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Potential-theoretic study of functions

on an infinite network

Kamaleldin Abodayeh and Victor Anandam

(Received September 8, 2006; Revised December 1, 2006)

Abstract. In the context of an infinite network N , the Dirichlet problem with respect

to an arbitrary subset of vertices N is solved. Using this solution, some of the important

potential-theoretic concepts like Balayage, Domination principle, and Poisson kernel are

investigated in N .
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1. Introduction

In the context of an electric network, some of the important concepts
that are dealt with include conductance, effective resistance, capacity mea-
sure, equilibrium measure etc. (Bendito et al. [2]). These notions have their
obvious counterparts in the study of Newtonian potentials. There is also
a parallel study of these notions with probabilistic interpretations. For ex-
ample, the effective resistance has a close relation to the escape probability
for a reversible Markov chain (Ponzio [8] and Tetali [9]) which is character-
ized by the transition probability from one state to another. The similarity
between the conductance and the transition probability is obvious.

Keeping these facts in mind, a potential-theoretic study of functions on
an infinite network has been undertaken by many researchers. (See for ex-
ample, Yamasaki [10] and Premalatha et al. [7]). In this note, we solve the
Dirichlet problem on an infinite network. Using this solution, we are able
to arrive at some of the potential-theoretically important results in an in-
finite network: Balayage, Poisson kernel, Domination principle, Condenser
principle, Green kernel on a set, Capacitary functions and Dirichlet-Poisson
solution.
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2. Preliminaries

An infinite network (X, Y, r) consists of a countable set X of vertices, a
countable set Y of paths joining some of the vertices and a strictly positive
real function r on Y . The basic operator on the functions defined on X

is the Laplacian which is defined so as to bring out a certain mean-value
property of functions. In this framework, we can make enter the Cartier’s
study of harmonic functions on a tree (see Anandam and Bajunaid [1])
which he initiated in the context of studying the structure of the subgroups
of SL2(K) for a given local field K (Cartier [4]).

Our interest is to study functions defined on a network (X, Y, r) from
the classical potential-theoretic point of view which deal with Poisson kernel,
Green kernel, Green’s formulas, Balayage, Capacity, and the representation
of positive superharmonic functions by means of measures using the Green
kernel. (For these classical results we refer to the works of Kellogg [6] and
Brelot [3].)

Let X be a countable set of vertices; a countable set Y of edges joining
some pairs of nodes is given; the resulting graph is assumed to be connected,
locally finite and without any self-loops. Two vertices x and z are said to be
neighbours, denoted by x ∼ z, if and only if there is an edge joining x and
z. Assume that for each pair of distinct vertices a and b in X is associated
a number t(a, b) ≥ 0 such that t(a, b) = t(b, a); t(a, b) > 0 if and only if
a ∼ b. Actually, the definition of t(a, b) is based on the strictly positive real
function r defined on the edge set Y in the given network N = (X, Y, r).
For a vertex x, let B(x) = {z : z ∼ x}. We treat x as a vertex in B(x). We
also define t(x0) =

∑
y∼x0

t(x0, y), for x0 ∈ X. Then t(x) > 0 for every
x ∈ X. Let u(x) be a real-valued function on B(x0) for some vertex x0 ∈ X.
Then the Laplacian of u at x0 is defined by ∆u(x0) =

∑
z∼x0

t(x0, z)[u(z)−
u(x0)].

Given a subset E of X, the interior
◦
E of E is defined as

◦
E = {x : B(x) ⊂

E}; that is, x ∈
◦
E if and only if x and all its neighbours are in E. Write

∂E = E \
◦
E. A real-valued function s(x) on E is said to be superhar-

monic (respectively harmonic) on E if and only if ∆s(x) ≤ 0 (respectively
∆s(x) = 0) for every x ∈

◦
E; A real-valued function w(x) on E is sid to be

subharmonic if and only if −w(x) is superharmonic on E. A superharmonic
function s ≥ 0 on E is called a potential if and only if for any subharmonic
function w(x) on E such that w(x) ≤ s(x), we have w(x) ≤ 0. We do
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not always assume that there are positive potentials on X. We mention
the existence of positive potentials on X as an extra condition, when it is
required.

