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On the growth of solutions of w(n) + e−zw′ + Q(z)w = 0

and some related extensions
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Abstract. In this paper, we show that if Q(z) is a nonconstant polynomial, then every

solution w 6≡ 0 of the differential equation w(n) + e−zw′ + Q(z)w = 0, has infinite order

and we give an extension of this result. We will also show that if the equation w(n) +

e−zw′ + cw = 0, where c 6= 0 is a complex constant, possesses a solution w 6≡ 0 of finite

order, then c = −kn where k is a positive integer. In the end, by study more general, we

investigate the problem when σ(Q) = 1.
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1. Introduction and statement of results

Throughout this paper, we assume that the reader is familiar with the
fundamental results and the standard notations of the Nevanlinna value
distribution theory (see [10]). Let σ(w) denote the order of an entire func-
tion w, that is,

σ(w) = lim
r→+∞

log T (r, w)
log r

= lim
r→+∞

log logM(r, w)
log r

, (1.1)

where T (r, w) is the Nevanlinna characteristic function of w (see [10]), and
M(r, w) = max|z|=r |w(z)|.

Several authors have studied the particular differential equation

w′′ + e−zw′ +B(z)w = 0, (1.2)

whereB(z) is an entire function. ForB(z) ≡ c where c is a nonzero constant,
Frei [6] showed that if equation (1.2) possesses a solution w 6≡ 0 of finite
order, then c = −k2 where k is a positive integer. Conversely, for each
positive integer k, the equation (1.2), with B(z) ≡ c = −k2, possesses
a solution w which is a polynomial in ez of degree k. Other proofs of this
result were given by Ozawa [14] and Wittich [15]. By completing results of
Ozawa [14], Amemiya-Ozawa [1] and Gundersen [7], Langley showed in [12]
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that if B(z) is nonconstant polynomial, then every solution w 6≡ 0 of (1.2)
has infinite order.

In this paper, we will extend these results to the differential equation

w(n) + e−zw′ +B(z)w = 0, (1.3)

where n ≥ 2. In fact, we shall prove the following:

Theorem 1.1 If the equation

w(n) + e−zw′ + cw = 0, (1.4)

where c 6= 0 is a complex constant, possesses a solution w 6≡ 0 of finite
order, then c = −kn where k is a positive integer. Conversely, for each
positive integer k, the equation (1.4), with c = −kn, possesses a solution w

which is a polynomial in ez of degree k.

Theorem 1.2 If Q(z) is nonconstant polynomial, then every solution
w 6≡ 0 of the differential equation

w(n) + e−zw′ +Q(z)w = 0, (1.5)

where n ≥ 2, has infinite order.

Theorem 1.3 Let Q be nonconstant polynomial, P1, . . . , Pn−1 be polyno-
mials and α1, . . . , αn−1 be real constants. Suppose that there exists an s ∈
{1, . . . , n− 1} such that Ps(eαsz) = eαsz and either:
(i) αs > 0 and αk ≤ 0 for all k = 1, . . . , s− 1, s+ 1, . . . , n− 1 or
(ii) αs < 0 and αk ≥ 0 for all k = 1, . . . , s− 1, s+ 1, . . . , n− 1.
Then every solution w 6≡ 0 of the differential equation

w(n) + Pn−1(eαn−1z)w(n−1) + · · ·+ Ps(eαsz)w(s) + · · ·
+ P1(eα1z)w′ +Q(z)w = 0, (1.6)

where n ≥ 2, is of infinite order.

Remark 1.1 The following two theorems are natural extensions of
[4, Theorem 1] and [4, Theorem 2].

Theorem 1.4 Let P1(z) = amz
m + · · · , P0(z) = bmz

m + · · · (m ≥ 1) be
nonconstant polynomials such that am = cbm (c > 1), and let Aj(z) ( 6≡ 0)
(j = 0, 1) be entire functions with σ(Aj) < m (j = 0, 1). Then every
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solution w 6≡ 0 of the differential equation

w(n) +A1(z)eP1(z)w′ +A0(z)eP0(z)w = 0, (1.7)

where n ≥ 2, is of infinite order.

