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Weak solution of a singular semilinear elliptic problem

Robert Dalmasso

(Received January 27, 2003)

Abstract. We study the singular semilinear elliptic equation ∆u + f(., u) = 0 in

D′(RN ), N ≥ 3. f : RN × (0,∞) → [0,∞) is such that f(., u) ∈ L1(RN ) for u > 0

and u → f(x, u) is continuous and nonincreasing for a.e. x in RN . We assume that there

exists a subset Ω ⊂ RN with positive measure such that f(x, u) > 0 for x ∈ Ω and u > 0

and that
R
RN f(x, c|x|2−N )dx < ∞ for some c > 0. Then we show that there exists

a unique solution u in the Marcinkiewicz space MN/(N−2)(RN ) such that ∆u ∈ L1(RN ),

u > 0 a.e. in RN .
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1. Introduction

We study the semilinear elliptic equation

∆u + f(., u) = 0 in D′(RN ), (1.1)

where N ≥ 3 and f satisfies the following assumptions:
(H1) f : RN × (0,∞) → [0,∞). For all u > 0, x → f(x, u) is in L1(RN ),

and u → f(x, u) is continuous and nonincreasing for a.e. x in RN ;
(H2) There exists Ω ⊂ RN with positive measure such that f(x, u) > 0

for x ∈ Ω and u > 0;
(H3) There exists c > 0 such that

∫

RN

f(x, c|x|2−N )dx < +∞.

Definition 1 u ∈ L1
loc(RN ) is a solution of (1.1) if u > 0 a.e. in RN , ∆u ∈

L1(RN ) (in the sense of distributions) and

∆u(x) + f(x, u(x)) = 0 a.e. in RN .

The aim of this paper is to give a general existence and uniqueness
result under sufficiently weak conditions.
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The particular case

f(x, u) = p(x)u−λ x ∈ RN , u > 0, (1.2)

where λ > 0 has been considered by several authors ([3, 4, 6, 7, 8, 9] and
their references). More precisely Kusano and Swanson [7] treated the case
λ ∈ (0, 1) when p ∈ Cα

loc(RN ) for some α ∈ (0, 1) and p > 0 in RN \ 0.
They established the existence of a classical solution u ∈ C2,α

loc (RN ) under
the following conditions:

(H4) There exists a constant C > 0 such that Cφ(|x|) ≤ p(x) for x ∈ RN,
where φ(t) = max|x|=t p(x), t ≥ 0;

(H5)
∫ +∞

0
tN−1+λ(N−2)φ(t) dt < ∞.

Moreover they showed that

m ≤ |x|N−2u(x) ≤ M |x| ≥ R, (1.3)

for some constants R, M ≥ m > 0.
This result was first generalized to all λ > 0 in [3]. In both cases the

upper and lower solution method was used.
Before going further we need a second definition.

Definition 2 Let 1 < p < ∞ and 1/p + 1/p′ = 1. The Marcinkiewicz
space Mp(RN ) is the space of measurable functions u on RN such that
‖u‖Mp <∞, where

‖u‖Mp = min
{

C ∈ [0,∞];
∫

K
|u(x)| dx ≤ C|K|1/p′

∀K ⊂ RN measurable
}

.

(|K| is the Lebesgue measure of K).

It is easy to verify that Mp(RN ) equipped with the ‖.‖Mp norm is
a Banach space. Moreover Mp(RN ) is continuously imbedded in L1

loc(RN )
(see [1]).

The regularity assumption on p in (1.2) was weakened in [4] to
(H6) p ∈ C(RN ), p(x) > 0 for x ∈ RN \ 0.

If moreover

(H7)
∫

RN

|x|λ(N−2)p(x) dx < ∞,
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we established the existence of a unique solution u in the Marcinkiewicz
space MN/(N−2)(RN ) satisfying ∆u ∈ L1(RN ), via the upper and lower
solution method. Assumption (H4) was not required.

The positivity assumption on p and the decay condition (H5) were re-
laxed in [8]. The authors proved the existence and uniqueness of a classical
solution vanishing at infinity under the following hypotheses:

(H8) p ∈ Cα(RN ) for some α ∈ (0, 1) and wherever p(x0) = 0 there
exists r > 0 such that p(x) > 0 for x ∈ ∂B(x0, r) where B(x0, r) is the ball
of radius r centered at x0;

(H9)
∫ +∞

0
tφ(t) dt < ∞.

It may be noted again that the above result does not require (H4).
Then Lair and Shaker [9] treated the term

f(x, u) = p(x)g(u),

where p ∈ C(RN ) is nontrivial and nonnegative and g is such that g′(s) ≤ 0
and g(s) > 0 for s > 0. Assuming (H9) they established the existence of
a unique positive solution u ∈ D(∆) decaying to zero at infinity (D(∆)
denotes the domain of the Laplace operator ∆, such that the images of its
elements are in C(RN )).

