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Abstract. The concept of Chu correspondences between formal contexts is introduced.

The construction of formal concepts induces a functor Gal from the category of Chu cor-

respondences to the category of sup-preserving maps between complete lattices. It turns

out that the category of Chu correspondences has a ∗-autonomous category structure and

the functor Gal is shown to preserve the ∗-autonomous category structure.
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Introduction

In spite of the extensional philosophy behind modern mathematics as
is expressed by the adoption of set theory as the foundation, quite a few
mathematical structures carry certain dualism, in the sense that their struc-
tures are described by relationships between two entities quite different in
nature. For example, in classical geometry, the “structure” of a plane is
described by the incidence relation between points and lines.

In modern geometry, a space has its “locus” and its “function algebra”
and the structure is often encoded either in the evaluation map.

Most of these “dualism” are captured by the mathematical structure
called formal contexts (A, X, R), where

R : A × X → V

is a map. A formal concept (A, X, R) is called binary if V = {0, 1}. A
binary formal context is give by a relation R ⊂ A × X defined by R = 1.

For classical plane geometry, A is the set of points and X is the set
of lines and R(a, x) = 1 means the point a is on the line x. For modern
geometry, A is the set of points of a manifold and X is the set of admissible
functions on A and R(x, a) = x(a). A topological space is a formal context
(A, A, R), where A is the set of closed subsets and R(a, F ) = 1 iff a ∈ F .
For the model theory of a first order theory T , A is a model of T and X is
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the set of first order formula with one free variable and a |= ϕ means ϕ(a)
is true on A (See §A).

The homomorphisms between mathematical structures with formal con-
text descriptions (Ai, Xi, |=i) (i = 1, 2), usually induce Chu maps, namely
a pair of maps

` : A1 → A2 r : X2 → X1

satisfying the relation

R(`(a1), x2) = R(a1, r(x2)),

for a1 ∈ A1 and x2 ∈ X2.
For example, a continuous map between topological spaces (Ai, Xi, |=i

) (i = 1, 2), is a map ` : A1 → A2 satisfying `−1(X2) ⊂ X1 so that (`, r)
with r := `−1 : X2 → X1 is a Chu map. Conversely, a Chu map (`, r) from
(X1, A1, |=1) to (X2, A2, |=2) comes from a continuous map `.

For many mathematical structures, hence, the category of structure
preserving maps is also described as the subcategory of Chu maps where
the objects are restricted to those formal contexts arising from them. The
category of Chu maps has rich methods of construction of objects and for ex-
ample is a *-autonomous category. Although, for example, the dual (A, A)
of the formal context (A, A) of a topological space is not a topological space
in the usual sense, we can extend the second factor A of (A, A) in a natural
way to a topological structure on the huge set A.

The mechanism which enables the formal context to describe mathe-
matical structure concisely is the formal concept lattice construction.

The formal concept lattice of a binary formal context (A, X, R) is the
intersection closed family A ⊂ pow(A) generated by the polar sets

x∗ := {a ∈ A | R(a, x) = 1},

which is a complete lattice. This lattice is anti-isomorphic to the intersection
closed family X ⊂ pow(X) generated by the polar sets

a∗ := {x ∈ X | R(a, x) = 1}.

More generally, if the value space V is a Heyting algebra, then the formal
concept lattice is defined.

The formal concept lattice of the binary formal context (V, V ∗, R),
where V is a linear space and R(v, φ) = 1 iff φ(v) = 0 is the space of
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linear subspaces of V , which is the disjoint union of various Grassmann
manifolds. The meet is the set theoretical intersection and the join is the
sum of linear subspaces. The formal concept lattice of the binary formal
context (A, A, R) of a topological space is anti-isomorphic to A.

In fact, we have a functor, called Galois functor [13], from the category
of Chu maps to the category of join preserving maps between complete
lattices, which preserve the *-autonomous category.

The Galois functor is neither faithful nor full in general. For example,
if Ci = (Vi, V ∗

i , |=) (i = 1, 2) are formal contexts of linear spaces, the Chu
map (f, f∗) which corresponds to a linear map f : V1 → V2 corresponds to
the same join preserving map as the Chu map (cf, (cf)∗) does if c 6= 0.
Hence the Galois functor is not faithful. On the other hand, suppose V2 =
V1 × W and consider the join preserving map

κ : Gal(C1) → Gal(C2)

which maps a subspace U ⊂ V1 to U × W ⊂ V2. Then κ corresponds to no
linear maps from V1 to V2, whence the Galois functor is not full.

The Chu correspondences fill the gaps between Chu maps and the join
preserving map. In fact, the “Galois functor” is defined also on the category
of Chu correspondences and turns out to be full and faithful.

The definition of Chu correspondences is as follows. Let Ci=(Ai,Xi,Ri)
(i = 1, 2) be binary formal contexts. A Chu correspondence from C1 to C2

in the weak sense is a pair of maps L : A1 → pow(A2) and R : X2 →
pow(X1) satisfying

R2(La1, x2) = R1(a1, Rx2),

where

R : pow(A) × pow(X) → {0, 1}

is defined by

R(B, Y ) = inf
b∈B, y∈Y

R(b, y).

Hence R(B, Y ) = 1 iff R(b, y) = 1 for all b ∈ B and y ∈ Y .
A Chu correspondence (L, R) is a Chu correspondence in the weak

sense satisfying the condition that Lx1 ⊂ X2 and Ra2 ⊂ A1 are closed for
all x1 ∈ X1 and a2 ∈ A2.
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The category of Chu correspondences is equivalent to the category of
join preserving maps. Not only the concept of formal contexts gives us a
method of describing concisely complete lattices, but also the concept of Chu
correspondence often enables us to describe concisely join preserving maps,
whose description generally tends to be complicated in finite mathematics.

There are natural operations such as tensor products, internal homs,
duals in the category of Chu correspondences, which corresponds to those
in the category of join preserving maps.

In fact, we show that the category of Chu correspondences has a struc-
ture of *-autonomous category, for which the Galois functor is a *-autono-
mous functor.

In Section one, we recall a few facts from lattice theory and formal con-
cept analysis to fix terminologies and notations. In Section two, we define
the concept of Chu correspondence and study its basic properties and give
basic bijection between Chu correspondences and bonds (Theorem 38). Sec-
tion three gives examples of Chu correspondences, both concrete and con-
ceptual. Most examples show there are much more Chu correspondences
than Chu maps between formal contexts in general. In Section four, we
introduce the category ChuCors of Chu correspondences and define the
Galois functor Gal from ChuCors to the category Slat of join preserving
maps between complete lattices. It turns out that the functor Gal is full
and faithfull (Theorem 65) and in fact is an equivalence of categories (The-
orem 73). In Section Five, we give an explicit description (Theorem 98) of
the structure of the ∗-autonomous category of ChuCors induced from that
of Slat via the equivalence functor Gal. In the appendex A, we apply the
concept of Chu correspondences to model theory which we hope shows its
potential usefulness.

By the paper [8] we notice that some of our results are already obtained
in the works of W. Xia [16], Ganter and Wille[9]. However our article
has intention and scope which differ considerably from them and seems to
put the theme in more appropriate context and we hope that it widens its
applicability to other domains of researches.
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1. Preliminaries

1.1. Galois pairs
We recall briefly basic facts on Galois pairs between complete lattices.

The proofs of propositions are mostly omitted since they are more or less
well-known. For details, see [4, 6] for example.

Let L,M be posets. A Galois pair from L to M is a pair

ϕ = (ϕ∗ : L → M, ϕ∗ : M → L)

of maps satisfying

ϕ∗` ≤ m ⇐⇒ ` ≤ ϕ∗m

for ` ∈ L, m ∈ M .

Proposition 1 Let ϕ be a Galois pair. Then
( i ) ϕ∗ preserves the join and ϕ∗ the meet, whence if L and M are lattices

both are order preserving.
(ii) The operator Cϕ := ϕ∗ϕ∗ : L → L is order increasing, namely, Cϕ` ≥

` for ` ∈ L and the operator Cϕ := ϕ∗ϕ
∗ : M → M is order decreasing.

Example 1 Let Li = powAi (i = 1, 2) and f : A1 → A2 be a map. Then,
for Mi ⊂ Ai (i = 1, 2) ,

f(M1) ⊂ M2 ⇐⇒ M1 ⊂ f−1M2,

whence (f, f−1) is a Galois pair. We have in fact

f
(⋃

i

Mi

)
=

⋃
i

f(Mi), f−1
(⋂

i

Mi

)
=

⋂
i

f−1(Mi).

Note that f−1 preserves also the join because it has also right adjoint (See
(3)).

f−1f(M1) is the saturation of M1 with respect to the equivalence rela-
tion a ∼ b

def⇐⇒ f(a) = f(b) and ff−1M2 = M2
⋂

Im(f).

Proposition 2 If Li (i = 1, 2) are complete, then the components ϕ∗ and
ϕ∗ of the Galois pair ϕ determine each other by

ϕ∗m =
∨

ϕ∗`≤m

` (1)
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and

ϕ∗` =
∧

`≤ϕ∗m

m.

Proposition 3 Every join preserving map ϕ∗ : L → M defines a unique
Galois pair ϕ = (ϕ∗, ϕ∗), where the second component is defined by (1).

Proposition 4 If a join preserving map ϕ∗ is bijective, then it is an order
isomorphism and

ϕ∗ = (ϕ∗)−1.

Proposition 5 For m ∈ M and ` ∈ L,

ϕ∗ϕ
∗ϕ∗` = ϕ∗`,

ϕ∗ϕ∗ϕ
∗m = ϕ∗m

Proposition 6 Cϕ is a closure operator in the sense that it is order pre-
serving, increasing and idempotent.

Cϕ is a coclosure operator in the sense that it is order preserving, de-
creasing and idempotent.

Let C be a closure operator on a complete lattice L and let LC be the
set of all the closed sets, namely, the set of C-fixed subsets.

Lemma 7 (i) The subset LC ⊂ L is meet-closed and hence a complete
lattice with the join of N ⊂ LC is given by

C
( ∨

x∈N

x
)
.

(ii) Let ι : LC ⊂ L be the inclusion. Then the pair (C, ι) is a Galois pair
from L to LC , namely,

` ≤ ιm ⇔ C` ≤ m

for ` ∈ L and m ∈ LC .
(iii) In particular, ϕ : L → Lϕ is join-preserving and for N ⊂ L

C
(∨

N
)

= C
( ∨

x∈N

Cx
)
.
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(iv) A map f : X → L is uniquely extended to a join-preserving map

f∗ : pow(X) → LC

by

f∗(N) = C
( ∨

n∈N

f(n)
)
.

Proof. (i). Let `i ∈ LC (i ∈ I). From
∧

j `j ≤ `i, it follows C
∧

j `j ≤
C`i = `i for all i ∈ I, whence

C
∧
j

`j ≤
∧
i

`i.

On the other hand, since C is increasing,

C
∧
j

`j ≥
∧
i

`i.

Hence
∧

i `i ∈ LC .
(ii). Let m ∈ LC and ` ∈ L. If ` ≤ ιm, then C` ≤ Cm = m. On the

other hand, if C` ≤ m, then ` ≤ C` ≤ m = ιm.
(iii). Obvious since, in LC , the join of CN is given by the right hand

side. ¤

Hence we have

Proposition 8 The fixed point set Lϕ := {` ∈ L | Cϕ` = `} is meet closed
and Mϕ := {m ∈ L | Cϕm = m} is join closed.

The correspondence ϕ∗ induces an isomorphism

Lϕ
'→ Mϕ,

whose inverse is ϕ∗.

Let Gϕ := {(`, m) | ϕ∗` = m and ϕ∗m = `} with the product order.
The order is defined (`1, m1) ≤ (`2, m2) if and only if `1 ≤ `2. In fact
`1 ≤ `2 implies m1 = ϕ∗`1 ≤ ϕ∗`2 = m2.

Proposition 9 The poset Gϕ is a complete lattice with∧
i

(`i, mi)=
(∧

i

`i, ϕ∗
∧
i

`i

)
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∨
i

(`i, mi)=
(
ϕ∗

∨
i

mi,
∨
i

mi

)
.

Proof. For ` ∈ Cϕ,

(`, ϕ∗`) ≤ (`i, mi) for all i ∈ I

⇐⇒ ` ≤ `i for all i ∈ I

⇐⇒ ` ≤
∧
i∈I

`i

⇐⇒ (`, ϕ∗`) ≤
(∧

i∈I

`i, ϕ∗
∧
i∈I

`i

)
¤

Define πL : Gϕ → L and πM : Gϕ → M respectively by πL(`, m) = `

and πM (`, m) = m. Then πL is meet preserving injection with the image
Lϕ and πM is join preserving injection with the image Mϕ.

1.2. The category Slat of join preserving maps
We recall briefly the ∗-autonomous category Slat of join preserving

maps between complete lattices, which is briefly touched in [1, 10]. See
for the detail in [13]. See [11, 2] for basic terminologies of category theory
and [7, 1, 2, 5] for basic facts on autonomous categories and ∗-autonomous
categories.

The complete lattice 2 = {0, 1} with 0 < 1 is the unit object with
Slat(2, L) ' L. The tensor L1 ⊗L2 is defined to be the set of its bi-ideals,
namely, the down-closed subsets T ⊂ L1 × L2 which and join-biclosed, in
the sense that, for Ai ⊂ Li and `i ∈ Li (i = 1, 2)

A1 × {`2} ⊂ T implies
(∨

A1, `2

)
∈ T

and

{`1} × A2 ⊂ T implies
(
`1,

∨
A2

)
∈ T.

