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Distributors on a tensor category

D. TAMBARA
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Abstract. Let A be a tensor category and let V denote the category of vector spaces.
A distributor on A is a functor A°? x A — V. We are concerned with distribu-
tors with two-sided A-action. Those distributors form a tensor category, which we de-
noted by 4D(A, A)4. The functor category Hom(.A°P, V) is also a tensor category
and has the center Z(Hom(.A°P, V)). We show that if A is rigid, then 4D(A, A)4 and
Z(Hom(A°P, V)) are equivalent as tensor categories.
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Introduction

Let A be a tensor category over a field k and let V denote the category
of vector spaces over k. A distributor on A is a functor L: AP x A — V
([1]). We say L admits two-sided A-action if maps

LX,Y) = LASX, ABY), LX,Y)—LX @AY eA)

are given for all objects A, X, Y € A so that they satisfy certain condi-
tions. Distributors with two-sided A-action form a tensor category, which
we denote by 4D(A, A)4.

Such distributors arise in studying extensions of a tensor category.
Given a tensor functor A — B, set L(X,Y) = Homp(X,Y) for X, Y €
A. Then L is a monoid object of 4D(A, A)4. Conversely a monoid object
of 4D(A, A)4 produces a tensor category having the same objects as A.

On the other hand there is a notion of the center of a tensor category
([3], [4], [5])- The center Z(A) of A is the category consisting of objects
X € A equipped with isomorphisms X®Y — Y®X forall Y € A satisfying
certain conditions. The center is a braided tensor category. When A is the
category of representations of a Hopf algebra H, Z(A) is the category of
representations of the double Hopf algebra D(H) ([4]).

Now the category Hom (A, V) of functors A°® — V is a tensor cat-
egory ([2]). So it has the center Z(Hom (AP, V)). We assume that A is
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rigid, that is, every object of A has left and right dual objects. Our result
is as follows.

Theorem We have an equivalence of tensor categories
AD(A, A) 4 ~ Z(Hom(AP, V)).

The equivalence is sketched as follows. Let L € 4D(A, A)4. ForY € A
let Y be a left dual of Y and Y? a right dual of Y. It is proved that the left
A-action on L yields an isomorphism L(X, Y) = L(Y°® X, I) with I unit
object, and the right A-action on L yields L(X, Y) = L(X ® Y%, I). Hence
LY¢® X, I) 2 L(X ® Y% I). Thus the functor F': A°° — V given by
F(X) = L(X, I) admits isomorphisms F(Y*® X) = F(X®Y?) for X, Y €
A. This makes F' an object of Z(Hom(A°P, V)). The correspondence L —
F gives the equivalence of the theorem.

The paper is organized as follows. Sections 1 and 2 contain basic def-
initions about tensor categories, tensor linear functors, and distributors.
In Section 3 we show the isomorphisms L(X, A®Y) =2 L(A°® X,Y),
LX,) Y®A) =2 L(X® A% Y) for a distributor L with A-action. In Sec-
tion 4 we consider the centralizer Z 4(Hom(A°P, V)) of A in Hom(A°P, V).
This category is isomorphic to the center Z(Hom(A°P, V)). An object of
Z A(Hom(A°P, V)) is described in two ways: as a functor F': A? — V
equipped with isomorphisms F(A¢® X) = F(X ® A%), and as a functor
F: A% — V equipped with morphisms F(X) — F(A® X ® A%). In Sec-
tion 5 we prove the equivalence y4D(A, A)4 ~ Z(Hom(A°?, V)) as plain
categories.

In the remaining sections we consider tensor structures. The tensor
product (composition product) in 4D(A, A)4 is defined in Section 6, and
the tensor product (Day’s product) in Hom (AP, V) is defined in Section 7.
The tensor product in Z 4(Hom (AP, V)) is described in Section 8. Then we
prove in Section 9 that the equivalence 4D(A, A)4 ~ Z4(Hom (AP, V))
preserves tensor products.

1. Tensor categories and tensor linear functors

Throughout the paper categories and functors are linear over a field k.
The category of k-vector spaces is denoted by V. The category of functors
X — Y is denoted by Hom(X, ).

In this section we review basic definitions for tensor categories, tensor
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linear functors, and centralizers.

Let A be a tensor category. The tensor product of objects X and Y of
A is denoted by XY. The tensor product of morphisms f: X — X’ and
g:Y — Y’ of Ais denoted by fg: XY — X'Y’, while the composition of
f: X —>Y and g: Y — Z is denoted by go f: X — Z. The unit object of
A is denoted by I. The identity morphism on an object X is denoted by
1x, and often abbreviated as 1.

For simplicity we assume that A is a strict tensor category, that is, the
equalities

(XY)Z=X(YZ), XI=X=1X
for objects and the equalities

(fg)h = f(gh), fli=f=11f

for morphisms hold.

We review the language of modules over tensor categories ([6]). A
left A-module is a category X equipped with a bilinear functor 4 x X —
X, called an A-action, satisfying the axiom of associativity and unitality
analogous to the axiom for a module over a ring. We write the A-action as
(A, X) — AX for objects and (e, f) — ef for morphisms. Then the axiom
says

(AA)X = A(A'X), IX = X,
(ee)f =elef), Lf=Ff

for objects A, A’ of A and X of X, and morphisms e, e’ of A and f of X.

A right A-module is similarly defined.

Let A and B be strict tensor categories. An (A, B)-bimodule is a cate-
gory X equipped with bilinear functors A x X — X and X x B — X, called
actions, satisfying the axiom analogous to the axiom for a usual bimodule.
With the notation for the actions similar to the above, the axiom consists
of the equalities

(AANX = A(A'X), IX =X,
(AX)B = A(XB),
X(BB')= (XB)B, XI=X
for objects A, A’ of A, X of X', and B, B’ of B, and the corresponding equal-
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ities for morphisms. The tensor category A itself is an (A, A)-bimodule in
which AX, X A are tensor products in A.

Let X, Y be left A-modules. An A-linear functor X — Y is a func-
tor F': X — ) equipped with a family of isomorphisms A4 x: F(AX) —
AF(X) for all A € A and X € X satisfying the following conditions.
(1.1.i) A4, x is natural in A and X.

(1.1.ii) The diagram

Aa, Arx
—_—

F(AA'X) AF(A'X)

1>‘A’X

AA'F(X)

commutes for all A,A’ € Aand X € X.
(11111) )\LX =1forall X € X.

We call the family of A4, x the left A-linear structure of F.

If X, Y are right B-modules, a B-linear functor X — ) is a func-
tor F': X — ) equipped with a family of isomorphisms px p: F(XB) —
F(X)B, called the right B-linear structure, satisfying similar conditions.

If X, Y are (A, B)-bimodules, an (A, B)-linear functor X — Y is a func-
tor F': X — ) equipped with a family of isomorphisms A4 x: F(AX) —
AF(X) and px,p: F(XB) — F(X)B satisfying (1.1.i)—(1.1.iii) for A, the
corresponding conditions for p, and the following;:

(1.2) The diagram

A4, XB

F(AXB) ~2X5, AF(XB)

pAX,BJ/ llp)gg

F(AX)B —— AF(X)B
Aa, x1
commutes for all A€ A, Be B, X € .

If X, Y are left A-modules and F, G are A-linear functors X — Y, an
A-linear natural transformation F' — G is a natural transformation F —
G commuting with the left A-linear structure of F' and G. We then have
the category Hom4(X, ))) whose objects are A-linear functors X — ) and
whose morphisms are A-linear natural transformations.

Similarly, for (A, B)-bimodules X and ) we have the category of (A, B)-
linear functors X — ), which we denote by Hom 4 g(&X, V).
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The following is an analogue of the isomorphism Hompg(R, M) = M
for an R-module M, and can be proved easily.

Proposition 1.3 Let X be a right A-module. We have an equivalence of
categories

Homy(A, X) ~ X

which takes an object X € X to an object G € Homy (A, X') as follows. We
have

G(A)=XA

for A € A, and the right A-linear structure
pa B: G(AB) — G(A)B

for A, B € A is the identity
XAB — XAB.

