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On geometric properties of Lagrangian submanifolds
in product symplectic spaces
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Abstract. We study the generic properties of symplectic relations. Local models of
symplectic relations are described and the corresponding local symplectic invariants are
derived. A stratification of the Lagrangian Grassmannian in the product symplectic space
(N x M, 73 ,wnr — Thwn) is constructed and global homological properties of the strata
are investigated.
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1. Introduction

A symplectic structure on a manifold M is a 2-form w which is closed
and nondegenerate. For a symplectic manifold (M, w), we can consider sub-
manifolds L which are isotropic with respect to the symplectic form, w |=
0. If L has a maximal possible dimension equal to half of the dimension of
the symplectic manifold, then L is called Lagrangian.

There are extensive local and global studies of Lagrangian submanifolds
and their singularities (cf. [14, 3, 6, 7, 8]). An important object in global
investigations of Lagrangian submanifolds is the Lagrangian Grassmannian
Ay, the manifold of linear Lagrangian subspaces in a 2n-dimensional lin-
ear symplectic space. The canonical stratification A,, = (Jj_y AL, A%, =
{# € Ap: dim(BNa) =k}, where « is a fixed element of A, allows us to
describe the geometry of Lagrangian submanifolds and their singularities.
The set Ay(ll) =Ui; Aik is coorientable and its singular part has codimen-
sion strictly greater than 1 in Aq(zl). Thus AS) determines a singular cycle
which is Poincaré dual to the universal Maslov class u € H(A,, Z) (cf. [2]).
Investigation of Lagrangian submanifolds in a product symplectic manifold
(M7 x Ms, mywe — mjwy), called symplectic relations, requires (as shown in
[9]) the use of another natural stratification of the Lagrangian Grassmannian
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Aptm (dim My = 2n, dim My = 2m) determined by the product structure
properties. This stratification distinguishes the symplectically nonequiva-
lent vertical positions of symplectic relations and measures their difference
from canonical relations formed by graphs of symplectomorphisms.

To continue the investigation of symplectic relations, in Section 2 we
construct a new stratification of the Lagrangian Grassmannian in a product
linear symplectic space and investigate the generic properties of symplectic
relations with respect to the canonical projections. In Section 3 we compute
the first homology group of the strata and find a cycle whose homology class
is dual to the universal Maslov class of the Grassmannian A, .

2. Lagrangian submanifolds in product symplectic space

Let (N, wn), (M, wpr) be two linear symplectic spaces, dim N = 2n,
dim M = 2m, m < n. The product symplectic space is defined as

M:(NXM, wM@wN), (1)

where wy Swy = mywy — Tjwy and 7;, ¢ = 1, 2, are the canonical projec-
tions.

By Ap4+m we denote the Lagrangian Grassmannian of linear (n 4+ m)-
dimensional Lagrangian subspaces in M. Let N and M be canonically
placed in the product. If L € A,,+,, then there are two possibilities:

1. L is transversal to N. Then rank(ms |1) is maximal and L is called a
linear reduction relation. The set of such L is called the regular subset
of A1 and we will denote it by RSDp1m-

2. L isnot transversal to N. The set of such L will be denoted by C'Ay, 1,
and called the critical subset of A,1p,.

We stratify A, by the codimension of the image under the projection
my. The most singular subset in A4y, is denoted by SAp+m, SAprm =
A, X Ay, where A, and A, are the Lagrangian Grassmannians in N and
M respectively; codim SAy, 4+, = nm.

Now we introduce the composition of linear symplectic relations. Let
R; and Ry be Lagrangian subspaces in product spaces, say (M; X Ma, wy ©
w1) and (Ms x M3, wg © ws) respectively. Then we define the composition
of Ry and Ry, denoted by Rs o Ry, as the Lagrangian subspace

Ry o Ry = {(v1, v3) € My x M3: vy € Ma, (v1, v2) € Ry, (v2, v3) € Ra}
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in the product symplectic space (M x M3, ws © wy).