The bi-ideals `1 ⊗ `2 (`i ∈ Li) which is the smallest bi-ideal containing
(`1, `2) forms a dense subset of L1 ⊗ L2. The tensor bifunctor L1, L2 7→
L1 ⊗ L2 and natural isomorphisms
• a(L1, L2, L3) : (L1 ⊗ L2) ⊗ L3 → L1 ⊗ (L2 ⊗ L3),
• `L : 2 ⊗ L → L,
• rL : L ⊗ 2 → L,
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• s(L1, L2) : L1 ⊗ L2 → L2 ⊗ L1

give the category Slat a symmetric monoidal category structure [13], [10].
Moreover this category is closed. In fact, if we denote by L1 ( L2

the homset Slat(L1, L2) regarded as a complete lattice by the partial order
defined pointwise, then the functor L ( (−) is a right adjoint to (−) ⊗ L,
namely, there are natural isomorphisms for A, B ∈ Slat,

Slat(A ⊗ L, B) ' Slat(A, L ( B).

If we put A = 2, since Slat(2, L) ' L, we have in particular a natural
isomorphism

Slat(2, L ( B) ' Slat(2 ⊗ L, B) ' Slat(L, B),

and the category Slat is enriched over itself, namely, there are composition
arrows

c(L1, L2, L3) : (L2 ( L3) ⊗ (L1 ( L3) → (L1 ( L3)

which give the compositions of Slat. See [13], [5].
The category Slat is in fact a ∗-autonomous category. First, it is self-

dual, namely, there is an isomorphic functor

(−)∗ : Slat → Slatop,

which maps L to the dual L∗ and ϕ∗ : L1 → L2 to ϕ∗ : L2 → L1, which
is meet preserving and hence join preserving from L∗

2 to L∗
1. In particular,

there are natural isomorphisms

Slat(L1, L2) ' Slat(L∗
2, L∗

1). (2)

Moreover 2 is a dualizing object of Slat. In fact, putting L1 = L, L2 = 2
in (2),

Slat(L, 2) ' Slat(2∗, L∗) ' Slat(2, L∗) ' L∗,

since 2 is self-dual. Hence 2 is a dualizing object in Slat.
Finally, the tensors and the internal homomorphisms are related by the

isomorphism

L1 ⊗ L2 ' (L1 ( L∗
2)

∗

where `1⊗`2 is mapped to f`1⊗`2 : L1 → L∗
2, which maps ⊥ to >, (`1 ↓)\{⊥}

to `2 and other elements to ⊥ [13].
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A

B

[[L][L]

a

b

L bt

L a

1.3. Operators induced from correspondences
We recall basic facts on correspondences between sets mainly to fix

notations. A correspondence from a set A to B is a map

L : A → pow(B),

and will be denoted as

L : A ; B.

Its graph [L] ⊂ A × B is defined by

[L] = {(a, b) | b ∈ La},

and its transpose

tL : B → pow(A)

is defined by

tLb = {a | b ∈ La}.

We identify a map f : A → B with the correspondence from A to B

which maps a to the singleton set {f(a)}.
Denote by Cors(A, B) the poset of all the correspondences from A to
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B, with L1 ≤ L2 be defined by

L1a ⊂ L2a for all a ∈ A.

Define (
L1

⋂
L2

)
a = L1a

⋂
L2a.

Then, we have obviously

Proposition 10 The correspondences L ↔ [L] ↔ tL define poset isomor-
phisms:

Cors(A, B) ' pow(A × B) ' Cors(B, A).

Moreover[
L1

⋂
L2

]
= [L1]

⋂
[L2],

t
(
L1

⋂
L2

)
= tL1

⋂
tL2.

Identifying a1∈A1 with the singleton {a1}, the complete lattice pow(A1)
is a free sup-lattice generated by A1. Hence a map L : A1 → pow(A2)
induces two join preserving maps

L∗ : pow(A1) → pow(A2)

and

L◦ : pow(A1) → pow(A2)op,

which are defined respectively by

L∗K1 =
⋃

a∈K1

La

and

L◦K1 =
⋂

a∈K1

La,

for K1 ⊂ A1.
The adjoint L∗ : pow(A2) → pow(A1) of L∗ is characterized by

L∗K1 ⊂ K2 ⇐⇒ K1 ⊂ L∗K2
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whence

L∗K2 =
⋃

L∗K1⊂K2

K1 = {a1 ∈ A1 | La1 ⊂ K2},

for K2 ⊂ A2.
Similarly, the adjoint L◦ : pow(A2)op → pow(A1) of L◦ is characterized

by

L◦K1 ⊃ K2 ⇐⇒ K1 ⊂ L◦K2.

From this we have

Proposition 11 (i) For a2 ∈ A2 and K1 ⊂ A1,

a2 ∈ L◦K1 ⇐⇒ K1 ⊂ tLa2.

(ii) For Ki ⊂ Ai (i = 1, 2),

L◦K1 ⊃ K2 ⇐⇒ K1 × K2 ⊂ [L] ⇐⇒ L◦K2 ⊃ K1.

(iii)

L◦ = (tL)◦.

Proof. The first assertion follows from the following equivalence.

a2 ∈ L◦K1 ⇔ a2 ∈ La1 for all a1 ∈ K1

⇔ a1 ∈ tLa2 for all a1 ∈ K1

⇔K1 ⊂ tLa2.

The second follows from the following.

K1 × K2 ⊂ [L]⇔K1 × {a2} ⊂ [L] for all a2 ∈ K2

⇔K1 ⊂ tLa2 for all a2 ∈ K2

⇔ a2 ∈ L◦K1 for all a2 ∈ K2

⇔K2 ⊂ L◦K1.

Since L◦ is join preserving when regarded as a map from pow(A2) to
pow(A1)op it suffices to show L◦{a2} = tLa2, which follows from

a1 ∈ L◦{a2}⇔ a2 ∈ L◦{a1} = La1

⇔ a1 ∈ tLa2,

for a1 ∈ A1. ¤
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A

B

[[L]
K

L K

L  M

M

[L]

*

*

Proposition 12 The pairs (L∗, L∗) and (L◦, L◦) are Galois pairs respec-
tively from powA1 to powA2 and from powA1 to powAop

2 .

By Proposition 1, we have

Corollary 13 The operator L∗ preserves the unions and L∗ the intersec-
tions. The operators L◦ and L◦ convert unions to intersections.

Remark If a map f : A1 → A2 is considered as a correspondence Lf by
Lfa = {fa}, then for Ki ⊂ Ai (i = 1, 2)

(Lf )∗K1 = f(K1),

(Lf )∗K2 = f−1K2 = (tLf )∗K2,

(tLf )∗K1 = f!(K1) := {a2 ∈ A2 | f−1a2 ⊂ K1}.

In this case,

Lf∗ a L∗
f = (tLf )∗ a (tLf )∗, (3)

whence (Lf )∗ preserves the union, (tLf )∗ the intersection, and (tLf )∗ =
(Lf )∗ both.

In the rest of this section, we prove a few properties of L∗.
We have the following expression for L∗.

Proposition 14 L∗K =
(
(tL)∗Kc

)c.
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Proof. Define R : pow(A2) → pow(A1) by

RK2 = (L∗Kc
2)

c.

Since (−)c converts joins to meets, L∗ meets to meets, and (−)c meets to
joints, it follows that both R and (tL)∗ preserves the joins. Hence it suffices
to prove R{a2} = tLa2, which is seen as follows.

a1 ∈ R{a2}⇐⇒ a1 /∈ (L∗){a2}c

⇐⇒La1 6⊂ {a2}c

⇐⇒ a2 ∈ La1

⇐⇒ a1 ∈ tLa2.

¤

Corollary 15 The correspondence L → L∗ reverses the order.

The correspondences form a category with the usual composition
definted as follows. The composition L2 ◦ L1 of Li : Ai → Ai+1 (i = 1, 2) is
defined by

[L2 ◦ L1] :=
{

(a1, a3) ∈ A1 × A3

∣∣∣ L1a1

⋂
tL2a3 6= ∅

}
.

Obviously the correspondence L 7→ L∗ is functorial. Namely we have

Proposition 16 Let Li : Ai → Ai+1 (i = 1, 2) be correspondences. Then

(L2 ◦ L1)∗ = (L2)∗ ◦ (L1)∗.

(L2 ◦ L1)∗ = (L1)∗ ◦ (L2)∗.

Proof. The former assertion is obvious, since both sides preserve joins and
maps a1 ∈ A1 to (L2)∗L1a1.

The latter assertion follows from the former since, for Ki ⊂ Ai (i = 1, 3)

K1 ≤ (L1)∗(L2)∗K3⇐⇒(L1)∗K1 ≤ (L2)∗K3

⇐⇒(L2)∗(L1)∗K1 ≤ K3

⇐⇒(L2 ◦ L1)∗K1 ≤ K3

⇐⇒K1 ≤ (L2 ◦ L1)∗K3.

¤
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A

X
P

M

P M

P  N

N M  N

1.4. Basic concepts of formal concept analysis
We recall basic framework of formal concept analysis. See [9, 6] for the

detail.
A formal context is a triple (A, X, P ) where P is a correspondence from

a set A to a set X. When P is clear from the context, we write x ∈ Pa as
a |= x and denote the formal context simply as (A, X, |=). The transpose
(X, A, tP ) will be denoted by (A, X, P )∗ and called the dual of (A, X, P ).

The correspondence induces join preserving maps, called the polar maps,

P◦ : pow(A) → pow(X)op

and

P ◦ : pow(X) → pow(A)op.

A formal context is called extensional and intentional when P ◦ and P◦
are injective respectively.

By Proposition 11,

N ⊂ P◦M ↔ M × N ⊂ P ↔ M ⊂ P ◦N.

Since the pair (P◦, P ◦) is a Galois pair from powA to (powB)op,

CP := P ◦P◦
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is a closure operator of the complete lattice powA and

CP := P◦P
◦

is a coclosure operator of the complete lattice (powB)op and hence is a
closure operator of powB.

The fixed points of CP forms the intersection closed sublattice which is
anti-isomorphic to the fixed points sets of CP .

We give the following specific terminologies and notations for this spe-
cial case. When P is clear from the context, we write M ′ = P◦M and N ′ =
P ◦N . For a subset M of A, the subset M ′′, also written as M , is called
the closure of M . When M ′′ = M , the subset M is called closed. We use
similar terminologies for subsets of X. The set of all the closed subsets of
A and X are denoted respectively by A(C) and X (C).

A formal concept of C is a pair (M, N) ∈ powA × powX satisfying
M = N ′ and N = M ′. A formal concept is usually written either as
(M, M ′) or as (N ′, N), with closed M and N .

The set of all formal concepts is denoted by Gal(C) with the order

(M1, N1) ≤ (M2, N2)
def⇐⇒ M1 ⊂ M2,

which is equivalent to N1 ⊃ N2 since the polar map is order reversing.
By Section 1.1, the polar map defines isomorphisms.

A(C) ' X (C)op ' Gal(C), (4)

and the join and meet of (Mi, Ni)i∈I are given respectively by∨
i

(Mi, Ni) =
((⋂

i

Ni

)′
,
⋂
i

Ni

)
=

(⋃
i

Mi,
(⋃

i

Mi

)′
)

and ∧
i

(Mi, Ni) =
(⋂

i

Mi,
(⋂

i

Mi

)′
)

=
((⋃

i

Ni

)′
,
⋃
i

Ni

)
.

Note that each a ∈ A defines a formal concept (a, a′) called a token-
based concept. Similarly, each x ∈ X defines a formal concept (x′, x) called
a type-based concept.

Since every concept (E, F ) is written either as the join

(E, F ) =
∨
a∈E

(a, a′)
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and as the meet

(E, F ) =
∧
x∈F

(x′, x),

we have the following theorem.

Theorem 17 The token-based concepts are
∨

-dense in Gal(C) and the
type-based ones are

∧
-dense in Gal(C).

Example 2 A set A defines a formal context P(A) := (A, pow(A), ∈),
called the power context of the set A. Then

Gal(P(A)) = pow(A).

Example 3 Let > = P({ ∗ }). Then

Gal(>) ' pow({ ∗ }) ' 2.

Similarly ⊥ = >∗ has the concept lattice pow({ ∗ })op ' 2∗ ' 2.

From a formal context C = (A, X, |=), we define anthor one

powC := (powA, powX, |=)

by

M |= N
def⇐⇒ m |= n for all m ∈ M and n ∈ N.

The following obvious lemma will be used frequently.

Lemma 18 For M ⊂ A and N ⊂ X,

M |= N ⇐⇒ M |= N ⇐⇒ M |= N.

Proof.

M |= N ⇐⇒ M ⊂ N ′ ⇐⇒ M ⊂ N ′ ⇐⇒ M |= N.

The other equivalence is proved similarly. ¤

Proposition 19 The map (M, N) 7→ (powM, powN) induces a bijec-
tion:

ι : Gal(C) ≈→ Gal(powC).
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Proof. Let M ⊂ A. Denote by M∗ the polar of M ∈ powM with respect
to the context powC. Then N ∈ M∗ means M |= N which is equivalent
to N ⊂ M ′. Thus

M∗ = pow(M ′).

