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Abstract. We investigate several stabilities and a genericity of function germs with
respect to the reticular ¢t-P-IC-equivalence.

Key words: Legendrian Singularity, Contact Manifold, Mather theory, Singularity

1. Introduction

In [3], S. Izumiya introduced the equivalence relation ‘¢-P-K-equiv-
alence’ of function germs in order to classify ‘generic Legendrian unfoldings’.
The classification list is given in [12] by V. M. Zakalyukin who classified
quasi-homogeneous function germs.

In this paper we introduce a more general equivalence relation ‘reticular
t-P-K-equivalence’ of function germs in 9(r; k + n + m) and give a generic
classification in the case r = 0, n <5, m<landr=1,n <3 m<1
respectively. Our one is for not only quasi-homogeneous function germs but
also all smooth function germs. Our work in this paper will play an impor-
tant role in a generic classification of bifurcations of wave fronts generated
by a hypersurface germ with a boundary ([8], [9]).

Let H" = {(#1,...,2) € R"|zy > 0,...,2, > 0} be an r-corner. We
consider a equivalence relation of the set £(r; k+n+m) of function germs on
(H" x REFn+m 0). Function germs F, G € £(r; k+n-+m) are called reticular
t-P-K-equivalent if there exist a diffeomorphism germ ® on (H" x RE*+7+m ()
and a unit o € £(r; k + n + m) such that

(1) ® can be written in the form:

¢(:’U7 y7 u? t) = (xlqs% (x7 y’ u’ t)? D 7.1‘7:@5’{(1‘, y? u? t)?

¢2(l‘, Y, u, t)a ¢3(u7 t)a ¢4(t))7
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(2) G(z,y,u,t) = a(z,y,u,t) - F o ®(x,y,u,t) for all (z,y,u,t) € (H" x
Rk—}—n—i—m’()).

We investigate stabilities and a genericity of function germs under this
equivalence relation. The main result is the following (Theorem 4.7):

Let r =0, n <b5orr=1,n < 3 and U be a neighborhood of 0 in
H" x RFtn+1 Then there exists a residual set O € C*°(U,R) with C°-
topology such that for any F' € O and (0,90, ug,to) € U, the function germ
F(z,y,u,t) € M(r;k+n+1) given by F(z,y,u,t) = F(w,y+y0,u+uo,t+
to) — F(O, Yo, Up, to) is reticular t-P-K-stable unfolding of F|;—¢ and stably
reticular t-P-K-equivalent to one of the types:

In the case r = 0,n < 5: °4;(0 <1 < 5),°DF D5, ' A4;(1 <1 < 6),'DF,
'Ds, 'DF, and ' Eg.

In the case r = 1,n < 3: 9A4,045,045,%B,,9B,,%B5,°C5, 1 Ay, 1 A3, 1 Ay,
1Djf, 1B1,1By, B3, ! By, 10;, 10y, and 'Fy.

This paper consists of three sections. In Section 2 we define notations
and review stabilities of unfoldings under the reticular P-K-equivalence rela-
tion. In Section 3 we investigate stabilities of unfoldings under the reticular
t-P-K-equivalence relation. In Section 4 we give a generic classification of
function germs under the equivalence relation.

2. Preliminaries

We denote by &(r;ky,r; ko) the set of all germs at 0 in H" x R*
of smooth maps H" x R¥ — H" x R¥2 and set M(r; ki, 73 k) = {f €
E(ryky, ko) f(0) = 0}. We denote E(r; ky, ko) for £(r; k1, 0; k2) and denote
E)Jl(r; kl, ]ﬁg) for E)Jl(r; kl, O; kig)

If ko = 1 we write simply E(r; k) for E(r; k, 1) and M(r; k) for M(r; k, 1).
Then &(r;k) is an R-algebra in the usual way and 9(r; k) is its unique
maximal ideal. We also denote by £(k) for £(0; k) and 9 (k) for M(0; k).

We denote by J!(r + k,p) the set of I-jets at 0 of germs in £(r;k,p).
There are natural projections:

m: E(rik,p) — J(r+k,p), ml S (r 4k, p) — TR (r+ k) (b > o).

We write j! f(0) for m;(f) for each f € E(r;k,p).
Let (z,y) = (x1,...,2Zr, Y1, .., Yx) be a fixed coordinate system of (H" x
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R*.0). We denote by B(r;k) the group of diffeomorphism germs (H" x
R*,0) — (H" x R*,0) of the form:

qb(ﬂz,y) = (a:lqﬂ(:b,y), cee 7xr¢1{($’y)a ¢%(337y)’ e ,¢§($7y))

We denote by B, (r;k 4+ n) the group of diffeomorphism germs (H" x
RF+7 0) — (H" x Rt 0) of the form:

¢($,y7u) = (xlﬂ(:c,y,u), e 71:7"(25?[1(1'7 Y, u),
O3, y,0), ., 5 (2, y,0), 3(u), ..., P5(u)).
We denote by B (r;k + n) the Lie group of I-jets at 0 of germs in
B, (r;k +n). This group acts on J!(r +k +n, 1) by the composition.

Lemma 2.1 (cf. [11, Corollary 1.8]) Let B be a submodule of E(r; k+mn+
m), Ay be a finitely generated £(m) submodule of E(r;k +n+m) generated
d-elements, and As be a finitely generated £(n + m) submodule of E(r; k +
n+m). Suppose

E(rik+n+m)=B+ A+ A1 +Mm)E(r;k+n+m)
+M(n+m)E(r k +n+m).
Then

E(rik+n+m) =B+ Ay + A,
M(n +m)4E(r;k+n+m) C B+ Ay + M(m)E(r; k +n +m).

We recall the stabilities of n-dimensional unfolding under reticular P-
K-equivalence which is developed in [7].

We say that fo,g0 € E(r; k) are reticular K-equivalent if there exist
¢ € B(r;k) and a unit a € E(r;k) such that go = a - fo o . We write
O,k (fo) the orbit of fy under this equivalence relation.

Lemma 2.2 Let fo(z,y) € M(r;k) and OL(5'f0(0)) be the submanifold
of J (r+k,1) consist of the image by m; of the orbit of reticular K-equivalence
of fo. Put z = j'fo(0). Then
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L of - 0h (80 Oh
TZ(OTIC(Z)) =m <<f0,$1 axl yerey Tp afL’T >E(T;k)+9:n(7"7 k)<ay1 sy Gyk >>

We say that a function germ fo € 9M(r; k) is reticular K-l-determined if
all function germ which has same [-jet of fj is reticular K-equivalent to fj.
If fo is reticular K-I-determined for some [, then we say that fy is reticular
K-finitely determined.

