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Weak solution of a singular semilinear elliptic problem

Robert DALMASSO
(Received January 27, 2003)

Abstract. We study the singular semilinear elliptic equation Au + f(.,u) = 0 in
D'RY), N > 3. f: RN x (0,00) — [0,00) is such that f(.,u) € LYRYN) for u > 0
and u — f(x,u) is continuous and nonincreasing for a.e.  in RY. We assume that there
exists a subset Q C RY with positive measure such that f(z,u) > 0 for z € Q and u > 0
and that [~ f(z,clz|?~N)de < oo for some ¢ > 0. Then we show that there exists
a unique solution u in the Marcinkiewicz space MN/(N=2)(RN) such that Au € L' (RY),
u >0 ae. in RV,
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1. Introduction
We study the semilinear elliptic equation
Au+ f(,u)=0 in D'(RY), (1.1)

where N > 3 and f satisfies the following assumptions:

(H1) f: RN x (0,00) — [0,00). For all u > 0, x — f(x,u) is in L'(RY),
and u — f(z,u) is continuous and nonincreasing for a.e. z in RY;

(H2) There exists Q C RY with positive measure such that f(z,u) > 0
for x € Q and u > 0;

(H3) There exists ¢ > 0 such that

/ f(z, clz>N)dzx < +oo.
RN

Definition 1 u € L{ (RY) is a solution of (1.1) if u > 0 a.e. in RY, Au €

loc

LY(RY) (in the sense of distributions) and
Au(z) + f(x,u(z)) =0 ae. in RY.

The aim of this paper is to give a general existence and uniqueness
result under sufficiently weak conditions.
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The particular case
f(z,u) =p)u™ zecRY, u>0, (1.2)

where A > 0 has been considered by several authors ([3, 4, 6, 7, 8, 9] and
their references). More precisely Kusano and Swanson [7] treated the case
A € (0,1) when p € C2_(RY) for some a € (0,1) and p > 0 in RV \ 0.
They established the existence of a classical solution u € CIQC;?(RN ) under
the following conditions:

(H4) There exists a constant C' > 0 such that C¢(|z|) < p(z) for z € RV,
where ¢(t) = max|y— p(x), t > 0;

+oo
(H5) / tNTIAN=2) () dt < 0.
0

Moreover they showed that
m < |z|NPu(z) < M |z| >R, (1.3)

for some constants R, M > m > 0.

This result was first generalized to all A > 0 in [3]. In both cases the
upper and lower solution method was used.

Before going further we need a second definition.

Definition 2 Let 1 < p < oo and 1/p + 1/p’ = 1. The Marcinkiewicz
space MP(RY) is the space of measurable functions u on RY such that
|ul| e < 00, where

l|lul|rre = min{C € [0, oo],/ lu(z)| dz < C|K |\
K

VK c RN measurable}.

(|K| is the Lebesgue measure of K).

It is easy to verify that MP(RY) equipped with the ||.|[5;» norm is
a Banach space. Moreover MP(RY) is continuously imbedded in L%OC(RN )
(see [1]).

The regularity assumption on p in (1.2) was weakened in [4] to

(H6) p € C(RYN), p(x) > 0 for x € RV \ 0.
If moreover

(H7) / |z PN =2 p(a) da < oo,
RN
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we established the existence of a unique solution u in the Marcinkiewicz
space MN/(N=2)(RN) satisfying Au € L'(RYN), via the upper and lower
solution method. Assumption (H4) was not required.

The positivity assumption on p and the decay condition (H5) were re-
laxed in [8]. The authors proved the existence and uniqueness of a classical
solution vanishing at infinity under the following hypotheses:

(H8) p € C*(RYN) for some a € (0,1) and wherever p(zg) = 0 there
exists r > 0 such that p(z) > 0 for z € B(xq,r) where B(xg,r) is the ball
of radius r centered at xg;

(HO) /O o té(t) dt < co.

It may be noted again that the above result does not require (H4).
Then Lair and Shaker [9] treated the term

f(z,u) = p(x)g(u),

where p € C(R") is nontrivial and nonnegative and g is such that ¢'(s) <0
and g(s) > 0 for s > 0. Assuming (H9) they established the existence of
a unique positive solution u € D(A) decaying to zero at infinity (D(A)
denotes the domain of the Laplace operator A, such that the images of its
elements are in C(RY)).

