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Sparse Domination Theorem for Multilinear Singular
Integral Operators with L"-Hormander Condition

KANGWEI L1

ABSTRACT. In this note, we show that if 7 is a multilinear singular in-
tegral operator associated with a kernel satisfies the so-called multilin-
ear L"-Hormander condition, then 7' can be dominated by multilinear
sparse operators.

1. Introduction and Main Results

This note is devoted to obtain a sparse domination formula for a class of multi-
linear singular integral operators. Dominating Calderén—Zygmund operators by
sparse operators starts from Lerner [19], who obtained the following result:

Z(][Q|f|)><g<x>

QeS

ITf()llx < Cr sup
D,S

)

X

where the supremum is taken over all the sparse families S C D (see further for
the definition) and all the dyadic grids D, and X is an arbitrary Banach function
space. Then the A, theorem (Hytonen [12]) follows as an easy consequence.

Later, this result was refined by a pointwise control independently and simul-
taneously by Conde-Alonso and Rey [6] and Lerner and Nazarov [21]. All the
results mentioned require the kernel satisfying the log-Dini condition. Finally,
Lacey [17] relaxed the log-Dini condition to the Dini condition, and then Hyto-
nen, Roncal, and Tapiola [ 14] refined the proof by tracking the precise dependence
on the constants. Very recently, Lerner [20] also provided a new proof for this re-
sult, which also works for some more general operators. To be precise, Lerner
showed the following result.

THEOREM A ([20, Thm. 4.2]). Let T be a sublinear operator of weak type
(g, q) such that the corresponding grand maximal truncated operator Mr is of
weak type (r,r), where 1 < g <r < oo. Then, for every compactly supported
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f € L"(R"), there exists a sparse family S such that for a.e. x € R",

1
TN = cngrUITLa—ra- + [ MrllLr—pLre) Z (][Q |f|r> xo(x).
QeS

Let us recall the notations in this result. We say that S is a sparse family if for
all cubes Q € S, there exist Eg C Q that are pairwise disjoint and |Eg| > y|Q],
where 0 < y < 1. For a given operator T, the so-called “grand maximal trun-
cated” operator M is defined by

M f(x) = supess sup|T(fxrm\30) (&)l
O>x §€Q

It is shown in [20] that Calderén-Zygmund operators with Dini continuous
kernel satisfy the assumption in Theorem A with ¢ =r = 1. In this short note,
we give a multilinear analogue of Theorem A. Then as an application, we give a
sparse domination formula for multilinear singular integral operators with kernels
K(x,y1,..., ym) satisfying the so-called m-linear L"-Hormander condition

o0
K, :=sup sup ZIZkQIT(f K, y1,..0y Ym)
0 xzeloim @k Qym\@2k=1 gym

1

—K(Z7}’1,-~-’)’m)|r/dy> < 00,

where Q" = QO x---x Q and 1 <r < 0o. When r = 1, this formula is under-
—_—

m times
stood as

o0
Kj:=sup sup Z|2kQ|’" €ss sup |K (X, yi,.es Yim)
0 rzeloimy ek Qym k-1 oy

— Kz y1,-s ym)| < 00.

Bernicot, Frey, and Petermichl [1] showed that a large class of singular non-
integral operators can be dominated by sparse operators (in fact, in the bilinear
form sense). Even in the linear case, the L”-Hormander condition is beyond the
“off-diagonal estimate” assumption in [1]. We also remark that our assumption is
weaker than assumption (H2) used in [2] (see Proposition 3.2). It is also easy to
see that our assumption is weaker than the Dini condition used in [9] (see Propo-
sition 3.1).

Now to state our main result, we need a multilinear analogue of grand maximal
truncated operator. Given an operator 7, define

MT(flv () fm)(x)

=supesssup |T(f1,..., fm)(E) =T (f1x30: - fmx30)&)I.
Q3x §eQ
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Note that we do not require 7 to be multisublinear. Given a cube Qy, for x € Qy,
we also define a local version of M7 by

MT,Qo(fla ceey fm)(x)
= sup esssup|T(f1x30¢>--» fmX300) (&)
03x,0CQ0 &€0

—T(f1x30:---» fux30)(E).

Our first result reads as follows.