‘We denote x% for (3:1 gfo xrgfo) and %—’;0 for (g—g(l’, ceey %), and

denote other notations analogously

Lemma 2.3 Let fo(z,y) € M(r; k) and let

sk < s ) (oS0 )+ omtrsin (2 )) + o2,

then fo is reticular K-l-determined. Conversely if fo(z,y) € M(r;k) is
reticular K-l-determined, then

AVAS . dfo o/ 9f
M(r; k)" <f T >g(r;k) +9ﬁ(7’,k)< By >

Let f(z,y,u) € M(r;k 4+ n1), g(z,y,v) € M(r; k + n2) be unfoldings
of fo(x,y) € M(r; k). We say that g is reticular P-K-fo-induced from f if
there exist ® € M(r; k + na,r;k +n1) and « € E(r; k + nay) satisfying the
following conditions:

(1) ®(z,y,0) = (x,9,0), a(z,y,0) =1 for all (x,y) € (H" x R¥,0),

(2) ® can be written in the form:

(I)(x’yﬂ}) = (‘Tl(rb%(xvya U)? s )IT¢§(x7yv U)7 ¢2($7y, U)7 ¢3(U))7

(3) g(:r,y,v) = a(x,y, U) ' foCIJ(x,y,v) for all (.le,y,U) € (HT X Rk+n2’0)'
We denote ®(x,y,v) = (zé1(x,y,v), p2(x,y,v), p3(v)).

We say that f,g € E(r;k+n) are reticular P-K-equivalent if there exist
® € B,(r;k +n) and a unit o € E(r;k + n) such that g = a- f o . We
call (®,a) a reticular P-K-isomorphism from f to g. We write O,p_x(f)
the orbit of f under this equivalence relation.
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Definition 2.4 We recall the definition of several stabilities of unfoldings
under the reticular P-K-equivalence. Let f(z,y,u) € M(r;k + n) be an
unfolding of fo(z,y) € M(r; k).

We say that f is reticular P-K-stable if the following condition holds: For
any neighborhood U of 0 in R"***™ and any representative f € C*(U,R) of
[, there exists a neighborhood N of f in C>=(U,R) with C*°-topology such
that for any element g € Ny the germ glgryrr+n at (0,y0,uo) is reticular
P-K-equivalent to f for some (0, yo,ug) € U.

We say that f is reticular P-K-versal if any unfolding of fj is reticular
P-K- fo-induced from f.

We say that f is reticular P-K-infinitesimally versal if

et = (foal Oy (O]
E(r;k) u=0/ R

Oz Oy u
We say that f is reticular P-K-infinitesimally stable if

8(r;k+n)—<f,xaf,8f> +<3f> .
O ay E(r;k+n) du E(n)

We say that f is reticular P-K-homotopically stable if for any smooth
path-germ (R,0) — £(r;k + n),t — f* with fO = f, there exists a smooth
path-germ (R,0) — B, (r;k+n) x E(r;k+n),t — (P, ap) with ($g, ap) =
(id, 1) such that each (®;, ay) is a reticular P-K-isomorphism from f° to f¢,
that is ft = oy - f0 0 ®;.

Theorem 2.5 Let f € M(r; k+n) be an unfolding of fo € M(r; k). Then
the following are equivalent.

(1) f is reticular P-K-stable.
(2) f is reticular P-K-versal.
(3) f is reticular P-K-infinitesimally versal.
(4) f is reticular P-K-infinitesimally stable.
(5) f is reticular P-K-homotopically stable.

For fo(z,y) € M(r; k), if a1,...,a, € E(r;k) is a representative of a
basis of the vector space
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' dfo 9fo
E(r; k)/<f0,$am’ 3y>s(r;k)’

then the function germ fo + aquy + -+ + apu, € M(r; k + n) is a reticular
P-K-stable unfolding of fp.

Proposition 2.6 Let fy € M(r; k). Then fo has a reticular P-K-stable
unfolding if and only if fo is reticular IC-finitely determined.

3. Reticular ¢-P-K-stabilities of unfoldings

The right-left-(n, m)-stabilities of m-dimensional unfoldings of n-
dimensional unfoldings of function germs is studied by G. Wassermann
in [11]. In this section we study stabilities of m-dimensional unfold-
ings of m-dimensional unfoldings of function germs under the reticular t-
P-K-equivalence which should be called reticular (n, m)-K-equivalence in
G. Wassermann’s notation.

Lemma 3.1 Let f(z,y,u) € E(r;k+n) and set z = 5 £(0). Let Olp_i(2)
be the submanifold of J'(r +k +n,1) consist of the image by m of the orbit
of reticular P-K-equivalence of fo. Then

T.(0lp i (2)) = m <<f a:g‘i>g(mk+n) + 9 (r; k+n)<g£> —|—9ﬁ(n)<g£>>.
(1)

Here we give the definitions of stabilities of unfoldings under the equiv-
alence relation ‘reticular ¢-P-K-equivalence’ and prove that these definitions
are all equivalent.

Let F(z,y,u,t) € M(r; k+n+my) and G(x,y,u,s) € M(r; k+n+mq)
be unfoldings of f(z,y,u) € M(r; k + n).

A reticular t-P-K-f-morphism from G to F is a pair (P, «), where ® €
M(r;k+n+me,r;k+n+mq) and « is a unit of E(r; k+n+ms), satisfying
the following conditions:

(1) ® can be written in the form: ®(z,y,u,s) = (zé1(z,y,u,s),
¢2($,y, u, S)7¢3(’U,, S)’¢4(8))’

(2) @lurxrrtn = idyrxgitn, Qlprxrren =1

(3) G(x7y7u78) = Oz(x,y,u, 3) -Fo q)(xayvu’ S) for all (wvyvuv 8) € (HT x
RE+ntm2 (),
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If there exists a reticular t-P-/C- f-morphism from F to G, we say that
G is reticular t-P-K-f-induced from F. If my = mo and ® is invertible, we
call (®,«) a reticular t-P-K-f-isomorphism from F' to G and we say that
F' is reticular t-P-XC- f-equivalent to G.

Let U be a neighborhood of 0 in R™t*+7+m and let F : U — R be a
smooth function and ¢ be a non-negative integer. We define the smooth
map germ

JIF:U — JUr+k+mn,1)

as the follow: For (z,y,u,t) € U we set j{F(z,y,u,t) by the l-jet of the
f}mction germ Fig o € M(rik +n) at 0, where Fi, .4 is given by
F($,y,u,t) (w/7y/7ul) = F(‘T + xla Yy + CU/yU + U/,t) - F(.CU, ?J?Uyt)-

Theorem 3.2 Let U be a neighborhood of 0 in R™HF+7+m and A be a
smooth submanifold of J4(r +k +n,1). We define

Ty = {F € C*(U,R)| j{F|,=0 is transversal to A}.