For an (A, A)-bimodule X, the centralizer Z 4(X) is the category de-
fined as follows. An object of Z4(X) is an object X € X equipped with a
family of isomorphisms

wa: AX - XA forall Ac A

satisfying the following conditions.
(1.44)  wy is natural in A.
(1.4.i1) The diagram

lwp
ABX —= AXB

wal
WAB \LA

XAB

commutes for all A, Be Aand X € X.
(1.4.ii) wr is the identity.
We call the family of w4 the central structure.
A morphism of Z4(X) is a morphism of X commuting with central
structures.
The following is also an analogue of the well-known isomorphism for a
usual bimodule.
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Proposition 1.5 We have an equivalence of categories
Homy, 4(A, X) =~ Za(X)

which takes an object X € Z4(X) to an object G € Homy, 4(A, X) as
follows. We have

G(A) = XA

for A € A. The right A-linear structure pa p: G(AB) — G(A)B for
A, B € A is the identity

XAB — XAB.

The left A-linear structure Ap a: G(BA) — BG(A) is
wp'l: XBA — BXA,

where wp s the central structure of X.

For the (A, A)-bimodule A, the centralizer Z 4(.A) is called the center
of A, and denoted by Z(.A). This is a tensor category: the tensor product
of X, Y € Z(A) is the object XY of A with central structure given by the
composite

lwy

-4 XY A.

wapl
—

AXY XAY

For details see [4, p. 330].

2. Distributors with tensor action

Let X and ) be categories. Let V denote the category of k-vector spaces.
A distributor from X to Y is a bilinear functors X°P x Y — V ([1, Chapter
7]). Namely a distributor L from X to ) consists of vector spaces L(X, Y)
for all objects X of X and Y of ), and linear maps L(f, g): L(X,Y) —
L(X',Y") for all morphisms f: X’ — X of X and g: Y — Y’ of Y satisfying
the following conditions.
(2.1.i)  For morphisms f: X’ — X, f': X" - X' of X and ¢g: Y — Y’

and ¢: Y/ — Y"” of J, we have

L(fof', g og)=L(f g)oL(f g)
(2.1ii) L(1,1) = 1.
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(2.1.ii) L(f, g) is bilinear in f and g.
An easy consequence of (2.1.i) is
L(f, 9) = L(f, 1) o L(1, g) = L(1, g) o L(f, 1).

We also denote L(f, 1) = f*, L(1, g) = g«.

We denote by D(X, )) the category of distributors from X to ).

Let A be a tensor category and let X', ) be left A-modules. A distribu-
tor from X to ) with left A-action is a distributor L from X to ) equipped
with linear maps

Al: L(X,Y) — L(AX, AY)
for all objects A of A, X of X, and Y of ), satisfying the following condi-

tions.
(2.2.i)  For morphisms f: X' — X of X and ¢g: Y — Y’ of ), we have a
commutative diagram

L(X,Y) -2 L(AX, AY)

L(f,g)l lL(lf, 1g)
L(X', Y T L(AX', AY").

(2.2.ii))  For a morphism e: A — A’ of A, we have a commutative diagram

LX,Y) —2. L(AX, AY)

A’!l lL(l,el)

L(A'X, A'Y) T L(AX, A'Y).

(2.2.iii) For objects A, A" of A, we have a commutative diagram

Al

L(X,Y) L(AX, AY)

m l“‘”

L(A'AX, A'AY).

(2.2.iv)  For the unit object I, I': L(X,Y) — L(X, Y) is the identity.
We denote by 4D(X, Y) the category of distributors from X’ to ) with
left A-action.
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Let A and B be tensor categories and let X', ) be (A, B)-bimodules.
A distributor from X to ) with (A, B)-action is a distributor L equipped
with linear maps

Al: L(X, Y) — L(AX, AY)
\B: L(X,Y) — L(XB, YB)

for all objects A of A, B of B, X of X, and Y of Y, satisfying (2.2.1)—(2.2.iv)

for A!, the analogous conditions for !B, and the following;:

(2.3) For objects A of A, B of B, X of X, and Y of ), we have a commu-
tative diagram

L(X,Y) —2. L(AX, AY)

5] s

L(XB,YB) —— L(AXB, AXB).

We denote by 4D(X, V)p the category of distributors from X to )
with (A, B)-action.

3. Duality isomorphism

In this section we show that if A is rigid, distributors with A-action
can be identified with A-linear functors.

Let A be a tensor category. We call a quadruple (A, A’, €, n) a duality
if A, A" are objects of A and e: AA" — I, n: I — A’A are morphisms of A
such that the composites

A ANA A A a2

are the identity morphisms.
It is well-known that a duality (A, A, €, ) gives rise to the adjoint
isomorphism

Hom(AX, Y) = Hom(X, A'Y)

for X, Y € A. We will show that Hom of the both sides may be replaced
by any object L of 4D(X, ).
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Proposition 3.1 Let X and Y be left A-modules and let L € 4D(X, ).
Suppose that (A, A’, €, n) is a duality in A. Then we have an isomorphism

L(AX,Y) > L(X, A'Y)
forany X € X, Y €Y. This is given by the maps

o LIAX, V) 24 parax, ay) "0 oix, a'y),
o L(X, AY) AL pax, aay) "B piax, v,
which are inverse to each other.

Proof. We will show that o, 7 are inverse to each other. (a) By (2.2.i)
we have a commutative diagram

L(AX,Y) A [(AAX, AY) A L(AAAX, AA'Y)

Nﬁl’ l)i lL(lnl, 1)

L(X, AY) ——— L(AX, AA'Y)
\ lL(l,el)
L(AX, Y).

Hence by (2.2.iii) and (2.1.1)

LAx,v) YU raaax, aay)

Togl lm,d)

L(AX,Y) «—— L(AA'AX,Y)
L(1n1,1)

is commutative. On the other hand, by (2.2.ii) applied for the morphism
e: AA" — I and (2.2.iv),

LAX, V) 2 paarax, Aay)

m iL(l,el)

L(AA'AX)Y)
is commutative. Then we have

Too=L(Inl, 1)o L(ell, 1) = 1.
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(b) We have a commutative diagram

L(X, AY) -2 L(AX, AAY) A% [(AAX, A/AAY)
> L(l,el)l iL(l,lel)
L(AX,Y) L(A'AX, A'Y)

Al
\ iL(ﬂlv 1)
L(X, AY).
Hence
' (ATA)! ' 1A A
L(X, AY) —— L(A'AX, A/AAY)
O'OTJ/ J{L(nl7 1)
Lx, Ay)y 2D pox araary)
is commutative. But
Lx, av) XL rarax, aaary)
L(1,n11) J,L(nl’l)
L(X, APAAY)
is commutative. Hence
oot = L(1, lel) o L(1, n11) = 1.
This proves the proposition. O

Proposition 3.2 Under the assumption of the previous proposition, the
diagrams

L(X,Y) L(X,Y)
A!l L(1,71) A"l L(el, 1)
L(AX, AY)<"— L(X, A/AY) L(A'X, AY)<"— L(AA'X,Y)

are commutative.
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Proof. The first one follows from the commutative diagram

L, V) 281X, AAY) —T - L(AX, AY)

A!l A!l /
L(1,€l1)

L(AX, AY) [+ L(AX, AA'AY)
I n

and the equality el o 1n = 1.
The second follows from the commutative diagram

LX, V) — LD LAAX, V) —2 s L(A'X, AY)
A’!i A’!l o
LA'X, AY) — L(AAAX, A'Y)
L(1el, 1)
and the equality leonl = 1. (]

For the convenience in later use we record the right-sided version of
Proposition 3.1.

Proposition 3.3 Let X and Y be right A-modules and let L € D(X, V) 4.
Suppose that (A, A’, €, n) is a duality in A. Then we have an isomorphism
L(XA YY)~ L(X,YA)

forany X € X, Y €Y. This is given by the maps
o LIXALY) A pxaa, vya) " pix, va,
o L(X, Y A) S Lx A yaa) " pixa v,

which are inverse to each other.