The following property of superharmonic functions defined on arbitrary
set is useful in proving the uniqueness of certain solutions.

Theorem 1 (Minimum Principle) Let F be an arbitrary set that is not
equal to X and let s be superharmonic on F . Suppose there is some x0 ∈ F ,
such that s(x0) ≤ s(x) for all x ∈ F . Then infx∈F s(x) = infz∈∂F s(z).

Proof. Let α = infx∈F s(x) and β = infz∈∂F s(z). Clearly α ≤ β. Suppose
β > α. Then x0 ∈

◦
F . Choose y ∈ X \ F . Since X is connected, there is a

path {x0, x1, . . . , xn = y} connecting x0 and y. Let i be the smallest index
such that xi 6∈

◦
F . Since xn−1 ∼ xn 6∈ F , xn−1 6∈

◦
F , and hence 1 ≤ i ≤ n−1.

Since t(x0)s(x0) ≥
∑

a∼x0
t(x0, a)s(a) and α = s(x0) ≤ s(a), it is clear

that s(a) = s(x0) for all a ∼ x0; in particular s(x1) = α. Repeating this
argument, we prove that s(xi) = α. Remark that xi ∈ ∂F ; for xi−1 ∈

◦
F

and xi−1 ∼ xi so that xi ∈ F , but xi 6∈
◦

F by assumption. Hence β =
infz∈∂F s(z) ≤ s(xi) = α, contradicting the assumption that β > α. We
conclude that β = α; that is infx∈F s(x) = infz∈∂F s(z). ¤

A similar argument proves also:

Proposition 2 Let s be a superharmonic function defined on an arbitrary
subset of X. If

◦
F is connected and s attains its minimum at a vertex in

◦
F ,

then s is constant on
◦

F .

3. Generalized Dirichlet problem

We shall consider the following problem: Suppose F is an arbitrary set
in an infinite network X. Let E ⊂

◦
F . Suppose φ(x) is a real-valued function

on F \E. Is it possible to find a unique function ψ(x) on F such that ψ = φ

on F \E and ∆ψ = 0 on E? We call this the generalized Dirichlet problem
in an infinite network. Clearly there is no solution in every possible case if
the problem is posed in this generality. The following theorem establishes
a solution under some restricted conditions.

Theorem 3 Let F be an arbitrary set in X. Let E ⊂
◦

F and f ≥ 0 be a
function defined on F \ E. Suppose there exists a superharmonic function
s ≥ 0 on F such that s ≥ f on F \E. Then there exists a function h ≥ 0 on
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F such that 0 ≤ h ≤ s on F , ∆h = 0 on E and h = f on F \ E; moreover,
if h1 is another function on F such that ∆h1 = 0 on E and h1 = f on
F \ E, then h1 ≥ h on F .

Proof. Let F be the class of real-valued functions u ≥ 0 on F such that
u = f on F \ E and ∆u ≤ 0 on E. Note F is nonempty. For if

v(x) =

{
s(x) if x ∈ E

f(x) if x ∈ F \ E,

then v ∈ F ; to see this, note that for any x0 ∈ E,
∑

y∼x0
t(x0, y)[s(y) −

s(x0)] ≤ 0 since s is assumed to be superharmonic on F . This implies that
if x0 ∈ E and x0 ∼ z 6∈ E, then v(z)− v(x0) = f(z)− s(x0) ≤ s(z)− s(x0),
so that

∑
y∼x0

t(x0, y)[v(y) − v(x0)] ≤ 0.
Define h(x) = infu∈F u(x), for every x ∈ F . Now we need to show that

h ∈ F . Clearly, h(x) = f(x) on F \ E. For any x0 ∈ E and ε > 0, there
exists u ∈ F such that h(x0) + ε > u(x0). Since u is superharmonic, we
have

u(x0) ≥
1

t(x0)

∑
x∼x0

t(x0, x)u(x) ≥ 1
t(x0)

∑
x∼x0

t(x0, x)h(x),

so that

h(x0) + ε >
1

t(x0)

∑
x∼x0

t(x0, x)h(x).