THEOREM 1.1. Assume that T is bounded from L1 x --- x L4 to L1/™> and
M is bounded from L x --- x L" to L7/M® swhere 1 < q <r < oo. Then, for
compactly supported functions f; € L"(R"), i =1, ..., m, there exists a sparse
family S such that for a.e. x € R,

IT(f1,-..s f) ()]
< CngrUT Nl pas...xpa— parmoo + IMT Il prs.cospr s pr/moc)
1

<3 ﬁ(][gw)'m(x).

QeSi=1
As a consequence, we show the following:

THEOREM 1.2. Let T be a multilinear singular integral operator that is bounded
from L x --- x L™ to L"/™°° and suppose that its kernel satisfies the m-linear
L"-Hdormander condition. Then, for compactly supported functions f; € L” (R"),
i=1,...,m, there exists a sparse family S such that for a.e. x € R",

ITCfrseos f) O = cnr (1T M pr o 17— pr/meoe + Kr)

x Y ﬁ(fgw):m(xy

QeSi=l1

We would like to remark that recently a different approach to sparse domination
of singular integrals not relying on weak endpoint bounds for grand maximal
functions has been developed by many authors; see [5; 8; 15; 18].

In the next section, we give a proof for Theorems 1.1 and 1.2. In Section 3, we
give some remarks about the m-linear L"-Hormander condition.

2. Proof of Theorems and

The proof of Theorem 1.1 will follow the same idea used in [20], but with proper
changes for the multilinear case. For simplicity, we only prove both results in the
case of m =2, and the general case can be proved similarly. First, we prove the
following lemma.
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LEMMA 2.1. Let T be bounded from LY x L9 — L9421 < q < 00. Then for
a.e.x € Qop,

IT(f1X300> f2X300) (X)]
< T

| f100) 20| + M7, 00 (f1, f2)(x).

q
LixL4—L2>

Proof. Suppose that x € int Q¢ and let x be a point of approximate continuity of
T(f1x300> J2X30,) (see e.g. [10, p. 46]). Then for every € > 0, the sets

Es(x) = {y € B()C, S) : |T(le3Q07 f2X3Q0)(Y) - T(f1X3Q03 f2X3Q0)(x)| < 6}

satisfy lims_, ¢ ||t§(v)c(,)iv))|| = 1. Denote by Q(x,s) the smallest cube centered at x

and containing B(x,s). Let s > 0 be so small that Q(x,s) C Qp. Then for a.e.
y € Es(x),

IT(f1X300> J2X300) (%)
<IT(f1x300: S2X300) (V)| + €
<IT(f1X30(x.5)> J2X30(x.5)) (V)]

+ M7, 00 (f1, f2)(x) + €.

It follows that

IT(f1X300> f2X300) (X)]

< essinf [T (f1X30(x,5)> [2X30(x,5)) (V)]
yeEs(x)

+ Mr,0,(f1, f2)(x) + €
2
<IEs| 1T (f1X300x,5): 2X300,9)) | Larz.0
+ Mr7.0,(f1, f2)(X) + €

2 1
1 q

., ()14
<INy b T |(/3Q(m A0y )

i=1
+ Mr,0,(f1, f2)(x) + €.

Assuming additionally that x is a Lebesgue point of | f1|¢ and | f|9 and letting
subsequently s — 0 and € — 0 will conclude the proof. 0
Now we are ready to prove Theorem

Proof of Theorem 1.1. Fix a cube Qo C R”. We shall prove the following recur-
sive inequality:

IT(f1X300> f2X300) (X)X 00

<enrll Al 11, + T (fixse,. fxap)@xp,.  2.1)
J

where P; are disjoint dyadic subcubes of Qy, that is, P; € D(Qo), and moreover
> ; [Pj] < %|Q0|. Observe that for arbitrary pairwise disjoint cubes P; € D(Qo),
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we have
IT (f1 X300+ f2X300) (X)X Qo
=T (f11300: F20300) ) xonU, ; + 21T (F1x300: F22300) ) xp;
J
<IT(fixsops 22300 @ xo\U, Py + D IT 137, frxar) )l xe,
J
+ Y T (fi1X300- F2X300) ) = T(fix3p;. frx3p,) ()| XP;-
J
Hence, to prove the recursive claim, it suffices to show that we can select pairwise
disjoint cubes P; € D(Qp) with Z/’ |Pj| < %|Qo| and such that for a.e. x € Qy,
Z IT(f1x3005 f2X300)(x) = T (fix3p;, f2x3P;) (X)X P;
J
1 1
+IT(f12500 1203000 Xon\U; 2, < en 1 (LA Vg0, (121 Vg,
By our assumption, M7 is bounded from L’ x L” to L’/?>°°. Therefore there is
a sufficiently large ¢, such that the set
1 1
={x € Qo : 1/1(x) 20| > eall f117)30, (112150, }
U{x e Qop:

1 1
Mr,00(f1. [2) &) > enll M7l s pr o 2o (L3 0, (21 )30, )

will satisfy |E| < 2,1%|Q0|. The Calderén—Zygmund decomposition applied to

the function xg on Qg at height A = 2,,% produces pairwise disjoint cubes P; €
D(Qp) such that

1 1
W|Pj| <|PiNE|l< §|Pj|
and |E\Uj Pj| =0.Itfollows that Z/ |Pj| < %|Qo| and P; N E€ # (. Therefore
esssup [T (fi1x300 2X300)(8) — T (fi1x3p;, f2x3p;)(6)]

EGPI'

< Ml e LA Vg, (2 Vg

On the other hand, by Lemma 2.1, for a.e. x € Qg \ Uj Pj, we have
IT (f1x300> f2X300) ()]

1 1
<cnlTlpaxpams parzoe + IIMT pr s pr—s prrooo) (| f11" 3' (12l 3r
Therefore, combining the estimates, we arrive at (2.1) with
cn, T ~ T lpascpa—s parzce + IMrllprpr s prizes.

Now with (2.1), the rest of the argument is the same as that in [20], and we
complete the proof. (]
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Next, we turn to prove Theorem

Proof of Theorem 1.2. 1t suffices to prove that Mt is bounded from L" x L" to
L"/2% Indeed, let x,x’,£ € Q C % -30Q. We have

IT(f1, 2)&) =T (fix30: 2x30)(&)]
// K (&, y1,y2) fi(y1) f2(32)dy1 dy>
®")2\(30)?

< / / (K, y1.y2) — Ky y1. y2) L) fa () dyr dya
(R")2\(30)?

+IT(f1, YO +IT (fixzo, fx30) (XD 2.2)

By the bilinear L"-Hormander condition we have

‘// (K (&, y1,y2) — K(&', y1,y2)) fi(y1) f2(y2) dy1 dy»
(RM2\(30)2

o0

=3[ K 1, 2) — Kt v
k=1 (2¥30)%\(2¢-130)?

11D 12(2)dyr dys

<Z<// |K (€. y1.y2) — K& y1, y)|” dyy dyz)
(2k30)2\ (213 0)?

1

x ( / f LAGD LGOI dyr dy2>r
(2k30)2

o0
2
=Zl2k3Q|r<// K (&, y1,y2)
P (2¥30)%\(2%-130)?

7

— K&y, ) dy dyz)

1
k22 "dy;d
(3 [ g OV RO o)
< K, MUAT LD,

Then, taking L4 average over x’ € Q on both sides of (2.2), we obtain

IT(f1, f2)E) = T(f1x30: f2X30) ()

4
SKr(M(|fl|r»|f2|r)(x))i+< / T (f1, fz)(X)I“dX)

10l

4
<|Q| / IT(fix30, f2x30) (X )|4 dx)
<K, (MUA 1 AIDE)F + Mya(T(frn f2))(x)
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tallT(hixse 2ol e, o)
[

< K, M fil" 1 2T + M, ja(T (f1, f2))(x)

L .
T s proee ) — r
b eI Tl i ot <|Q|/ |f1|> (|Q|/3Q|le)

1
< (Kr +cn Tl prsepr—s prro) (M7 2l ()T
+ M, ya(T (f1, f2))(x),
where the bilinear maximal function M is defined as

1 1
MU 900 = Zi§(|Q|/'f”)<|Q|/'f2')'

So we conclude that

Mr(f1. f2) (%) < (Kp 4+ cnr 1Tl prsepr—s prr20e) (M f1] TARED%
+ My (T (f1, f2))(x).