Suppose now M = {Mi | i ∈ I} ⊂ powA. Then

M∗ =
⋂
i∈I

M∗
i =

⋂
i∈I

pow(M ′
i) = pow

(⋃
i∈I

Mi

)′
.

This proves M∗ = pow(
⋃

M)′. Suppose (M, N ) is a formal concept of
powC. Then

M = M∗∗ = pow(
⋃

M) = pow(M),

where M =
⋃
M. Similarly

N = pow(N),

with N =
⋃

N . Moreover, pow(M) = pow(N ′) implies M = N ′. Similarly
N = M ′ holds. Hence (M,N) is a formal concept for the context K and
ι(M, N) = (M, N ). ¤

Let A be an intersection closed family of subsets of A.

Proposition 20

Gal(A, A, ∈) ' A,

Gal(A, A, 3) ' Aop.

Proof. Denote A1 = A and X1 = A. The polar of x ∈ X1 = A is x ∈
pow(A) itself and since A is intersection closed, the polar of F ⊂ A is
written as

⋂
F ∈ A, whence the set of closed sets of A coincides with A.

Hence the formal concept can be written as (E, E ↑) (E ∈ A), where E ↑=
{F ∈ A | E ⊂ F}.

The second follows from the first one, since the formal concepts are
(E ↑, E) (E ∈ A). ¤

1.5. Chu maps
A Chu map from a formal context C1 = (A1,X1, |=) to C2 = (A2,X2, |=)

is a pair of maps (f : A1 → A2, g : X2 → X1) satisfying, for all (a1, x2) ∈
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A1 × X2,

f(a1) |= x2 ⇐⇒ a1 |= g(x2).

Usually the concept of Chu maps is considered to be the correct concept of
morphism between formal concepts [1].

The set of Chu maps from C1 to C2 is denoted by ChuMaps(C1, C2).

Example 4 A map f : A1 → A2 induces a Chu map

(f, f−1) : (A1, pow(A1), ∈) → (A2, pow(A2), ∈),

since

f(a1) ∈ B ⇔ a1 ∈ f−1B,

by the definition of f−1.

In fact, we have the following.

Proposition 21 The correspondence

Map(A1, A2) 3 f 7→ (f, f−1) ∈ ChuMaps(P(A1), P(A2))

is a bijection.

Proof. If

(f, g) : (A1, pow(A1), ∈) → (A2, pow(A2), ∈)

is a Chu map, then g = f−1, since the condition

a1 ∈ g(B) ⇔ f(a1) ∈ B

implies g(B) = f−1B. ¤

For a Chu map γ = (f, g), define γ∗ : Gal(C1) → Gal(C2) by

γ∗(M, M ′) = (f(M), f(M)′)

and

γ∗ : Gal(C2) → Gal(C1)

by

γ∗(L′, L) = (g(L)′, g(L)).
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Then we have

γ∗(M, M ′) ≤ (L′, L) ⇐⇒ (M, M ′) ≤ γ∗(L′, L), (5)

from which it follows that γ∗ preserves the join and γ∗ the meet.
Not that the equivalence (5) is rewritten as

f(M)′ ⊃ L ⇐⇒ M ⊂ g(L)′

which is equivalent to

f(M) |= L ⇐⇒ M |= g(L)

which follows directly from the defining property of the Chu maps.
We have other expressions of γ∗ and γ∗.

Proposition 22

γ∗((N ′, N)) = ((g−1N)′, g−1N),

γ∗((K, K ′)) = (f−1K, (f−1K)′).

Proof. It suffices to show that f(N ′)′ = g−1N , which follows from

y ∈ f(N ′)′ ⇐⇒ f(N ′) |= y

⇐⇒N ′ |= g(y)

⇐⇒ g(y) ∈ N = N

⇐⇒ y ∈ g−1N.

The other equality follows similarly. ¤

2. Chu correspondence

There may be no Chu maps between formal contexts although there
are many join preserving maps between their Galois lattices. We extend
the concept of Chu maps to Chu correspondences which provide us rich
relations between formal contexts.

2.1. Definition
Let Ci = (Ai, Xi, Pi) (i = 1, 2) be formal contexts. A pair ϕ =

(Lϕ, Rϕ) is called a correspondence from C1 to C2 if Lϕ and Rϕ are corre-
spondences respectively from A1 to A2 and from X2 to X1. Lϕ and Rϕ are
called the extent and the intent parts of ϕ respectively.
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We use the notational conventions introduced for correspondences in
§1.3. For example, Lϕ∗ denotes the unique extension of Lϕ to the join
preserving map from pow(A1) to pow(A2).

Definition 1 A correspondence ϕ from C1 to C2 is called a Chu corre-
spondence in the weak sense if for every a1 ∈ A1 and x2 ∈ X2

Lϕa1 |= x2 ⇔ a1 |= Rϕx2.

Definition 2 A Chu correspondence ϕ in the weak sense from C1 to C2

is called simply a Chu correspondence if both Lϕa1 ⊂ A1 and Rϕx2 ⊂ X1

are closed for every a1 ∈ A1 and x2 ∈ X2.

Proposition 23 Let ϕ be a Chu correspondence in the weak sense from
C1 to C2. Define a correspondence ϕ from C1 to C2 by

Lϕa1 = Lϕa1

and

Rϕx2 = Rϕx2.

Then ϕ is a Chu correspondence.

Proof. Let a1 ∈ A1 and x2 ∈ X2. Then

Lϕa1 |= x2 ⇐⇒Lϕa1 |= x2 ⇐⇒ Lϕa1 |= x2 ⇐⇒ a1 |= Rϕx2

⇐⇒ a1 |= Rϕx2 ⇐⇒ a1 |= Rϕx2.

¤

A Chu correspondence ϕ : C1 → C2 is called a strong isomorphism
if there are bijections

f : A1 → A2, g : X2 → X2

satisfying

Lϕa1 = {f(a1)}, Rϕx2 = {g(x2)}

for a1 ∈ A1 and x2 ∈ X2. (f, g) is called a generator of the the strong
isomorphism ϕ. We note that there may be generally many generators of a
Chu correspondence ϕ.
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Example 5 Let C1 = C2 = (V, V ∗, ⊥), where V is a finite-dimensional
linear space over a field k and v ⊥ w means w(v) = 0. Then the Chu
correspondences

(a idV , b idV ∗) a, b ∈ k \ {0}

in the weak sense have the same closures.

Lemma 24 Let (f, g) be a generator of a strong isomorphism ϕ. Then
(f−1, g−1) is a Chu correspondence in the weak sense and its closure is a
strong isomorphism.

2.2. Basic properties of Chu correspondences

Proposition 25 Let ϕ be a Chu correspondence. Then for N1 ⊂ A1 and
M2 ⊂ X2,

(Lϕ∗N1)′ = Rϕ
∗N ′

1,

(Rϕ∗M2)′ = Lϕ
∗M ′

2.

In other words, the following diagrams commute:

pow(A1) pow(X1)

pow(A2) pow(X2)

-polar

?

Lϕ∗

?

Rϕ
∗

-polar

pow(A1) pow(X1)

pow(A2) pow(X2)

¾polar

6
Lϕ

∗
6
Rϕ∗

¾polar

Proof. Write L = Lϕ and R = Rϕ for brevity. Then x2 ∈ (L∗N1)′ if and
only if L∗N1 |= x2 if and only if N1 |= Rx2 if and only if Rx2 ⊂ N ′

1 if and
only if x2 ∈ R∗N ′

1.
The other assertion is proved similarly. ¤

Conversely, we have

Proposition 26 A correspondence ϕ is a Chu correspondence if

(Lϕ∗N1)′ = Rϕ
∗N ′

1 for every N1 ⊂ A1.

Similarly, ϕ is a Chu correspondence if

(Rϕ∗M2)′ = Lϕ
∗M ′

2 for every M2 ⊂ X2.
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Proof. Let a1 ∈ A1 and x2 ∈ X2.

Lϕa1 |= x2 ⇐⇒ x2 ∈ (Lϕa1)′ = Rϕ
∗(a′1)

⇐⇒Rϕx2 ⊂ a′1

⇐⇒ a1 |= Rϕx2,

Hence ϕ is a Chu correspondence and the first assertion holds.
The latter can be proved similarly. ¤

Hence we have the following propositions.

Proposition 27 A correspondence ϕ is a Chu correspondence in the weak
sense if and only if

(Lϕa1)′ = Rϕ
∗a′1 for all a1 ∈ A1

if and only if

(Rϕx2)′ = Lϕ
∗(x′

2) for all x2 ∈ X2.

Proposition 28 If ϕ is a Chu correspondence from C1 to C2, then for
a1 ∈ A1

Lϕa1 = (Rϕ
∗a′1)

′

and for x2 ∈ X2

Rϕx2 = (Lϕ
∗x′

2)
′.

In particular, Lϕ and Rϕ determine each other.

Note that Lϕ∗N1 might not be closed even if ϕ is a Chu correspondence
and N1 ⊂ A1 is closed.

The following property of the join-preserving operator

Lϕ∗ : pow(A1) → pow(A2)

will be used frequently.

Proposition 29 If ϕ is a Chu correspondence in the weak sense from C1

to C2, then

Lϕ∗N1 = Lϕ∗N1
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for N1 ⊂ A1. In particular

Lϕ∗a1 = Lϕa1

for a1 ∈ A1. Hence if ϕ is a Chu correspondence then

Lϕ∗a1 = Lϕa1.

Proof. Suffices to show

(Lϕ∗N1)′ = (Lϕ∗N1)′.

Let x1 ∈ X1. Then

x1 ∈ (Lϕ∗N1)′ ⇐⇒Lϕ∗N1 |= x1

⇐⇒N1 |= Rϕx1

⇐⇒N1 |= Rϕx1

⇐⇒Lϕ∗N1 |= x1 ⇐⇒ x1 ∈ (Lϕ∗N1)′.

¤

The right adjoint

Lϕ
∗ : pow(A1) → pow(A2)

has the following basic properties.

Proposition 30 (i) If N2 ⊂ A2 is closed then Lϕ
∗N2 ⊂ A1 is closed.

(ii) The operator Lϕ
∗ preserves intersection.

(iii) For E ⊂ A2,

Lϕ
∗E ⊂ Lϕ

∗E.

Proof. Let M2 = (N2)′ so that N2 = M ′
2. Then by Proposition 25

Lϕ
∗N2 = Lϕ

∗(M2)′ = (Rϕ∗M2)′,

whence Lϕ
∗N2 is closed, whence the assertion (i).

The assertion (ii) holds by basic properties Corollary 13 of Galois pairs.
Since Lϕ

∗E is closed and includes Lϕ
∗E, we have the assertion (iii).

¤

Definition 3 Let Ci (i = 1, 2) be formal contexts. A correspondence
L : A1 → powA2 is called a continuous extent correspondence from C1 to
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C2 if

L∗ : powA2 → powA1

preserves the closed sets.
Similarly R : X2 → pow(X1) is called a continuous intent correspon-

dence from C1 to C2 if R∗ preserves the closed sets.

If ϕ is a Chu correspondence, Lϕ is a continuous extent relation and Rϕ

is a continuous intent relation from C1 to C2. In fact the converse holds.

Theorem 31 Suppose L : A1 → powA2 is a continuous extent relation
from C1 to C2. Then there is a correspondence R : X2 → powX2 with
(L, R) being a Chu correspondence from C1 to C2.

Proof. Define R by

Rx2 = (L∗x′
2)

′ for x2 ∈ X2.

Then, for a1 ∈ A1 and x2 ∈ X2,

a1 |= Rx2 ⇐⇒ a1 ∈ (Rx2)′ = L∗x′
2 = L∗x′

2

⇐⇒La1 ⊂ x′
2 ⇐⇒ La1 |= x2,

whence (L, R) is a Chu correspondence. ¤

Similarly, we have the following:

Theorem 32 Suppose R : X2 → powX1 is a continuous intent correspon-
dence from C1 to C2. Then there is a correspondence L : A1 → powA2 with
(L, R) being a Chu correspondence from C1 to C2.

2.3. Description by Bonds
Chu correspondences are described by bonds introduced by Ganter and

Wille [9]. Let Ci = (Ai, Xi, |=) (i = 1, 2) be formal contexts.

Definition 4 A bond from C1 to C2 is a correspondence Z from A1 to
X2 satisfying the condition that both Za1 and tZx2 be closed for x2 ∈ X2

and a1 ∈ A1.

Example 6 If (f, g) is a Chu map from C1 to C2, then the correspon-
dence Z from A1 to X2 defined by Za1 := f(a1)′, which is also determined
by tZx2 = g(x2)′ is a bond.
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Example 7 If E1 ⊂ A1 and F2 ⊂ X2, the subset Z = E1 ×F2 ⊂ A1 ×X2

is a bond if and only if E1 and F2 are closed.

Example 8 If C = (A, X, P ) is a formal context, then P ⊂ A × X is
obviously a bond from C to C, called the tautological bond.

We denote by Bond(C1, C2) the set of all the bonds from C1 to C2,
equipped with the partial order Z1 ≤ Z2 defined by [Z1] ⊂ [Z2]. (See
Section 1.3)

Proposition 33 Bond(C1, C2) is the intersection closed subset of
pow(A1 × X2). In particular, it is a complete lattice with the meet op-
eration given by the intersection.