Since ε is arbitrary, we have ∆h(x0) ≤ 0 and thus h ∈ F . To show that h

is the required function, it is enough to prove that ∆h = 0 on E. Now take
u ∈ F . If x0 ∈ E, define

ux0(x) =


u(x) if x 6= x0

1
t(x0)

∑
y∼x0

t(x0, y)u(y) if x = x0.

Note that ux0(x0)− u(x0) = (1/t(x0))
∑

y∼x0
t(x0, y)[u(y)− u(x0)] ≤ 0 and

∆ux0(x0) =
∑

t(y, x0)[ux0(y) − ux0(x0)]

=
[∑

t(y, x0)u(y)
]
− t(x0)ux0(x0) = 0.

Thus, for every u ∈ F and x0 ∈ E, there exists ux0 ∈ F such that ux0 ≤
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u and ∆ux0(x0) = 0. Since h(x0) ≤ hx0(x0) ≤ h(x0), we have h(x0) =
hx0(x0); that is, ∆h(x0) = 0.

By this construction, it is clear that h is the smallest of such functions;
for, if h1 is another such function, then h1 ∈ F and hence h1 ≥ h. ¤

Corollary 4 Let F be an arbitrary set in X. Let f be a real-valued func-
tion on F . Suppose there exists a potential p on X such that |f | ≤ p on F .
Then there exists a unique function h on X such that h = f on F , ∆h = 0
on F c, and |h| is majorized by a potential on X.

Proof. In Theorem 3, replace F by X and E by F c and consider f+ and
f− separately. For the uniqueness, suppose that there is another function
h1 on X such that h1 = f on F , ∆h1 = 0 on F c and |h1| is majorized
by a potential on X. Then, take u = h − h1 on F . Since ∆u = ∆h −
∆h1 = 0 on F c, for x ∈ F c, t(x)u(x) =

∑
t(x, y)u(y). Hence t(x)|u(x)| ≤∑

t(x, y)|u(y)|, which implies that
∑

t(x, y)[|u(y)|−|u(x)|] ≥ 0; that is, |u|
is subharmonic on F c. Since |u| = 0 on F , it follows that |u| is subharmonic
on X. Since h and h1 are majorized by potentials on X, there exists a
potential q on X such that |u| ≤ q. Hence |u| ≡ 0, so that h = h1 on
X. ¤

4. Consequences of the existence of the solution to the general-
ized Dirichlet problem

The above version of the Dirichlet problem and its solution in an infinite
network (Theorem 3) has the following consequences:

Theorem 5 (Classical Dirichlet Problem) Let F be an arbitrary set in
X. Let f ≥ 0 be a real-valued function on ∂F . Suppose there exists a
superharmonic function s ≥ 0 on F such that s ≥ f on ∂F . Then there
exists a harmonic function h ≥ 0 on F such that 0 ≤ h ≤ s on F and h = f

on ∂F ; moreover, h is the smallest such solution.

Proof. Take E =
◦

F in Theorem 3. Recall that we say that a real-valued
function h defined on F is harmonic on F if ∆h = 0 on

◦
F . ¤

Corollary 6 Let F be a finite subset in X. Let f be a real-valued function
on ∂F . Then there exists a unique harmonic function h on F such that h =
f on ∂F .
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Proof. Assume first f ≥ 0. Since F is finite, f is bounded above by a
constant which is superharmonic. This proves the existence of h, when f ≥
0. For arbitrary f , write f = f+ − f− to obtain a harmonic function h on
F such that h = f on ∂F . The uniqueness of h follows from the minimum
principle on the finite set F (see Theorem 1). ¤

Theorem 7 (Potential-dominated Dirichlet Problem) Let us suppose that
positive potentials exist on X. Let F be an arbitrary subset in X. Let f

be a real-valued function on ∂F . Suppose there is a positive potential on X

such that |f | ≤ p on ∂F . Then there exists a unique harmonic function h

on F such that h = f on ∂F and |h| ≤ q on F where q is a potential on X.

