , results in
Caccioppoli ’s second inequality

\int_{B_{r/2}}fdx\leq cr^{-2}\int_{B_{r}}|u-P|^{2}dx+cr^{-q}\int_{B_{r}}|u-P|^{q}dx+c\int_{B_{7}}gdx .

By means of the Poincar\’e-Sobolev and H\"older inequalities, we deduce, for
s=2_{*}/2=n/(n+2)<1 , that

f_{B_{r/2}(y_{0})}fdx\leq c\{f_{B_{r}(yo)}f^{s}dx\}^{1/s}+ci^{gdx}B_{r}(yo)

for all B_{r}(yo)\subset\subset B_{R}(x_{0}) . Invoking Theorem 3 we finally arrive at

\{f_{B_{\mu R}(x_{0})}f^{1+\epsilon}dx\}^{1/(1+\epsilon)}

\leq cf_{B_{\nu R}(x_{0})}fdx+c\{f_{B_{\nu R}(x_{0})}g^{1+\epsilon}dx\}^{1/(1+\epsilon)} (35)

for some exponent 0<\epsilon<\epsilon’ and 0<\mu<U<1 . Here the constant c also
depends on \mu/\nu and \epsilon , and \epsilon’ is the exponent from Theorem 4.

We next set

\beta=\frac{\epsilon’-\epsilon}{(1+\epsilon)(1+\epsilon)}, and 2\alpha=\delta\beta .

Then, using the H\"older, Jensen and Poincar\’e inequalities, the boundedness
and concavity of \omega(L, \cdot) , Theorem 4 and the estimate \omega(L, t)\leq ct^{\delta} we
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control the last term of (35) by

\{f_{B_{\nu R}}g^{1+\epsilon}dx\}^{1/(1+\epsilon)}

\leq c\{f_{B_{\nu H}}\omega(|u_{0}|, |x-x_{0}|+|u-u_{0}|)dx\}^{\beta}

\cross\{f_{B_{\nu R}}(1+|Du|^{q})^{1+\epsilon’}dx\}^{1/(1+\epsilon’)}+cR

\leq c\omega (L , R+f_{B_{R}}|u-u_{0}|dx) f_{B_{R}}(1+|Du|^{q})dx+cR

\leq c\omega (L , cR\{f_{B_{R}}(1+|Du|^{q})dx\}^{1/q}) f_{B_{R}}(1+|Du|^{q})dx+cR

\leq cR^{2\alpha}\{f_{B_{R}}(1+|Du|^{q})dx\}^{1+2\alpha/q}

\square

Corollary 1 In terms of w_{m}\in W^{1,q}(B, R^{N}) , we have, for 0<r<1 ,

\{f_{B_{r}}(|Dw_{m}|^{2}+\lambda_{m}^{q-2}|Dw_{m}|^{q})^{1+\epsilon}dz\}^{1/(1+\epsilon)}\leq c(r)

Proof. Substituting (15), x_{0}=x_{m} , R=r_{m} , \mu=r and P_{0}=P_{m} in
Theorem 4, and using (13) and (19) yields

\{f_{B_{\Gamma}}(|Dw_{m}|^{2}+\lambda_{m}^{q-2}|Dw_{m}|^{q})^{1+\epsilon}dz\}^{1/(1+\epsilon)}

\leq c(r)f_{B}(|Dw_{m}|^{2}+\lambda_{m}^{q-2}|Dw_{m}|^{q})dz

+c(r)\lambda_{m}^{-2}r_{m}^{2\alpha}\{f_{B}(1+|P_{m}+\lambda_{m}Dw_{m}|^{q})dz\}^{1+2\alpha/q}

\leq c(r)

\square

4. Convergence of the blow-up functions

For 0<r<1 and \beta>0 , we define the sets
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E_{r,m}=\{z\in B_{r} : \lambda_{m}(|w_{m}|+|Dw_{m}|)\geq\beta\}

By (13) and (19), we infer that

|E_{r,m}| \leq\beta^{-2}\lambda_{m}^{2}\int_{E_{r,m}}(|w_{m}|+|Dw_{m}|)^{2}dz\leq c\beta^{-2}\lambda_{m}^{2}=o(1) . (36)

Moreover, by the H\"older inequality, Corollary 1 and (36), we deduce

\int_{E_{r,m}}\lambda_{m}^{q-2}|Dw_{m}|^{q}dz

\leq\{\int_{B_{r}}(\lambda_{m}^{q-2}|Dw_{m}|^{q})^{1+\epsilon}dz\}^{1/(1+\epsilon)}|E_{r,m}|^{\epsilon/(1+\epsilon)}=o(1)

In summary,

\int_{E_{r,m}}(\lambda_{m}^{-2}+\lambda_{m}^{q-2}|Dw_{m}|^{q})dz\leq c\beta^{-2}+o(1) (37)

By choosing for \varphi a test function in Lemma 1 and taking the limit as
marrow\infty , we derive

Lemma 4 The function w\in W^{1,2}(B, R^{N}) is a weak solution of the linear
elliptic system with constant coefficients

div (A_{P}(Z_{0})Dw)=0 .