Theorem 1.5 Let P1(z) = amz
m + · · · , P0(z) = bmz

m + · · · (m ≥ 1) be
nonconstant polynomials such that ambm 6= 0 and either arg am 6= arg bm or
am = cbm (0 < c < 1), and let Ak(z) 6≡ 0 (k = 0, . . . , n − 1), Bj(z) (j =
0, 1) be entire functions such that σ(Ak) < m (k = 0, . . . , n−1), σ(Bj) < m

(j = 0, 1). Then every solution w 6≡ 0 of the differential equation

w(n) +An−1(z)w(n−1) + · · ·+A2(z)w′′

+ (A1(z)eP1(z) +B1(z))w′ + (A0(z)eP0(z) +B0(z))w = 0, (1.8)

where n ≥ 2, is of infinite order.

Remark 1.2 Using the same reasoning as in the proof of Theorem 1 [7]
we obtain that if B(z) is a transcendental entire function with σ(B) 6= 1,
then every solution w 6≡ 0 of the equation (1.3) has infinite order.

By combining Theorem 1.4 and Theorem 1.5 we get the following result
which investigate the case when σ(B) = 1 in (1.3):

Corollary 1.1 If B(z) is an entire function with B(z) = h(z)eaz where
a 6= −1 is a complex constant and h(z) is an entire function with σ(h) < 1,
then every solution w 6≡ 0 of (1.3) is of infinite order.

2. Lemmas for the proofs of theorems

Our proofs depend mainly upon the following Lemmas.

Lemma 2.1 ([3]) Suppose that A0(z), . . . , An−1(z) with A0(z) 6≡ 0 are
entire functions such that for real constants α, β, θ1, θ2, where α > 0,
β > 0, and θ1 < θ2 we have

|A1(z)| ≥ exp
{
(1 + o(1))α|z|β}

(2.1)

and

|Aj(z)| ≤ exp
{
o(1)α|z|β}

(j = 0, 2, . . . , n− 1) (2.2)

as z → ∞ in θ1 ≤ arg z ≤ θ2. Let ε > 0 be a given small constant, and let
S(ε) denote the set θ1 + ε ≤ arg z ≤ θ2 − ε.
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If w 6≡ 0 is a solution with σ(w) < +∞ of the linear differential equation

w(n) +An−1(z)w(n−1) + · · ·+A1(z)w′ +A0(z)w = 0, (2.3)

then the following conditions hold:
(i) There exists a constant b 6= 0 such that w → b as z → ∞ in S(ε).

Furthermore, as z →∞ in S(ε),

|w(z)− b| ≤ exp
{−(1 + o(1))α|z|β}

. (2.4)

(ii) For each integer m ≥ 1, as z →∞ in S(ε),

|w(m)(z)| ≤ exp
{−(1 + o(1))α|z|β}

. (2.5)

Remark 2.1 It should be noted that formula (2.5) is a special case of
Theorem 1 in [9].

By using similar proof as in the proof of Theorem 2.1 in [11], we can obtain
the following:

Lemma 2.2 Suppose that A0(z), . . . , An−1(z) are entire functions with
A0(z) 6≡ 0 such that for real constants α, β, θ1, θ2, C where α > 0, β > 0,
C > 0, and θ1 < θ2 we have, for some integer s, 1 ≤ s ≤ n− 1,

|As(z)| ≥ exp
{
α|z|β}

(2.6)

and

|Aj(z)| ≤ C (2.7)

for all j = 0, 1, . . . , s−1, s+1, . . . , n−1 as z →∞ in θ1 ≤ arg z ≤ θ2. Given
ε > 0 small enough, and let S(ε) denote the set θ1 + ε ≤ arg z ≤ θ2 − ε.

If w 6≡ 0 is a transcendental solution of (2.3) with σ(w) < +∞, then
the following conditions hold:

(i) There exists j ∈ {0, . . . , s − 1} and a complex constant bj 6= 0 such
that w(j) → bj as z →∞ in S(ε). Furthermore, as z →∞ in S(ε),

∣∣w(j)(z)− bj
∣∣ ≤ exp

{−(α− ρ)|z|β}
, (2.8)

where 0 < ρ < α.
(ii) For each integer m ≥ j + 1, as z →∞ in S(ε),

∣∣w(m)(z)
∣∣ ≤ exp

{−(α− ρ)|z|β}
, (2.9)

where 0 < ρ < α.