It is obvious that (M(| fi1|", |f2|’)(x))% is bounded from L x L” to L'/>°°, On
the other hand, since it is well known that M, 4 is bounded from L7220 L7220
by the assumption that T is bounded from L” x L to L"/?>> we obtain

1My ya(T (frs o) lprzoe < enrIT N prsepr s pr2ce L fillr L f2NlLr

Therefore M7 is bounded from L" x L™ — L"/%°, and the desired result
follows from Theorem 1.1. O

3. Some Remarks

In this section, we give some remarks about the L"-Hormander condition and
some applications of our main result. It is well known that the Hormander condi-
tion
sup / |K(x,y) — K(z, y)|dy <00
x,z€R" J |y—x|>2|x—z|
is not sufficient for

/T(f)pw(x)dXSC/ M (f)Pwx)dx, weE A, 3.1
RYI R}l

for any r > 1 and 0 < p < oo (see [25, Thm. 3.1]). So we cannot expect the
sparse domination theorem for singular integral operators with this kernel. This is
because once we have

1
IT(f)(0)] <Cr,r Z(][Qm’) Xo(x)

QeS
for some r > 1, then (3.1) holds for p =1 (see [13. Lemma 4.1]) and therefore
forall 0 < p < oo (see [7, Thm. 1.1]). Then it is reasonable to consider somewhat
stronger condition such as our L”-Hormander condition. For more background,
see [16; 25; 26].
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Now we shall briefly show that our conditions are weaker than the Dini con-
dition, which is used in [9] by Damidn, Hormozi, and the author. Recall that the
Dini condition is defined by

|K(x+h’y1,~-,ym)—K(X,YI,~~’)7m)|
+IKG,y1+h, o ym) — KOy, ym) [+
+IKG, Y1, ym+h) = K, y1, ., ym)l

1 h
= m 2nw< m | | )
Qs 1x = yib) Doty lx =il
whenever |h| < %max{|x —yi|l:i=1,...,m}, where w is increasing, w(0) =0,
1
and ||o||pini = fo w(t)dt/t < oco.

PrOPOSITION 3.1. The m-linear Dini condition implies the m-linear L"-Hérman-
der condition.

Proof. Again, we just prove the case m = 2. It is obvious that we just require
regularity in the x variable. Fix x, z € %Q. Since |x — z| < %\/EZ(Q), for k >
log, (1 +44/n) and (y1, y2) € 2XQ)%\ (271 0)2, we have |x — z| <  max{|x —
¥1l, |[x — y2|}. Therefore

1

2 Y
>, or ( /(2kQ)2\(2k_]Q)2 K@, y132) = K@y, )l dy)

k>log, (14+44/n)

2
< Y prer-w( 2.

=1 @2 )
k>log, (14+4./m) 4

2
125017

4/n
S, w(z—k> Sn llwlipini-

k>log, (14+44/n)

It remains to consider 1 <k <log,(1 + 4./n). We should be careful because we
do not assume any size condition. In this case, since

— — 1 l k 7\2 k—1 12
max{ly =yil. [y =321} = 2€(Q),  Vy €5 Qand (y1,y2) € 2°0)"\ (27 Q)"

we select 4[4/n] points xi, ..., X47 /m) in the segment between x and z such that

1 .
lx —xils xi — xiprl, [xgp g — 2l = gK(Q), i=1,....4[n| -1
For convenience, denote xo = x and xy; ;141 = z. Then we have

47/
K (e, 31, 32) = K@y y)l < ) 1K (i, y1, 92) — K (i, vi, 2]
i=0

(B
<c,w 2 (0] .
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Consequently,

r

2 [
Z 2ol (/(sz)2\(2k1Q)2 |K(x, y1, y2) = K (2, y1, y2)I" dy)

I<k<log, (1+4/n)

1
Sn CU(E) S |l Dini-

This completes the proof. O

Next, we will show that the L”-Hormander condition is also weaker than the regu-
larity assumption used in [2] (which was originally introduced in [3]). Recall that
the regularity assumption in [2] reads as follows.

(H2): There exists § > n/r such that

(/ / KX, ¥10 s ym) — K(@oy1,s ooy d§>
Sim (@) V8,0

|m(8—n/r)

r

lx —z
=C |Q|m5/n

—méjo
for all cubes Q, all x,z € %Q, and all (ji,..., jm) # (0,...,0), where jo =
max{ji}1<i<m, and $;(Q) =2/Q\ 2/~ Q if j > 1 and, otherwise, S;(Q) = Q.

PROPOSITION 3.2. Assumption (H2) implies the m-linear L"-Hérmander condi-
tion.