Jin [6] considered the more general case f(x,u) under some smooth-
ness assumptions. Moreover the results obtained are complementary to
the cases already mentioned. Finally Maagli and Zribi [10] studied the case
where f(x,u) satisfies weaker regularity conditions. However their hypothe-
ses, which are different from ours, lead to the existence and uniqueness of
a continuous positive solution decaying to zero at infinity.

Now we can state our result.

Theorem 1 Let f: RV x (0,00) — [0,00), N > 3, satisfy (H1)-(H3).
Then problem (1.1) has a unique solution u € MM WN=2(RN) such that
fC,u) € LYRY), u> 0 a.e. in RN,

In Section 2 we give a preliminary result. Theorem 1 is proved in
Section 3.
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2. A preliminary result

We recall a variant of Kato’s inequality (see [2] Lemma Al in the
Appendix).

Lemma 1 Let @ CRY be any open set. Let v € Ll () and f € LL ()
be such that

Av>f inD(Q).
Then
Avt > fsigntv  in D'(Q).

Now we shall prove the following lemma which is a slight extension of
LEMMA A8 in [1].

Lemma 2 Letv € LL _(RY) be such that Av > 0 in D'(RYN). Ifv satisfies

loc
lim nN/ lv(x +y)|dy =0 (2.1)
o n<|y|<2n

for all x € RN, then v <0 a.e. in RV,
Proof. By Lemma 1 we have
Avt >0 in D'(RY),

i.e. vT is subharmonic. If w is a function defined on RY and a € RV,
Tow denotes the translate of w (7,w(z) = w(x — a)). If w is integrable on
the sphere S = {z € RV;|z| = R} we will denote the average of w over Sg
by wg. Of course vT also satisfies (2.1). Let z € RY be fixed. Since the
average of vt (z + y) over n < |y| < 2n may be expressed as a weighted
average of (7_v™), over n < r < 2n, (2.1) implies that there is a sequence
7, — oo such that (7_,v%), — 0. Since v* is subharmonic on RV, we
deduce that

vH(z) < (r_pvT),, forae xzeRVN.

Letting n — oo in the above inequality we get v+ (z) = 0 for a.e. x € RV,
The proof of the Lemma is complete.

Remark 1 Notice that Lemma 2 is also valid for N =1 or 2. Ifve L} (RN )
or v € MP(RY) for 1 < p < oo, then v satisfies (2.1).
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3. Proof of Theorem 1

1) Uniqueness. The proof is the same as in [4]. For completeness we
provide the details. We shall need the following Lemma ([1, LEMMA A10]).

Lemma 3 Let p € CY(R) N L>®(R) be a nondecreasing function satisfying
p(0) = 0. Foru € MN(N=2(RN) such that Au € L*(RN) we have

VP (u) |grad u| € LA(RY),

and
/p'(u)]graudu\2 —i—/Au.p(u) <0.

Let ug, up € MNN=2)(RN) be two solutions of problem (1.1) such
that Au; € LY(RY) for j = 1,2. Let u = uy — up and v = Au. Then
u e MNWN=2(RN) v e LYRN) and uv > 0 a.e. in RY by (HI1). Now let
p € CY(R) N L>®(R) be a strictly increasing function satisfying p(0) = 0.
Then p(u)v > 0 a.e. in RY and Lemma 3 implies that |gradu| = 0. We
deduce that u is a constant function in M/ =2(RN), hence u = 0.

2) Existence. We begin with the following Lemma.

Lemma 4 Let j € N*. There exists a unique u; € MN/N=2(RN) such
that f(.,uj+1/5) € LYRY), u; > 0 a.e. in RN and Auj+ f(.,u;+1/5) =0
in D'(RV).

Proof. Define
1 1 N
ﬁj(fl’au):f@;;)—f(:v,u—i—}), reR ,UZO,
and

Bi(x,u) =0, xRN uw<0.

Then we have:
— Forallu € R, x — Bj(z,u) is in LY(RY);
— R>u— fj(x,u) is continuous and nondecreasing for a.e. x in RY:
— Bj(x,0) =0 for a.e. z in RY.
Since f(.,1/5) € L'(RY) Theorem 1 in [5] implies the existence of
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a unique u; € MY/ N=2(RN) satisfying 3;(.,u;) € L'(RY) and
1y .
A+ B(u) = £ 5) in D'(RY).