On the growth of solutions of w(n) + e−zw′ + Q(z)w = 0 and some related extensions 577

Lemma 2.3 ([8, p. 89]) Let f be a transcendental entire function of finite
order σ, let Γ = {(k1, j1), (k2, j2), . . . , (km, jm)} denote a finite set of distinct
pairs of integers that satisfy ki > ji ≥ 0 (i = 1, . . . ,m), and let ε > 0 be
a given constant. Then there exists a set E ⊂ [0, 2π) that has linear measure
zero, such that if ψ0 ∈ [0, 2π)−E, then there is a constant R0 = R0(ψ0) > 1
such that for all z satisfying arg z = ψ0 and |z| ≥ R0, and for all (k, j) ∈ Γ,
we have

∣∣∣∣
f (k)(z)
f (j)(z)

∣∣∣∣ ≤ |z|(k−j)(σ−1+ε). (2.10)

Lemma 2.4 ([4], [11], [9, Lemma 3]) Let f(z) be an entire function and
suppose that |f (k)(z)| is unbounded on some ray arg z = θ. Then there exists
an infinite sequence of points zn = rne

iθ (n = 1, 2, . . .), where rn → +∞,
such that f (k)(zn) →∞ and

∣∣∣∣
f (j)(zn)
f (k)(zn)

∣∣∣∣ ≤
1

(k − j)!
(1 + o(1))|zn|k−j (j = 0, . . . , k − 1). (2.11)

Lemma 2.5 ([2]) Let A0(z), . . . , An−1(z) be entire functions such that for
real constants α, β, µ, θ1, θ2, where µ > 0, 0 ≤ β < α and θ1 < θ2 we have

|A0(z)| ≥ exp
{
α|z|µ}

(2.12)

and

|Aj(z)| ≤ exp
{
β|z|µ}

(j = 1, 2, . . . , n− 1) (2.13)

as z → ∞ in θ1 ≤ arg z ≤ θ2. Then every solution w 6≡ 0 of (2.3) is of
infinite order.

Lemma 2.6 ([4]) Let P (z) = amz
m + · · · , (am = α+ iβ 6= 0) be a polyno-

mial with degree m ≥ 1 and A(z) ( 6≡ 0) be an entire function with σ(A) <
m. Set f(z) = A(z)eP (z), z = reiθ, δ(P, θ) = α cosmθ − β sinmθ. Then
for any given ε > 0, there exists a set H1 ⊂ [0, 2π) that has linear measure
zero, such that for any θ ∈ [0, 2π) \ (H1 ∪ H2), where H2 = {θ ∈ [0, 2π) :
δ(P, θ) = 0} is a finite set, there is R > 0 such that for |z| = r > R, we
have

(i) if δ(P, θ) > 0, then

exp
{
(1− ε)δ(P, θ)rm

} ≤ |f(z)| ≤ exp
{
(1 + ε)δ(P, θ)rm

}
, (2.14)
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(ii) if δ(P, θ) < 0, then

exp
{
(1 + ε)δ(P, θ)rm

} ≤ |f(z)| ≤ exp
{
(1− ε)δ(P, θ)rm

}
. (2.15)

3. Proof of Theorem 1.1

Let w1, . . . , wn be n independent solutions of equation (1.4). We men-
tion here that only at most one of solutions w1, . . . , wn is of finite order of
equation (1.4) (see [5]). We may suppose that w1(z) is a solution of finite
order. Evidently w1(z + 2πi) is a solution of (1.4). Hence

w1(z + 2πi) =
n∑

j=1

αjwj(z). (3.1)