Then T4 is dense in C*°(U,R).

The transversality we used is a slightly different for the ordinary one [10],
however we can also prove this theorem by the method which is the same
as the ordinary method.

Definition 3.3 We define stabilities of unfoldings. Let F(x,y,u,t) €
M(r; k +n + m) be an unfolding of f(z,y,u) € M(r;k +n).

Let ¢ be a non-negative integer and z = j9f(0). We say that F' is
reticular t-P-K-q-transversal unfolding of f if the j{F|,.—o at 0 is transversal

to 0% _i(2).

We say that F' is reticular t-P-K-stable unfolding of f if the following
condition holds: For any neighborhood U of 0 in R™t*+7+™ and any rep-
resentative [ € C°°(U,R) of F, there exists a neighborhood Nz of F in
C>°(U,R) with C*-topology such that for any element G € Ny the germ
Glyrxgiansm at (0,90, uo,to) is reticular t-P-K-equivalent to F for some
(O,yo,uO,to) eU.

We say that F'is a reticular t-P-K-versal unfolding of f if any unfolding
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of f is reticular t-P-K-f-induced from F.
We say that F' is a reticular t-P-K-universal unfolding of f if m is
minimal in reticular ¢-P-K-versal unfoldings of f.

We say that F' is reticular t-P-K-infinitesimally versal if

of af> <af> <aF
E(rik+n :< , L=, == +{ = +{ =
( =\ O [ erikany  \NOU gy \ O

We say that F' is reticular t-P-K-infinitesimally stable if

t:0>R

E(rik+n+m)

OF OF OF OF
= F,Iai7ai + Ju + ot - (2
x Y E(r;k+n+m) u E(n+m) t E(m)

We say that F' is reticular t-P-KC-homotopically stable if for any smooth
path-germ (R,0) — &(r;k +n + m), 7 — F. with Fy = F, there exists a
smooth path-germ (R,0) — B(r,k+n+m) x E(r;k+n+m), 7 — (P, ar)
with (®g,0) = (id,1) such that each (®,,c,) is a reticular t-P-K-
isomorphism and F; = a, - Fy o &, for 7 € (R,0).

For a function germ f(z,y,u) € £(r;k + n), we define that

0 af> <3f >
e -K - " or’ Oy du ’
T (TP )(f) <f 1:8:3 ay E(r;k+n) ! Ou £(n)

and define that rP-IC-codf = dimg E(r; k + n)/T.(rP-K)(f).

Lemma 3.4 Let F(z,y,u,t) € E(r;k + n + m) be an unfolding of
flx,y,u) € M(r; k 4+ n) and q be a non-negative integer.
The function germ F' is reticular t-P-K-q-transversal if and only if

£k ) = TP + G limo) + Bk ),
R

We remark that if F' is reticular ¢-P-K-g-transversal then F is also
reticular t-P-K-¢'-transversal for any ¢’ < q.

Proof of the lemma. By an immediate calculation, we have
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of of

—(0), 0), 0
OG0 )

= e .0.)

dy’ ou’ At

(0 F ) (ToRF++m) — <jq

Therefore

F is a reticular t-P-K-g-transversal

& JUr+k+n,1) = Tjayo) (Ofpc (57£(0))) + T(j{ Flomo) (ToR*T™)

& JUr+k+n1)= (<f g:{>s( k )+m(r;k+n)<g§>
rik+n
of of of OF
+9ﬁ(”)<8u>> +7Tq(<6y’ ou’ ot t=0>R>
oF
T < ot ‘t O>R>

8f of of oOF
-k ZJ et
& Elriktn) = <f7 o’ dy >€(T;k+n) " <8U>5(n) " < ot |t_O>R

+ M(r; k +n)aTL, O

Proposition 3.5 Let F,G € 9M(r;k +n + m) and q be a non-negative
integer. Suppose that F' is reticular t-P-K-equivalent to G. If F' is reticular
t-P-K-q-transversal, then G is also reticular t-P-K-q-transversal.

Theorem 3.6 (cf. [11, Theorem 3.6]) Let f(z,y,u) € M(r;k +n) be an
unfolding of fo(xz,y) € M(r;k) and F(x,y,u,t) € M(r;k +n+ m) be an
unfolding of f. Suppose fo is reticular KC-finitely determined. Choose an
integer | such that

M(r; k)HE < %J;O >£M) +i)ﬁ(r;k)<%};0>. (3)

Let ¢ > Ilm + 1+ m. Then the following are equivalent.
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(a) F is reticular t-P-K-infinitesimally stable.
(b) F is reticular t-P-K-infinitesimally versal.

()
iy (7200 00 0y
E(rik+n) = <f7x8x’ 8y>5(r;k+n) " <au>8(n) " < ot

+ m(n)mﬂg(r; k+mn)+M(r;k+ n)q+1

t:O>R

Proof. Tt is enough to prove (c):>(a). Since flu=o = fo it follows
that <f0,z%, %—J;O>g(r e <f,x8x, e >€(7’ fmy T M(n)E(r; k + n). Since
M(r; k + n) L C M(r; B)FL + M(n)E(r; k + n) it follows that M(r; k +

n)att c M(r; k+n)(l+1)(m+1) - <f ng %Dsu k+n)+9ﬁ(n)m+1g<r;k+n)'
Therefore we may drop the term 9t(r; k +n)?+! from the right-hand side of
(¢). Then the following holds:

5(r;k+n+m)=<FﬂfaF 8F> +<3F> +<aF>
83: 8y E(r;k+n+m) 8“’ E(n+m) at E(m)

+M(n +m)"TE(r k4 n+m) + IM(m)E(r; k +n +m).

Then the assumption of Lemma 2.1 holds for B = <F x%i, %Z>5(r;k+n+m)’

< >€(n+m)’ = <%T>g(m) and m = d. Hence we have (a). O

The following two lemma’s can be proved by almost parallel methods of
the corresponding assertions in [11].

Lemma 3.7 (cf. [11, Corollary 3.7]) Let F(z,y,u,t) € M(r; k +n+ mq)
and G(x,y,u,t,s) € M(r;k +n + my + ma) and suppose G|s—g = F. If
F is reticular t-P-K-infinitesimally stable, then G is also reticular t-P-K-
infinitesimally stable.

Lemma 3.8 (cf. [11, Theorem 3.8]) Let F,G € M(r;k+n+m). If F is
reticular t-P-KC-infinitesimally stable and if F is reticular t-P-K-equivalent
to G, then G is also reticular t-P-K-infinitesimally stable.