In particular, we conclude that w is smooth.

Proof We fix \varphi\in C_{c}^{\infty}(B_{r}, R^{N}) with 0<r<1 , and \beta>0 . We define
the compact set

3_{\beta}=\{(x, u, P)\in 3 : |u|. |P|\leq 2L+\beta\}

and note that Z_{m}(s, z)\in 3_{\beta} for every s\in[0,1] and a.e . z\in B_{r}\backslash E_{r,m} .
Therefore

[0,1] \cross(\backslash E_{r,m})\sup_{B_{r}}|A_{P}(Z_{m})|\leq\sup_{3_{\beta}}|A_{P}|=c(\beta)
(38)

We claim by Lebesgue’s dominated convergence that

(1-\chi_{E_{r,m}})A_{P}(Z_{m}) – A_{P}(Z_{0}) in L^{2}([0,1]\cross B_{r}) . (38)

where \chi_{E_{r,m}} is the characteristic function of the set E_{r,m} . Indeed, the left
hand side of (39) is bounded and converges pointwise a.e . on [0, 1] \cross B_{r} , by
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(36), which asserts that \chi_{E_{r,m}}arrow 0 in L^{1}(B_{r}) , and by (22), (38) and the
continuity of A_{P} .

As a consequence of (22) and (39), we have

\lim_{marrow\infty}\int_{B_{7}\backslash E_{r,m}}\int_{0}^{1}A_{P}(Z_{m}) (Dw_{m}, D\varphi)dsdz

= \int_{B_{r}}A_{P}(Z_{0}) (Dw, D\varphi)dz . (40)

It next follows from (13) and (30) that

| \int_{E_{r,m}}\int_{0}^{1}A_{P}(Z_{m}) (Dw_{m}, D\varphi)dsdz|

\leq c\int_{E_{r,m}}(\lambda_{m}^{-2}+\lambda_{m}^{q-2}|Dw_{m}|^{q}+\lambda_{m}^{q-2}|D\varphi|^{q})dz . (41)

For \varphi\in C_{c}^{\infty}(B_{r}, R^{N}) , the right hand side of (31) is easily seen to
approach zero as marrow\infty . Therefore, using (13), (37) and (41) we obtain

\int_{B_{r}\backslash E_{r,m}}\int_{0}^{1}A_{P}(Z_{m}) (Dw_{m}, D\varphi)dsdz

=o(1)- \int_{E_{7m}},\int_{0}^{1}A_{P}(Z_{m}) (Dw_{m}, D\varphi)dsdz\leq c\beta^{-2}+o(1) .

We conclude by (40) and since \beta>0 was arbitrary that

J_{B_{r}}A_{P}(Z_{0}) (Dw, D\varphi)dz\leq 0 ,

and the result follows by replacing \varphi by -\varphi . \square

Lemma 5 We have the limits

Dw_{m}arrow Dw in L_{1oc}^{2}(B, R^{N\cross n}) . (42)

\lambda_{m}^{(q-2)/q}Dw_{m}arrow 0 in L_{1oc}^{q}(B, R^{N\cross n}) (for q>2 ). (43)

In the proof we shall make use of the fact that, by Lemma 4, the function
w and its gradient Dw are locally bounded on B .

We fix 0<s<r<1 and \beta>0 . We let \zeta\in C_{c}^{\infty}(B_{r}) be a c\iota lt-()ff
.

function with 0\leq\zeta\leq 1 , \zeta=1 on B_{s} and |D(|\leq c(r-s)^{-1} , and we e1cfi11(^{Y}
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the functions

Y_{m}=(x_{m}+r_{m}z, u_{m}+r_{m}P_{m}z+r_{m}\lambda_{m}w_{m}, u_{m} , P_{m}, \lambda_{m}Dw_{m})

\tilde{Y}_{m}=(x_{m}, u_{m}, u_{m}, P_{m}, \lambda_{m}\zeta(Dw_{m}-Dw)+\lambda_{m}(w_{m}-w)\otimes D\zeta)

By virtue of (13), (20) and (22), we notice the limits

Y_{m},\tilde{Y}_{m}arrow Y_{0}=(x_{0}, u_{0}, u_{0}, P_{0},0) in L^{2}(B, \mathfrak{Y}) .

We define the compact set

\mathfrak{Y}\beta=\{(x, u, v, P, Q)\in \mathfrak{Y} : |u| , |v| , |P| , |Q|\leq 2L+\beta

+||Dw||_{L\infty(B_{r})}+c(r-s)^{-1}(\beta+||w||_{L^{\infty}(B_{r})})\}

and note that Y_{m}(z).\tilde{Y}_{m}(z)\in \mathfrak{Y}\beta for a.e . z\in B_{r}\backslash E_{r,m} . Therefore

\sup_{B_{r}\backslash E_{r,m}}\{|G(Y_{m})| , |G( \tilde{Y}_{m})|\}\leq\sup|G|\mathfrak{Y}_{\beta}=c(\beta, r, s) (44)