Since w1(z + 2πi) is of finite order too, then αj = 0 for j = 2, . . . , n; and
from Lemma 2.1 we have w1(z) → b 6= 0, w1(z + 2πi) → b 6= 0 as z → ∞
in S1(ε) : π/2 + ε ≤ arg z ≤ 3π/2 − ε (ε > 0), which implies that α1 = 1
and w1(z + 2πi) = w1(z). We deduce that there exist a regular function
f(ζ) in 0 < |ζ| < ∞ such that w1(z) = f(ez). If f(ζ) has an essential
singularity at ζ = 0, then w1(z) = f(ez) does not have a limit as z → ∞
in S1(ε) : π/2 + ε ≤ arg z ≤ 3π/2 − ε (ε > 0). Also, if f(ζ) has a pole at
ζ = 0, then w1(z) →∞ as z →∞ in S1(ε). Hence f(ζ) is an entire function
(f(ζ) =

∑+∞
k=0 akζ

k and w1(z) =
∑+∞

k=0 ake
kz). Substituting this into (1.4),

we obtain
+∞∑

k=1

knake
kz + e−z

+∞∑

k=1

kake
kz + c

+∞∑

k=0

ake
kz = 0. (3.2)

This gives

(kn + c)ak + (k + 1)ak+1 = 0 (k ≥ 1) (3.3)

and

a1 + ca0 = 0. (3.4)

We have a0 = b 6= 0. If c 6= −kn for all k ≥ 1, then

lim
k→+∞

|ak|
|ak+1| = 0, (3.5)

which shows that the radius of convergence of
∑+∞

k=0 akζ
k is equal to zero.

This is a contradiction. Hence there exists an integer k0 ≥ 1, such that c =
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−kn
0 . Thus from (3.3), ak = 0 for all k ≥ k0 + 1 and w1(z) =

∑k0
j=0 aje

jz.
This proves Theorem 1.1. ¤

4. Proof of Theorem 1.2

Suppose that w 6≡ 0 is a solution of (1.5) of finite order. The conditions
of Lemma 2.1 are verified in the sector S2(ε) : π − ε ≤ arg z ≤ π + ε (0 <
ε < π/2). Hence, there exists a constant b 6= 0 such that

|w(z)− b| ≤ exp
{−(1− ρ) |z| cos ε

}
, (4.1)

and for each integer n ≥ 1

|w(n)(z)| ≤ exp
{−(1− ρ) |z| cos ε

}
, (4.2)

where 0 < ρ < 1 as z → ∞ in S′2(ε) : π − ε < arg z < π + ε (0 < ε < π/2).
Furthermore, we have

|e−z| ≤ e|z| (4.3)

and there exists a positive constant c and a sufficiently large r0, such that
for |z| ≥ r0, we have

|Q(z)| ≤ c|z|q, (4.4)

where q = degQ(z). From (1.5), we can write

|Q(z)b| ≤ |w(n)(z)|+ |e−z| |w′(z)|+ |Q(z)| |w(z)− b|. (4.5)

By (4.1)–(4.5), we obtain

|Q(z)b| ≤ exp
{−(1− ρ) |z| cos ε

}
+ exp

{|z| (1− (1− ρ) cos ε)
}

+ c|z|q exp
{−(1− ρ) |z| cos ε

}
. (4.6)

Since (4.6) is verified for any arbitrary 0 < ε < π/2 and 0 < ρ < 1,
it follows that there exists a positive constant M , such that for any |z|
very large, we can obtain, by taking ε and ρ small enough, that |Q(z)| <
M . This contradicts that Q(z) is a nonconstant polynomial. The proof of
Theorem 1.2 is completed. ¤
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5. Proof of Theorem 1.3

Case. αs > 0. If arg z = θ ∈ S3(ε) = {z : −ε ≤ arg z ≤ ε (0 < ε < π/2)}
and |z| sufficiently large, then we have

∣∣eαsz
∣∣ ≥ exp

{
αsr cos ε

}
(5.1)

and

|Pj(eαjz)| ≤ C (5.2)

for all j = 1, . . . , s− 1, s+ 1, . . . , n− 1, where C > 0 is some real constant.
Hence the conditions of Lemma 2.2 are verified. So, if we suppose that
w 6≡ 0 is solution of (1.6) with σ(w) = σ <∞, then the following conditions
hold:
(i) There exists j ∈ {0, . . . , s− 1} and a complex constant bj 6= 0 such that
w(j) → bj as z → ∞ in S′3(ε) : − ε < arg z < ε (0 < ε < π/2) and more
precisely,