Lemma 3.9 Let fo(x,y) € M(r; k) be a reticular KC-1-determined function
germ. Let ¢ > Ilm + 1+ m. If F(z,y,u,t) € M(r;k + n + m) unfold
flx,y,u) € M(r; k+n) and fo, and if F is a reticular t-P-K-q-transversal,
then the following holds:
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. 1 / _ of of
M(rs k + n)T+! C <f’ ax>g(r;k+n)+m(r’k+n)<8y>+m( )<8u>

Proof. By Lemma 2.3, we have that 9(r; k)"t C <f0,a;8x >€(7’ T
M (r; k)<%—§’> It follows as the proof of Lemma 3.6 that

M(r; k+n)?H C <f == of > +9(r; k+n)<af>+9ﬁ(n)m+1€(r; k+n).
O E(r;ik+n) 8y
(4)
Therefore we have that
M(r; k+n)?tt C <F,x>
Ox E(r;k+n+m)
+M(n +m)" T E(r k 4+ n+m) + Mm)E(r; k +n +m).

+ M (r; k+n+m)<g§>

This means that

E(r;k+n+m)
CE(rik+n)+Mm)E(r;k+n+m)

of of > < of > < oF
C y O +( = +{ =
<f O 8y E(r;k+n) u E(n) ot

)
+ M(r; k+n)TT + M(m)E(r; k 4+ n+m)

<F oF 6F> +<8F> +<8F>
r— - -
Ox 83/ E(r;k+n+m) du E(n+m) ot E(m)

+M(n +m)"TE(r k4 n 4+ m) + Mm)E(r; k +n +m).

OF OF _ /OF
We apply B = <F Loz Oy >€(T;k+n+m)’ Ay = %>
and m = d for Lemma 2.1. Then we have that

E(n+m)’ < >€(m)

Mn +m)"E(r;k +n+m)

<F xaF 8F> +<8F> +M(m)E(r; k +n+m).
Ox ay E(r;k+n+m) ou E(n+m)

Restrict this equation on ¢t = 0, then we have that
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e o1 of o
M(n)"E(r;k+n) C <f’”“"ax’ 3y>g(r;k+n) + <au>5(n)'

From this equation and the equation (4), we have the result. O

Let ¢ be a non-negative integer. We say that a function germ f €
M(r; k + n) is reticular P-K-q-determined if all function germ which has
same g-jet of f is reticular P-K-equivalent to f.

Lemma 3.10 Let f(z,y,u) € M(r;k+n) and q be a non-negative integer.

If
_ of ' of of
M(r; k+n)? C <f, $8I>5(r;k+n) + M(r; k + n)<8y> + Dﬁ(n)<8u>
+ M(n)M(r; k +n), (5)

then f is reticular P-K-q-determined.

Proof. Let a germ g(x,y,u) € E(r;k + n) with the same g¢-jet of f be
given. We have to show that there exists a germ ¢ € B,(r;k + n) and
a € E(r; k +n) such that g has the form g(x,y,u) = a(z,y,u) f o ¢(x,y, u).
By the restriction of (5) to u = 0, we have that f(z,y,0) € £(r; k) is reticular
K-g-determined by Lemma 2.3. It follows that there exist ¢'(x,y) € B(r; k)
and a unit a € £(r; k) such that f(x,y,0) = a(z,y)g(¢'(x,y),0). Therefore
we may assume that f(z,y,0) = g(z,y,0). Hence we may assume that
f—ge€eMn)M(r;k+n)l.

Define the one-parameter family F' connect f and g by F(z,y,u,7) =
(1 —=7)f(z,y,u) + 7g(x,y,u), 7 € [0,1] and set F,, € E(r;k +n + 1) by
Fro(x,y,u,7) = F(x,y,u, 70 + 7) for 79 € [0, 1].

By using the same methods of the Mather theorem (see [10, p.37]), we
need only to show that

OF,,
or

oOF;, >
T
Ox E(r;k+n+1)
F; F;
+93?(n)93?(r;k+n)<a °> +sm(n)2<8 °>
Ay E(rik+n+1) u E(n+1)

Then we have that

€ ()
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M(n)M(r; k +n)?E(rik +n+1)
Mn)M(r; k+n)1(E(r;k +n) +MD)E(r; k+n+1))
M(n)M(r; k 4+ n)? + MD)M(n)M(r; k +n)E(r;k+n+1)

C M )(<f,a:8f> —i—im(r;k—i-n)<gf>
€L E(r;k+n) Yy

+mw<%>+mmmwm+mﬂ

+ M(HM(n)M(r; k + n)2E(r;k+n+1)

of

C 9)?(n)< Ty of

+ M(n)M(r; k + n)<

>S(T;k+n+1) ay >5(r;k+n+1)

+ im(n)2<af> +M(n+ 1)Mn)M(r; k +n)E(r;k+n+1)
ou E(n+1)

OF,,

> OF,,
Xz
Ox E(r;k+n+1)

dy >£(r;k+n+1)

C fm(n)<Fm, + DM (n) M (r; k + n)<

+ 9ﬁ(n)2<aFT° > +M(n + )M)M(r; k +n)?E(r;k +n+1).
ou E(n+1)

By the assumption (5), we have the first inclusion. For the last inclusion,
observe that

8F7—0 ) 8f . A a ' .
T; or; xlﬁixi = (10 + T)x'%(g —f) € Mn)M(r; k+n)d,
8FT(] . 8f N a B ' o
oy oy~ (075, (9 ) € MEMrs k)t

s 2. 0 . q

du;  Ou; (TU+T)3ui(9_f) € M(r;k+n)?.

Since M(n)M(r; k+n)9€(r; k+mn+1) is a finitely generated E(r; k+n+1)-
module, we have by Malgrange preparation theorem (see [11, p. 60 Theorem
1.6, Corollary 1.7]) that
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OF,,
o ~977

€ Mn)M(r; k +n)? C M(n)M(r; k +n)2E(r;k+n+1)
xaFTO >
Oz E(rik+n+1)
OF,, >
Ay E(rik+n+1)

c () Fr,

+ M(n)? i O
ou £(n+1)

Lemma 3.11 Let fo(z,y) € M(r; k) be a reticular K-l-determined func-
tion germ. Let f(x,y,u) € M(r;k + n) unfold fo and suppose m = rP-K-
codf is a finite number. Let q > Im~+I+m and let F(z,y,u,t),G(x,y,u,t) €
M(r; k + n +m) be reticular t-P-K-q-transversal unfolding of f. Then F
and G are reticular t-P-K-f-equivalent.