We assume that A is left rigid, that is, for every object A € A there
exists a duality (A’, A, €, n). We choose such a duality for each A € A and
denote it by

(A Ay eq: A°A— I,ny: I — AA°).

Then the assignment A — A° becomes a contravariant functor A — A.
For a morphism f: A — B one has a morphism f¢: B¢ — A¢ so that the
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following diagrams are commutative.
BeA L e 1 2 BB

1fl lEA ml llfc

BB —— AA¢ —— BA°“.
€B f1

We have also natural isomorphisms (AB)¢ = B€A¢, [¢ = ]. For simplicity
we assume that (AB)¢ = B°A¢, I¢ = [ and the natural isomorphisms are
the identities. This means that the diagrams

B°A°AB ——— (AB)°AB s M sy

IEAIJ, lEAB UABl llﬂBl
BB —— 1 AB(AB)® ——— ABBCAC
commute for A, B € A.

Proposition 3.4 Let L € D(X,)Y). There is a one-to-one correspon-
dence between the following two objects:
e a family of maps

Al L(X, Y) — L(AX, AY)

forallAe A, X € X, Y € ) satisfying (2.2.1)—(2.2.iv).
e a family of isomorphisms
T4 L(X, AY) — L(A°X,Y)
forallAe A, X € X, Y €Y satisfying the following conditions:
(i)  The maps T4 are natural in X, Y.

(i)  The maps T4 are natural in A in the sense that for any morphism
f: A— B of A we have a commutative diagram

L(X, AY) —2— L(A°X,Y)
L. | |zern
L(X, BY) —— L(B°X,Y).

B
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(iii) The diagram
L(X, ABY) 22, L((AB)°X,Y)

| |

L(A°X, BY) —— L(B°A°X,Y)

B

1s commutative.
(iv) 77 =1.

Proof. (a) Construction of A! — 74. Suppose that the maps A! are
given. We define 74 to be the isomorphism 7 of Proposition 3.1 for the
duality (A€, A, €4, n4):

ra: LX, AY) 24 poacx, acay) "4 poacx v,
Its inverse is given by
oa: L(AX, V) 25 paacx, ay) "5 pix, Ay,

Let us verify (i)—(iv). (i) and (iv) are obvious.
Proof of (ii): Let f: A — B be a morphism. We have a commutative
diagram

L(X, AY) L L(A°X, ACAY)

% lBC! L(f“l,l)i w\

L(X, BY) L(B°X, BAY) — L(B°X, A°AY) L(A°X,Y)

L(1, fe11) )
i A/ﬂ) m iL(f L)

L(B°X, B°BY) L(B°X,Y).
L(LGBI)

The commutativity of the bottom quadrangle follows from that of the dia-
gram

BeA L geq

1fl leA

B‘B —— .

€B

Hence, looking at the surrounding arrows, we obtain the commutative dia-
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gram
L(X, AY) —2 L(A°X,Y)
| | zer
L(X, BY) —— L(B°X,Y).

B

Proof of (iii): Let A, B € A. We have a commutative diagram

L(X, ABY) 2% L(A°X, A°ABY) -Z°% L(B°A°X, B°A°ABY)

x J/L(I’EAH) lL(l,leAll)

L(A°X, BY) —2%  [(B°A°X, B°BY)

x lL(l,eBI)

L(B°A°X,Y).

The upper horizontal arrows yield (B¢A€)! and the right vertical arrows
yield L(1, eapl), and the composition of these is T4p. Hence 74p = 75 o
TA.

(b) Construction of 74 — Al Suppose that the maps 74 are given.
Let o4 = Tgl. Define A! to be the composite

L(eal,1)
-—

L(X,Y) L(AAX,Y) 25 L(AX, AY).

Let us verify (2.2.1)—(2.2.iv). (2.2.i) and (2.2.iv) are obvious.
Proof of (2.2.ii): Let f: A — B be a morphism. We have a commutative
diagram

L(€A17 1)
s

L(X,Y) L(A°AX, Y)
L(eBl,l)i L(fcll,l)i \
L(B°BX,Y)——= L(B°AX,Y) L(AX, AY)

K“) \ im

L(BX, BY) TTL (AX, BY).

Hence
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L(X,Y) —2. L(AX, AY)

B!l lL(l,fl)

L(BX, BY) — L(AX, BY)
L(f1,1)
is commutative.
Proof of (2.2.iii): Let A, B € A. We have a commutative diagram

L(eal, 1) L(lepll, 1)
L(X,Y)—> L(A°AX,Y) ——> L(A°B°BAX, Y)

\ io’A \LUA
Al L(epll, 1)

L(AX, AY) —~ L(B°BAX, AY)

S |

L(BAX,BAY).

The upper horizontal arrows yield L(egal, 1), and the right vertical arrows
yield o4, and the composition of these is (BA)!. Hence (BA)! = Blo Al.

(¢) Let us verify that the constructions of (a) and (b) are inverse to
each other.

Firstly let A! — 74 by construction (a). Proposition 3.2 tells us that
TA — Al

Secondly let 74 — A! by construction (b). We have a commutative
diagram

L(AA°x, AY) 2D 1ox, ay)

TA TA
L(A°X,Y) —— L(AAA°X,Y) ——= L(A°X,Y).
L(ell,1) L(1n1,1)
Since the lower horizontal composite is the identity, we have
oa=1,"=L(nl, 1)o Al
This means that A! — 74. This concludes the proof. ([l
For any categories X and ) we have an isomorphism of categories

D(&, Y) = Hom(), Hom(X°P, V)).

Here V denotes the category of k-vector spaces, and Hom(—, —) means
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the functor category. This isomorphism connects L € D(X, )) and K €
Hom(), Hom(X*°P, V)) so that

L(X,Y) = K(Y)(X).

Let X be a left A-module. Then the category Hom(X°P, V) becomes a
left A-module with action

A x Hom(X°P, V) — Hom(X°P, V): (A, F) — AF
defined by
(AF)(X) = F(A°X).
Let X, Y be left A-modules. Let
LeD(X,Y) and K € Hom(Y, Hom(X°P,V))
correspond under the above isomorphism. Then a map
L(X, AY) — L(A°X,Y)
is rewritten as
K(AY)(X) = (A(K(Y))(X).
A family of isomorphisms
T74: L(X, AY) — L(A°X,Y)

for all A, X, Y satisfying (i)—(iv) of Proposition 3.4 is the same thing as a
family of isomorphisms

My K(AY) — AK(Y))

for all A,Y satisfying (1.1.i)—(1.1.iii) for K. So Proposition 3.3 says that
there is a one-to-one correspondence between a family of maps A! giving L
a left A-action and a family of isomorphisms A4y giving K a left A-linear
structure. Thus we obtain

Proposition 3.5 We have an isomorphism of categories
AD(X, ¥) 2 Hom 4(Y, Hom (X7, V)).

Under this isomorphism objects L € 4D(X, Y) and
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K € Homy (Y, Hom(&X°P, V)) correspond in the following way: We have
L(X,Y) = K(Y)(X)

and the map
Al L(X, Y) — L(AX, AY)

equals

K)(x) “2Y fr(vyacax)

)\71
= (A(K(Y))(AX) == K(AY)(AX),
where X is the left A-linear structure of K.

Let B be a tensor category. Assume that B is right rigid, namely for
every object B € B there is a duality (B, B’, €, n). We choose such a duality
for each B and denote it by

(B, B, eg: BB — I, ng: I — B%B).

Then the assignment B — B? becomes a functor B°° — B. We assume that
the natural isomorphisms (AB)¢ = BYA9 and I¢ = [ are identities.

Let X, Y be right B-modules. The category Hom(X°P, V) becomes a
right B-module with action (F, B) — F B defined by

(FB)(X) = F(XBY).

For the sake of later use we state versions of the previous proposition for
right modules and bimodules.