Since Auj < 0 in D'(RY), Remark 1 and Lemma 2 imply that u; > 0 a.e.
in RY. Therefore we have f(.,u; +1/j) € LY(RY) and

1
Auj+f(.,uj—|—5) =0 in D'RY),

and the Lemma is proved.

Now let En be defined by

1
(N =2)Qy V=27

EN<H?) =

where Qp is the volume of the unit N-ball. We recall (see the appendix
in [1]) that Exy € MN/(N=2)(RN) and that for any g € L'(RN),v=Eyxg €
MN/(N=2)(RN) is the unique function in M/ (N=2)(RN) satisfying —Av = g.
We have the following Lemma.

Lemma 5 Let g € L*(RY) with compact support. Then

. Enyxg(z)
Jim S0 = [

Proof. We have
Ey * g(z) / 2|V
N T S o d
() A r— 9(y) dy,

and the result easily follows from the Lebesgue dominated convergence the-
orem.

Now we define
1 o
cj—/RNf(x,uj(a:)—i—j)d:c, JjeN.

Lemma 6 Let j € N*. Assume that 0 <y < ¢j. Then there exist R; > 0
and aj > 0 such that

g

N = 2)On [N a.e. in {x € RY;|z| > R;},

uj(z) >
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and

ess inf wuj(z) > aj.
J J
{;]e|<R;}

Proof. Clearly (H2) implies that there exist A; > 0 and M; > 0 such that

oy 0 e+ 3)at) x> o
Now define
Ji@) = min(f (x’“j(x) T ;)MJ) Ligaj<a;y(x), z€RY.

Since fAuj > fj a.e. in RY we obtain u; > En % fj a.e. in RY. We have
Enx f; € CHRY) and Ex % f; > 0 on RY. By (3.1) and Lemma 5 there
exists R; > 0 such that

Enx fj > vEn on {z € RY; |2| > R;},
and the Lemma follows.

Lemma 7 For every j € N* we have uj +1/j > ujy1 +1/(j + 1) a.e.
in RN,
Proof. Let u= (ujt1+1/(j+1)) — (uj+1/4). From Lemma 1 using (H1)
we deduce that

AuT >0 in D'(RY).

Now define Q = {z € RY;u(x) > 0}. Since u < uji1 — u; a.e. in RV, we
obtain that ut < 1g(ujy1 — u;) a.e. in RN, hence ut € MN/WV=2)(RN),
Therefore Remark 1 and Lemma 2 imply that u < 0 a.e. in RY and the
Lemma is proved. O

Lemma 8 For every j € N* we have uj < uji1 a.e. in RN,

Proof. Using (H1) and Lemma 7 we get
1 1
a.e. in RV,
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Now we claim that
sup ¢; < 00. (3.2)
JEN*
Indeed, assume the contrary. Then there exists jo € N* such that cj, >

(N —2)Qyc where c is given in (H3). By Lemma 6 there exist R;, > 0 and
aj, > 0 such that

wjo () > FhE for a.e. x € {x € RY;|z| > R;,}, (3.3)
x
and
ess inf  w () > aj,. 3.4
i) > (3.4

Let j > jo. Using (3.3), (3.4) and Lemma 8 we deduce that
o< [ twagdet [ ),
|z[<Rj, |=[> R,

and (H3) gives a contradiction.

Now we can prove the existence. By (H1) and Lemma 7 j— f(.,u; +1/j)
is nondecreasing. (3.2) and the Beppo Levi theorem for monotonic se-
quences imply that there exists g € L'(R"™) such that

1
f(.,uj + f) — g in LYRY) when j — oo.
J
Therefore

1
Uj :EN*f(.,u]‘—i-;) — Enxg=u
in MN/(N=2)(RN)  when j — oo
(see [1] Lemma A4) and
—~Au=g inD'RY).

By Lemma 8 and the Fischer-Riesz theorem u; — u a.e. in RY. Lemma 6
and Lemma 8 imply that u > 0 a.e. in RY. Clearly we have ¢ = f(.,u).
The proof is complete. 0
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