+ M(n)M(r; k + n)<

Proof. By using analogous methods of the Mather theorem (see [10, the
proof of p.68 Lemma 3.16]), we need only to prove the following assertion:
Suppose that E-(x,y,u,t) = (1—7)F(z,y,u,t)+7G(x,y,u,t) € E(r;k+n+
m + 1) is reticular t-P-K-q-transversal unfolding of f for all T € [0,1] and
define E-, € E(r;k+n+m+1) by E- (x,y,t,u,7) = (1—710—7)F(2,y,u,t)+
(to+7)G(x,y,u,t) for o € [0,1]. Then for all T € [0, 1], the following holds

OE,, 8ETO>
Ox ’ 83/ E(r;k+n+m—+1)

RS
O/ e(nimin) o /[ e(mir)

Proof of this assertion Fix 19 € [0,1]. Since E,, is reticular t-P-K-g¢-
transversal, we have

S(r;k+n):<f,xaf,af> +<c9f>
O 8y E(rik+n) u E(n)

OE,,
+ < \f,o> + M(r; k +n)atL,
R

5(r;k—|—n+m+1):<ETo,x

ot

By Lemma 3.9, we have that
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M(r;k +n)itt C <f,:cg£>g( ) )—i—i)ﬁ(r;k—i—n)<g“£> +9ﬁ(n)<g£>
rik+n

Therefore we have that

Ersk+n)={(fx=—, = +{ 5= + = .
( ) <f 02" 0y [ g(rpany  \OU/ () ot =0 R

Since Er,(z,y,u,t) — f(x,y,u) € M(m)E(r; k +n + m), we have that

E(rik+n+m)
=E(r;k+n) +Mm)E(r; k+n+m)

of 8f> <c‘9f> <8Em
= { foot, (Y o+
<f Ox ay E(r;k+n) ou E(n) ot

"
+M(m)E(r; k+n+m)

S T I AL
O 83/ E(r;k+n+m) du E(n+m) ot E(m)

+M(m)E(r; k+n+m).

Therefore we have that

Erik+n+m+1)
=&(rik+n+m)+MDE(r; k+n+m+1)

_ < ETO’:EGETO’(?ETO> . <aE,O> . <8ETO>
O 6y E(r;k+n+m) u E(n+m) ot E(m)

+M(m)E(r;k+n+m) +ML)E(r;k+n+m+1)

_ <E azaETO 8ETO> N <3ETO>
Ox 8y E(r;k+n+m+1) u E(n+m+1)

OE,,
+< > +Mm+ 1)E(r;k+n+m+1).
E(m+1)

ot

By Malgrange preparation theorem, we have
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0E, OETO>
oz " Oy E(rik+n+m+1)

+<6ETO> +<aEm> 5
M/ (npmt) M/ gms1)

Theorem 3.12 Let F(z,y,u,t) € M(r;k + n + m) unfold f(x,y,u) €
M(r;k + n) and fo(x,y) € M(r;k). Suppose that fo is reticular K-I-
determined and ¢ > Ilm + 1+ m+ 1. Then the following are equivalent.

(1) F is reticular t-P-K-q-transversal.

(2) F is reticular t-P-K-stable.

(3) F is reticular t-P-K-versal.

5(r;k+n+m+1):<ETO,x

Proof. Let z = j1f(0). (1)=(2). Let F be a reticular t-P-K-g-transversal

unfolding of f. Let F' € C*(U,R) be a representative of F. Set V =
U N ({0} x RFtn+m) Define

Np = {G’ € C*®°(U,R)| j9G|,—o is transversal to Ol i (2)

and jf@]mzo(V) NOp.ic(2) # @}-

This is an open neighborhood of F because the maps G — jqé — jfé —
Ji G |z=0 are given by compositions of continuous maps. Let GeN 7 and take
(0,y0,u0,tp) € V such that jfé is transversal to Ofp_i(2) at (0,0, uo, to).
Let G be the germ of G|y ygi+ntm at (0,40, uo, to) and define g € E(r; k+n)
by g(ﬂf, Y, u) = G(LE, Y+Yo, u+uo, 750)' Since qu(oa 0, 0) = ]gé(o’ Yo, U0, tO) €
Ol (%), there exists ¢ € By, (r;k+n) and a unit o € E(r; k +n) such that
the germ f’ € £(r;k + n) defined by f'(x,y,u) = a(z,y,u)g o ¢(x,y,u) has
the same g-jet of f. Since F' is also reticular ¢-P-K-(q — 1)-transversal and
qg—12>1Im+ 14 m, we have by Lemma 3.9 that

9ﬁ(r;k+n)qc<f,xg£> ( )+9)T(r;k+n)<g£>+9ﬁ(n)<g£>.
E(r;k+n

This means by Lemma 3.10 that f is reticular P-K-g-determined. It follows
that f is reticular P-K-equivalent to f. So g is also reticular P-K-equivalent
to f. Hence there exist ¢’ € B, (r;k +n) and o’ € E(r; k + n) such that g
has the form f(z,y,u) = o'(x,y,u)go ¢’ (z,y,u) Define G’ € E(r;k+n+m)
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by G'(z,y,u,t) = o (z,y,u)G(¢'(x,y,u),t). Then G’ is a reticular ¢-P-
K-g-transversal unfolding of f. By Lemma 3.11 we have that F and G’
are reticular ¢t-P-K-f-equivalent. Therefore F' and G are reticular t-P-X-
equivalent.

(2)=(3). Let F be a reticular t-P-K-stable unfolding of f and let F €
C>°(U,R) be a representative of F. By hypothesis and Theorem 3.2, there
exist F’ € C>(U,R) and (0, yo, uo, to) € U such that jfﬁ’\mzo is transversal
to Olp_(2) and the germ F' = F'|gr wgiantm at (0,90, ug,to) is reticular
t-P-K-equivalent to F'. By Proposition 3.5, we have that F' is a reticular
t-P-K-g-transversal unfolding of f.

Let an unfolding G(z,y,u,s) € E(r;k +n + mq) of f be given. Define

G'(z,y,u,t,s) € E(r;k+n+m+mq) by G'(x,y,u,t,s) = G(z,y,u,s) —
f(z,y,u)+F(x,y,u,t). Then G’ is a reticular t-P-K-g-transversal unfolding
of f because F is reticular ¢-P-K-g-transversal. Define F"(z,y,u,t,s) €
E(r;ik+n+m+my) by F'(,y,u,t,s) = F(x,y,u,t). Then F” is also a
reticular ¢t-P-I-g-transversal unfolding of f. By Lemma 3.11, we have that
G’ and F" are reticular t-P-K-f-equivalent. Since G is reticular t-P-K-f-
induced from G’, and F” is reticular ¢-P-K-f-induced from F, it follows
that G is reticular t-P-X-f-induced from F'. Therefore F' is reticular ¢t-P-
K-versal.
(3)=(1). Let F(z,y,u,t) € E(r;k + n + my) be a reticular t-P-K-versal
unfolding of f. Take a reticular ¢-P-K-g-transversal unfolding G(z, y, u, s) €
E(r;k +n + my) of f. By hypothesis, there exists a reticular ¢-P-K-f-
morphism from G to F' of the form:

G(xayaua 8) - a(mayvuu S)F($¢1($,y,u, 8)7 ¢2(x7y7u7 8)7 ¢3(U, 5)7 ¢4(8))

Since G is reticular t-P-K-g-transversal, we have

of of of oG
5(r,k+n):<f,m ) >> +< > +< ’s:0>
00y / g(rik4m) O/ g(p) s R

+ M(r; k + n)q+1.