Proposition 3.6 We have an isomorphism of categories
D(X, V) = Homg(Y, Hom(X°P, V)).

Under this isomorphism objects L € D(X, V)g and
K € Homp(Y, Hom(X°P, V)) correspond in the following way: We have

L(X,Y)=K(Y)(X)
and the map

IB: L(X,Y) — L(XB, YB)
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equals

K(Y)(lep)
—

K(Y)(X) K(Y)(XBB) =

—1
Py, B

(K(Y)B)(XB) — K(YB)(XB),
where p is the right A-linear structure of K.

Let X, Y be (A, B)-bimodules. The category Hom(X°P, V) becomes
an (A, B)-bimodule.

Proposition 3.7 We have an isomorphism of categories
AD(X, ¥)p = Homy, 5(Y, Hom(XP, V)).

Later we will use this in the case A=B =X = ).

4. Centralizer Z 4(Hom(.A°P, V))

Let A be a tensor category. The functor category Hom(.A°P, V) becomes
a tensor category (Section 7) and has the center Z(Hom(A°P, V)). When
A is rigid, the center is isomorphic to the centralizer Z_4(Hom(A°P, V))
(Section 8). Our purpose is to show the equivalence

AD(A, A)4 = Z 4(Hom(A%, V)).

In what follows we assume that A is left and right rigid, and we choose
for each A € A dualities

(A°, Ay eq: ACA— T, na: I — AA)
and
(A, A%, eq: AAT T, ny: T — A%A).

Though we use the same letters €4, na for different morphisms, it will not
cause confusion. We further assume that the natural isomorphisms

(AB)*= B°A°, I°=], (AB)=pBiAd [1i=]

are all identities.
As A is an (A, A)-bimodule, the category Hom (A, V) becomes an
(A, A)-bimodule by the recipe of Section 3. So we have the centralizer
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Z A(Hom(A°P,V)). In this section we describe an object of Z 4(Hom (AP, V))
in two ways.

For F' € Hom(A°, V) and a morphism f of A, we write f* = F(f).
Recall from Section 3 that for A € A and F' € Hom(A°, V) the objects
AF, FA € Hom(A°P, V) are defined by

(AF)(X) = F(A°X), (FA)(X) = F(XA%)

for X € A. Recall also that an object of Z4(Hom(A°P, V)) is an object
F € Hom(A°P, V) equipped with a family of isomorphisms wq: AF — FA
for all A satisfying (1.4.1)—(1.4.iii). The isomorphism w4 is in itself a family
of isomorphisms

(wa)x: (AF)(X) = F(A°X) — F(XA?) = (FA)(X)

for all X which are natural in X. (1.4.0)—(1.4.iii) are rephrased into the
following:
(4.1.i)  For a morphism f: A — B of A the diagram

FAex) 2%, pix ad)

v | [asey

F(B°X) —— F(XB%)

(wB)x

is commutative.
(4.1.ii)) The diagram

(wp)aex

F(B¢A°X) —"F(A°XB%)
\L (UJA)XBd
F(XB%A%)

(waB)x

is commutative.
(4.14i1) (wy)x = 1.

Thus we may say an object of Z4(Hom(A°P, V)) is an object F €
Hom (AP, V) equipped with a family of isomorphisms (w4)x: F(A°X) —
F(X A%) which are natural in X and satisfy (4.1.i)—(4.1.iii).

Let us give another description of Z 4(Hom(AP, V)). Let F': A —V
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be a functor. For A € A define the functor F4: A — V by
FA(X) = F(AX A%).

Proposition 4.2 Let F € Hom(A, V). There is a one-to-one corre-
spondence between the following two objects.
o A family of isomorphisms wa: AF — FA in Hom(AP, V) for all A €
A satisfying (4.1.1)—(4.1.iii).
o A family of morphisms ya: F — F4 in Hom(A%, V) for all A € A
satisfying the following conditions.
(i) For a morphism f: A — B of A the diagram

F(x) 24X paxad)

<vB>xl l(llfd)*
F(BXBY) —— F(AXBY)
(f11)*
commutes.

(ii) For A, B € A the diagram

(va)x

F(X) F(AX A%
l ('YB)AXAd
(vBA)x
F(BAX A?BY)
commutes.

We call the family of such 4 the conjugate structure. The proposition
says that there is a one-to-one correspondence between central structures
and conjugate structures on F'.

Proof. (a) Construction of w +— ~: Suppose that a family w is given.
Define (v4)x to be the composite

FX) ‘Y pracax) “A4% prax ady.

Let us verify (i)—(iii).
Proof of (i): Let f: A — B be a morphism. We have commutative dia-
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grams
P(x) A pacax)y YL popeax)
N
d d
FAXAY) = PAXBY),
F(x) 2L pepx) W pBeax)
Sk
d d
F(BXBY) = PAXBY),
and
FX) Y% pacax)

<e31)*l l(fcll)*

F(B°BX) —— F(B°AX).
(1f1)"

It follows that
F(X) . F(AXAY)

’YBl l(llfd)*

F(BXBY) —— F(AXB%)
(f11)*

is commutative.
Proof of (ii): We have a commutative diagram

F(x) 2L p(BeBx) Y p(BeAcABX)
Sl |-
F(BXBd)(ﬂ*F(ACABXBd)
x l”

F(ABXBYAY).

The composition of the upper horizontal arrows equals (e4p1)*, and the
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composition of the right vertical arrows equals wap. The composition of
these equals y4p. Hence v4 0oy = yaB.

(iii) is obvious.

(b) Construction of v — w. Suppose that a family 7 is given. Define
(wa)x, (W) x to be the composites

(wa)x: FASX) 24 P(AAcx Ad) "7 p(x ady),
(Wh)x: F(XAT) 25 F(A°X AY(A°)%)

>

(11 a)”

= P(ACX (A°A)D) A pracx).

Let us verify (4.1.1)—(4.1.iii) and that w4 and W', are inverse to each other.
Proof of (4.1.1): Let f: A — B be a morphism. We have a commutative
diagram

F(A°X) ik F(AA°X A%

(fcl)*l X L(l/fd) l(mm*

F(B°X) F(BA°XBY) —+ vy F(AA°X BY) F(X A%

X i(lfﬂl)* J{(mll)* o

c d d
F(BB‘XB )*>(77311)* F(XBY).
Hence the composites
d\*
F(A°X) 24 P(aAcx Aty ) poy gty YD poxpd)
and

(f 1> (an)

F(A°X) "= F(B°X) 22 F(BB°XBY) F(XB%

are equal.
By the definition of w, this means that

F(A°X) =25 F(XA%

v | [ s

F(B‘X) —— F(XB%

wWB

1S commutative.
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Proof of (4.1.i1): We have a commutative diagram

F(B°A°X) —2~ F(BB¢A°X BY) —2> F(ABB¢A°X B A4)

Mn)*l l(mBnu)*

F(A°X B?) = F(AA°X B AY)
x i(mln)*
F(XB4A9).

The composition of the upper horizontal arrows equals 45 and the com-
position of the right vertical arrows equals (nap111)*. The composition of
these equals wap. Hence (wa)ypa o (wp)acex = (waB)x-

(4.1.iii) is obvious.
Proof of Wy owa = 1: We have a commutative diagram

F(XAY) 2% F(AeX Ad(A°)T) 25 F(AAX Ad(A)LAd)

Nwi i(lnein*
Wy

F(A°X) S F(AA°X AY)
x i(ﬂAll)*
F(X A%,

By (ii) this results in a commutative diagram
F(XAd) 222%, P(AA°X AY(A°)1A%)

onwaJ l(nAllll)*

F(XAY) ——  F(XAY(A)A%),
(leg1)*

By (i) and (iii)

F(XAY) 225 P(AA°X Ad(A)4A9)

m l(mnn)*

F(XAY(A%)4AD)
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is commutative. Hence
wa 0wy = (1ed1)* o (11n%)* = 1.