Let V be a subspace of a linear symplectic space (N, w). By V< we
denote the symplectic-orthogonal subspace to V (symplectic polar), V4 =
{v € N:ww,w) = 0forevery w € V}. If V4 C V then V is called a
coisotropic subspace of (N, w). The quotient space V/ V< endowed with
the canonical reduced symplectic structure is called a reduced symplectic
space.

Theorem 2.1 The Lagrangian Grassmannian Anpi, has a canonical
partition into smooth strata CxMNpim (B = 0,1, ..., m) with CoAptm =
RSpnim and CpyApim = SApym. Each stratum is characterized as follows:
L € Cx Ay, is uniquely represented as L = (L1 o R) o Ly with Lagrangian
subspaces L1 C (N x N1, wy, ©wn), R C (N1 X No, wy, S wny), Lo C
(Ny X M, wyr © wy,), where L; (i = 1, 2) is the graph of the coisotropic
projection (i.e. linear reduction relation) p;: (L) — N; = m;(L)/m;(L)*
with dim N7 = dim Ny = 2(m — k) and R is the graph of a symplectic
isomorphism N1 — Ns.

Proof. If L € RSppim, then m(L) is a coisotropic subspace of N, i.e. the
symplectic orthogonal 71(L)“ is contained in 71 (L). And we can decompose
L as L = Ro Ly, where R and L; are symplectic relations, R C (Ny X
M, wy © wy,) and Ly C (N X Ni, wy, ©wn). Li is the graph of the
coisotropic projection py, : m1(L) — m1(L)/m1 (L)%, where 71 (L) /71 (L)% is
endowed with the unique symplectic structure wy, by the canonical formula
PN, WN; = WN |,y and R is the graph of a symplectic isomorphism N; —
M, dim Ny = dim M = 2m.

A simple geometric argument shows that if L € C Ay, 4, then (L) C N
and 7o (L) C M are coisotropic subspaces with equally dimensional uniquely
defined reduced symplectic spaces. Repeating the previous considerations
for these subspaces we get the characterization of the corresponding strata
of the partition. O

Let Zg” denote the Grassmannian of isotropic k-dimensional subspaces
in 2n— dimensional symplectic space.
As a consequence of the above theorem we obtain

Corollary 2.1 The strata CyAy1p, are smooth submanifolds of Aty and

codim Cp Ay ym = k* 4 k(n —m). (2)
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Proof. It is just a matter of calculation:

codim CAp—m = dim Ay, — dim Z2"
— dim ZP™ — dim Agy,_og.

Using the standard formulas for the respective dimensions we get the result.
O

Let (N, wy), (M, wyr) be two symplectic manifolds and let the sym-
plectic manifold M be defined as before in the linear case (cf. (1)). By
(L, p) we denote a Lagrangian submanifold germ in M. Now we introduce
an equivalence relation in the space of germs of Lagrangian submanifolds.

Definition 2.1 Two Lagrangian germs (L1, p1), (L2, p2) C (M, wyr ©
wp) are called equivalent if there exist two symplectomorphism germs Bj :
(N, m(p1)) — (N, m1(p2)) and Ba: (M, m2(p1)) — (M, m2(p2)) such that
the symplectomorphism By x By: M — M sends L into Ly and pp into

p2.
Now we have the preliminary

Lemma 2.1 If (L, p) is a Lagrangian germ in M, then there are local
cotangent bundle structures around m(p), say T*X and around mo(p), say
T*Y, such that (L, p) is generated in the product space M = (T*(X X
Y), wry © wr«x) by the germ of a function F: (X XY, rxxy(p)) — R
such that, in local coordinates on (X XY, mxxy(p)),

F(x7 y) = sziyj¢ij(m’ y)v (3)

i=1 j=1
for some smooth function-germs ¢;j, where txxy: T*(X xY) - X xY is

the canonical cotangent bundle projection, dim X =n, dimY = m.