On the other hand, we have that

oG of (9f> <8f> <3F
- C X +( = +{ =
< s SO>R <f Ox 8y E(rik+n) ou E(n) ot

tO>R
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Therefore

of of > <8f> <5’F
E(rik+n —<,:B,, +{ = +{ =
( ) f Ox 8y E(r;k+n) ou E(n) ot

+ M(r; k+ n)qH.

t:0>lR

Hence F' is reticular t-P-XC-g-transversal. O

Theorem 3.13 (Uniqueness of universal unfoldings) Let F(z,y,u,t),
G(z,y,u,t) € M(r; k+n-+m) be unfoldings of f € M(r;k+n). If F and G

are reticular t-P-K-versal, then F' and G are reticular t-P-K-f-equivalent.

Proof.  Since F is a reticular P-K-versal unfolding of fo = f|u,—0 as (n+m)-
dimensional unfolding. This means that fy is finitely determined. Choose
an non-negative integer [ such that (3) holds for fy. Let ¢ > Im+1+m+ 1.
By Theorem 3.12, we have that F' and G are reticular t-P-KC-g-transversal.
By Lemma 3.11 we have that F' and G are reticular ¢-P-K- f-equivalent. []

Theorem 3.14 Let F(x,y,u,t) € M(r;k +n + m) be an unfolding of
flx,y,u) € M(r;k + n) and let f be an unfolding of fo(xz,y) € M(r; k).

Then following are equivalent.

(1) There exists a non-negative number | such that fo is reticular K-I-
determined and F is reticular t-P-K-q-transversal for ¢ > Im + 1 +
m+ 1.

(2) F is reticular t-P-K-stable.

(3) F is reticular t-P-K-versal.

(4) F is reticular t-P-K-infinitesimally versal.

(5) F is reticular t-P-K-infinitesimally stable.

(

6) F is reticular t-P-K-homotopically stable.

Proof. (2)=(5) F is also reticular P-K-stable unfolding of fy as (n+m)-
dimensional unfolding. Therefore fy is reticular KC-finitely determined.
Choose an non-negative integer | such that (3) holds for fy. Let ¢ >
Im+1+m+ 1. By Theorem 3.12, we have that F' is reticular t-P-K-g-
transversal. Then the assertion (c) of Theorem 3.6 holds. Therefore F is
reticular ¢-P-C-infinitesimally stable.

(4)<(5) This is proved by Theorem 3.6.

(5)=(2) F is also reticular P-K-infinitesimally stable unfolding of fy as
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(n 4+ m)-dimensional unfolding. Therefore there exists a non-negative num-
ber [ such that fy is reticular K-l determined. By Theorem 3.12, we have
that F' is reticular ¢t-P-K-g-transversal for ¢ > Im + [ + m + 1. This means
that F is reticular ¢-P-K-stable by Theorem 3.12.

(1)&(2)<(3) This is proved in Theorem 3.12.

(5)=(6)

E(rsk+n+m+1)
=&(mk+n+m)+MDEMrk+n+m+1)

<F oF 8F> +<6F> +<8F>
= Yy T a. Y
Ox ay E(r;k+n+m) u E(n+m) ot E(m)

+MD)E(r k+n+m+1)

~ (raL 20 ey (%)
T 07 0Y [ ripgnima) 0u / (ntm+1) o/ eme)

+M(m+1)E(rmk+n+m+1).
By Malgrange preparation theorem, we have that

oF OF
E(rik+n+m+1)= <F,:c,>
dx~ dy E(rik+n+m+1)

oF oF
n <a> ; <6> R
U/ &(ntmt1) L/ e(mt1)

This means that F' is reticular ¢-P-X-homotopically stable.

(6)=(5) Suppose that F' is reticular ¢-P-X-homotopically stable. Then (6)
holds. Restrict this equation to H” x R¥*"+™_ Then we have the equation
(2). O

For f € M(r;k+n) if a1,...,am, € E(r;k + n) is a representative of a
basis of E(r;k + n)/T.(rP-K)(f), then the function germ f + ajt; +--- +
At € M(r;k 4+ n+m) is a reticular ¢-P-K-stable unfolding of f.
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4. A generic classification of unfoldings under the reticular ¢-P-
K-equivalence

Definition 4.1 We say that function germs fi(z,y) € 9M(ri;k1) and
fa(z,y) € M(ra; ko) are stably reticular KC-equivalentif f1 and fy are reticular
K-equivalent after additions of linear forms in x whose all coefficients are
not zero and non-degenerate quadratic forms in the variables y. We also
define the stably reticular P-K-equivalence relation and the stably reticular
t-P-K-equivalence relation analogously.

Proposition 4.2 Let fo € M(1;k). Then fo is stably reticular K-
equivalent to y € IM(0;1) or there exists fi € M(r; k)2 (r = 0 or 1) such
that fo and f} are stably reticular K-equivalent.

Proposition 4.3 (cf., [7, p.126]) Let fo(y) € MM(0; k) with (r)K-codfy < 6
be given. Then fy is stably (reticular) K-equivalent to one of

A syH0 <1 <6), DY yfye =3, Ds: yiye + v,
Dg :yiya £95, Byt +ys.
Let fo(x,y) € M(1; k) with rK-codfy < 4 be given. Then fqy is stably retic-
ular K-equivalent to one of
A ytTH0 <1 <4), DF cytya£y3, Br:al(1<1<4),
C’;E cdxy 493, Curay+yt, Fyoca® 445

Proposition 4.4 Let fo(z,y) € M(r; k) be a simple singularity, that is
Ay, Dy, Eg, E7,Eg for v =0, or B;,C, Fy forr = 1. Let Qy, be the local

ring of fo, that is Qyp, = 5(r;k)/<f0,x%, %—?}g(r;k). Then there exist
monomials ©o, 1, ..., pn € M(r; k) which consist a basis of Qy, such that
(1) M(r; k) - oo ~ 0 mod Qy,
(2) Foranyi,je€{l,...,n}(i+j > n) there exists a non-zero real number
a such that @; - p; ~ ap;tj—n mod Qy,.
(3) Foranyi,je{l,....n}i+j<n), pi ; ~0modQy,,
For example, if fo(x,y) = 2y + y*(Cy) then we may choose that ¢y = 3,
p1 =9 P2 =y, p3=1.
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Proposition 4.5 Let fo(z,y) € M(r;k) be a simple singularity, that is
A, Dy, Eg, E7, Eg for v = 0, or B;,C;, Fy for r = 1. Choose monomi-
als wo(x,y),...,on(x,y) as the previous proposition. Then the function
F(z,y,u,t) = folz,y) + oz, y)t + 1 wi(z,y)u; is a reticular t-P-K-
universal unfolding of F|i—o.