Jin [6] considered the more general case f(x, u) under some smooth-
ness assumptions. Moreover the results obtained are complementary to
the cases already mentioned. Finally Mâagli and Zribi [10] studied the case
where f(x, u) satisfies weaker regularity conditions. However their hypothe-
ses, which are different from ours, lead to the existence and uniqueness of
a continuous positive solution decaying to zero at infinity.

Now we can state our result.

Theorem 1 Let f : RN × (0,∞) → [0,∞), N ≥ 3, satisfy (H1)–(H3).
Then problem (1.1) has a unique solution u ∈ MN/(N−2)(RN ) such that
f(., u) ∈ L1(RN ), u > 0 a.e. in RN .

In Section 2 we give a preliminary result. Theorem 1 is proved in
Section 3.
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2. A preliminary result

We recall a variant of Kato’s inequality (see [2] Lemma A1 in the
Appendix).

Lemma 1 Let Ω ⊂ RN be any open set. Let v ∈ L1
loc(Ω) and f ∈ L1

loc(Ω)
be such that

∆v ≥ f in D′(Ω).

Then

∆v+ ≥ f sign+ v in D′(Ω).

Now we shall prove the following lemma which is a slight extension of
LEMMA A8 in [1].

Lemma 2 Let v ∈ L1
loc(RN ) be such that ∆v ≥ 0 in D′(RN ). If v satisfies

lim
n→∞n−N

∫

n≤|y|≤2n
|v(x + y)| dy = 0 (2.1)

for all x ∈ RN , then v ≤ 0 a.e. in RN .

Proof. By Lemma 1 we have

∆v+ ≥ 0 in D′(RN ),

i.e. v+ is subharmonic. If w is a function defined on RN and a ∈ RN ,
τaw denotes the translate of w (τaw(x) = w(x − a)). If w is integrable on
the sphere SR = {x ∈ RN ; |x| = R} we will denote the average of w over SR

by wR. Of course v+ also satisfies (2.1). Let x ∈ RN be fixed. Since the
average of v+(x + y) over n ≤ |y| ≤ 2n may be expressed as a weighted
average of (τ−xv+)r over n ≤ r ≤ 2n, (2.1) implies that there is a sequence
rn → ∞ such that (τ−xv+)rn → 0. Since v+ is subharmonic on RN , we
deduce that

v+(x) ≤ (τ−xv+)rn for a.e. x ∈ RN .

Letting n → ∞ in the above inequality we get v+(x) = 0 for a.e. x ∈ RN .
The proof of the Lemma is complete.

Remark 1 Notice that Lemma 2 is also valid for N = 1 or 2. If v ∈L1(RN )
or v ∈Mp(RN ) for 1 < p <∞, then v satisfies (2.1).
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3. Proof of Theorem 1

1) Uniqueness. The proof is the same as in [4]. For completeness we
provide the details. We shall need the following Lemma ([1, LEMMA A10]).

Lemma 3 Let p ∈ C1(R)∩L∞(R) be a nondecreasing function satisfying
p(0) = 0. For u ∈ MN/(N−2)(RN ) such that ∆u ∈ L1(RN ) we have

√
p′(u) |gradu| ∈ L2(RN ),

and
∫

p′(u)|gradu|2 +
∫

∆u.p(u) ≤ 0.

Let u1, u2 ∈ MN/(N−2)(RN ) be two solutions of problem (1.1) such
that ∆uj ∈ L1(RN ) for j = 1, 2. Let u = u1 − u2 and v = ∆u. Then
u ∈ MN/(N−2)(RN ), v ∈ L1(RN ) and uv ≥ 0 a.e. in RN by (H1). Now let
p ∈ C1(R) ∩ L∞(R) be a strictly increasing function satisfying p(0) = 0.
Then p(u)v ≥ 0 a.e. in RN and Lemma 3 implies that |gradu| = 0. We
deduce that u is a constant function in MN/(N−2)(RN ), hence u = 0.

2) Existence. We begin with the following Lemma.

Lemma 4 Let j ∈ N?. There exists a unique uj ∈ MN/(N−2)(RN ) such
that f(., uj +1/j) ∈ L1(RN ), uj ≥ 0 a.e. in RN and ∆uj +f(., uj +1/j) = 0
in D′(RN ).

Proof. Define

βj(x, u) = f
(
x,

1
j

)
− f

(
x, u +

1
j

)
, x ∈ RN , u ≥ 0,

and

βj(x, u) = 0, x ∈ RN , u ≤ 0.

Then we have:
– For all u ∈ R, x → βj(x, u) is in L1(RN );
– R 3 u → βj(x, u) is continuous and nondecreasing for a.e. x in RN ;
– βj(x, 0) = 0 for a.e. x in RN .

Since f(., 1/j) ∈ L1(RN ) Theorem 1 in [5] implies the existence of
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a unique uj ∈MN/(N−2)(RN ) satisfying βj(., uj) ∈ L1(RN ) and

−∆uj + βj(., uj) = f
(
.,

1
j

)
in D′(RN ).