Proof of wa ow’y =1: We have a commutative diagram

F(A°X) 25 F(AA°X Ad) 2% F(ACAA°X Ad(A°)D)

wn (nAll)*l l(lnAlll)*
F(XAY) ———— F(A°X A%(A%))
p l(nsi)*
“a
F(A°X).

By (ii) this results in a commutative diagram
F(A°X) 224, F(A°AA°X AY(AC)D)
wiqowAl l(unedA)*
F(A°X) F(ACAA°X).

(Inal)*
By (i) and (iii) the diagram
F(A°X) 24 PAcAACX AL(AC)?)
J{(nnej)*
F(A®AA°X)

(eall)*

is commutative. Hence
Wiyowa = (Inal)* o (es11)* = 1.

(¢) Let us verify that the constructions of (a) and (b) are inverse to
each other.

Firstly suppose that w is given. Let w — . We have a commutative
diagram

Faex) A pacanexy Y poaex)

Sl

F(AACXAd) (m*F(XAd)
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Since the composition of the horizontal arrows is the identity, we have

wa = (nall)”oya.

This means that v — w.
Secondly suppose that v is given. Let v — w. We have a commutative
diagram

F(X)—2Y L praeax)

mi im \

F(AXAY) —— F(AA°AX AY) —— F(AX A%).
(leg11)* (nalll)*

Since the composition of the horizontal arrows is the identity, we have
Y4 =wao0 (e41).

This means that w +— 7.
The proof is completed. O

5. Equivalence Z 4(Hom(.A°P, V)) ~ 4D(A, A)4

Theorem 5.1 We have an equivalence
A:Z4(Hom(AP, V)) — 4D(A, A)a.

Under this equivalence an object F' € Z ,(Hom(A°P,V)) is mapped to an
object L € 4D(A, A) 4 defined as follows: We have

L(X,Y)=F(XYY).
The operation 1A: L(X,Y) — L(XA, YA) is given by
(leal)*: F(XYY) — F(XAAYYY) = F(XA(Y A)%).
The operation Al: L(X,Y) — L(AX, AY) is given by
(1) xye: F(XYD) = F(AXY 149,

where y4: F — FA is the conjugate structure of F.
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Proof. Applying Proposition 3.7 to the (A, A)-bimodule X =) = A, we
have the isomorphism

AD(A, A) 4 = Homy, 4(A, Hom(AP, V)). (1)

Applying Proposition 1.5 to the (A, A)-bimodule Hom(A°P, V), we have
the equivalence

Hom 4, 4(A, Hom(A?, V)) ~ Z 4(Hom (A", V)). (2)
Combining these, we obtain the equivalence
AD(A, A) 4 = Z4(Hom(AP, V)).

Suppose that an object F' € Z 4(Hom(.A°P, V)) is mapped to an object
K € Homy, 4(A, Hom(A°P, V)) under (2), and K is mapped to an object
L e sD(A, A)4 under (1). Then we have

K(Y)=FY
for Y € A, and
L(X,Y)=K()X)
for X, Y € A, so
L(X,Y)=(FY)(X) = F(XY?).

By Proposition 1.5 the right A-linear structure py, 4: K(YA) — K(Y)A
of K is the identity F'Y A — FY A. By Proposition 3.6 the operation

'A: L(X,Y) = L(XA, YA)
is the map

K(Y)(lea)
—

K(Y)(X) K(Y)(XAA?)

-1
Py, A

= (K(Y)A)(XA) — K(YA)(XA).
This equals the map
(leal)*: F(XYY) - F(XAAYY) = F(XA(Y A)9).
By Proposition 1.5 the inverse A;}Y: AK(Y) — K(AY) of the left
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A-linear structure is given by
wal: AFY — FAY,

where wq: AF — F' A is the central structure of F'. By Proposition 3.5 the
operation A!: L(X,Y) — L(AX, AY) is the map

K (x) K2 fevy a0 ax)

-1
)‘A Y

— (A(K(Y))(AX) 2 K(AY)(AX).

This equals the map
Fxyd) T pacaxyd) “4 paxydad),

which is identical to the map (v4)xyq by (a) of the proof of Proposition 4.2.
The proof is completed. O

6. Tensor product in D(X, X)

We first review the definition of the tensor product (called also the
composition) of distributors ([1]). Let X be a category. Let L, M, N €
D(X, X). A bilinear morphism m: (L, M) — N is a family of linear maps

mxv,z: (X, Y)@ M(Y, Z) — N(X, Z)

for all X, Y, Z € X satisfying the following conditions.
(i) 7x, v,z is natural in X, Y, and Z.
(i) If g: Y — Y’ is a morphism of X, then the digram

L(1,9)®1
s

LIX,Y)® M(Y',Z) LIX,Y)o M(Y', Z)

1®M(g, l)l lﬂx, Y/, Z
LX,Y)o M(Y, Z) —— N(X, 2)

TX,Y, Z
is commutative.

Given L, M € D(X, X)), there is a bilinear morphism 7: (L, M) — N
having the universal property: if 7#’: (L, M) — N’ is a bilinear morphism,
there exists a unique morphism f: N — N’ such that 7y , = fx 7z o
mx,v,z for all X, Y, Z. One may construct such an N as
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N(X, Z) = Coequalizer( P X Y)eMYy', 2
g: Y=Y/

= P L, Y)e MY, Z)),
Y

where the two arrows have components L(1, g) ® 1 and 1 ® M(g, 1). We
choose a universal bilinear morphism 7: (L, M) — N and write L ® M =
N.

The hom-functor

Hom: X? x X - V: (X,Y) — Hom(X, Y)

is a distributor on X. This has the property
L®Hom =L =Hom®L

for any L € D(X, X'). These isomorphisms are given by
Tz ®R1ly) <z n(ly @)

forz e L(X,Y).

With the above tensor product and the unit object Hom, the category
D(X, X) becomes a tensor category.

Let X be an (A, A)-bimodule. Let L, M, N € 4D(X, X)4 and let
m: (L, M) — N be a bilinear morphism. We say 7 is (A, A)-linear if the
diagram

TX,Y, Z

L(X,Y)® M(Y, Z) Y7 N(X, Z)

A!®A!l lA!

L(AX, AY)® M(AY, AZ) ——— N(AX, AZ)
TAX, AY, AZ

is commutative and a similar diagram for !4 is commutative for all A, X,Y, Z.

Given L, M € AD(X, X)4, the object L ® M € D(X, X) naturally
admits two-sided action of A so that LM € 4D(X, X') 4 and the universal
bilinear morphism 7: (L, M) — L ® M is (A, A)-linear.

With this tensor product the category 4D(X, X)4 becomes a tensor
category.
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7. Tensor product in Hom(.A°P, V)

In this section we first review the definition of the tensor product in
Hom(A°P, V) (Day’s product [2]) and then examine some isomorphisms of
associativity. They are needed later for describing the tensor product in the
centralizer Z 4(Hom(A°P, V)).

Let F, G, H € Hom(A°P, V). A bilinear morphism 7: (F, G) — H is a
family of linear maps

TX,Y: FX)®G(Y)— H(XY)

for all X, Y € A which are natural in X and Y.
Given F, G € Hom(A°P, V), there is a universal bilinear morphism
m: (F, G) - F ® G. A construction is given by

(F ©G)(2) = lim F(X) ® G(Y),

where the limit is taken over morphisms Z — XY of A.
For A € A let hy: A°® — V denote the representable functor X +—
Hom(X, A). The bilinear morphism (h4, hg) — hap given by

Hom(X, A) ® Hom(Y, B) — Hom(XY, AB): f®g+— fg

yields the isomorphism hq ® hp = hap.

For F, G, H € Hom(A°P, V) we similarly define the tensor product F' ®
G ® H with universal trilinear morphism (F, G, H) - FQ G® H. We have
the canonical isomorphisms

(FRG)I@HEF®GEH>2F®(G®H).
The object h; has the property
hi FEF2F®h;

for any F' € Hom (A, V).

With this tensor product and the unit object hy, the category
Hom(.A°P, V) becomes a tensor category.

In Section 3 we defined AF and F A for A € A and F € Hom(A, V).
We now interpret them in terms of tensor product in Hom (AP, V).