Proof. Suppose Bi (i ∈ I) are bonds from C1 to C2. Then B :=
⋂

i∈I Bi

defined by

Ba1 =
⋂
i∈I

Bia1

for a1 ∈ A1 is also a Bond. In fact Ba1 is closed and by Proposition 10

tBx2 =
⋂
i∈I

tBix2

is also closed. ¤

We show that there is an anti-isomorphic correspondence between the
complete lattice of Chu correspondences and that of bonds.

2.3.1. Bonds defines Chu correspondences First we show that
bonds define Chu correspondences.

Proposition 34 Let Z : C1 → C2 be a bond. Define a correspondence
ϕZ : C1 → C2 by

(LϕZ )a1 = (Za1)′ ⊂ A2 for a1 ∈ A1

and

(RϕZ )x2 = (tZx2)′ ⊂ X1 for x2 ∈ X2.

Then ϕZ is a Chu correspondence from C1 to C2.
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Proof. Let (a1, x2) ∈ A1 × X2. Then

Lϕa1 |= x2 ⇔ (Z a1)′ |= x2

⇔ x2 ∈ Za1 = Za1

⇔ a1 ∈ tZx2 = Zx2

⇔ a1 |= (Zx2)′ = Rϕx2.

Hence ϕ is a Chu correspondence. ¤

Example 9 Suppose E1 ⊂ A1 and F2 ⊂ X2 are closed. The Chu corre-
spondence ϕ corresponding to the bond E1 × F2 satisfies

Lϕa1 =
{

F ′
2 if a1 ∈ E1

A2 otherwise.

whence

[Lϕ] = E1 × F ′
2

⋃
(E1)c × A2.

Similarly

[Rϕ] = E′
1 × F2

⋃
(A1) × (A2)c.

Example 10 The tautological bond defines the identity Chu correspon-
dence.

2.3.2. Bonds defined by Chu correspondences Conversely let ϕ be
a Chu correspondence from C1 to C2. Define a correspondence Zϕ from A1

to X2 by

Zϕa1 := (Lϕa1)′.

Example 11 The identity Chu correspondence defines the tautological
bond.

Proposition 35 Zϕ is a bond from C1 to C2.

Proof. Put Z = Zϕ for brevity. Then for a1 ∈ A1, Zϕa1 is obviously closed
by definition.

For x2 ∈ X2,

tZx2 = {a1 | x2 ∈ Za1} = {a1 | x2 ∈ (Lϕa1)′}.
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Since

x2 ∈ (Lϕa1)′ ⇐⇒ Lϕa1 |= x2 ⇐⇒ a1 |= Rϕx2,⇐⇒ a1 ∈ (Rϕx2)′,

we have
tZx2 = (Rϕx2)′,

which implies tZx2 is closed. ¤

Proposition 36 The correspondences ϕ 7→ Zϕ and Z 7→ ϕZ are inverse
to each other.

Proof. Let Z be a bond. Since ZϕZ a1 = (LϕZ a1)′ = Za1 = Za1, we have
ZϕZ = Z.

On the other hand, let ϕ be a Chu correspondence. Then

LϕZϕ
a1 = (Zϕa1)′ = Lϕa1 = Lϕa1,

whence LϕZϕ
= Lϕ, which implies ϕZϕ = ϕ. ¤

Proposition 37 Let Ci = (Ai, Xi, |=) (i = 1, 2) be formal contexts and
Z : A1 → X2 be a bond from C1 and C2.
( i ) For N1 ⊂ A1,

((Lϕ)∗N1)′ = Z◦N1.

(ii) The subset Z◦N1 ⊂ X2 is closed for N1 ⊂ A1 and Z◦M2 ⊂ A1 is also
closed for M2 ⊂ X2.

Proof.

((Lϕ)∗N1))′ =
⋂

m∈(Lϕ)∗N1

m′

=
⋂

n∈N1

⋂
m∈Lϕn

m′

=
⋂

n∈N1

(Lϕn)′

=
⋂

n∈N1

Zn

= Z◦N1.

The assertion (ii) follows from (i). It is however obvious since Z◦N =⋂
n∈N Zn and Zn’s are closed by definition. ¤
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2.4. The complete lattice of Chu correspondences
Let Ci = (Ai, Xi, |=) ((i = 1, 2)) be formal contexts. Let ChuCors(C1,

C2) denotes the set of Chu correspondences from C1 to C2 with the order
defined by ϕ1 ≤ ϕ2 if and only if Lϕ1 ⊂ Lϕ2 . Note that by Proposition 28
and Corollary 15, this is equivalent to Rϕ1 ⊂ Rϕ2 .

By Proposition 36, we have

Theorem 38 The correspondence which assigns to each Chu correspon-
dence ϕ the bond Zϕ is a bijection between ChuCors(C1, C2) to Bond(C1,
C2). In fact, as complete lattices, we have

ChuCors(C1, C2) ' Bond(C1, C2)∗.

Proof. It remains to check that the bijection reverse the order. Suppose
α ≤ β as Chu correspondences. Then, for a1 ∈ A1,

Zαa1 = (Lαa1)′ ⊃ (Lβa1)′ = Zβa1.

Hence Zα ≥ Zβ. ¤

We write

C1 1 C2 := {[Z] | Z ∈ Bond(C1, C∗
2)}, (6)

which consists of the graph of correspondences Z : A1 → A2 for which both
Za1 and tZa2 are closed for ai ∈ Ai (i = 1, 2).

From Theorem 38 and Proposition 33

Proposition 39 The poset ChuCors(C1, C2) is complete.

For a Chu correspondence ϕ from C1 to C2, define a Chu correspon-
dence ϕ∗ from C∗

2 to C∗
1 by

Lϕ∗ = Rϕ, Rϕ∗ = Lϕ.

Obviously we have

Proposition 40 The correspondence ϕ 7→ ϕ∗ defines a poset isomorphism

ChuCors(C1, C2) ' ChuCors(C∗
2, C∗

1).

Proposition 41

ChuCors(C, ⊥) ' A(C),

ChuCors(>, C) ' X (C).
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Proof. By Theorem 38, it suffices to show

Bond(C, ⊥) ' A(C).

A bond Z from C to ⊥ is a subset of A×{∗ }, which corresponds to a closed
subset of A, whence the former assertion. The latter is proved similarly.

¤

We see that the above isomorphisms are natural.

Proposition 42 If ϕ : C1 → C2 is a Chu correspondence, then the fol-
lowing diagram commutes:

ChuCors(C1,⊥) A(C1)

ChuCors(C2,⊥) A(C2)

-'

-'

6
ChuCors(ϕ,1)

6
Lϕ

∗

ChuCors(⊥,C1) X (C1)

ChuCors(⊥,C2) X (C2)
?

ChuCors(1,ϕ)

-'

?

Rϕ
∗

-'

Proof. Describe ⊥ as ({0, 1}, { ∗ }, {(1, ∗ )}). Let ψ : C2 → ⊥. The bond
Zψ is given by

Zψ = {(a2, ∗ ) | a2 ∈ A2, Lψa2 |= ∗},

which correspondes to Lψ
∗{1} ⊂ A2.

On the other hand,

Zψ◦ϕ = {(a1, ∗ ) | a1 ∈ A1, Lψ◦ϕa1 |= ∗ }.

Since

Lψ◦ϕa1 |= ∗⇔Lψ◦ϕa1 ⊂ {1}
⇔a1 ∈ Lψ◦ϕ

∗{1} = (LψLϕ)∗{1} = Lϕ
∗Lψ

∗{1}.

The last equality follows from Proposition 16. This proves the commuta-
tivity of the left diagram. The comutativity of the right diagram can be
proved similarly. ¤

3. Examples of Chu correspondences

3.1. Simple examples
Let C = (B1, B2, ≤), where B1 = B2 = B = {0, 1}. Then the set of

closed sets of B1 and B2 are respectively {0, 01} and {1, 01}. In particular



Chu Correspondences 177

there are four correspondences Li (1 ≤ i ≤ 4) from B1 to B1 whose images
are closed sets, namely,

L L0 L1
L1 0 0
L2 0 B
L3 B 0
L4 B B

.

To check if L is a continuous intent map, we compute L∗K for closed K =
0, 01.

L L∗0 L∗B
L1 B B
L2 0 B
L3 1 B
L4 ∅ B

,

whence only L1 and L2 are the extent parts of Chu correspondences. By
Proposition 28, the intent parts are computed for example as follows:

R20 = (L2
∗0′)′ = (L2

∗0)′ = 0′ = B

and

R21 = (L2
∗1′)′ = (L2

∗B)′ = (B)′ = 1.

By similar calculation, we have

R R0 R1
R1 1 1
R2 B 1

.

The bonds corresponding to the Chu correspondences ϕi = (Li, Ri) (i =
1, 2) is described as follows:

Zϕ1 :
0 1

0 1 1
1 1 1

Zϕ2 :
0 1

0 1 1
1 0 1

.

3.2. Chu correspondences which are not Chu maps
We give an example of a formal context with Chu auto correspondences

which are not Chu maps.
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(2,bc)

(
�

, abc)

(123, 
�

)

(23,c)

(1, a)

Let C = (A, X, R) with A = {1, 2, 3}, X = {a, b, c} and R is given
by the following table:

a b c

1 1 0 0
2 0 1 1
3 0 0 1

The Galois lattice of C is described as follows:
There are 43 Chu correspondences given as follows, where a corre-

spondence ϕ is described by the triple ((Lϕ1)′, (Lϕ2)′, (Lϕ3)′): (0, 0, 0),
(0, 0, c), (0, 0, bc), (0, 0, a), (0, 0, abc), (0, c, c), (0, c, bc), (0, c, abc),
(0, bc, bc), (0, bc, abc), (0, a, a), (0, a, abc), (0, abc, abc), (c, 0, 0), (c, 0, a),
(c, c, c), (c, c, bc), (c, c, abc), (c, bc, bc), (c, bc, abc), (c, a, a), (c, abc, abc),
(bc, 0, 0), (bc, 0, a), (bc, c, c), (bc, bc, bc), (bc, bc, abc), (bc, a, a),
(bc, abc, abc), (a, 0, 0), (a, 0, c), (a, 0, bc), (a, c, c), (a, c, bc), (a, bc, bc),
(a, a, a), (a, a, abc), (a, abc, abc), (abc, 0, 0), (abc, c, c), (abc, bc, bc),
(abc, a, a), (abc, abc, abc).

Among these Chu correspondences, only the three (a, bc, bc), (a, c, bc),
(bc, a, a) come from Chu maps.

3.3. Chu maps as Chu correspondences

Proposition 43 Let Ci = (Ai, Xi, |=) (i = 1, 2) be formal contexts and
(f, g) be a pair of maps f : A1 → A2 and g : X2 → X2. Then (f, g) is a
Chu map if only if (f, g) is a Chu correspondence in the weak sense when
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regarded as a correspondence from C1 to C2. In particular, its closure ϕ

defined by

Lϕ(a1) = f(a1) Rϕ(x2) = g(x2)

is a Chu correspondence.

Proof. Suppose (f, g) is a Chu map. Let a1 ∈ A1 and x2 ∈ X2. Then

a1 |= {g(x2)} ⇔ a1 |= g(x2) ⇔ f(a1) |= x2 ⇔ {f(a1)} |= x2,

whence (f, g) is a Chu correspondence in the weak sense.
Conversely if (f, g) is a Chu correspondence in the weak sense, then

a1 |= g(x2) ⇔ a1 |= {gx2} ⇔ {f(a1)} |= x2 ⇔ f(a1) |= x2,

whence (f, g) is a Chu map. ¤

Remark The following example shows that Chu maps are very few com-
pared with Chu correspondences. Let

C = ({1, 2, 3}, {1, 2, 3}, P )

where P is defined by P (i, j) = 1− δij , where δ is the Kronecker’s symbol.
Then Gal(C) =

{
(A, Ac) | A ⊂ {1, 2, 3}

}
' pow({1, 2, 3}).

Since every subset of {1, 2, 3} is closed, any relation L ⊂ {1, 2, 3}2

is continuous extent relation from C to itself and hence there are 29 Chu
correspondences. On the other hand there are only 6 Chu endomaps of C.
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In fact, suppose (f, g) be a Chu map. Suppose f is not a bijection.
Then there is a k /∈ Im(f). This k satisfies f(i) |= k for all i, whence i |=
g(k) for all i, which is impossible. Hence f must be a bijection. Conversely,
suppose we have a bijection f from {1, 2, 3} to itself. Define g(k) to be
the unique element of the polar set of {j | f(j) 6= k} which consists of two
elements. Then obviously (f, g) is a Chu map. Hence the set of Chu maps
is bijective to the set of bijective auto-maps of {1, 2, 3}.

However, between the formal contexts associated with complete lattices,
all Chu correspondences are induced from Chu maps. Consider the formal
contexts

Ci = (Li, Li, ≤)

where Li are complete lattices (i = 1, 2). Then a Chu map (f, g) from C1

to C2 is precisely a Galois pair f : L1 → L2 and g : L2 → L1 satisfying

f(a) ≤ b ⇐⇒ a ≤ g(b).

When this Chu map is regarded as a Chu correspondence in the weak sense,
then its closure ϕ is given by

Lϕa1 = f(a1) ↓ and Rϕa2 = g(a2) ↑

for ai ∈ Ai (i = 1, 2). Conversely, suppose ϕ is a Chu correspondence from
C1 to C2. Define

f(a1) =
∨

Lϕa1 and g(a2) =
∨

Rϕa2.