Since ∆uj ≤ 0 in D′(RN ), Remark 1 and Lemma 2 imply that uj ≥ 0 a.e.
in RN . Therefore we have f(., uj + 1/j) ∈ L1(RN ) and

∆uj + f
(
., uj +

1
j

)
= 0 in D′(RN ),

and the Lemma is proved.

Now let EN be defined by

EN (x) =
1

(N − 2)ΩN |x|N−2
,

where ΩN is the volume of the unit N -ball. We recall (see the appendix
in [1]) that EN ∈MN/(N−2)(RN ) and that for any g ∈ L1(RN ), v = EN ? g ∈
MN/(N−2)(RN ) is the unique function in MN/(N−2)(RN ) satisfying−∆v = g.
We have the following Lemma.

Lemma 5 Let g ∈ L1(RN ) with compact support. Then

lim
|x|→∞

EN ? g(x)
EN (x)

=
∫

RN

g(y) dy.

Proof. We have

EN ? g(x)
EN (x)

=
∫

RN

|x|N−2

|x− y|N−2
g(y) dy,

and the result easily follows from the Lebesgue dominated convergence the-
orem.

Now we define

cj =
∫

RN

f
(
x, uj(x) +

1
j

)
dx, j ∈ N?.

Lemma 6 Let j ∈ N?. Assume that 0 < γ < cj. Then there exist Rj > 0
and aj > 0 such that

uj(x) ≥ γ

(N − 2)ΩN |x|N−2
a.e. in {x ∈ RN ; |x| ≥ Rj},
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and

ess inf
{x;|x|≤Rj}

uj(x) > aj .

Proof. Clearly (H2) implies that there exist Aj > 0 and Mj > 0 such that
∫

|x|≤Aj

min
(
f
(
x, uj(x) +

1
j

)
,Mj

)
dx > γ. (3.1)

Now define

f̃j(x) = min
(
f
(
x, uj(x) +

1
j

)
,Mj

)
1{x;|x|≤Aj}(x), x ∈ RN .

Since −∆uj ≥ f̃j a.e. in RN we obtain uj ≥ EN ? f̃j a.e. in RN . We have
EN ? f̃j ∈ C1(RN ) and EN ? f̃j > 0 on RN . By (3.1) and Lemma 5 there
exists Rj > 0 such that

EN ? f̃j ≥ γEN on {x ∈ RN ; |x| ≥ Rj},
and the Lemma follows.

Lemma 7 For every j ∈ N? we have uj + 1/j ≥ uj+1 + 1/(j + 1) a.e.
in RN .

Proof. Let u =
(
uj+1 +1/(j +1)

)−(
uj +1/j

)
. From Lemma 1 using (H1)

we deduce that

∆u+ ≥ 0 in D′(RN ).

Now define Ω = {x ∈ RN ;u(x) > 0}. Since u ≤ uj+1 − uj a.e. in RN , we
obtain that u+ ≤ 1Ω(uj+1 − uj) a.e. in RN , hence u+ ∈ MN/(N−2)(RN ).
Therefore Remark 1 and Lemma 2 imply that u ≤ 0 a.e. in RN and the
Lemma is proved. ¤

Lemma 8 For every j ∈ N? we have uj ≤ uj+1 a.e. in RN .

Proof. Using (H1) and Lemma 7 we get

uj − uj+1 = EN ?
(
f
(
., uj +

1
j

)
− f

(
., uj+1 +

1
j + 1

))
≤ 0

a.e. in RN .
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Now we claim that

sup
j∈N?

cj < ∞. (3.2)

Indeed, assume the contrary. Then there exists j0 ∈ N? such that cj0 >

(N − 2)ΩNc where c is given in (H3). By Lemma 6 there exist Rj0 > 0 and
aj0 > 0 such that

uj0(x) ≥ c

|x|N−2
for a.e. x ∈ {x ∈ RN ; |x| ≥ Rj0}, (3.3)

and

ess inf
{x;|x|≤Rj0

}
uj0(x) > aj0 . (3.4)

Let j ≥ j0. Using (3.3), (3.4) and Lemma 8 we deduce that

cj ≤
∫

|x|≤Rj0

f(x, aj0) dx +
∫

|x|≥Rj0

f(x, c|x|2−N ) dx,

and (H3) gives a contradiction.

Now we can prove the existence. By (H1) and Lemma 7 j→f(.,uj +1/j)
is nondecreasing. (3.2) and the Beppo Levi theorem for monotonic se-
quences imply that there exists g ∈ L1(RN ) such that

f
(
., uj +

1
j

)
→ g in L1(RN ) when j →∞.

Therefore

uj = EN ? f
(
., uj +

1
j

)
→ EN ? g = u

in MN/(N−2)(RN ) when j → ∞
(see [1] Lemma A4) and

−∆u = g in D′(RN ).

By Lemma 8 and the Fischer-Riesz theorem uj → u a.e. in RN . Lemma 6
and Lemma 8 imply that u > 0 a.e. in RN . Clearly we have g = f(., u).
The proof is complete. ¤
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pura Appl. 153 (1988), 191–201.

[ 4 ] Dalmasso R., Solutions positives globales d’équations elliptiques semi-linéaires
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