Proof. By Theorem 3, there exists a harmonic function h1 ≥ 0 on F such
that h1 = f+ on ∂F and h1 ≤ p on F ; and similarly there is another
harmonic function h2 ≥ 0 on F such that h2 = f− on ∂F and h2 ≤ p on F .
Thus, h = h1 − h2 is harmonic on F , h = f on ∂F and |h| ≤ 2p on F .

For the uniqueness, suppose (for i = 1, 2) Hi is harmonic on F , Hi = f

on ∂F and |Hi| ≤ qi on F , where qi > 0 is a potential on X. Let u = H1 −
H2. Let

v =

{
|u| on F

0 on X \ F.

Then, for x0 ∈
◦

F , t(x0)u(x0) =
∑

t(x0, y)u(y) so that t(x0)|u(x0)| ≤∑
t(x0, y)|u(y)|; and hence

∆|u|(x0) =
∑

t(x0, y)[|u|(y) − |u|(x0)] ≥ 0.

That is, ∆v(x0) ≥ 0 if x0 ∈
◦

F . Clearly, ∆v(x) ≥ 0 if x 6∈
◦

F . Thus v is
subharmonic on X and v is majorized by the potential q1 + q2 on X. Hence
v ≤ 0, which means v ≡ 0; that is, H1 = H2 on F . ¤

Theorem 8 (Domination Principle) Let p be a potential on X with har-
monic support A (that is, ∆p(x) = 0 for x ∈ X \ A). Suppose s ≥ 0 is a
superharmonic function on X such that s ≥ p on A. Then s ≥ p on X.

Proof. Let E = X \ A and F = B(E) =
∪

x∈E B(x). Then E ⊂
◦

F . By
Theorem 3, there exists a function h ≥ 0 on F such that h = p on F \ E

and ∆h = 0 on E; moreover, h ≤ s on F by the construction of h. For the
same reason, h ≤ p on F also. Let
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u =

{
p − h on F

0 on X \ F.

Then, u ≥ 0 on X, u = 0 on X \ E and ∆u = 0 on E. Therefore, u is
subharmonic on X and u ≤ p on X. Hence u ≡ 0 on X and h = p ≤ s on
F ⊃ X \ A. Since p ≤ s on A also, by hypothesis, we conclude p ≤ s on
X. ¤

Theorem 9 (Green Potentials) Suppose that positive potentials exist on
X. Then, given y ∈ X, there exists a unique potential Gy(x) on X such that
∆Gy(x) = −δy(x) for all x in X; moreover Gy(x) ≤ Gy(y) for all x ∈ X.

Proof. Let p > 0 be a potential on X. In Theorem 3, take F = X and
E = X \ {y} ⊂ X =

◦
X =

◦
F . Then, there exists h ≥ 0 on F such that h = p

on X \ E and ∆h(x) = 0 for x ∈ E.
Hence on X \ E = {y}, h(y) = p(y) so that

∆h(y) =
∑

t(y, x)[h(x) − h(y)]

=
∑

t(y, x)[h(x) − p(y)]

≤
∑

t(y, x)[p(x) − p(y)]

= ∆p(y) ≤ 0,

since h ≤ p on E. Hence, h is superharmonic on X. Since h is majorized
by a potential on X, h itself is a potential on X and h 6≡ 0. Hence h > 0
on X and ∆h(x) = −cδy(x) for some constant c > 0.

Thus, if we write Gy(x) = (1/c)h(x) on F = X, we find that Gy(x) > 0
is a potential on X such that ∆Gy(x) = −δy(x). Moreover, by the above
Domination Principle, Gy(x) ≤ Gy(y) for all x ∈ X.