Then (f, g) is a Chu map. Hence Chu correspondences and Chu maps from
C1 to C2 corresponds one to the other bijectively.

3.4. Chu correspondences between powercontexts
Let Ai (i = 1, 2) be sets and

P(Ai) = (Ai, powAi, ∈)

(i = 1, 2) be their power contexts. Recall that there is a bijection

Map(A1, A2)
'→ ChuMaps(P(A1), P(A2)).

for sets Ai (i = 1, 2), by Proposition 21.
We show that set theoretical correspondences induce Chu correspon-

dences between power contexts.
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Proposition 44 Let T : A1 → powA2 be a correspondence. Define

LT = T

and

RT : powA2 → powpowA1

by

RT N2 = {N1 ⊂ X1 | L∗N2 ⊂ N1} = L∗N2 ↑,

where B ↑ denotes the family of subsets including B. Then T̃ = (LT , RT )
is a Chu correspondence from P(A1) to P(A2).

Proof. We write R = RT , L = LT for brevity. Let a1 ∈ A1 and N2 ⊂ A2.
We show

La1 |= N2 ⇐⇒ a1 |= RN2

First note that

La1 |= N2 ⇐⇒ a1 ∈ L∗N2,

since

La1 |= N2 ⇔ La1 ⊂ N2 ⇔ a1 ∈ L∗N2.

Note also that

a1 |= RN2 ⇐⇒ a1 ∈
⋂

RN2,

since a1 |= RN2 means a1 ∈ N1 for all N1 with N1 ∈ RN2.
Since RN2 = L∗N2 ↑,⋂

RN2 = L∗N2.

Hence La1 |= N2 if and only if a1 ∈ L∗N2 if and only if a1 ∈
⋂

RN2 if
and only if a1 |= RN2. Hence, (L, R) is a Chu correspondence. ¤

Corollary 45 Let

ϕ : P(A1) → P(A2)

be a Chu correspondence. Then

ϕ = L̃ϕ.
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In particular, the correspondence T to T̃ defines a bijection

Cor(A1, A1) ' ChuCors(P(A1), P(A2)).

Proposition 46 Let f : A1 → A2 be a map considered as a correspon-
dence. Then

[Rf ] = {(N1, N2) | f−1N2 ⊂ N1} ⊂ pow(A1) × pow(A2).

Proof. Put L = f . It suffices to show that L∗N2 = f−1N2, which follows
directly from

L∗N2 = {a1 | La1 ⊂ N2} = {a1 | f(a1) ∈ N2} = f−1N2.

¤

Remark Hence there are much more Chu correspondences from P(A1)
to P(A2) than Chu maps. In fact, if ni = |Ai| (i = 1, 2), then there are
2n1×n2 = (2n2)n1 Chu correspondences and nn1

2 Chu maps. As n2 increases,
the ratio of the number of Chu correspondences against that of Chu maps
increases rapidly.

3.5. Chu correspondences as Chu maps
Chu correspondences correspond to Chu maps between the power con-

texts.

Lemma 47 A correspondence ϕ from C1 to C2 is a Chu correspondence
if and only if

Lϕ∗N1 |= M2 ⇐⇒ N1 |= Rϕ∗M2

for all N1 ⊂ A1 and M2 ⊂ X2.

Proof. Lϕ∗N1 |= M2 if and only if Lϕn1 |= m2 for all n1 ∈ N1 and m2 ∈
M2 if and only if n1 |= Rϕm2 for all n1 ∈ N1 and m2 ∈ M2 if and only if
N1 |= Rϕ∗M2.

Conversely, suppose the latter condition holds. Then taking N1 = {a1}
and M2 = {x2}, we have

Lϕa1 |= x2 ⇐⇒ a1 |= Rϕx2.

¤

This can be rephrased as follows:
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Theorem 48 A correspondence ϕ from C1 to C2 is a Chu correspondence
if and only if (Lϕ∗, Rϕ∗) is a Chu map from pow(C1) to pow(C2).

3.6. Chu relation in the sense of Pratt
V. Pratt introduced a concept called “Chu relation” [15]. A correspon-

dence (L, R) is called a “Chu relation” if for all ai ∈ Ai and xi ∈ Xi (i =
1, 2), the condition (a1, a2) ∈ [L] and (x1, x2) ∈ [R] imply the equivalence
of the conditions a1 |= x1 and a2 |= x2.

If (L, R) is a “Chu relation” in the sense of Pratt, then it is a Chu
correspondence in our sense. In fact, for a1 ∈ A1 and x2 ∈ X2, for all a2 ∈
La1 and x1 ∈ Rx2, we have x1 |= a1 iff a2 |= x2. Hence La1 |= x2 implies
a2 |= x2 for all a2 ∈ La1, which implies a1 |= x1 for all x1 ∈ Rx2, namely,
a1 |= Rx2. The other implication is proved similarly, whence (L, R) is a
Chu correspondence in our sense. Note that the above arguments also show
that if a correspondence (L, R) from C1 to C2 is a “Chu relation” (L, R) in
the sense of Pratt, the correspondence (tL, tR) form C2 to C1 is also a Chu
correspondence since it satisfies also the condition tLa2 |= x1 iff a2 |= tRx1

for x1 ∈ X1 and a2 ∈ A2.
For the following formal concepts Ci (i = 1, 2), there are 569 Chu

correspondences from C1 to C2 and 578 ones from C2 to C1, which means
that our Chu correspondence is strictly more general than the one defined
by Pratt.

C1 =


0 1 1 1 1
1 0 1 1 0
0 0 1 1 0
0 0 1 0 1
1 1 1 1 0

 C2 =


1 1 0 1
0 1 1 0
1 0 0 1
1 1 0 0

 .

The Galois lattices are as follows.

4. Category of Chu correspondences

The Chu correspondences form a category by a natural composition.

4.1. Definition
Let ChuCors be the category whose objects are extensional and inten-

sional formal contexts and whose arrows are Chu correspondences.
The identity Chu correspondence of a formal context C is the closure

of the identity Chu map of C considered as a Chu correspondence in the
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galois(C )1 galois(C )2

weak sense as in Section 3.3.
The composition is defined as follows. If ϕ and φ are Chu correspon-

dences respectively from C1 to C2 and C2 to C3, their composition φ ◦ ϕ

is defined by

Lφ◦ϕa1 = Lφ∗(Lϕa1)

for a1 ∈ A1 and

Rφ◦ϕx3 = Rϕ∗(Rφx3)

for x3 ∈ X3.

Proposition 49 The correspondence φ ◦ ϕ from C1 to C3 is a Chu cor-
respondence.

Proof. Let a1 ∈ A1, x3 ∈ X3. Then

Lφ∗(Lϕa1) |= x3 ⇐⇒Lφ∗(Lϕa1) |= x3 by Lemma 18

⇐⇒Lϕa1 |= Rφx3

⇐⇒ a1 |= Rϕ∗(Rφx3) by Lemma 47

⇐⇒ a1 |= Rϕ∗Rφx3.

This proves that φ ◦ ϕ is a Chu correspondence. ¤

The identity axiom follows from the following.
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Proposition 50 For a Chu correspondence ϕ from C1 to C2, the follow-
ing equalities hold.

Lϕ∗(Lida1) = Lϕa1

Rid ∗(Rϕx2) = Rϕx2

Lid ∗(Lϕa1) = Lϕa1

Rϕ∗(Ridx2) = Rϕx2

Proof. We prove the first and the third equalities. The others are proved
similarly.

Let a1 ∈ A1.

Lid ∗(Lϕa1) =
⋃

a2∈Lϕa1

a2

=
⋃

a2∈Lϕa1

a2 by Lemma 7

= Lϕa1 = Lϕa1.

Let a1 ∈ A1. Then by Proposition 29

Lϕ∗Lida1 = Lϕ∗a1 = Lϕa1,

by whence Lϕ◦id = Lϕ. ¤

To show the the associativity, we need the following lemma.

Lemma 51 For N1 ⊂ A1,

Lφ◦ϕN1 = Lφ∗Lϕ∗N1.

Proof.

Lφ◦ϕN1 =
⋃

x∈N1

Lφ◦ϕx

=
⋃

x∈N1

Lφ∗Lϕx

=
⋃

x∈N1

Lφ∗Lϕx by Lemma 7

= Lφ∗Lϕ∗N1.

¤
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The following proposition shows the associativity of the composition.

Proposition 52 Let ϕi : Ci → Ci+1 (i = 1, 2, 3) be Chu correspondences.
Then, for a1 ∈ A1,

L(ϕ1◦ϕ2)◦ϕ3
a1 = Lϕ1◦(ϕ2◦ϕ3)a1.

Proof.

L(ϕ1◦ϕ2)◦ϕ3
a1 = L(ϕ1◦ϕ2)∗Lϕ3a1

= Lϕ1∗Lϕ2∗Lϕ3a1 by Proposition 52.

On the other hand,

Lϕ1◦(ϕ2◦ϕ3)a1 = Lϕ1∗Lϕ2◦ϕ3a1

= Lϕ1∗Lϕ2∗Lϕ3a1 by Proposition 52

= Lϕ1∗Lϕ2∗Lϕ3a1 by Proposition 29.

¤

By Proposition 39, the homset ChuCors(C1, C2) is a complete lat-
tice. We note that the category ChuCors has a structure of Slat-enriched
category.

4.2. Functor from the category of Chu maps
Let ChuMaps be the category whose arrows are Chu maps. Define the

functor

ι : ChuMaps → ChuCors

which is identity on objects and for a Chu map (f, g), ι(f, g) is the closure
of (f, g) regarded as a Chu correspondence in the weak sense by Proposi-
tion 43.

Proposition 53 ι is a functor.

Proof. By definition ι(idC) is the identity Chu correspondence of the for-
mal context C.

Let (fi, gi) be Chu maps from Ci to Ci+1 (i = 1, 2) and Put ϕi :=
ι(fi, gi) (i = 1, 2). Define (f, g) = (f2, g2) ◦ (f1, g1) = (f2 ◦ f1, g1 ◦ g2) and
ϕ = ι(f, g). Then

Lϕ2◦ϕ1a1=Lϕ2∗Lϕ1a1
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=Lϕ2∗f1(a1)

=Lϕ2∗f1(a1) by Proposition 29

=f2(f1(a1)) = f(a1) = Lϕa1.

Hence ϕ = ϕ2 ◦ ϕ1. ¤

The strong isomorphisms are exactly the image of Chu isomorphisms,
whence

Proposition 54 Let ϕ : C1 → C2 be a strong isomorphism with a gen-
erator: (f, g). Then it is an isomorphism whose inverse is the closure of
(f−1, g−1).

We write C1
∼= C2 if there is a Chu isomorphism from C1 to C2.

4.3. Galois functor
We have defined the complete lattice Gal(C) of formal concepts of a

formal context C. This induces the Galois functor

Gal : ChuCors → Slat

in the following way.
Let Ci = (Ai, Xi, |=) (i = 1, 2) be formal contexts and

ϕ : C1 → C2

be a Chu correspondence.
Define ϕ∗ : Gal(C1) → Gal(C2) by

ϕ∗(M1, M ′
1) =

(
Lϕ∗M1, (Lϕ∗M1)′

)
(7)

and ϕ∗ : Gal(C2) → Gal(C1) by

ϕ∗(N ′
2, N2) = ((Rϕ∗N2)′, Rϕ∗N2). (8)

Proposition 55 The pair (ϕ∗, ϕ∗) is a galois pair, namely, for closed
M1 ⊂ A1 and N2 ⊂ X2,

ϕ∗(M1, M ′
1) ≤ (N ′

2, N2) ⇐⇒ (M1, M ′
1) ≤ ϕ∗(N ′

2, N2). (9)

Proof. The condition (9) is equivalent to

(Lϕ∗M1)′ ⊃ N2 ⇐⇒ M1 ⊂ (Rϕ∗N2)′,
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i.e. to

Lϕ∗M1 |= N2 ⇐⇒ M1 |= Rϕ∗N2,

which holds by Lemma 47. ¤

Corollary 56 ϕ∗ preserves the joins and ϕ∗ preserves the meets.

We define

Gal(ϕ) := ϕ∗ : Gal(C1) → Gal(C2).

Proposition 57 Gal is a functor from ChuCors to Slat.

Proof. First Gal(idC) = idGal(C) follows from

LidM =
⋃

a∈M

a = M = M

for closed M ⊂ A.
Let ϕ1 : C1 → C2 and ϕ2 : C2 → C3 be Chu correspondences.
Since Gal(C1) is

∨
-generated by (a1, a′1) (a1 ∈ A1), it suffices to show

(ϕ2 ◦ ϕ1)∗(a1, a
′
1) = ϕ2∗(ϕ1∗(a1, a

′
1)).

The first component of the left hand side is

Lϕ2◦ϕ1a1=Lϕ2∗Lϕ1a1

=Lϕ2∗Lϕ1a1 by Proposition 29

=Lϕ2∗Lϕ1∗a1 by Proposition 29

which is the first component of the right hand side. ¤

By Proposition 25, the map ϕ∗ can be described also as follows.

Proposition 58

ϕ∗(N ′
1, N1) =

(
(Rϕ

∗N1)′, Rϕ
∗N1

)
.