By the same argument as that for (39), we show that

(1-\chi_{E_{r,m}})G(Y_{m})arrow G(Y_{0}) in L^{p}(B_{r}) .
(1-\chi_{E_{r,m}})G(\tilde{Y}_{m})arrow G(Y_{0}) in L^{p}(B_{r}) .

for 1\leq p<\infty . We then infer by H\"older’s inequality and Corollary 1 that

\int_{B_{r}\backslash E_{r,m}}\zeta^{2}G(Y_{m}) (Dw_{m}, Dw_{m})dz- \int_{B_{r}}\zeta^{2}G(Y_{0}) ( Dw_{m} , Duf)m dz

\leq\{\int_{B_{r}}|(1-\chi_{E_{r,m}})G(Y_{m})-G(Y_{0})|^{(1+\epsilon)/\epsilon}dz\}^{\epsilon/(1+\epsilon)}

\cross\{\int_{B_{r}}|Dw_{m}|^{2(1+\epsilon)}dz\}^{1/(1+\epsilon)}

=o(1) (45)

Similarly, we obtain

\int_{B_{r}\backslash E_{r,m}}\zeta^{2}G(\tilde{Y}_{m}) (Dw_{m}-Dw, Dw_{m}-Dw)dz

\leq\int_{B_{r}}\zeta^{2}G(Y_{0}) (Dw_{m}-Dw, Dw_{m}-Dw)dz+o(1) (46)
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We now insert \varphi=\zeta^{2}(w_{m}-w)\in W_{0}^{1,q}(B_{r}, R^{N}) in (31), for which

D\varphi=\zeta^{2}(Dw_{m}-Dw)+2\zeta(w_{m}-w)\otimes D\zeta .

By (13), (19), (20), (21), (22), (37), (38) and (41), this easily yields

\int_{B_{r}\backslash E_{7,rn}}(^{2}G(Y_{m}) (Dw_{m}, Dw_{m})dz

= \int_{B_{r}\backslash E_{r,m}}\int_{0}^{1}\zeta^{2}A_{P}(Z_{m}) (Dw_{m}, Dw_{m})dsdz

-2a \int_{B_{r}\backslash E_{r,m}}\zeta^{2}|r_{m}P_{m}z+r_{m}\lambda_{m}w_{m}|\lambda_{m}^{q-2}|Dw_{m}|^{q}dz

\leq\int_{B_{r}\backslash E_{\tau,m}}\int_{0}^{1}\zeta^{2}A_{P}(Z_{m}) (Dw_{m}, Dw)dsdz+c\beta^{-2}+o(1)1

We also use (40) (with \zeta^{2}Dw in place of D\varphi , and noting that A_{P}(Z_{0})=

G(Y_{0})) and (45), and we arrive at the key estimate

\lim_{marrow\infty}s^{1}upJ_{B_{\Gamma}}(^{2}G(Y_{0}) (Dw_{m}, Dw_{m})dz

\leq\int_{B_{7}}\zeta^{2}G(Y_{0}) (Dw, Dw)dz+c\beta^{-2}- (47)

According to Hypothesis 3, (13), (29), (30) and the definition of \tilde{Y}_{m} , we
have

\int_{B_{7}}(\kappa|D\varphi|^{2}+\gamma\lambda_{m}^{q-2}|D\varphi|^{q})dz

\leq\lambda_{m}^{-1}\int_{B_{7}}(A(x_{m}, u_{m}, P_{m}+\lambda_{m}D\varphi)-A(x_{m}, u_{m}, P_{m})) D\varphi dz

\leq c\int_{E_{r,r\prime\iota}}(\lambda_{m}^{-2}+\lambda_{m}^{q-2}|D\varphi|^{q})dz+\int_{B_{r}\backslash E_{r,m}}G(\tilde{Y}_{m}) (D\varphi, D\varphi)dz ,

where now \varphi=\zeta(w_{m}-w) . By (13), (22), (37), (44) and (46), this gives

\int_{B_{b}}(\kappa|Dw_{m}-Dw|^{2}+\gamma\lambda_{m}^{q-2}|Dw_{m}-Dw|^{q})dz

\leq\int_{B_{r}}\zeta^{2}G(Y_{0}) (Dw_{m}-Dw, Dw_{m}-Dw)dz+c\beta^{-2}+o(1) .
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Thus we infer, using (22) and (47), that

\lim_{marrow}\sup_{\infty}\int_{B_{s}}(\kappa|Dw_{m}-Dw|^{2}+\gamma\lambda_{m}^{q-2}|Dw_{m}-Dw|^{q})dz

\leq(1+1-1-1)\int_{B_{r}}\zeta^{2}G(Y_{0}) (Dw, Dw)dz+c\beta^{-2} .

Bearing in mind that \beta>0 was arbitrary we conclude that

\lim_{marrow\infty}\int_{B_{s}}|Dw_{m}-Dw|^{2}dz=0 ,

\lim_{marrow\infty}\lambda_{m}^{q-2}\int_{B_{s}}|Dw_{m}-Dw|^{q}dz=0 .

The last equation implies

\lim_{marrow\infty}\lambda_{m}^{q-2}\int_{B_{s}}|Dw_{m}|^{q}dz=0 ,

and we have shown that (42) and (43) hold. \square
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