For the uniqueness, note that if G′
y(x) is another such potential on

X, then H(x) = Gy(x) − G′
y(x) is harmonic on X. Consequently, |H| is

subharmonic on X, majorized by the potential Gy(x)+G′
y(x), so that H ≡

0. ¤

The following corollary is given in GowriSankaran and Singman [5,
Corollary 4.1] in the context of a Cartier tree (recall that as mentioned
earlier a tree can be considered as a network) with an additional assump-
tion that the transition probability p(x, y) for x ∼ y satisfies the condition
δ ≤ p(x, y) ≤ 1/2 − δ where δ is a constant such that 0 < δ < 1/2. We
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prove it on an infinite network and without putting any extra condition.

Corollary 10 Let f be a real-valued function defined on a finite subset
F of X. Assume there exist positive potentials on X. Then there exist
potentials p1 and p2 on X, with harmonic support in F , such that f = p1 −
p2 on F .

Proof. Since F is finite and since there exist potentials on X, we can find
a positive potential p on X such that |f | ≤ p on F . Then, by Corol-
lary 4, there exists h on X such that h = f on F , ∆h = 0 on F c and
|h| ≤ Q where Q is a potential on X. Let u(x) = ∆h(x) on X, so that
u ≡ 0 on F c. Write q(x) = −

∑
a∈F u(a)Ga(x) =

∑
a∈F u−(a)Ga(x) −∑

a∈F u+(a)Ga(x) = p1(x) − p2(x), so that p1 and p2 are potentials on X,
with harmonic support in F . Note that ∆q(x) = u(x) = ∆h(x) for all
x ∈ X, so that h(x) = p1(x)−p2(x)+H(x) on X where H(x) is a harmonic
function on X. This implies that |H| ≤ p1 + p2 + |h| ≤ p1 + p2 + Q. Since
|H| is subharmonic and p1 + p2 + Q is a potential on X, H ≡ 0. Hence
h(x) = p1(x) − p2(x) on X and in particular f(x) = p1(x) − p2(x) on F . ¤

Theorem 11 (Poisson Kernel) Let F be an arbitrary subset of a network
with positive potentials. Then for y ∈ ∂F and x ∈

◦
F , there exists a unique

harmonic function Py(x) ≥ 0 on F such that Py(z) = δy(z) for z ∈ ∂F and
Py(x) ≤ q(x) on F where q is a potential on X. Moreover, if F is finite,
any harmonic function h on F is of the form h(x) =

∑
y∈∂F h(y)Py(x) for

x ∈
◦

F .

Proof. For y ∈ ∂F , let f(z) = δy(z), z ∈ ∂F , be the nonnegative function
defined on ∂F . Clearly, there are potentials on X majorizing f on ∂F . Then
(using Theorem 7), there exits a unique harmonic function Py(x) on F such
that Py(z) = f(z) on ∂F and Py(x) ≤ q(x) on F where q is a potential on
X.

To prove the second part, suppose h is a harmonic function defined
on a finite set F . Consider u(x) =

∑
y∈∂F h(y)Py(x) for x ∈ F . For x ∈

◦
F , note that ∆u(x) =

∑
y∈∂F h(y)∆Py(x) = 0 and for z ∈ ∂F , u(z) =∑

y∈∂F h(y)Py(z) = h(z). Thus, (u − h) is a harmonic function on F ,
vanishing on the boundary ∂F . Since F is finite, by the minimum principle,
u − h ≡ 0 on F . Hence h(x) =

∑
y∈∂F h(y)Py(x), for x ∈ F . ¤
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Remark Let F be a finite subset in X with or without positive potentials.
Then, Theorem 3 permits us to establish the existence of the unique Poisson
kernel Py(x), y ∈ ∂F , x ∈ F . Consequently, given any real-valued function
f on ∂F , h(x) =

∑
y∈∂F f(y)Py(x) is the unique harmonic function on F ,

with boundary values f on ∂F .