Proof. By Proposition 26,

(Lϕ∗N
′
1)

′ = Rϕ
∗N1 = Rϕ

∗N1,

for closed N1 ⊂ X1, whence

ϕ∗(N ′
1, N1) = (Lϕ∗N ′

1, (Lϕ∗N
′
1)

′)
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= ((Rϕ
∗N1)′, Rϕ

∗N1) = ((Rϕ
∗N1)′, Rϕ

∗N1)

¤

Note that this proposition also proves that ϕ∗ preserves the join, since
the second component of the join is the set theoretical intersection and Rϕ

∗

preserves the intersection by Corollary 13.
Note that the correspondences C 7→ A(C), X (C) of § 1.4 are functors

from ChuCors to Slat and Slatop respectively if we define

A(ϕ) : A(C1) → A(C2)

X (ϕ) : X (C2) → X (C1)

for ϕ : C1 → C2 by

A(ϕ)(N1) = Lϕ∗N1,

for N1 ⊂ A1 and

X (ϕ)(M2) = Rϕ∗M2,

for M2 ⊂ X2 respectively.
The following proposition follows directly from the definition.

Proposition 59 There are natural isomorphisms among functors:

A ' X op ' Gal.

Recall that the Chu maps induce join preserving maps between the
complete lattices of formal concepts [13]. The following shows that they
coincide with those induced when the Chu maps are considered as Chu
correspondences.

Proposition 60 If (f, g) : C1 → C2 is a Chu map. Then Gal(ι(f, g))
maps (M1, M ′

1) to (f(M1), f(M1)′). In particular, the following diagram of
functors commutes.

ChuMaps ChuCors

Slat

-ι

Q
Q

Q
Q

QQs

sl

?

Gal
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Proof. Let ϕ = ι(f, g). Then

ϕ∗(M1, M ′
1) = (Lϕ∗M1, (Lϕ∗M1)′).

The assertion follows from

Lϕ∗M1 =
⋃

a∈M1

Lϕa =
⋃

a∈M1

f(a) =
⋃

a∈M1

f(a) = f(M1),

where the third equality follows from Lemma 7. ¤

The action of the functor Gal on Chu correspondences has the following
alternative descriptions, either by bonds or by powercontexts.

First we describe the Galois functor by bonds.

Proposition 61 Suppose a bond Z ∈ Bond(C1, C2) corresponds to a Chu
correspondence ϕ. Then Gal(ϕ) maps (N, N ′) to ((Z◦N)′, Z◦N).

Proof. By definition, (N, N ′) corresponds to ((Lϕ)∗N, ((Lϕ)∗N))′). By
Proposition 37,

((Lϕ)∗N))′ = Z◦N.

¤

Now we describe the Galois functor by powercontexts. Let Ci = (Ai, Xi,
|=) (i = 1, 2) be formal contexts and ϕ : C1 → C2 be a Chu correspondence.
Let T : pow(C1) → pow(C2) be the Chu map associated with it defined in
Section 3.5.

Proposition 62 The composition κT

Gal(C1)
'→ Gal(powC1)

Gal(T )−→ Gal(powC2)
'→ Gal(C2)

is given by

κT (N ′, N) = ((Rϕ)∗N)′, (Rϕ)∗N),

and hence

κT = Gal(ϕ).

Proof. By definition, the second component K of κT (N ′, N) is character-
ized by the property

(Rϕ∗)−1pow(N) = pow(K).
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Suppose L ⊂ X2 does not satisfy Rϕ∗(L) ∈ pow(N), i.e. Rϕ∗(L) 6⊂ N . This
is equivalent to

Rϕ∗(L)
⋂

N c 6= ∅,

to (N c × L)
⋂

R 6= ∅ and hence to L
⋂

R∗N
c 6= ∅. Hence

Rϕ∗(L) ⊂ N ⇐⇒ L ⊂ (Rϕ)∗N.

Hence K = (Rϕ)∗N . ¤

By Propositions 41, 42, 59, we see that > represents the functor Gal.

Proposition 63 There are natural isomorphisms:

ChuCors(C, ⊥) ' Gal(C)∗,

ChuCors(>, C) ' Gal(C).

Proof. The former isomorphism is the composition of that of Proposi-
tion 41 and the isomorphism Aop ' Gal(C)∗.

The latter is proved similarly. ¤

4.4. Bifunctor of bonds
There is a bifunctor

ChuCorsop × ChuCors → Slat

which maps (C1, C2) to Bond(C1, C2). The action of arrows is defined as
follows. Let ψ1 : D1 → C1 and ψ2 : C2 → D2 be Chu correspondences. Let
Z ∈ Bond(C1, C2). Define a correspondence

ψ2 ◦ Z ◦ ψ1 : B1 ; Y2

by its graph

[ψ2 ◦ Z ◦ ψ1] = {(b1, y2) ∈ B1 × Y2 | Lψ1b1 × Rψ2y2 ⊂ Z},

where Di = {Bi, Yi, |=i} (i = 1, 2)

Lemma 64 The correspondence ψ2 ◦ Z ◦ ψ1 : B1 ; Y2 is a bond.

Proof. Let b1 ∈ B1 and y2 ∈ Y2. It suffices to show that both

{y ∈ Y2 | Lψ1b1 × Rψ2y ⊂ Z} ⊂ Y2,
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and

{b ∈ B1 | Lψ1b × Rψ2y2 ⊂ Z} ⊂ B1

are closed. The condition Lψ1b1 × Rψ2y ⊂ Z is equivalent to

Rψ2y ⊂ Z◦Lψ1b1,

and to

y ∈ R∗
ψ2

Z◦Lψ1b1.

The right hand side is closed By Propositions 30 and 37, since Lψ1b1 is
closed.

The latter assertion is proved similarly. ¤

These data define a bifunctor:

Bond(−,−) : ChuCorsop × ChuCors → Slat.

4.5. Fullness and faithfullness of Gal

Theorem 65 The functor Gal is full and faithful, namely,

Gal : ChuCors(C1, C2) → Slat(Gal(C1), Gal(C2))

is a bijection.

We prove the theorem by showing that the map

λ : Slat(Gal(C1), Gal(C2)) → ChuCors(C1, C2)

defined below is the inverse map of Gal. Let

φ : Gal(C1) → Gal(C2)

be a join preserving map and φ∗ be its order adjoint. Define a correspon-
dence (L, R) from C1 to C2 as follows. For a1 ∈ A1, define La1 ⊂ A2 to
be the first component of the formal concept φ(a1, a′1), and for x2 ∈ X2,
define Rx2 ⊂ X1 to be the second component of φ∗(x′

2, x2). Then

Lemma 66

λ(φ) := (L, R)

is a Chu correspondence from C1 to C2.



Chu Correspondences 193

Proof. In fact, for a1 ∈ A1 and x2 ∈ X2,

La1 |= x2 ⇐⇒La1 ⊂ x′
2

⇐⇒ (La1, (La1)′) ≤ (x′
2, x2)

⇐⇒ φ(a1, a′1) ≤ (x′
2, x2)

⇐⇒ (a1, a′1) ≤ φ∗(x′
2, x2) = ((Rx2)′, Rx2)

⇐⇒ a′1 ⊃ Rx2

⇐⇒ a1 |= Rx2.

¤

Lemma 67

λ ◦ Gal = id .

Proof. Let ϕ : C1 → C2 be a Galois correspondence and put ψ = λ(ϕ∗).
The subset

Lψa1 ⊂ A2

is the first component of ϕ∗(a1, a′1), namely the closure of Lϕ∗a1, which is
Lϕa1 by Proposition 29. Hence Lψ = Lϕ. ¤

Lemma 68 For ϕ : Gal(C1) → Gal(C2),

Gal(λ(ϕ)) = ϕ.

Proof. Put ψ = λ(ϕ). By definition,

ψ∗((a1, a′1)) =
(
Lψ∗a1, (Lψ∗a1)′

)
.

By Proposition 29, (Lψ∗a1)′ = (Lψa1)′, whence

ψ∗((a1, a′1)) = (Lψa1, (Lψa1)′) = (Lψa1, (Lψa1)′) = ϕ(a1, a′1),

since Lψa1 is the first component of ϕ(a1, a′1) by definition.
Since Gal(C1) is join generated by {(a1, a′1) | a1 ∈ A1}, it follows

ψ∗ = ϕ.

¤

Hence we have proved that λ is the inverse of Gal and the proof of
Theorem 65 is completed.
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Corollary 69 A Chu correspondence ϕ is an isomorphism if Gal(ϕ) is
bijective.

We use often the following proposition which follows from Corollary 69.

Proposition 70 Let (f, g) : C1 → C2 be a Chu map. Suppose f : A1 →
A2 is a bijection and preserves the closure operators in the sense that f(B) =
f(B) for B ⊂ A1. Then ι(f, g) is an isomorphism.

Proof. It suffices to show that F := Gal(ι(f, g)) is an isomorphism by
Corollary 69. By Proposition 60,

F ((M1, M ′
1)) = (f(M1), f(M1)′) = (f(M1), f(M1)′).

Since M1 7→ f(M1) is a bijection from A1 to A2, we conclude F is an
isomorphism. Here Ai is the set of closed subsets of Ai (i = 1, 2). ¤

4.6. Equivalence of ChuCors and Slat

We show that the functor Gal is in fact an equivalence of categories
between ChuCors and Slat.

Recall that a functor F : C → D is an equivalence of categories if there
is a functor G : D → C with natural isomorphisms

1C ' G ◦ F 1D ' F ◦ G.

A functor G satisfying these conditions is called a weak inverse of F .
Define a functor r : Slat → ChuCors by

r(L) = (L, L, ≤)

and for each join preserving map

φ : L1 → L2,

the pair (φ, φ∗) is a Chu map from r(L1) to r(L2), where φ∗ is the order
adjoint of φ. We denote this Chu map regarded as a Chu correspondence
by r(φ).

In the following we show that r is a weak inverse of the functor Gal.

Lemma 71 The maps

ιK : K → Gal(r(K))
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defined, for each complete lattice K, by

ι(k) = (k ↓, k ↑)

define natural isomorphisms.

Proof. Obvious, since the formal concepts of the context (K, K, ≤) are
written uniquely as (k ↓, k ↑) with k ∈ K. ¤

Lemma 72 For formal contexts C, there are natural isomorphisms

$C : C '→ r(Gal(C)).

Proof. By Theorem 65, there is a unique isomorphism $C in ChuCors,
which corresponds under the Galois functor to the isomorphism

ιGal(C) : Gal(C) → Gal(rGal(C)).

of Lemma 71. Then using the faithfullness of Gal, it is easy to see that
$C’s form a natural transformation. ¤

Hence we have proved the equivalence of categories.

Theorem 73 The Galois functor is an equivalence between the category
of the Chu correspondences and the category of join preserving maps.

Remark The isomorphism $C : C → rGal(C) of Lemma 72 is described
explicitely as follows.

The formal context rGal(C) = (Gal(C), Gal(C), ≤) is described also
as (A(C), X (C), |=) since

(E1, F1) ≤ (E2, F2) ⇐⇒ E1 ⊂ E2 = (F2)′ ⇐⇒ E1 |= F2.

Define a correspondence ϕ from C to rGal(C) by by

Lϕa = a ↓:= {M ∈ A(C) | M ⊂ a}

for a ∈ A and

Rϕ∗F = F

for closed F ⊂ X. Then it is a Chu correspondence and is in fact an
isomorphism.

Remark The Theorem 73 follows from Corrollary 112 of [9] and Propo-
sition 36.
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4.7. Completeness and cocompleteness of ChuCors
The category ChuCors is complete, since it is equivalent to the com-

plete category Slat. Being selfdual, ChuCors is also cocomplete.
We give explicitly products and equalizers.
For formal contexts Ci = (Ai, Xi, |=i) (i = 1, 2) define a formal context

C1 × C2 := (A1 × A2, X1

∐
X2, |=),

by (a1, a2) |= x if and only if ai |=i x when x ∈ Xi (i = 1, 2).
Define a Chu correspondence, for i = 1, 2,

πi : C1 × C2 → Ci

which corresponds to the Chu map (Li, Ri) with the standard projection

Li : A1 × A2 → Ai

and the standard inclusion

Ri : Xi → X1

∐
X2.

It is straightforward to show the following.

Proposition 74 The diagram

C1
π1←− C1 × C2

π2−→ C2

is a product of Ci (i = 1, 2). The dual of this product diagram for the duals
C∗

i (i = 1, 2), namely,

C1 → (C∗
1 × C∗

2)
∗ ← C2,

is a coproduct of Ci (i = 1, 2).

Now we describe the equalizer. Let κi : C1 → C2 (i = 1, 2) be Chu
correspondences. Put Li = Lκi and Ri = Rκi (i = 1, 2) for brevity. Define
a set A and a correspondence L : A → A(C1) ⊂ pow(A1) by the equalizer
diagram

A
L // A(C1)

(L1)∗ //

(L2)∗
// A(C2)

in the category of sets and maps. Define a correspondence R : X1 → X by
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Rx1 = F (x1) where

X X (C1)
Foo X (C2)

(R2)∗
oo
(R1)∗oo

is a coequalizer in the category of sets and maps. For a ∈ A and N1 ∈
X (C1), Define a |= F (N1) by La |= N1. It is easily seen that this is well-
defined and we put

C = (A, X, |=).

Then κ = (L, R) is a Chu correspondence from C to C1. It is straightfor-
ward to show the following.