The universal bilinear morphism (F, G) — F ® G and the universal
trilinear morphism (F, G, H) — F ® G ® H are always denoted by 7.
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Proposition 7.1 Let F' € Hom(AP, V) and A € A. We have an isomor-
phism

ha®F = AF.
This isomorphism takes an element b € (AF)(X) = F(A°X) to the element
(X ™% AA°X) ma, aex (La ®) € (ha ® F)(X),
and conversely takes an element
v, 2(Y 5 A)@e) € (ha© F)(Y2)
for f € Hom(Y, A) and c € F(Z) to the element
Ay z YL acaz AL 7y4(c) € (AF)(Y 2).

Proof. For an object B € A, let Lg: A — A be the functor X — BX.
Let L : Hom(A°P, V) — Hom(AP, V) be the functor F' — F o L. Since
L 4c is a left adjoint of L 4, the functor LY. is a left adjoint of L%. Thus we
have a one-to-one correspondence

(morphism ¢: F o Lye — G) <> (morphism ¢: F — GoLy) (1)

in which

b7 = (F(A°Z) "% qaacz) "0 q(z)
and

by = (F(2) 2N Facaz) 24 q(az)
for Z € A.

As in Yoneda’s lemma we have also a one-to-one correspondence
(bilinear morphism 0: (ha, F') — G)
— (morphism ¢: FF' — GoLy) (2)
in which
bv.2((Y > o) = (YZ L5 42) (0a(0))
for f € Hom(Y, A) and ¢ € F(Z).
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Combining (1) and (2), we have a one-to-one correspondence
(bilinear morphism 6: (ha, F) — G)
— (morphism ¢: F' o Lge — Q)
in which
Oy, 2((Y -1 Ay @ ¢) = oy 7 ((AYZ L5 404z 44 2)%(0))

for f € Hom(Y, A) and ¢ € F(Z). Also F o Lye = AF. When ¢ is the
identity, the corresponding 6: (ha, F) — AF is given by

by 2(V L Ay @) = (AYZ 5 Az AL 2)(c).

This means that we have an isomorphism hy ® F & AF taking the
element

myv.2(Y L5 A) @ ¢) € (ha @ F)(Y Z)

to
(A°vz YL acaz AL 72)%(c) € (AF)(Y 2).
For every b € (AF)(X) this isomorphism takes the element
(X 24 AA°X) ma aex (14 @ D) € (ha® F)(X)
to
(A°X 40 AeaAcX AN AcX)* () = b.
This proves the proposition. ([l

The version for the right action is as follows.

Proposition 7.2 Let F € Hom(AP, V) and A € A. We have an isomor-
phism

F®hy=FA.

This isomorphism takes an element b € (FA)(X) = F(XA%) to the element

(X 4 XA 400 L) € (F  ha) (),
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and conversely takes an element
v 2(c® (Z -1 A)) e (F @ ha) (Y 2)
for f € Hom(Z, A) and ¢ € F(Y') to the element
(Y ZA? YLy 442 14 vy (o) e (FA)(Y 2).
Our next task is to describe explicitly the natural isomorphisms
AFRG=ZAF®G), FARGEF® AG, FR GA= (F®G)A.

Proposition 7.3 Let F, G € Hom(A®, V) and A € A. We have an
1somorphism

AF @G = A(F®G)
in which the element
(A°X 25 Y Z) 1y, 2(a® ) € (A(F ® G))(X)
forp: AX = YZ, aec F(Y), ce G(Z) is mapped to the element
(X 25 44°X 22 AY Z)*may 2((ACAY 25 V) (0) @ ¢)
€ (AF ® G)(X),
and conversely the element
(X L YZ) 71y z(b®@¢) € (AF ® G)(X)
forq: X = YZ, be (AF)(Y), c € G(Z) is mapped to the element
(AX =% A°Y Z)*maey, 2(b® €) € (A(F ® G))(X).
Proof. The natural isomorphism of associativity
(ha®F)®@G=ha® (F®QG)
and the isomorphism of Proposition 7.1 yield an isomorphism
AF @ G= A(F ®QG).

We examine the correspondence of elements under this isomorphism.
(a) Under the isomorphism of Proposition 7.1 the element

(A°X 25 Y Z) 1y, 2(a® ¢) € (A(F ® G))(X)
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for a € F(Y), ¢ € G(Z) corresponds to the element
(X m AACX)*WA’Acx(lA ® (ACX BN YZ)*sz(a X C))
€ (ha®(F®G)(X).

Under the isomorphism h4® (F®G) = hy® F®G this element corresponds
to the element

(X 245 44°X 2 AY Z)* 14y 2(1a®a®c) € (ha® F @ G)(X).
Thus we have an isomorphism a: A(F ® G) — hy ® F ® G given by

(A°X L Y Z)*ny z(a @ c)

= (X 5 AY Z) 14y, z(la @ a®c),

where py = 1aponal: X — AY Z.
(b) Under the isomorphism AF ® G = (ha ® F) @ G the element

(X LY Z) 'y 2(b®¢) € (AF @ G)(X)
for b € (AF)(Y) and ¢ € G(Z) corresponds to the element
(X -5 Y 2Z)* my 2([(V 25 AAY ) 7p pey (14 @ b)] @ c)
€ ((ha® F)®G)(X).

Under the isomorphism (ha ® F) ® G = hy ® F'® G this corresponds to the
element

(X 4 AAY Z) 14, ey, 2(La @b @ ) € (ha ® F @ G)(X).
Thus we have an isomorphism 3: AF ® G — hq ® F' ® G given by

(X L YZ)'ny z(b®c)

= (X 29 AAY Z) ma acy, 214 @b ® ¢).

(c) To describe the isomorphism 3~'oa: A(F ® G) — AF ® G, take
an element

x=(AX LY Z) 'y, z(a®c) € (A(F © G))(X)
fora e F(Y), c€ G(Z). Put

y=(X 25 AY Z)* 14y 2(ACAY L Y)*(a) ® ) € (AF @ G)(X).
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Then

Bly) = (X % AAAY Z)* 14 seay, z(14 ® (ACAY L5 V) (a) ® )
(X 25 Ay 2) Ay z " aacay 7 'AY Ay 2y

7TA7y72(1A®a®C)

=(X 2, AYZ)*WAy’Z(lA@a@c)

=a(z).

Hence 3 la(x) = y.
(d) To describe the isomorphism o' o 3: AF® G — A(F ® G), take

an element
= (X L YZ)ny z2(b®c) € (AF @ G)(X)
for b € (AF)(Y), c € G(Z). Put
w=(A°X R AY Z) ' maey, z(b® ¢) € (A(F ® G))(X).
Then
a(w) = (X ui)g AACYZ)*T(‘A,Acxz(lA Rb® C)
=(X P4 AAY Z) 1A, acy, 2(la ® D@ c)
=06(2).

Hence a~13(z2) = w.
Thus o~ ! o 3 is the desired isomorphism. O

A version for the right action is analogously obtained.
Proposition 7.4 We have an isomorphism
FRGAZ (FRG)A
in which the element
(XA 2 v 2 ry z(a®@c) € (F®G)A)(X)
forae F(Y), c € G(Z) is mapped to the element

(X 2L XATA 2L Y ZAY ry, gala ® (ZAAT 25 2)%(c))
€ (F®GA)(X),
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and conversely the element
(X L YZ)ry z(a®d) € (F @ GA)(X)
forae F(Y), d € (GA)(Z) is mapped to the element
(XA Ly ZAY 1y 4 1a(a @ d) € (F ® G)A)(X).
Proposition 7.5 We have an isomorphism
FAG=F® AG
in which the element
(X Y2y 2(b@¢) € (FA® G)(X)
forbe (FA)(Y), c € G(Z) is mapped to the element
(X 2V Z T Y AYAZ) 7y g4y (b® (A°AZ -5 2)*(c))
€ (F®AG)(X),
and conversely the element
(X Y2 'ry z(a®d) € (F® AG)(X)
forae F(Y), d € (AG)(Z) is mapped to the element
(X 2V Z T YAAZ) 7y 4 acz (Y AAT 25 V)" () @ d)
€ (FA®G)(X).