Corollary 12 Let F be an arbitrary subset of a network with positive
potentials. Let f ≥ 0 be a function defined on ∂F , such that f ≤ p on ∂F

where p is a potential on X. Then, H(x) =
∑

y∈∂F f(y)Py(x) is the unique
harmonic function on F with values f on ∂F .

Proof. We know that there exists a unique harmonic function H ≥ 0 on
F , such that H = f on ∂F and H ≤ p on F (see Theorem 7). Enumerate
the vertices on ∂F as a1, a2, . . ..

Let uk(x) =
∑k

n=1 f(an)Pan(x). Then uk is harmonic on F such that
uk(an) = f(an) for 1 ≤ n ≤ k and uk(an) = 0 if n > k. Consider uk − H

which is harmonic on F with boundary values ≤ 0 on ∂F . Let w = sup(uk−
H, 0). Then w is nonnegative subharmonic on F such that w = 0 on ∂F .

Now for each n, there exists a potential qn on X such that Pan(x) ≤
qn(x) on F . Let

w1 =

{
w on F

0 on X \ F
.

Then w1 is nonnegative subharmonic on X and w1 is majorized by a poten-
tial q also. Hence w1 ≤ 0, which implies that w ≡ 0. Consequently uk ≤ H

on F .
Hence u(x) =

∑
y∈∂F f(y)Py(x) = supk uk(x) ≤ H(x) on F , so that

u(x) ≥ 0 is harmonic on F and for any y ∈ ∂F , u(y) = f(y). That is, u is a
solution on F to the Dirichlet problem with boundary values f on ∂F . But
H also is such a solution. Thus from the uniqueness of the solution (see
Theorem 7), we conclude H(x) =

∑
y∈∂F f(y)Py(x) on F . ¤

Corollary 13 Let F be an arbitrary subset of an infinite network with
positive potentials. Let f be a real-valued function defined on ∂F such that
|f | ≤ p on ∂F , where p is a potential on X. Then h(x) =

∑
y∈∂F f(y)Py(x)

is the unique harmonic function on F with boundary values f on ∂F .

Theorem 14 (Balayage) Let s ≥ 0 be a superharmonic function on X

and let A be an arbitrary set in X. Then there exists a superharmonic
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function RA
s ≥ 0 on X with the following properties:

(1) RA
s ≤ s on X.

(2) RA
s = s on A.

(3) ∆RA
s (x) = 0 for each x ∈ X \ A.

RA
s is the smallest nonnegative superharmonic function on X with the above

three properties.

Proof. Let E = X \ A. Let F =
∪

x∈E B(x), so that E ⊂
◦

F . Then by
Theorem 3, there exists a function h ≥ 0 on F such that h ≤ s on F , h = s

on F \ E and ∆h(x) = 0 for every x ∈ E. Define

RA
s =

{
s on X \ F

h on F
.

Then RA
s has all the properties mentioned in the statement. ¤

Theorem 15 (Condenser Principle) Let A and B be two disjoint sets in
X. Let E = X \ (A ∪ B). Then there exists a bounded function u on X

such that
(1) ∆u(x) = 0 if x ∈ E.
(2) ∆u(x) ≤ 0 and u(x) = 1 if x ∈ A.
(3) ∆u(x) ≥ 0 and u(x) = 0 if x ∈ B.
(4) 0 ≤ u(x) ≤ 1 for x ∈ X.
Moreover,
(a) if there are no positive potentials on X, then u is uniquely determined;
(b) if there are positive potentials on X and if A is finite, then there exists

such a uniquely determined function u that is majorized by a potential
on X.

Proof. Let F =
∪

x∈E B(x). Then E ⊂
◦

F . Define a function f(x) on F \E

as follows

f(x) =
{

1 if x ∈ (F \ E) ∩ A

0 if x ∈ (F \ E) ∩ B
.