Proposition 75 The following diagram is an equalizer in ChuCors.

C
κ // C1

κ1 //
κ2

// C2

Note that the equalizer diagram

C∗
1 C∗

2
κ∗
1

oo
κ∗
2oo

K
λ

oo

goes to a coequalizer diagram

C1

κ1 //
κ2

// C2
λ∗

// K∗ .

4.8. Canonical forms of formal contexts
In the category of ChuCors, a formal context C is canonically isomor-

phic to

cf(C) := (A, A, ∈),

where A is the family of closed subsets of A.
In fact, define a correspondence

λ(C) : C → cf(C)

by

Lλa = a, RλB = B′



198 H. Mori

for a ∈ A and B ∈ A. Then λ is a Chu correspondence since

Lλa |= B ⇐⇒ a |= B

⇐⇒ a ⊂ B′ = RλB

⇐⇒ a ∈ RλB ⇐⇒ a |= RλB.

Note that cf is an endo functor by defining

cf(ϕ) : cf(C1) → cf(C2)

for a Chu correspondence ϕ : C1 → C2 by

Lcf(ϕ) = Lϕ, Rcf(ϕ) = Lϕ
∗.

Proposition 76 The Chu correspondences λ(−) is a natural isomorphism
from the indentity functor of ChuCors to the functor cf .

Proof. We show that Gal(λ) is an isomorphism. Let (M, M ′) ∈ Gal(C),
where M ⊂ A is closed. Since the closure operator on A corresponding to
C is the same as that corresponding to (A, A, ∈), we have

λ∗(M, M ′) = (LλM, (LλM)′).

But, using Lemma 7,

LλM =
⋃

a∈M

a =
⋃

a∈M

a = M = M,

whence λ∗ is an isomorphism.
Since the extent part of λ is the closure of the identity, the naturality

follows immediately. ¤

5. Structures in ChuCors

5.1. Internal hom functor
Let Ci (i = 1, 2) be formal contexts. Define a new formal context

C1 (• C2 by

C1 (• C2 := (ChuCors(C1, C2), A1 × X2, |=)

where

ϕ |= (a1, x2)
def⇐⇒ Lϕa1 |= x2.
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Note that since ϕ is a Chu correspondence, the condition of the right hand
side is equivalent to a1 |= Rϕx2.

Lemma 77 Let ϕ ∈ ChuCors(C1, C2). Then

ϕ′ = [Zϕ].

Proof. Let a1 ∈ A1 and x2 ∈ X2. Then

ϕ |= (a1, x2)⇔Lϕa1 |= x2

⇔x2 ∈ (Lϕa1)′ = Zϕa1

⇔(a1, x2) ∈ [Zϕ].

¤

From this, we obtain the following isomorphism.

Theorem 78 The formal concepts of the formal context C1 (• C2 are
written uniquely as

(ϕ ↓, [Zϕ]),

with a Chu correspondence ϕ. In particular, We have isomorphisms

µ(C1, C2) : Gal(C1 (• C2) ' Gal(C1) ( Gal(C2).

Proof. Since Bond(C1, C2) ⊂ pow(A1 ×X2) is intersection closed family
by Proposition 33, and the polar ϕ 7→ [Zϕ] is bijective by Proposition 36,
we have

Gal(C1 (• C2) = {(ϕ ↓, [Zϕ]) | ϕ ∈ ChuCors(C1, C2)}.

Hence we have an isomorphism

Gal(C1 (• C2) ' ChuCors(C1, C2).

By Theorem 65,

ChuCors(C1, C2)'Slat(Gal(C1), Gal(C2))

'Gal(C1) ( Gal(C2).

The composition of these isomorphism define the isomorphism

µ(C1, C2) : Gal(C1 (• C2) → Gal(C1) ( Gal(C2).
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By definition,

µ(C1, C2)((ϕ ↓, [Zϕ])) = Gal(ϕ).

¤

To define the bi-functor

(−) (• (−) : ChuCorsop × ChuCors → ChuCors,

let ψ2 : C2 → D2 and ψ1 : D1 → C1 be Chu correspondences. Let

Ci = (Ai, Xi, |=), Di = (Bi, Yi, |=),

(i = 1, 2). Then

ChuCors(ψ1, ψ2) : (C1 (• C2) → (D1 (• D2)

is given by (L, R), where

Lϕ = (ψ2 ◦ ϕ ◦ ψ1) ↓

and

R(b1, y2) = Lψ1b1 × Rψ2y2.

Then (L, R) is in fact a Chu correspondence. To see this, let

ϕ ∈ ChuCors(C1, C2) and b1 ∈ B1 and y2 ∈ Y2.

Then

Lϕ |= (b1, y2)⇐⇒ (ψ2 ◦ ϕ ◦ ψ1) ↓|= (b1, y2)

⇐⇒ψ2 ◦ ϕ ◦ ψ1 |= (b1, y2)

⇐⇒ b1 |= Rψ2◦ϕ◦ψ1y2

⇐⇒ b1 |= Rψ1RϕRψ2y2.

On the other hand

ϕ |= R(b1, y2)⇐⇒ϕ |= Lψ1b1 × Rψ2y2

⇐⇒LϕLψ1b1 |= Rψ2y2

⇐⇒ b1 |= Rψ1RϕRψ2y2,

whence (L, R) is a Chu correspondence.
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Proposition 79 Let Ci,Di (i = 1, 2) be formal contexts and let ψ2 : C2 →
D2 and ψ1 : D1 → C1 be Chu correspondences. Then the following diagram
commutes.

Gal(C1 (• C2) Gal(C1) ( Gal(C2)

Gal(D1 (• D2) Gal(D1) ( Gal(D2)
?

Gal(ψ2−•ψ1)

-µ

?

Gal(ψ1)(Gal(ψ2)

-µ

Proof. Let ξ = (ϕ ↓, [Zϕ]) ∈ Gal(C1 (• C2). Then

(Gal(ψ2) ( Gal(ψ1))µ(ξ) = (Gal(ψ2) ( Gal(ψ1))Gal(ϕ)

= Gal(ψ2) ◦ Gal(ϕ) ◦ Gal(ψ1)

= Gal(ψ2 ◦ ϕ ◦ ψ1).

On the other hand

µ(Gal(ψ2 (• ψ1)ξ) = µ(ψ2 ◦ ϕ ◦ ψ1 ↓, [Zψ2◦ϕ◦ψ1 ])

= Gal(ψ2 ◦ ϕ ◦ ψ1).

¤

Proposition 80 There are natural strong isomorphisms:

C1 (• C∗
2
∼= C2 (• C∗

1.

Proof. Note that

C1 (• C∗
2 = (ChuCors(C1, C∗

2), A1 × A2)),

and

C2 (• C∗
1 = (ChuCors(C2, C∗

1), A2 × A1)).

Let L be the bijection

L : ChuCors(C1, C∗
2) → ChuCors(C2, C∗

1)

of Proposition 40 regarded as a correspondence and R the transpose bijec-
tion A2 ×A1 → A1 ×A2 regarded as a correspondence. Then the closure of
the Chu correspondence (L, R) is an isomorphism. ¤
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The isomorphisms of Theorem 38 between Chu correspondences and
the bonds give natural isomorphism.

Proposition 81 The bifunctors ChuCors(−,−) and Bond(−,−) are
naturally isomorphic by the map ϕ 7→ Zϕ.

Proof. Let Ci and Di (i = 1, 2) be formal contexts and ψ1 : D1 → C1

and ψ2 : C2 → D2 be Chu correspondences. Let ϕ : C1 → C2 be a Chu
correspondence. Then

ChuCors(ψ1, ψ2)ϕ = ψ2 ◦ ϕ ◦ ψ1,

whereas

Bond(ψ1, ψ2)Zϕ = ψ2 ◦ Zϕ ◦ ψ1.

It suffices to show that

Zψ2◦ϕ◦ψ1 = ψ2 ◦ Zϕ ◦ ψ1.

Let (b1, y2) ∈ B1 × Y2. Then

(b1, y2) ∈ [Zψ2◦ϕ◦ψ1 ]⇔ y2 ∈ (Lψ2◦ϕ◦ψ1b1)′

⇔ y2 ∈ ((Lψ2)∗Lϕ◦ψ1b1)′

⇔ y2 ∈ R∗
ψ2

(Lϕ◦ψ1b1)′

⇔Rψ2y2 ⊂ (Lϕ◦ψ1b1)′ = (Zϕ)◦(Lψ1b1)

⇔Lψ1b1 × Rψ2y2 ⊂ [Zϕ].

⇔ (b1, y2) ∈ [ψ2 ◦ Zϕ ◦ ψ1].

¤

Similar natural isomorphisms exists for bifunctors for the ChuCors-
valued bifunctors. Define a formal context by

C1 (¦ C2 = (Bond(C1, C2), A1 × X2,3).

By the proof of Lemma 77, the isomorphism L of Theorem 38 and the
identity map of A1 × X2 induce the following strong isomorphism

Proposition 82 We have natural isomorphisms

C1 (• C2
∼= C1 (¦ C2.
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5.2. Self-duality
The category ChuCors is self-dual with the dualizing functor defined

by C 7→ C∗ and for a Chu correspondence ϕ from C1 to C2, ϕ∗ from C∗
2 to

C∗
1 as is defined in Section 2.

Theorem 83 There are natural strong isomorphisms:

δC : Gal(C∗) ∼= Gal(C)∗.

Proof. Define

δC(E, F ) = (F, E),

which is obviously a bijective order reversing correspondence.
To show the naturality, let ϕ : C1 → C2 be a Chu correspondence.

Then

ϕ∗ : C2 → C1

is defined by Lϕ∗ = Rϕ and Rϕ∗ = Lϕ. We show the commutativity of the
following diagram

.

Gal(C∗
1) Gal(C1)∗

Gal(C∗
2) Gal(C2)∗

-
δC1

6
Gal(ϕ∗)

-
δC2

6
Gal(ϕ)∗.

For (N2, N ′
2) ∈ Gal(C∗

2) with N2 ⊂ X2 closed, we have by (7),

δC1Gal(ϕ∗)(N2, N ′
2) = δC1(Lϕ∗N2, (Lϕ∗N2)′)

= δC1(RϕN2, (RϕN2)′)

= ((RϕN2)′, RϕN2).

On the other hand, by (8),

Gal(ϕ)∗δC2(N2, N ′
2) = Gal(ϕ)∗(N ′

2, N2) = ((RϕN2)′, RϕN2).

¤

In the category of Chu maps, the formal context ⊥ of Example 3 is a
dualizing object [13] in the sense that

C ( ⊥ ' C∗.
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In fact ⊥ is a dualizing object also in the category of Chu correspondences.

Theorem 84 We have natural isomorphisms

d(C) : C (• ⊥ ' C∗.

Proof. By Theorem 38, Proposition 41, the self duality of ChuCors and
Proposition 76, there are isomorphisms:

C (• ⊥∼= (Bond(C, ⊥), A × {∗ }, ∈)
∼= (A(C), A, ∈)
∼= cf(C)∗.

'C∗,

where the first three ones are strong isomorphisms. Here cf(C) is the
canonical form of C (§4.8).

Since the first components of the formal contexts appearing above are
all bijective to A and, under these bijections, the intent parts of the isomor-
phisms corresponds to the closures of the identity of A, the above isomor-
phisms are natural. ¤

It is straightforward to prove the following.

Proposition 85 The following diagram commutes.

Gal(C (• ⊥) Gal(C∗)

Gal(C) ( 2 Gal(C)∗

-Gal(d(C))

?

ν

?

δC

-'

,

where ν is the composition of the isomorphisms

Gal(C (• ⊥) ' (Gal(C) ( Gal(⊥)) ' (Gal(C) ( 2).

5.3. Tensor
In the ∗-autonomous category,

A ⊗ B ' (A ( B∗)∗.
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Since we have already the internal hom-functor and the self duality, we
define

C1 £ C2 := (C1 (• C∗
2)

∗ = (A1 × A2, ChuCors(C1, C∗
2)).

Proposition 86 C1 £ C2 = (C1 (• C∗
2)

∗.

The structure of the bifunctor (−)£(−) is described explicitly using the
Slat-valued bifunctor (−) 1 (−) defined in Section 4.8 as follows. Define

C1 1©C2 := (A1 × A2, C1 1 C2, ∈).

and make (−)1©(−) a bifunctor as follows. Let ψi : Ci → Di (i = 1, 2) be
Chu correspondences and define

ψ1 1©ψ2 : C1 1©C2 → D1 1©D2

to be (L, R), where

L : A1 × A2 → pow(B1 × B2)

is defined by

L(a1, a2) := Lψ1a1 × Lψ2a2

for ai ∈ Ai (i = 1, 2), and

R : D1 1 D2 → pow(C1 1 C2)

by

RZ = {(a1, a2) | Lψ1a1 × Lψ2a2 ⊂ Z} ↓ .

Then we have

Theorem 87 There are natural strong isomorphisms:

C1 £ C2
∼= C1 1 C2.

By Theorem 78 and Proposition 83, we obtain

Theorem 88 There are natural isomorphisms

κ(C1, C2) : Gal(C1 £ C2) ' Gal(C1) ⊗ Gal(C2).