Proof. Let ((p, q), (p, q)) be the Darboux coordinates on 7%(X xY'). Then

m n
Wy O Wrsx = Z dp; \dg; — Z dp; N dg;.

i=1 i=1

By [3] (Section III, 19.3) we can find partitions I U J = {1, ..., n}, IN
J=0,and TUJ = {1, ..., m}, INJ =, such that there exists a smooth
function (pr, qs, P, ¢7) — S(pr, 47, Pf, G7) which is a generating function
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for (L, p) (cf. [2, 3]). By means of the symplectomorphism ¢ of M,

(I)(pv q, D, Q) = (_QI7 pJ, PI, 47, _Qfa ﬁja ﬁfv (17) = ({7 &€, 1, Z/)7

which preserves the product structure of M, we get the generating function
(x,y) — F(z,y) for (L, p) in the canonical cotangent bundle structure
T*X xT*Y on M. We can write

F(z, y) = Fi(z) + Zzwiyjéf?ij(% y) + Fa(y)
i=1 j=1

and then taking the equivalence By x Bg, Bi(¢, ) = (£ — grad Fi(x), z),
Bs(n, y) = (n — grad F»(y), y), we get the reduced form (3). O

Proposition 2.1 If (L, p) projects onto (M, ma(p)), dim M = 2m, m <
n, then (L, p) is equivalent to its tangent space T,L with the generating
function F(x,y) =Y i i

Proof. By assumption, (L, p) can be parametrized by the mapping
®(p, 4, qr) = (¢1(D; ¢, a1), ¢5(D; G a1), a1, Y5 (D, G, q1); D> @),

ie. D*(wy Swyn) =0, where TUJ = {1, ..., n}, INJ =0, and ¢, ¢;, ¥y
are smooth map-germs. Consider the symplectomorphism =Z: N — N given

by 2(€, x) = (&1+01(&g, 21, x1), d5(&g, 2, x1), 21, 5 (Eg, 25, 21), €7, 7).
It is really a symplectomorphism: in fact,

E*(dp[ ANdqr + dpy N\ qu) =d&r Ndzxg —I—d(b[(. . ) ANdxy
+dos(..)Ndy(...);

but dp A dq — dor(p, @, qr) ANdgr — ddg(...) Ady(...) =0, so we get
E*(dpr Ndqr +dpy Ndqy) = dép AN dxp +d§y Adxy.

Then, via (271, id), the Lagrangian germ (L, p) is equivalent to the form

&5 =—-ys,ng=wmxy, & =0, where J = {1, ..., m}, and wyy ©wn = dns A
dyy — d&é N dx. But it is easy to check that this germ is generated by the
generating function F'(z, y) = > ;% TiYi. O

Let L € M be a symplectic relation. We can associate with L the
symplectic ”Gauss” map, Gr: L > p — T,L € Ay1,,, where the tangent
space T),L is identified with a linear subspace of M.
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Definition 2.2 We say that L is in general position (or that it is generic)
if G, is transversal to the stratification CApypm = Upey CiAngm. We say
that L has k-vertical position at p € L if Gp(p) € CxAptm. The index k
(which is a symplectic invariant) is called the rank of the vertical position.

We see that the O-vertical position at p corresponds to the case when
T,L € Apyyy — CApypy. From Theorem 2.1 and Lemma 2.1 we obtain the
following result.

Proposition 2.2 Ifp € L, and L has k—vertical position at p, then the
germ (L, p) is equivalent to one in (T*X x T*Y, wy Swx) generated by the
generating function

F(x,y) = Zziﬂiyjﬁbij(% Y),

i=1 j=1

where the rank of the vertical position of L at p is equal to the corank of the
matriz ((0*F/0x;0y;)(0, 0)), k = corank(¢;;(0, 0)) at (0, 0) = mxxy (p).