∣∣w(j)(z)− bj
∣∣ ≤ exp

{−(αs cos ε− ρ) |z|}, (5.3)

where 0 < ρ < αs cos ε.
(ii) For each integer m ≥ j + 1, as z →∞ in S′3(ε),

∣∣w(m)(z)
∣∣ ≤ exp

{−(αs cos ε− ρ) |z|}, (5.4)

where 0 < ρ < αs cos ε. From the condition (i), by j-fold iterated integration
along the line segment [0, z], we obtain

w(z) = w(0) + w′(0)
z

1!
+ w′′(0)

z2

2!
+ · · ·+ w(j−1)(0)

zj−1

(j − 1)!

+
∫ z

0
· · ·

∫ ζ

0

∫ ξ

0
w(j)(t) dt dξ . . . du

= w(0) + w′(0)
z

1!
+ w′′(0)

z2

2!
+ · · ·+ w(j−1)(0)

zj−1

(j − 1)!

+
∫ z

0
· · ·

∫ ζ

0

∫ ξ

0
(bj + λ(t)) dt dξ . . . du

= w(0) +w′(0)
z

1!
+w′′(0)

z2

2!
+ · · ·+w(j−1)(0)

zj−1

(j − 1)!
+
bj
j!
zj

+
∫ z

0
· · ·

∫ ζ

0

∫ ξ

0
λ(t) dt dξ . . . du, (5.5)
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where λ(z) → 0 and |λ(z)| ≤ exp
{−(αs cos ε − ρ)|z|} (0 < ρ < αs cos ε) as

z →∞ in S′3(ε) : − ε < arg z < ε (0 < ε < π/2). It then follows from (5.5)

w(l)(z)
zj

→ 0 for all l = 1, . . . , j; (5.6)

w(z)
zj

→ bj
j!
6= 0 (5.7)

and ∣∣∣∣
w(z)
zj

− bj
j!

∣∣∣∣ = O

(
1
|z|

)
, (5.8)

as z →∞ in S′3(ε). In the other hand, for z ∈ S′3(ε), we have
∣∣eαsz

∣∣ ≤ exp{αsr}. (5.9)

We divide (1.6) over zj and write it as follow

|Q(z)| |bj |
j!

≤ |w(n)(z)|
|z|j +

|Pn−1(eαn−1z)| |w(n−1)(z)|
|z|j + · · ·

+
|Ps(eαsz)| |w(s)(z)|

|z|j + · · ·+ |P1(eα1z)| |w′(z)|
|z|j

+ |Q(z)|
∣∣∣∣
w(z)
zj

− bj
j!

∣∣∣∣. (5.10)

By using (5.4) and (5.6)–(5.9), from (5.10) we get a contradiction as z →∞,
ε→ 0 and ρ→ 0.
Case. αs < 0. We take the sector S2(ε) : π − ε ≤ arg z ≤ π + ε (0 < ε <

π/2) and we use the same argument as above.

6. Proof of Theorem 1.4

Assume w(z) is a transcendental solution of (1.7) with σ(w) < ∞. By
Lemma 2.3, for any given ε > 0, there exists a set E1 ⊂ [0, 2π) that has
linear measure zero, such that if θ ∈ [0, 2π) \ E1, then there is a constant
R0(θ) = R0 > 1 such that for all z satisfying arg z = θ and |z| = r ≥ R0,
we have

∣∣∣∣
w(n)(z)
w′(z)

∣∣∣∣ ≤ |z|(n−1)(σ−1+ε). (6.1)
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Let P1(z) = amz
m + · · · , (am = α+ iβ 6= 0), δ(P1, θ) = α cosmθ−β sinmθ.