Proof. (a) The isomorphism of Proposition 7.2 and the canonical isomor-
phism yield the isomorphism

FARG = (F®hy))®G = F®ha®G.
Denote this composite by a. It effects as
(X Y2 my 2(b®c)
= (X 5 YZ Y ATAZ) Ty g0 g s (0@ 14 @ C)

for b € (FA)(Y), ce G(Z).
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(b) The isomorphism of Proposition 7.1 and the canonical isomor-
phism yield the isomorphism

FRAG—-F®Mha®G)—Fhs®G.
Denote this composite by §. It effects as
(X LY Z) 7y z(a®d)
S (X Y2 YAAZ) 1y 4 aez(a® 14 @ d)

forae F(Y), d € (AG)(Z).
(c) To describe a=tof: F® AG — FA® G, take an element
=X 5YZ) 71y z2(a®d) € (F® AG)(X)
forae F(Y), d € (AG)(Z). Put

y=(X Y2 YAAZ) my 4 aez(YAAL 15 Y)Y (a) @ d)
€ (FA® G)(X).

Then

aly)=(X L vz L yasaz T yAataAcz)

4 1% V) (a) ® 14 @ d)

Ty aad, A acz((YAA

—(x Loyz M yasez My aadancz Yy aae 7y
Ty, A, acz(a ® 14 ® d)

— (X 5 YZ L YAAZ) ry 4 acz(a® 14 @ d)

= fB(x).

Hence a~!8(z) = y.
(d) The correspondence in the reverse direction is similarly described.
Thus o~ ! o 3 is the desired isomorphism. O

8. Tensor product in Z4(Hom(.A°P, V))

The purpose of this section is to describe the tensor product in the cen-
tralizer Z 4(Hom (AP, V)) induced from the tensor product in Hom (A, V).
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Proposition 8.1 We have an isomorphism of categories
Z 4(Hom (A%, V)) = Z(Hom (AP, V)).

Proof. Let F € Z(Hom(A°P, V)) with central structure wy: AF — FA
for A € A. We know the isomorphisms hy @ F =2 AF and F® hy & FA
of Propositions 7.1 and 7.2. Since representable functors form generators
in Hom(A°P, V), the morphisms wy4 for all A € A give rise to morphisms
wg: G®F — F®QG for all G € Hom(A°P, V). Namely wg are natural in G
and wy,: hg @ F — F & h corresponds to wx through the isomorphisms
ha®F = AF and F @ hy =2 FA. Then F together with the family (wg)ag
is an object of Z(Hom(A°P, V)). The correspondence (wa)a — (wg)g of
central structures on F' gives the desired isomorphism of categories. O

The center Z(Hom(.A, V)) is a tensor category (the end of Section 1).
Its tensor product is defined as follows. Let F' and G be objects of
Z(Hom(A°P, V)) with central structures

wg HRF - F®H, wg:HRG—->GRH

for H € Hom(A°P, V). Then the tensor product of F' and G in
Z(Hom(A°P, V)) has the underlying functor F ® G € Hom (A, V) and the
central structure

wp: H® (F®G)— (FoG) @H
given as the composite

He(FRG) =2 (HoF) oG S (FeH)®G

~“FoHRG) 24 Fe(GoH)~(FeG)o H.

The centralizer Z4(Hom(A°P, V)) becomes a tensor category via the
isomorphism of Proposition 8.1. Let F' and G be objects of Z 4(Hom(.A°P, V))
with central structures

wa: AF — FA, wy: AG — GA

for A € A. Then the tensor product of F and G in Z 4(Hom(A°P, V)) has
the underlying functor FF ® G € Hom(A°, V) and the central structure

war AF®G)— (FRG)A
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given as the composite

AF®G) 2 AFRG % FAg G
~FoAG 2% FoGA= (FeG)A,

where the unlabeled isomorphisms are those of Propositions 7.3-7.5. This
is obvious from the definition of those isomorphisms.

Proposition 8.2 The map wa: (A(F @ G))(X) — (F® G)A)(X) takes
the element

Py, z(a®c)
forp: A°X = YZ, ac F(Y), c€ G(Z) to the element
0T gy ad, Az a4 (b ® d),
where q is the composite
d mll c d 1pl 4 11nll d d
XAY — AAXAY — AYZA® — AYA®AZA®,
b is the image of a under the map

FY) L peacay) 24 pray a?),

and d is the image of ¢ under the map

G(2) ' GacAZ) “4 qaz A%,

Proof. We follow the definition of wa: A(F ® G) — (F ® G)A. The iso-
morphism A(F ® G) = AF ® G of Proposition 7.3 takes the element

r=p'ry z(a®c) € A(F ® G)(X)

for p: AX - YZ,ae F(Y), c € G(Z) to the element
x1 = piTay,z(d' ®c) € (AF ® G)(X),

where
pet X 25 AAx 2 AV Z,

and o' is the image of a under the map F(Y) N F(A°AY). The map
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wa®1l: (AF @ G)(X) —» (FA® G)(X) takes 21 to the element
X9 :pgﬂAyﬁz(l)@C) S (FA@G)(X),

where b = w4(a’). The isomorphism FA® G = F ® AG of Proposition 7.5
takes x9 to the element

xr3 = T*T‘-AYAd,AZ(b (%9 C/) € (F & AG)(X),
where

Py 1191 d

r: X — AYZ —5 AY AAZ,
and ¢ is the image of ¢ under the map G(Z) ()] G(A°AZ). The map
1@wa: (F®AG)(X) — (F® GA)(X) takes x3 to the element

Ty = T*WAYAd,AZ(b(X)d) € (F@GA)(X),

where d = wa(c’). Finally the isomorphism F ® GA = (F ® G)A of Propo-
sition 7.4 takes x4 to the element

T5 = @ T gy ad, aza4(b® d) € (F @ G)A)(X),

where
q: XA L Ay AlAZ A4,
Then
d nll c d 1pl d 11nll d d
q: XAY 75 AAXA® = AYZA® —5 AYA“AZA
and

b=was(el)*(a), d=wa(el)*(c).
Thus the map wa: (A(F ® G))(X) — (F® G)A)(X) takes x to x5. This

proves the proposition. [l
By Proposition 4.2 the central structures
wpa: AF — FA, wyp: AG— GA
correspond to the conjugate structures

ya: F— FA y4: G — G
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Define a morphism
Y4: F® G — (Fo G)4
so that the diagram
F(Y)® G(2) 222 p(AY AY) @ G(AZAY)

lﬂAYAd, AzAd

v,z (F @ G)(AY A?AZ A%)
i(nnn)*
(F@G)(YZ) — (F & G)(AY ZA)

commutes for every Y, Z.

Proposition 8.3 The morphism ya: F® G — (F® G)4 is the conjugate
structure of '@ G corresponding to wa: A(F @ G) — (F ® G)A.

Proof. By the definition of the correspondence between w and v ((b) of
the proof of Proposition 4.2), it is enough to show that the diagram

(F® G)(A°X) 2> (F @ G)(AA°X A9)
x l(nll)*
(F @ G)(XA?)

is commutative. Take an element z = p*ny, z(a ® ¢) € (F ® G)(A°X) for
p: A°X - YZ ac F(Y), c€ G(Z). Then

va(z) = (AA°X AT 2L Ay 747 T Ay Ad Az A%y

Tay ad, azad(va(a) @ va(c))

by definition, so

(n11)*va(@) = "7 ay a2, az40(74(a) @ 7a(c)),
where ¢ is the composite

X AT Aaex AT 2L Ay ZAY T Ay AdAz A%

This coincides with w4(x) by Proposition 8.2. O
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9. Tensor equivalence Z 4(Hom(A°P, V)) >~ 4D(A, A)a
The purpose of this section is to show the equivalence
A ZA(HOIH(AOP, V)) - AD(Av A).A

of Theorem 5.1 preserves tensor products. This equivalence is a restriction
of the functor

A: Hom(A°P V) — D(A, A)
given by
AF(X,Y)=F(XY%

for FF € Hom(A°, V). We first construct an isomorphism AF @ AG =
A(F ® G) of D(A, A) for every F, G € Hom(A°P, V), and then show that
this is an isomorphism of 4D(A, A)4 if F, G € Z 4(Hom(A°?, V)).