Let My xm (n > m) denote the space of n x m matrices of real numbers.
For each natural r, 0 < r < m, let 3, denote the subset of M,,«,, consisting
of matrices of corank r. Then X, is a submanifold of M,,«,, of codimension
r?24r(n—m) (cf. [5]). Let Eyxm, denote the set of n x m matrices of smooth
function-germs at 0 on X X Y, i.e. a representative of a germ is a smooth
mapping of some open neighborhood of 0 € X X Y into My, xm. A germ
® € Fpxm is called generic if it is transversal to all ., r =0, 1, ..., m. By
Lemma 2.1 and Proposition 2.2, to every neighborhood U of p € L, for some
choice of the cotangent bundle structure on M, we associate the generating
function

Txxy(U) =V 3 (z,y) — F(z, y),

where L is transversal to the fibering. We can treat coordinates (z, y) € U
as a parametrization of L. To each (Z, y) € U we associate the two-jet

it F =2 (i — ) (y; — 7;)aij (2, 9)-
i=1 j=1

The smooth mapping V' 3 (z, y) — aij € Mpxm will be called the one-jet
extension of the parametrization of L. Now we have
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Proposition 2.3 Let L C M be a symplectic relation in M. Then the
following conditions are equivalent
1. The mapping Gy, is transversal to the stratification of the critical set
CAn+m = U;gnzl CkATH—m
2. For any germ of a symplectic relation (L, p) the corresponding one-jet
extension of the local parametrization of L is generic.

Proof. We know by Proposition 2.2 that the corresponding stratifications
of Aptm and My, coincide. Thus the one-jet extension (a;;(z, y)) recon-
structs the Gauss map locally. So if V' 3 (x, y) — (ai;j(z, y)) is generic,
then G, is transversal to the stratification of A, 1,,, and conversely if G, is
transversal to the stratification of A,,,, then by the extension and reduc-
tion method (see also [10, 14]) the corresponding local one-jet extensions
are generic matrices. ([

Remark 2.1

A. If a;j(Z, y) is generic then ¢;;(x, y) is generic in some open neigh-
borhood of 0. And because of a;;(0, 0) = ¢;;(0, 0), rank(a;;(0, 0)) =
rank(¢;;(0, 0)), we have the local equivalence of generic matrices
(aij(z, ) and (¢ij(z, y)) (cf. [10]). In fact

(aij o w)(% y) = Zaik(x7 y)(bkl(x? y)ﬁlj(x7 y),
kl

where 1 is a local diffeomorphism, (¢ (0, 0)) = 0, and «, (3 are local
invertible matrices; (o (0, 0)) = Inxn, (45(0, 0)) = Imxm.

B. By Proposition 2.3, the k-vertical points of generic L C (N x M, wp ©
wy), dim N = 2n, dim M = 2m cannot be removed by a small pertur-
bation of L if

E4+kn—-—m)<n+m (n>m,k<m). (4)

For generic L, the isolated points of k-vertical position appear only
if m € N satisfies the equation m = (1/8)(4 + h? — s?) for some h €
N and s € N, s > 2. In this case the relation L has an isolated k-
vertical point, not removable by a small perturbation of L, for k =
(1/2)(2+ h — s). If n = m the k-vertical points generically appearing
in L are defined by the inequality k> < 2n. The isolated points of
k-vertical position appear only if n = 2h? for some h € N, and these
are 2h-vertical points.
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If n = m = 2, then the supercritical points (i.e. points p € L such
that Gr(p) € CoA4) appear in generic L as isolated points. At such points
L is generated locally by a function F(x, y) = Z?,j:l xy;¢ij(x, y), where
¢i;(0,0) = 0, and the transversality of G, to CoA4 is equivalent to the
maximal rank property, rank D®(0, 0) = 4, where ®(z, y) = (¢sj(x, y)) €
Mo yo.

If n =m =1, the supercritical points for generic L are not isolated. In
this case the generating function has the form F(z, y) = zyf(x, y), and the
transversality condition means that f has no critical point at 0. Moreover
the transversality condition ensures the infinitesimal symplectic stability of
such supercritical points.