By Lemma 2.6 we have for any given 0 < ε < 1, there exists a set H1 ⊂
[0, 2π) that has linear measure zero, such that for any θ ∈ [0, 2π)\(H1∪H2)
(H2 = {θ ∈ [0, 2π) : δ(P1, θ) = 0}), there is R1 > 0 such that for |z| = r >

R1, we have
(i) if δ(P1, θ) < 0, then

∣∣A1(z)eP1(z)
∣∣ ≤ exp{(1− ε)δ(P1, θ)rm},

∣∣A0(z)eP0(z)
∣∣ ≤ exp

{
(1− ε)

1
c
δ(P1, θ)rm

}
; (6.2)

(ii) if δ(P1, θ) > 0, then
∣∣A1(z)eP1(z)

∣∣ ≥ exp
{
(1− ε)δ(P1, θ)rm

}
,

∣∣A0(z)eP0(z)
∣∣ ≤ exp

{
(1 + ε)

1
c
δ(P1, θ)rm

}
. (6.3)

Now we take θ ∈ [0, 2π) \ (E1 ∪H1 ∪H2), such that the linear measure
of E1 ∪ H1 ∪ H2 is zero, then θ satisfies δ(P1, θ) < 0 or δ(P1, θ) > 0. We
divide it into two cases to prove.
Case 1. δ(P1, θ) < 0. By am = cbm, δ(P0, θ) = (1/c)δ(P1, θ) < 0. From
(1.7), we get

1 ≤
∣∣A1(z)eP1(z)

∣∣
∣∣∣∣
w′(z)
w(n)(z)

∣∣∣∣ +
∣∣A0(z)eP0(z)

∣∣
∣∣∣∣
w(z)
w(n)(z)

∣∣∣∣. (6.4)

If |w(n)(z)| is unbounded on the ray arg z = θ, then by Lemma 2.4, there
exists an infinite sequence of points {zp = rpe

iθ}, where rp → +∞ such that
w(n)(zp) →∞ and

∣∣∣∣
w′(rpeiθ)
w(n)(rpeiθ)

∣∣∣∣ ≤
1

(n− 1)!
(1 + o(1))rn−1

p ,

∣∣∣∣
w(rpeiθ)
w(n)(rpeiθ)

∣∣∣∣ ≤
1

(n)!
(1 + o(1))rn

p . (6.5)

Substituting (6.2) and (6.5) into (6.4) we get for any θ ∈ [0, 2π)\ (E1∪H1∪
H2) and rp > max(R0, R1),

1 ≤ 1
(n− 1)!

rn−1
p (1 + o(1)) exp

{
(1− ε)δ(P1, θ)rm

p

}

+
1

(n)!
rn
p (1 + o(1)) exp

{
(1− ε)

1
c
δ(P1, θ)rm

p

}
, (6.6)
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which gives a contradiction as rp → +∞. Hence w(n)(reiθ) is bounded on
arg z = θ, i.e.

∣∣w(n)(reiθ)
∣∣ ≤M1, (6.7)

where M1 > 0 is a constant. From (6.7) and by n-fold iterated integration
along the line segment [0, z], we obtain

|w(reiθ)| ≤ |w(0)|+ |w′(0)| |z|
1!

+ |w′′(0)| |z|
2

2!
+ · · ·+M1

|z|n
n!

, (6.8)

on the ray arg z = θ.
Case 2. δ(P1, θ) > 0. Then δ(P0, θ) = (1/c)δ(P1, θ) > 0. By (1.7) we have

∣∣A1(z)eP1(z)
∣∣ ≤

∣∣∣∣
w(n)(z)
w′(z)

∣∣∣∣ +
∣∣A0(z)eP0(z)

∣∣
∣∣∣∣
w(z)
w′(z)

∣∣∣∣. (6.9)

If |w′(z)| is unbounded on the ray arg z = θ, then by Lemma 2.4, there
exists an infinite sequence of points {zp = rpe

iθ} where rp → +∞ such that
w′(zp) →∞ and

∣∣∣∣
w(rpeiθ)
w′(rpeiθ)

∣∣∣∣ ≤ (1 + o(1))rp. (6.10)

Substituting (6.1), (6.3) and (6.10) into (6.9) we get

exp
{
(1− ε)δ(P1, θ)rm

p

} ≤ r(n−1)(σ−1+ε)
p

+ (1 + o(1))rp exp
{

(1 + ε)
1
c
δ(P1, θ)rm

p

}

≤ (1 + o(1)) 2rα
p exp

{
(1 + ε)

1
c
δ(P1, θ)rm

p

}
, (6.11)

where α = max{1, (n− 1)(σ − 1 + ε)}.
If we choose ε such that 0 < ε < (c− 1)/(c+ 1) in (6.11), then we get

a contradiction. Hence
∣∣w′(reiθ)

∣∣ is bounded on arg z = θ, i.e. there exists
a constant M2 > 0, such that

∣∣w′(reiθ)
∣∣ ≤M2.