If Ci = (Ai, Xi, |=i) (i = 1, 2) and Gal(Ci) is identified with the family Ai
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of closed subsets of Ai (i = 1, 2), then κ(C1, C2) maps E1×E2 to E1⊗E2,
where Ei ∈ Ai (i = 1, 2).

Proof. By Theorem 87, C1 £ C2 is naturally and strongly isomorphic to

C1 1©C2 = (A1 × A2, Bond(C1, C∗
2), ∈).

By Example 9, the bond E1 × E2 ⊂ A1 × A2 correspondes to the Chu
correspondence ϕ : C1 → C∗

2 defined by

Lϕ(a1) =
{

E′
2, if a1 ∈ E1

X2, otherwise.

This correspondes to the join preserving map fE1,E2 (cf. Section 1.2)

Gal(C1) → Gal(C2)∗,

where Ei are regarded as in Gal(Ci) (i = 1, 2), which correspondes to E1⊗
E2 of Gal(C1) ⊗ Gal(C2). ¤

The tensor is associative.

Theorem 89 For formal contexts Ci (i = 1, 2, 3), there are strong iso-
morphisms

a(C1, C2, C3) : (C1 £ C2) £ C3 → C1 £ (C2 £ C3),

whose extent part is given by the bijection

((a1, a2), a3) 7→ (a1, (a2, a3)).

Proof. The assertion follows from the observation that both (C1 £ C2) £
C3 and C1 £ (C2 £ C3) are strongly isomorphic to

(A1 × A2 × A3, W )

where W is the set of subsets Z ⊂ A1 × A2 × A2, which satisfies the con-
dition that for each ai ∈ Ai (i = 1, 2, 3) the subsets Z(a1, a2, −) ⊂ A3,
Z(a1, −, a3) ⊂ A2, and Z(−, a2, a3) ⊂ A1 are closed. Here

Z(a1, a2, −) := {a3 ∈ A3 | (a1, a2, a3) ∈ Z}

etc.. ¤
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Proposition 90 The following diagram commutes.
Gal((C1 £ C2) £ C3) Gal(C1 £ (C2 £ C3))

(Gal(C1) ⊗ Gal(C2)) ⊗ Gal(C3) Gal(C1) ⊗ (Gal(C2) ⊗ Gal(C3))

-a1

?

u1

?

u2

-
a2

where

a1 = Gal(a(C1, C2, C3))

and

a2 = a(Gal(C1), Gal(C2), Gal(C3)),

and u1 is the composition of the isomorphisms

Gal((C1 £ C2) £ C3)
κ' Gal((C1 £ C2)) ⊗ Gal(C3)

κ⊗1' (Gal(C1) ⊗ Gal(C2)) ⊗ Gal(C3),

and the isomorphism u2 is defined similarly.

Proof. Let ai ∈ Ai (i = 1, 2, 3). Since Gal((C1 £ C2) £ C3) is join gener-
ated by (((a1, a2), a3), ((a1, a2), a3)′), it suffices to show that these go to
the same elements of

Gal(C1) ⊗ (Gal(C2) ⊗ Gal(C3)).

It is easily seen that (((a1, a2), a3), ((a1, a2), a3)′) goes to

(a1, a′1) ⊗ ((a2, a′2) ⊗ (a3, a′3))

in either way. ¤

Obviously the tensor (−) £ (−) is symmetric.

Theorem 91 There is a strong isomorphism

s(C1, C2) : C1 £ C2
∼= C2 £ C1,

whose extent part maps (a1, a2) to (a2, a1).
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Proposition 92 The following diagram commutes.

Gal(C1 £ C2) Gal(C2 £ C1)

Gal(C1) ⊗ Gal(C2) Gal(C2) ⊗ Gal(C1)

-Gal(s)

?

'

?

'

-
s

.

Finally, we note that the functor C (• (−) is right adjoint to the functor
(−) £ C.

Theorem 93

ChuCors(C1 £ C, C2) ' ChuCors(C1, C (• C2).

This follows from Proposition 41 and the following

Theorem 94 There are natural strong isomorphisms

(C1 £ C) (• C2
∼= C1 (• (C (• C2).

Proof. We have the following strong natural isomorphisms.

(C1 £ C) (• C2
∼= ((C1 £ C) £ C∗

2)
∗

∼= (C1 £ (C £ C∗
2))

∗

∼= (C1 £ (C (• C2)∗)∗
∼= C1 (• (C (• C2).

¤

5.4. Structure of *-autonomous category
We have introduced in ChuCors the ingredients of a ∗-autonomous

category [7], [5], namely, the unit object “>”, the tensor bifunctor “£”, the
internal hom functor (• , the selfduality Cop ' C and the dualizing object
⊥.

The Galois functor preserves these operators in the following sense. By
Example 3 and Propositions 88, 78, 83,

Proposition 95 There are following natural isomorphisms:

κ(C1, C2) : Gal(C1 £ C2) ' Gal(C1) ⊗ Gal(C2),
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µ(C1,C2) : Gal(C1 (• C2) ' Gal(C1) ( Gal(C2),

Gal(>) ' 2,

δC : Gal(C∗) ' Gal(C)∗.

We define the structural natural isomorphisms as follows.
By Theorem 87,

> £ C ∼= ({ ∗ } × A, {B ⊂ {∗ } × A | B is closed in A}, ∈)

whence there is a strong isomorphism

> £ C ∼= cf(C).

Since cf(C) ' C by Proposition 76, we have natural isomorphisms

`C : > £ C ' C.

Similarly, we define

rC : C £ > ' C.

Proposition 96 The following diagram commutes

Gal(> £ C) Gal(C) Gal(C £ >)

2 ⊗ Gal(C) Gal(C) ⊗ 2

-Gal(`C)

?

v1

¾Gal(rC)

?

v2

´
´

´
´

´́3

`Gal(C)
Q

Q
Q

Q
QQk

rGal(C)

where v1 is the isomorphism defined by the composition of

Gal(> £ C)
κ' Gal(>) ⊗ Gal(C) ' 2 ⊗ Gal(C),

and the isomorphism v2 is the similar composition.

Proof. Since Gal(> × C) is join-generated by (∗ × a, (∗, a)), it suffices
to show the commutativity of the right triangle that they go to the same
element by either way.

By Theorem 88, (∗ × a, (∗, a)) is mapped to 1 ⊗ (a, a′) ∈ 2 × Gal(C)
and then to (a, a′) in the left round way.

On the other hand, it is mapped by Gal(`C) to (a, a′).
In the same way, it can be shown that the right triangle commutes.

¤
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Proposition 97 The coherence conditions hold.

Proof. The coherence conditions of the ∗-autonomous category Slat and
Propositions 96, 90, 85, 92 implies the corresponding coherence conditions
of ChuCors. For example, the coherence condition of commutativity of

(C1 £ >) £ C2 C1 £ (> £ C2)

C1 £ C2

-a

HHHHHjr£1

©©©©©¼ 1£`

follows from the following commutative diagram.

Gal((C1 £ >) £ C2) Gal(C1 £ (> £ C2))

Gal(C1 £ >) ⊗ Gal(C2) Gal(C1 £ C2) Gal(C1) ⊗ Gal(> £ C2)

Gal(C1) ⊗ Gal(C2)

(Gal(C1) ⊗ 2) ⊗ Gal(C2) Gal(C1) ⊗ (2 ⊗ Gal(C2))

-Gal(a)

?

f1

HHHHHHHHHHj
Gal(r£1)

©©©©©©©©©©¼
Gal(1£`)

?

g1

HHHHHHHHHHj
Gal(r)⊗1

?

f2

?

h

©©©©©©©©©©¼
1⊗Gal(`)

?

g2

-
a

©©©©©©©©©©*
r⊗1

HHHHHHHHHHY
1⊗`

.

In fact

h ◦ Gal(1 £ `) ◦ Gal(a)

= (1 ⊗ Gal(`)) ◦ g1 ◦ Gal(a) by naturality of κ

= (1 ⊗ `) ◦ g2 ◦ g1 ◦ Gal(a) by definition of `

= (1 ⊗ Gal(`)) ◦ a ◦ f2 ◦ f1 by definition of a

= (r ⊗ 1) ◦ f2 ◦ f1

= (Gal(r) ⊗ 1) ◦ f1

= h ◦ (Gal(r £ 1)).

¤
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In short, we have proved

Theorem 98 The category ChuCors has a structure of *-autonomous
category with the unit >, the tensor (−)£(−), the internalhom (−) (• (−),
the the dualizing object ⊥, and the natural isomorphisms r, `, a, s, δ, which
makes the Galois functor a ∗-autonomous functor.

Concluding Remarks

Chu maps and Chu correspondences The concept of formal contexts
appear in quite a few contexts under various terminologies such as Chu space
[14], classification [3], etc. besides the formal concept analysis [9]. When the
framework of category theory is used, the Chu maps are usually adopted as
arrows. However there can generally be few Chu maps between two formal
contexts, which seems to make the category theory rather uninteresting in
some field of research.

In contrast, there are abundant Chu correspondences between two for-
mal contexts and give justification of the usage of the category theoretical
machinery in studying formal concepts.

The concpet of bonds The ∗-autonomous category structure of
ChuCors is described combinatorially and is defined more straightforward
way than that of the category Slat owing especially to the beautiful con-
cept of bonds introduced in [9]. In fact, we could as well have developed the
category of bonds, which is isomorphic to our ChuCors.

Heyting valued contexts We can define the concept of Chu correspon-
dence when {0, 1} is replaced by a Heyting algebra as in [13]. Although
the Galois functor does not seem full and faithful in general, most of our
results seem to hold. In particular the ∗-autonomous category structure of
ChuCors is defined similarly.

Chu construction It seems that the procedure of constructing ∗-auton-
omous category from a complete closed category given by Chu [1], when
applied to the category Rel of correspondences between sets, gives us most
of the structures of ChuCors described in this paper. However, since Rel

is not complete, the verification of Chu [1] does not apply to our category
and operators directly.
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Application Since our theory allow us to introduce “natural” correspon-
dence in the topics where objects have dualism description mentioned in
the introduction, we expect that our theory has theoretical applications.

As an example, we explain a usage of Chu correspondence in model
theory in Section A of the appendix.

A. Application to model theory

For basic terminologies, see [12].
Let T = (L, Φ) be a first order theory, where L is a first order language

and Φ is its axiom which is an arbitrary set of L-sentences. Let FL
x be the

set of L-formulas with one free variable x. A subset of FL
x is called a 1-type.

Let M be a model of T . Then we have the following formal context

C(M) := (M, FL
x , I),

with

mIϕ
def⇐⇒ M |= ϕ|x=m,

for m ∈ M and ϕ ∈ FL
x . The polar of m ∈ M , denoted by Fx(m) is the

1-type defined by m. The polar of ϕ ∈ FL
x is the set M(ϕ) of m ∈ M

satisfying ϕ, namely, M |= ϕ|x=m. A subset of M is closed if there is a
1-type N ⊂ FL

x with N ′ = M . A 1-type Q ⊂ FL
x is closed if there is a

subset P ⊂ M whose polar is Q, namely, Q is the set of formulas ϕ ∈ FL
x

which are satisfied by all the elements of N .
The closure operator on FL

x is the semantic implication in the model
M . Namely, for Q ⊂ FL

x and ϕ ∈ FL
x , ϕ ∈ Q if, for every m ∈ M , the

condition mIψ for all ψ ∈ Q implies mIϕ.
Suppose M1 and M2 are two models of T . Define a correspondence

L : M1 → M2

by

m2 ∈ Lm1
def⇐⇒ m2IFx(m1).

Proposition 99 (L, id) is a Chu correspondence from C(M1) to C(M2)
in the weak sense, whence defines a Chu correspondence

γ(M1, M2) : C(M1) → C(M2).
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Proof. For ϕ ∈ FL
x ,

Lm1Iϕ ⇔ m1Iϕ.

In fact, by definition, m1Iϕ implies Lm1Iϕ. Suppose Lm1Iϕ. If m1Iϕ does
not hold, then m1I¬ϕ. Hence Lm1I¬ϕ, which contradicts the assumption.
Hence we have m1Iϕ. ¤

Two models Mi (i = 1, 2) are called elementarily equivalent if M1 |= φ

iff M2 |= φ for all L-sentences φ.

Proposition 100 Models M1 and M2 are elementarily equivalent if and
only if

Lγ(M1,M2)∗M1 = M2. (10)

Proof. Note that for ϕ ∈ FL
x and a model M , the condition M |= ∀xϕ

means MIϕ, i.e., ϕ ∈ M ′.
Suppose M1 and M2 are elementarily equivalent. Then M ′

1 = M∗
2 ⊂

FL
x , where (−)∗ denotes the polar operator of C(M2), whence (10) holds.

Conversely suppose (10) holds. Let φ be an L-sentence. Then there is
a ϕ ∈ FL

x , possibly without x, such that φ is logically equivalent to either
∀xϕ or ∃xϕ.

Suppose φ ≡ ∀xϕ. Then

M2 |= φ⇔M2Iϕ

⇔L∗M1Iϕ

⇔M1Iϕ

⇔M1 |= φ.

If φ ≡ ∃xϕ, then ¬φ ≡ ∀x¬ϕ, whence

M2 |= ¬φ ⇔ M1 |= ¬φ

and we conclude

M2 |= φ ⇔ M1 |= φ.

¤

These samples seem to suggest that the Chu correspondences between
the formal contexts C(M) might be useful tool as well as significant objects
to study in the theory of model theories.
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