3. The geometry of Ay,

We begin with the case n = m. Later we generalize the considerations
ton #m,n>m.

We consider the partition of the critical subset C'As,, C Asg, into the
smooth submanifolds (cf. [9]), CAan = Uj_; CkAon. Every stratum CiAa,,
for k=1, ..., n—1,is fibered in the following way:

Sp(2n — 2k) — CyAgy, L (T7)?

where p is the canonical projection into symplectic polars (symplectic-
orthogonal isotropic spaces) and r is the fiber inclusion. I,%” is the isotropic
Grassmannian and Sp(2n — 2k) denotes the group of symplectic linear au-
tomorphisms of the (2n — 2k)-dimensional linear symplectic space.

Proposition 3.1 The first homology group of the set CylAs,, for k =
1, ..., n— 1, with real coefficients is equal to R.

Proof. We take the exact homotopy sequence for the fibration
- — 1 (Sp(2n — 2k)) — m (Crhan) — 71 ((ZF™)?) — ...

Since 1 (Sp(2n — 2k)) ~ Z and 71 ((Z?")?) ~ Zs ® Z> ([11, 1]) is a torsion
group, and Sp(2n—2k) and Cy Ao, are connected, we see that Hy(CrAa,, R)
is equal to R or is trivial. We will examine the generator of the group
H;(CyAsp, R) coming from Sp(2n — 2k). We fix the point Iy = R* x RF €
(Z#™)? in the base, so over Iy we have the inclusion of the fiber r: Sp(2n —
2k) — CiAan. As a generator of Hi(Sp(2n — 2k), R) we take the class
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[7%(t)] of the matrix cycle in Sp(2n — 2k)

et 0 ... 0
0O 1 ... 0
W) =1 .
0 0 ... 1
for t € [0, 27]. Let (1, vk(t)er), (g2, ve(t)ea), .-, (En—t, V&(t)en—r) be the

complex basis of
graphy,(t) c C"F @ Cnk,

where €1, ..., n_p is the standard basis in C" %,

—_—~—

We denote by [vx(t)] the image of the generator [y(¢)] under the map-
ping
r«: Hi(Sp(2n — 2k), R) — Hi(CrA2,, R).

It is represented by the matrix X € Sp(2n), i.e.

Xa O
0 Qa
X —
Xp 0]’
0 @B
where:
1. Xa=(e1,%€1, ..., En—k, i€n—g) is an (n — k) x (2n — 2k) matrix and

the bar is the complex conjugation.
2. Qa = (Fk, 0) is a k x 2k matrix and consists of two parts: the identity
matrix Fj, and the zero matrix.
3. Xp=(wt)er, ivkt)er, -y Yu(t)en—k, iVk(t)en—k), is a matrix of the
same type as X 4.
4. QB = (Oa Ek)
We calculate

—~—

det(vx(t)) = det (é) = £e(20)" 7%, te|o, 2n].
Now we consider the mapping

det?: Ay, — S, [D]+ (det D)?,



224 S. Janeczko and M. Mikosz

where the element [D] € Ay, ~ U(2n)/O(2n) represents a Lagrangian li-
near subspace in 4n-dimensional symplectic space. We recall that the uni-
versal Maslov class ug, of the Lagrangian Grassmannian is a generator of
H'(Asy,, Z) ~ Z and it is the image of a generator of H'(S!, Z) under the
mapping det**: H'(S', Z) — H' (A2, Z) ([2], [12], [7]). Dually the map
of homology det?: Hy(As,, Z) ~ Z — H(S', Z) ~ Z is an isomorphism

—_—~—

and the image of the cycle [y(t)] under the mapping det? is equal to 2g,

where g is a generator of Hy(S', Z). We conclude that [y (t)] is nonzero.
The mapping 7, is an epimorphism, so 7, is an isomorphism and we have