As above, we get

|w(reiθ)| =
∣∣∣∣w(0) +

∫ z

0
w′(u) du

∣∣∣∣ ≤ |w(0)|+M2|z|
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on the ray arg z = θ. In the two cases, we have

|w(reiθ)|≤|w(0)|+ |w′(0)| |z|
1!

+ |w′′(0)| |z|
2

2!
+ · · ·+M

|z|n
n!

(M>0)

(6.12)

on any ray arg z = θ ∈ [0, 2π) \ (E1 ∪ H1 ∪ H2). By Phragmén-Lindelöf
Theorem [13], (6.12) holds in the whole plane. So, w(z) is a polynomial.
But w(z) is a transcendental, hence every transcendental solution of (1.7)
is of infinite order.

Now we prove that (1.7) cannot have nonzero polynomial solution. As-
sume w(z) is nonzero polynomial of degree d. We can take a ray arg z = θ

such that δ(P1, θ) > 0. From (1.7), we can write
∣∣A1(z)eP1(z)

∣∣ ∣∣w′(z)
∣∣ ≤

∣∣w(n)(z)
∣∣ +

∣∣A0(z)eP0(z)
∣∣ ∣∣w(z)

∣∣, (6.13)

and by using Lemma 2.6, we obtain

(1 + o(1))rd−1 exp
{
(1− ε)δ(P1, θ)rm

}

≤ (1 + o(1))λrd exp
{

(1 + ε)
1
c
δ(P1, θ)rm

}
,

where λ > 0 is some real constant, this is absurd by taking ε such that
0 < ε < (c − 1)/(c + 1). Hence every solution w 6≡ 0 of (1.7) is of infinite
order.

7. Proof of Theorem 1.5

Suppose that arg am 6= arg bm. By Lemma 2.6, there exists a ray
arg z = θ such that θ ∈ [0, 2π) \ (H1 ∪ H2), where H1 and H2 are de-
fined as in Lemma 2.6, H1 ∪H2 is of linear measure zero, and δ(P0, θ) > 0,
δ(P1, θ) < 0 and for sufficiently large |z| = r, we have

∣∣A0(z)eP0(z) +B0(z)
∣∣ ≥ (1 + o(1)) exp

{
(1− ε)δ(P0, θ)rm

}
, (7.1)

and
∣∣A1(z)eP1(z) +B1(z)

∣∣ ≤ exp
{
(1− ε)δ(P1, θ)rm

}
exp

{
rσ(B1)+ ε

2
}

≤ exp
{
rσ(B1)+ε

}
. (7.2)

If we take ε in (7.1) and (7.2) such that σ(B1) + ε < m, then the condi-
tions (2.12), (2.13) of Lemma 2.5 are satisfied. Hence every solution w 6≡ 0
of (1.8) is of infinite order.
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Now suppose that am = cbm (0 < c < 1). Then δ(P1, θ) = cδ(P0, θ).
Using the same reasoning as above, there exists a ray arg z = θ satisfying
δ(P1, θ) = cδ(P0, θ) > 0 and for sufficiently large |z| = r

∣∣A0(z)eP0(z) +B0(z)
∣∣ ≥ (1 + o(1)) exp

{
(1− ε)δ(P0, θ)rm

}
(7.3)

and
∣∣A1(z)eP1(z) +B1(z)

∣∣ ≤ exp
{
(1 + ε)c′δ(P0, θ)rm

}
, (7.4)

where 0 < c < c′ < 1. By taking ε in (7.3), (7.4) such that 0 < ε < 1−c′
1+c′ ,

then from Lemma 2.5 we get the result.
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