Since 0 ≤ f ≤ 1 on F \ E, by Theorem 3, there exists a function h on F

such that 0 ≤ h ≤ 1 on F , h = f on F \ E and ∆h(x) = 0 if x ∈ E. Define

u(x) =


h(x) if x ∈ F

1 if x ∈ (X \ E) ∩ A

0 if x ∈ (X \ E) ∩ B

.
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Then u(x) has the properties (1) to (4).
As for the uniqueness: In part (a) suppose there are no positive poten-

tials on X. Let v(x) be another function on X, having the properties (1)
to (4). Then, as remarked earlier, |u − v| is a subharmonic function on X.
Since |u − v| is bounded and since there are no positive potentials on X,
|u − v| is a constant; this constant should be 0, since |u − v| vanishes on
A ∪ B.

For part (b), suppose there are positive potentials on X. Then (see
Balayage), since A is finite, RA

1 (x) is a potential on X and the construction
given in Theorem 3 shows that u(x) ≤ RA

1 (x) on X.
Now suppose w(x) is another function on X, majorized by a potential

and having the properties (1) to (4). Then, it follows that |u − w| is a
subharmonic function on X, majorized by a potential on X. Hence, u −
w ≡ 0 on X. ¤

Theorem 16 (Green Kernel on a Set) Let F be an arbitrary set in an
infinite network with positive potentials. Then for any y ∈

◦
F , there exists

a unique potential GF
y (x) on F such that ∆GF

y (x) = −δy(x) for x ∈
◦

F ,
GF

y (z) = 0 for z ∈ ∂F and GF
y (x) ≤ q(x) on F where q is a potential on X.

Proof. Take (see Theorem 9) the Green potential Gy(x) > 0 on X, which
satisfies the condition ∆Gy(x) = −δy(x) for all x ∈ X. Then (see Theo-
rem 7) there exists a harmonic function h on F such that h(z) = Gy(z) for
z ∈ ∂F . Define GF

y (x) = Gy(x) − h(x) on F . Then GF
y (x) has the above

stated properties. ¤

Theorem 17 (Dirichlet-Poisson Solution) Let E be an arbitrary set in an
infinite network with positive potentials. Let F =

∪
x∈E B(x). Let f and

g be real-valued functions on X such that |f | ≤ q on F \ E, where q is
a potential on X and g vanishes outside a finite set. Then there exists a
unique function u on X such that ∆u = −g on E, u = f on X \ E and
|u| ≤ p on E where p is a potential on X.

Proof. Since |f | ≤ q on F \ E (see Theorem 3), there exists a unique
harmonic function h on F such that h = f on F \ E and |h| ≤ q on F .
Define

w(x) =

{
h(x) if x ∈ E

f(x) if x ∈ X \ E
.
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Then, define for each a ∈ E, the function φa(x) in F such that ∆φa(x) =
−δa(x) for x ∈ E, φa(x) = 0 for x ∈ F \ E and φa(x) ≤ qa(x) on F where
qa is a potential on X. We shall assume that φa(x) is defined on X by
giving the value 0 for vertices outside F . Let Ga be the Green function as
in Theorem 9 and let s(x) =

∑
a∈E g(a)φa(x). Since g has a finite support,

s(x) is well-defined on X, ∆s(x) = −g(x) for x ∈ E, s(x) = 0 on X \E and

|s(x)| ≤
∑
a∈E

|g(a)|Ga(x) = q2(x).

Note that q2 is a potential on X. Let u(x) = w(x) + s(x). Then ∆u(x) =
−g(x) if x ∈ E and u(x) = f(x) if x ∈ X \ E. Moreover |u(x)| ≤ |w(x)| +
|s(x)| ≤ q(x) + q2(x) = p(x) on E and p is a potential.

For the uniqueness of the solution, we follow the proof of Theorem 7.
¤

Corollary 18 Let E be a finite subset of an infinite network, with or
without positive potentials. Let f and g be real-valued functions on X.
Then there exists a unique function u on X such that ∆u = −g on E and
u = f on X \ E.