Let F, G € Hom(AP, V). Let

xy: F(X)®GY) — (F®G)(XY)
be the universal bilinear morphism. Define the map

px,v,z: AF(X,Y)® AGY, Z) — A(F ® G)(X, 2)
to be the composite

(Iny 1)*
IEEIN (

F(XYY)ea(yzd) L (Fe Q) (XYl z9) FoG)(XzZ%).

Proposition 9.1 There exists a unique morphism
AP R AG — A(FRG)

of D(A, A) such that the diagram

TX,Y, Z

AF(X,Y)® AG(Y, Z) 25 AF @ AG)(X, 2)

M ng,Z

A(F®G)(X, Z)

commutes, where w is the universal bilinear morphism.



420 D. Tambara

Proof. It is enough to show that the maps px, v, 7 form a bilinear morphism
(AF, AG) - A(F ® G). Let g: Y1 — Y3 be a morphism. Put H = F ® G.
We have the diagram

d\*
FxXYY) @ Gzt 2 (X ve) @ G(vazd)

d11)*

F(XY! ® G127 H(XY#Y,2%) —— H(XYsY,2%)
\ l(llgl)* l(lnl)*
H(XY{Y, 2% H(XZ%

(In1)*

in which the three quadrangles are commutative. Hence the surrounding
hexagon is commutative. This means that

AF(X, Y1) @ AG(Ys, Z) Z2L  AF(X, Ys) ® AG(Ya, Z)

1®g*l lMX,YQ, z

AF(X, V1) ® AG(Y,, Z) —— AH(X, Z)

HX, Yy, 2
is commutative. Thus p is a bilinear morphism. O

Proposition 9.2 For every F, G € Hom(A, V), £: AFQAG — A(F®
G) is an isomorphism of D(A, A).

Proof. Since ® is right exact and representable functors form generators
in Hom(A°P, V), it is enough to show that

& Ahy @ Ahp — A(hA ®hB)

is an isomorphism for every A, B € A.
For an object A € A define Uy € D(A, A) b

Ua(X,Y)=Hom(X, AY).
We have an isomorphism A: Ahy = Uy given by
(ARA)(X,Y) = ha(XY?) = Hom(XY?%, A) = Hom(X, AY).
For X, Y, Z € A we define a map
vxy,z: Ua(X,Y)Up(Y, Z) - Uap(X, Z)
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vy z(X L AVy e (v - BZ)) = (X -1 Ay 2% AB2Z).
It is easy to see that the maps vx, v,z give a bilinear morphism
v: (Ua, Ug) — Uap.
We claim that v is universal. To prove this, let
7' (Ua, Ug) — L
be a bilinear morphism. Then
v, 2(X 5 AV) @ (v - BZ))
— v 5z 2 (X - AY 2% ABZ) @ (BZ - B2)).
Define ¢: Upp — L by
ox,2(X L ABZ) = 7y 5z (X 5 ABZ) @ (BZ = BZ)).

Then 773(7 v,z = ¢x,z ovx,y,z. This proves the claim. Therefore v yields
an isomorphism

C:Us®@Up — Ugp.
So we will know that
£ Aha® Ahg — A(hA ® hB)

is an isomorphism once we show that the diagram

Aha ® Ahp —> A(ha ® hp)
J/A(e)

A®A Ahap
lx
Us®Up Uag

is commutative, where 6: ha ® hgp — hap is the canonical isomorphism of
Section 7.
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In order to show this, it suffices to show that the diagram

UX,Y,Z

Aha(X,Y) ® Ahp(Y, Z) —= A(ha @ hp)(X, Z)
iA(Q)
ABA Ahap(X, Z) (1)

b

Ua(X,Y)@Up(Y, 2) Uap(X, Z)

VXY, Z

is commutative for every X, Y, Z € A.
By the definition of p and 6, the composite

Aha(X,Y)® Ahg(Y, Z)
PENZ A (g @ hp)(X, Z) 29 Ahap(X, 2)
is equal to the composite
k: Hom(XY? A)® Hom(Y Z¢, B)
— Hom(XY%v 2%, AB) ™ Hom(Xx 2, AB),

where the first arrow is the tensor product of morphisms of A. So it suffices
to show the following diagram is commutative.

Hom(XY? A) @ Hom(YZ¢, B) —*— Hom(XZ? AB)

>\®>\l lx

Hom(X, AY) ® Hom(Y, BZ) Hom(X, ABZ).

VXY, Z

Let f/: XY% — A correspond to f: X — AY under the isomorphism \,
and ¢': YZ¢ — B correspond to g: Y — BZ. We have the diagram

xydyzi L A
171 lfll/ TUE
19’
X240 == AY 2 — = ABZZ*

in which the three triangles are commutative. Hence the surrounding pen-
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tagon is commutative. This means that the map
k(' ®g): X204 M xydyzd I'9 B
corresponds to the map
v(fg): X LAy 29 ABz

under A. This proves the commutativity of (1), and completes the proof.
U

Let
F, G € Z4(Hom(A°P, V)).
Then
F®G e Z(Hom(AP, V))

as defined in Section 8. By Theorem 5.1 the distributors A(F), A(G), and
A(F ® G) admit two-sided A-action.

Proposition 9.3 The isomorphism
EAF)RAG) - A(FRG)
is a morphism of 4D(A, A) 4.

Proof. We have to show that £ commutes with the operations A! and !A
for every A € A. For A! we have to show that the diagram

(AF © AG)(X,Y) —2 (AF ® AG)(AX, AY)

e| E

AF®G)(X,Y) —— A(F®G)(AX, AY)

is commutative. By the definition of £ it is enough to show that the diagram

(AF)(X, Z) ® (AG)(Z,Y) 224 (AF)(AX, AZ) ® (AG)(AZ, AY)

ul lu
A(F ®G)(X,Y) — A(F @ G)(AX, AY)

is commutative. By the definition of ;1 and the description of A! in terms
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of v4 in Theorem 5.1, this diagram reads

F(XZ4) ® G(zyd) 24204, PAXZIAY) @ G(AZY1Z9)

di |

(FeG)(XZ2ZYY) (F®G)AXZATAZY T AT)
(le)*l l(llnAzll)*
(FG)(XYY) —s (F®G)(AXY4A9),

YA

where 7 is the universal map. This is commutative by the description of 4
for F'® G in Proposition 8.3.
For !A it is enough to show that the diagram

(AF)(X, Z)® (AG)(Z,Y) 224, (AF)(XA, ZA) ® (AG)(ZA, Y A)

ul lu
A(F®G)(X,Y) — A(F & G)(XA, YA)

is commutative. By the description of !4 in Theorem 5.1 this diagram reads

F(X2%) @ G(zyd) LAl CUal’ poy g gdzdy o G(ZAA0Y )

wl lw

(F®G)(XZizYd) (F®G)XAAYZIZAAYY D)
(1nz1)" | | arnzarny
(F®G)(XY?) o (F @ G)(XAAYYY).

eal)*

We are reduced to showing the commutativity of the diagram

Xzdgyd tealleal -y p qdgdy g gdyd
117le Tnn“n
) ¢ L XAAdyd,

leal

But this follows from the commutative diagram



Distributors on a tensor category 425

ealle
77 <"—"AAdzdz A Ad

T]ZT Tllnzll

Is——a AATAAY
\ TlnAl
AAY,
The proof is completed. O

From Propositions 9.2 and 9.3 we obtain

Theorem 9.4 The equivalence A: Z A(Hom(A°P, V)) — 4D(A, A)4 pre-
serves tensor products.
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