Hl(CkAQn, R) ~ R. ]

By w3, we denote the element of Hy (A2, R) ~ R dual to the universal
Maslov class p2,. Thus we get

— —

[y (t)] = [deg det? (7 ()] 13, = 243,
For the inclusion

j:CkAQn%Azn, k:1,...,n—1,

we have j([vx(t)]) = 2u3,,. Thus we proved the following theorem:

Theorem 3.1 For every stratum CgAon, k=1, ..., n— 1, we can find a
cycle in Hi(CrA2n, R) ~ R realizing the class p3, € Hi(A2p, R) dual to
the universal Maslov class for the Grassmannian Aoy,.

Now we are interested in two strata: the supercritical set C,As, =
SAg, ~ A, x Ay, and the biggest stratum RSpa, = Sp(2n) consisting of the
graphs of the linear symplectomorphisms. The result for the strata RSpa,
is the same as for the strata CpAo,, where k=1, ..., n—1.

Let Iy be a fixed element of A,, and L be an arbitrary element of Agy,.
We define the image of [y under L:

Llg)={peM:3 cly (@, p) L}

which is obviously an element of A,. We consider the mapping (cf. [9])
p: Aoy, — Ay, p(L) = L(lp). The mapping p restricted to the strata CyAg,
for k=10, ..., n — 1 is not continuous; in contrast, it is continuous on the
supercritical stratum. Let j: SAg, — As, be the inclusion map and let p,
be the map p restricted to the stratum SAs,.
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Corollary 3.1
1. For the mapping ji: H1(SA2,, R) ~ R® R — Hi(As,, R) ~ R we
obtain

Jeatin, bpn) = (—a + b)psy,
where the classes p;, and p5, are dual to the universal Maslov classes
for the Grassmannians A,, and Aoy, a, b € R. In particular we have
Je(=Hs i) = 24, -
2. The map pps«: H1(SAon, R) — Hi(A,, R) is the projection on the
second factor, so pp«(v, pt) =k for all v.

The Lagrangian Grasssmannian is an orientable manifold if and only if
n is an odd integer (cf. [4]). Thus in our case the Grassmannian Ag, is not
orientable for any n € N.

Remark 3.1 The first singular stratum C7As, is coorientable in Ag,. The
coorientability determines a cohomology class in H'(As,, R).
The Grassmannian A, t.,, n > m has the stratification (see Section 2):

m—1

An+m = RSpn—Hn U U CkAn—i-m u CmAn—i-m-
k=1

The strata are fibered in the following ways:

1. the regular stratum RSPy m:

Sp(2m) —= RSppm = T2

n—m
2. the critical strata CpAp4m for k=1, ..., m —1,
Sp(2m — 2k) - CrApim —— o e X I
3. the supercritical stratum
CrNem ~ SApem =~ Ay X A,

where p is the canonical projection into symplectic polars (isotropic
spaces) and 7 is the fiber inclusion. We will examine the generators of the
groups Hi(RSpn+m, R) and Hi(CxApim, R), k= 1,..., m — 1, coming
from Sp(2m) and Sp(2m — 2k) respectively. Using analogous arguments to
the first part of this section we get
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Proposition 3.2
1. The first homology groups of the sets RSpnim and CyApim, for k =
1, ..., m—1, with real coefficients are equal to R.
2. For every stratum RSpnim and CyApim, k=1,...,m —1, we can
find a cycle whose class in Hi(Apim, R) >~ R is the class py, . dual
to the universal Maslov class for the Grassmannian Ay, .
3. For the inclusion j: SA,1m — Aptm we obtain

Ju(apiy, bpy,) = (—a +b) ity 4

where the classes py,, piy, and iy, ., are dual to the universal Maslov

classes for the Grassmannians Ny, Ay, and Ap 4, (respectively), a, b €
R.
4. The first singular set C1Ay1p, is coorientable in Apip,.
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