Proof. In this proof we write &(x,y,u,t) for E(r;k + n + 1) and write
E(u) for £(n) and write other notations analogously. Since F — fy €
M(u, t)E(z,y,u,t), we have that

OF _ 0 OF 0k
o ax@ i 85[31 ’ 8yj 8y] € m(u7t)g(‘r7yvuat)

It follows that

<fo,xafo, 3f°> c <anp 8F> M, )28, )
Oz Oy M (u,t) dz" dy E(m,y,u,t)
(7)
Therefore we have that
dfo Ofo
fo 33877 Oy
T OY L o(ut)e(z,y,u.t)
C F7$7’7 +m(uat) 5(9573/,%75)- (8)
< 9z Oy E(z,y,u,t)

Let a function germ G(z,y,u,t) € E(z,y,u,t) be given. It is enough to
prove that

oF OF
G€<F,$,> +<8017"'7<)0n>5 u,t +<900>5t
oz’ Dy Eloyat) (u,t) (t)

+ M(u, t)QE(x,y,u,t),

because this means by Lemma 2.1 that

OF OF
g(‘rayvuat)_<F7$7> +<§017"'7()0n>€ u,t +<900>€t .
oz’ dy Eloyt) (u,t) ()
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Since F is a reticular P-K-infinitesimal stable unfolding of fy as (n+1)-
dimensional unfolding, we have that

OF OF
gx:yauvt)_<Faxa> + (@0, ¥1,---,¥n)e .
( Oz~ 9y E(w,y,u,t) | > et

It follows that there exist function germs go(u,t),. .., gn(u,t) € E(u,t) such
that

OF OF
G ~ ol n(o) + -+ 4 gu 0,0 (o) mod (Fa G 50Y
x Y E(x,y,u,t)

Then go has the form go(u,t) = go(0,t) + >, a;u; + h(u,t), where a; € R
and h € M(u,t)®. Since F is quasi-homogeneous function germ (see [1,
p. 192] for the definition), and fj is simple singularity, there exist non-zero
real numbers by, by, b;, b,, such that F' has the form:

oF oF
F= szL‘ + byy + bttSOO + bulul‘pl +---+ bunungpn-
Oz Ay

Then there exist non-zero real numbers b} such that

OF OF
P F o~ oo 1z +by<pn71yafy +biton—1+biurpo+- - -+ by tnon_1

0fo Of
mod <f0’ mTa?’ Tyo>im(u,t)€(ac,y,u,t)'

Therefore we have by (8) that
0~ @n1F ~ bitwopn—1+ biurpo + -+ + b unpn—1
mod the right hand side of (8). Since M(x, y)po ~ 0 mod Qy,, we have that
0~ on1F ~bjurpo + -+ bt 1901
mod the right hand side of (8). This means that

oF OF

u1po € <F,l‘, > + <901a R @n)im( ,t) + Em(u,t)QS(x,y,u,t).
0" 0y / @y, !

(9)
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By considering ¢, _oF., ..., poF instead of ¢, 1F, we have that usyo,
.., Uppo, are included in the right hand side of (9). This means that
go(u,t)po ~ go(0,t)po mod the right hand side of (9). Therefore we have
that

oF OF
G€<F,SU,> Q1 On)e(ue) T (Po)e
oz’ Dy Eloyat) (u,t) (t)

+ M(u, t)2E(x, y, u, t). O

Lemma 4.6 Let fo(x,y) € 9M(r;k) be a simple singularity and
F(z,y,u,t) € M(r;k +n+ 1) be a reticular P-K-universal unfoldings of
fo- If F is a reticular t-P-K-universal unfoldings of f = F|i—¢ and rK-
codf =1, then F is reticular t-P-K-equivalent to the function germ of the
form in Proposition 4.5.

Proof. We may assume that fy has the normal from. Then F is reticular
P-K-equivalent to Fy = fo(x,y) + tpo(z,y) + urpr(x,y) -+ + unpn(z,y).
Therefore there exists a reticular P-K-isomorphism (o, ®) from Fj to F.
We write ® = (x¢1, da, 3, ¢4). We set fO € M(r; k) by f° = Fyli—o, that is
1O = folx,y)+urpr(z,y) - ~+unpn(x,y). Since rk-codf = 1, it follows that
the map germ u +— ¢3(u,0) is invertible. Therefore we may reduce F' to the
form: F(ma Y,u, t) = fo(x’ y)+a(u’ t)¢0(x> y)+u1<p1 ($, y) o '+un(10n(xv y) for
some a € M(n+ 1) with %(0) # 0. By an analogous method of Proposition
4.5, we have that
o Of° f°
M(u)po € <f ,xax> +fm($,y,u)<8>+9ﬁ(u)<<,01,...,gon>.
E(z,yu) y

We fix 19 € [0,1] and define E. (z,y,u,7) € M(r;k + n + 1) by

ETO (‘T7 Y, u, T) = fO(xv y)+(TO+T)a(u’ O)@O(xv y)+u1901($7 y) o +un90n($v y)
Since E,, — f° = (10 + 7)a(u,0)¢py, it follows that

OE., OE; OFE;, OFE;,
. ET? 5 s Yy Wy : ) — .
5, € < 0 ¥ g >g(x,y,u,r) + M(z,y,u 7')< 3y >—|—9ﬁ(u T)< 5 >

By an analogous method of [10, p.26 Lemma 1.27], we have that F|;—
and fO are reticular P-K-equivalent. By Theorem 3.13, it follows that F is
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reticular t-P-K-equivalent to Fj. O

Now we classify reticular ¢-P-K-stable unfoldings in 9 (r; k+n-+1) with
respect to stably reticular t-P-K-equivalence for the case r = 0,n < 5 and
r=1,n < 3. We prove only the case r =1,n < 3.