Corollary 19 Let E be an arbitrary set in an infinite network X with
potentials, such that ∂E is a finite set. Let F =

∪
x∈E B(x). Suppose h

harmonic on X \E. Then there exist a harmonic function H on X and two
potentials p1 and p2 on X with finite harmonic support in F \ E such that
h = p1 − p2 + H outside E.

Proof. Remark first that ∂E may be a finite set, even if E and X\E are not
finite sets. Take for example, X as a star domain (See Cartier [4, p. 255])
with N ≥ 2 branches and E as the infinite branch C1 = {s0,1, s1,1, s2,1, . . .}.
Then ∂E = {s0,1} and neither E nor X \ E is finite.

Secondly, remark that F \E =
∪

z∈∂E B(z). For if x ∈
◦
E, then B(x) ⊂

E and hence B(x)∩ (F \E) = ∅. Consequently, since we are assuming that
∂E is finite, F \ E should also be a finite set.

Now in the above theorem, take g ≡ 0 and f as the function h on X \E

extended by 0 on E. Since F \E is finite, there exists a potential q such that
|f | ≤ q on F \ E. Then there exists a function u on X such that ∆u = 0
on E and u = f on X \ E.

By the definition of f , ∆u = 0 at each interior point of X \ E; and
remark that F c is contained in the interior of X \ E. (For, it is clear that
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F c ⊂ X \E. Let x ∈ F c, and y ∼ x. Then y ∈ X \E; for, otherwise, y ∈ E

and x ∈ B(y) ⊂ F , a contradiction. This means that if x ∈ F c, then x is
an interior point of X \E.) Consequently, ∆u = 0 on F c. Thus, if ∆u 6= 0,
then x ∈ F \ E which is a finite set. Write s(x) = −

∑
a∈F\E ∆u(a)Ga(x)

on X.
Then s(x) = p1(x) − p2(x) on X, where p1 and p2 are potentials on X

with harmonic support in F \ E; further, ∆s(x) = ∆u(x) for all x ∈ X,
so that u(x) = s(x) + H(x) where H(x) is harmonic on X. Consequently,
h(x) = p1(x) − p2(x) + H(x) on X \ E. ¤

Remark Since every potential with finite harmonic support in X is
bounded (Domination principle, Theorem 8), from the above corollary we
conclude that if h is a harmonic function defined outside a finite set E in
a network X with potentials, then there exists a unique harmonic function
H on X such that |h − H| ≤ p outside a finite set, where p is a bounded
potential on X with finite harmonic support.

For the uniqueness, note that if |h − H ′| ≤ p′ outside a finite set for
another pair (H ′, p′), then |H − H ′| ≤ p + p′ outside a finite set and hence
H − H ′ ≡ 0.

Theorem 20 (Generalized Capacitary Functions) Let A and B be two
finite disjoint sets in an infinite network X with positive potentials. Let φ

and ψ be nonnegative functions defined on A and B respectively. Then there
exits a unique function u on X majorized by a potential such that u = φ on
A, u = ψ on B and ∆u = 0 on X \ (A ∪ B).

Proof. Let E = X \ (A ∪ B). Let F =
∪

x∈E B(x), so that E ⊂
◦

F . Define

f(x) =

{
φ(x) if x ∈ (F \ E) ∩ A

ψ(x) if x ∈ (F \ E) ∩ B
.

Since A and B are finite we can find a positive potential p on X such that
p(x) ≥ φ(x) on A and p(x) ≥ ψ(x) on B. Hence p(x) ≥ f(x) on F \ E.
Then by Theorem 3, there exists a function h on F such that ∆h = 0 on
E, h = f on F \ E and h ≤ p on F . Define

u(x) =


h(x) if x ∈ F

φ(x) if x ∈ A

ψ(x) if x ∈ B

.
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Then u(x) is a well defined function on X, having the stated properties.
The uniqueness of u follows, as in the previous cases, from the fact that u

is majorized by a potential on X. ¤
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