Let a reticular t-P-K-stable unfolding F'(x,y, u,t) € M(1; k+n+1) with
n < 3 be given. We set f = F|i—o and fo = f|u=o. Since F is a reticular
P-K-stable unfolding of fy as (n + 1)-dimensional unfolding, it follows that
fo is stably reticular K-equivalent to one of the types in Proposition 4.3. So
we may assume that fp has the normal form in 9%(1;1). We denote X the
type of fo. Then the local ring Q) s, has basis ¢, ..., p—1 (I <n+1) and ¢
has the maximal degree. The function germ Fy(z,y,u,t) = fo+too+uipr+
w11 € M(L; 1+ (1—1) 4+ 1) is a reticular ¢-P-K-universal unfolding
of fo by Proposition 4.5. Since F' is a reticular P-K-stable unfolding of fj,
there exists a diffeomorphism germ ¢ on (R"*!, 0) such that Fy € M(r; k +
(I —1)+ 1) given by Fi(z,y,u,t) = F(x,y,é¢(u1,...,u—1,t,0,...,0)) is
reticular t-P-K-equivalent to Fy. So we may reduce F; to Fy. Therefore F
has the form

F(m)yyuvt) = fO(xay) =+ aO(u7t)900(‘T7y) +oee al*l(uﬂf)solfl(xvy%

where the map germ (uq,...,u,,t) — (ao(u,t),...,a;—1(u,t)) is a submer-
sion.

In the case that the map germ (uq,...,u,) — (ao(u,0),...,a;—-1(u,0)) is
also a submersion, then F is reticular ¢-P-K-equivalent to °X.

In the case that the map germ (uq, ..., u,) — (ao(u,0),...,a;-1(u,0)) is not
a submersion. Then r/C-codF|;—¢ = 1. It follows that F is reticular ¢-P-XC-
equivalent to Fy by Lemma 4.6. Therefore F' is reticular t-P-K-equivalent
to the function germ:

Jo+ (t+ao)po + (ur +ar)pr + - (w—1 + a—1)1—1,

where a; € M(uy,...,up)E(u) for i = 1,...,0 — 1. Hence F' is reticular
t-P-K-equivalent to the function germ:

fo+ (t+ao)po +uipr + - u—1p1—1.

Let I — 1 =mn. Since ag = 0, it follows that F' is reticular ¢-P-K-equivalent
to 1 X.
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o) . o
Let  —1 <n. Then 53¢(0) = 0 for all i = ,...,n. If (5752-(0)), .,
is degenerate then rIC-codF|i—9 > 1. It follows that F is not reticu-
2
lar t-P-K-stable. Therefore (aiig%j (O))i,j:l,...,n is non-degenerate. Since
ag|uy=--=u;_,—0 18 a Morse function on wy,...,u,, We have that F is retic-
ular ¢-P-K-equivalent to 1X.

Theorem 4.7 Letr=0,n<5o0orr=1,n<3 and U be a neighborhood
of 0 in H" x R¥t"+1 Then there exists a residual set O C C*(U,R) such
that the following condition holds: For any F € O and (0,yo,uo,to) € U,
the function germ F(x,y,u,t) € M(r;k +n + 1) given by F(z,y,u,t) =

F(x,y+yo, utug, t+to)—F (0, yo, uo, to) is a reticular t-P-K-stable unfolding
of Fli=o-

In the case r = 0,n < 5, F is stably reticular ¢-P-K-equivalent to one
of the following type:

") g S iyt b (0 <1< 5),
DY) yiye £ y5 + u1y3 + uays + usyr + ua,
Yiyo + ya + urys + ugys + uzye + ugys + us,

(
(
(°Ds
(CA) gttt £ 2@y Y wyl +w (2 <1<6),
(
(

S o

0

LDY) ydyay3 +ty3 +urye +usyr +us, yiyatyd+(tEul)y3 +uiye +usyi us,

5) Uiy +Ys + tys + uiys + uays + usyr + ua, Yiye + s + (t £ ud)yd +
u1y3 + usys + uzyr + ua,

(1Dét) Yiys £ Y3 + tyS + wiys + uayi + usys + uayr + us,

(*Ee) 3 +y5 + tyiyd + uryaiye + u2y3 + usyr + uayo + us.

Sl

1

In the case r = 1,n < 3, F' is stably reticular t-P-K-equivalent to one of the
following type:

CA4) (0<1<3),

(B1) z+u,

(“Bs) 2% + w1z + ug,

( B3) $3 + U1$2 + u2x + us,
OCF) tay + v +ury® + usy + uz,
(4) @<i<4), (D)
('B1) z+t,

(1By) 22 +tx+wuy, 22+ (t£ud)z +uy, 22+ (t+ud +ud)z +uy,
(1B3) 2% +ta? +urz +ug, 3+ (t £ ud)z? + urr + uo,

(1By) x* +ta® +urax? + ugx + us,
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(1CF) +ry + 33 +ty? + wry +us, Ty + P+ (E+ud)y? +ury + us,
(1Cy) zy+y* + tyd + ury? + uay + us,
(LFy) 2% + 92 + toy + uiw + uoy + us.

We remark that a class ' X is not one equivalent class, since non-degenerate
quadratic forms +u? and —u? may define different classes.

Proof.  We prove only the case r = 1,n < 3. All function germ in 9(1; k)
with the reticular K-codimension < 3 are stably reticular K-equivalent to
one of the types in Proposition 4.3. We define the stably reticular P-X-
equivalence classes by

OA[) l+1 + ZZ 1u1y1 + ug (0 <I< 3)
OBl) £U+U,
By) 2?4+ uiw + uo,
033) 1'3 +U11‘2 + u2x + us,
C

0CF) tay+y° +u1y2 +u2y s,

1Alj): yiﬂ +(Huf ekl + ZZ 1uzy1 + u (2<1<4),

1D4 ) y1y2 + yg’ + u1y2 + u2y1 + us, y1yz + ?Jz + U4Zl/2 + U1y + u2yy + us,
Bl .I',

)
9) 2%+ up, x? iu2x+u1, 2% + (+ud +ud)z + vy,
) a3 —I—u1:c+u2, 23+ udz? + w1 + ug,

'1By) 2% 4+ uy2® + ugw + 2,

103?:) +ay +y° +uy +ug, £ry +y° £uiy® +wy + ug,
1Cy) ay+yt 4wy + ugy + us,

1F4) 22 4+ 3 + uix + uoy + us.

We define that

O ={FeC>*U,R) | §t F|,—o is transversal to [X] for all above X}

Then O’ is a residual set in C*°(U,R).
We set

Y = {j'f(0) € J'(r + k+n) | rP-Kcodf > 1.}
Then Y is an algebraic set in J'(r + &k +n). We also set

"={F € C*(U,R) | jiF|,—o is transversal to Y }.
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Then Y has codimension > k+n+1 because all function germ f € M(1; k+n)
with j!f(0) € Y is adjacent to one of the above list which are simple. Then
we have that

O"={FeC®UR)|#FUN{z=0)NY =0}

We set O = O’ NO”. Then O has the required condition. O
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