Proof. Again, we just prove the bilinear case. Observe that
'\ @710
=@2/0\2710)P U/ x 270\ 27710 U/ \2 Q) x 2/ Q)
=(S;(Q)*U (U 51(Q) x S,-(Q)) U (U 8;(Q) x SI(Q))~
I<j I<j

By the triangle inequality we have

Z|2JQ|%(
j=1

=

/<2"Q)2\<2f-. oy IK (x,y1,y2) — K(z, y1, y2)I" d?)

=

o
. z AN
SZWer(/ |K(x, y1,¥2) — K (2, y1, y2)I" dy)
= (s;(0n?

=

00 J
. 2 .
+Z|21Q|’Z(/ |K (x,y1,y2) — K(z, y1, y2)|" dy)
j=1 1—=0 VS (Q)x8(Q)

J

o0
. 2 ’
+ ) 1270]" (/ |K (x,y1,¥2) — K(z, y1, y2)I" d?)
JZ_:I Z 51(Q)xS;(Q)

=0

=
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o0
) 1 s .
SO QI =2 A+ )
= Q]
< 00,

where the last inequality holds since § > n/r. This completes the proof. U

REMARK 3.3. For r > 1, let T be a linear Fourier multiplier with Hérmander
condition with parameter n/2 < s < n (see (3.2) for the definition). It is shown in
[16, Thm. 3] that 7 is not bounded on L?(w) for some w € A, when p <n/s
or p > (%)/ . This means that (H2) (which is a consequence of the assumption
described as before; see [2]) and therefore the L"-Hormander condition are not
sufficient for the Dini condition.

For r = 1, recall that we only need the regularity on the x-variable; in this
sense, the L!-Hormander condition is strictly weaker than the Dini condition.
However, the full regularity in the Dini condition is to ensure the weak endpoint
boundedness. In fact, we can show that there is only a tiny difference between the
L!'-Hormander and Dini conditions in the x-variable. To see this, define

2 2n
V()= sup |K(x,y1,yz>—K(z,yl,yz)|<2|x—m) :
<2l i
T k=il

<l
[N

Then

o0
sup Y~ w"¥(27F)
B2 p=t

o0
<Ssup sup Z:I2’<Q|2 ess sup IK (x, y1, y2) — K (2, y1, y2)|
Q xze3Qk=1 ek )2\ (2k-10)2

<Kj,

where %Q is a cube containing both x and z with Z(% Q) = |lx — z|]lco. However,
the Dini condition in the x-variable can be written as

o
Z supa)x’Z(Z_k) < 0.

k=1 "%

It is hard to find an example to differentiate these two conditions.

REMARK 3.4. We claim that actually the L”-Hormander condition is strictly
weaker than (H2). Indeed, (H2) is essentially of Holder type, whereas the L’-
Hormander condition is essentially of Dini type. To prove our claim, we borrow
the example from [25]. To make things easier we only consider the linear case in
one dimension. Define
g
e

_1 r
Kx)=|x—4]"7 (log T 4|) X{3<x<5}(x).




Sparse Domination Theorem 263

It is easy to check that K € L" NL'. Then T : f — K * f is bounded on L”
for all 1 < p < oo. Itis already proved in [25] that K satisfies the L"-Hormander
condition. Define

+1_
K@), xeli, 'G+£.3+%H)

0 otherwise.

Ke(x) = {

Similar argument as that in [25] shows that K, satisfies the L”-Hormander condi-
tion uniformly, that is, sup,(K,), < oo.Letx =0, z = 2= and 1, = [0,27°9).
We need to analyze

(/ |Ke<y—x>—1<e<y—z>|”dy>
NTe)

Observe that only j =€ + 2 and j = £ 4 3 are nonzero terms. We have

(f |Ke(y) — Ke(y =277 dy)
2/+2]e\26+11£

201 34 3kt

1
> (Z/ |Kz<y)|r’dy)'

k=0 Y3t5¢

r

r

1
s—1Lye e —2l®7P s
2K 220Ky 27 0
~ L ~ Lr I8
| Z¢]
This shows that there exists a sequence of operators Ty : f — K, * f whose
kernels satisfy the L"-Hormander condition uniformly. However, since § > %,
the constant C in (H2) tends to infinity as £ — 0o, which means that these two
conditions cannot be equivalent. In other words, the L"-Hormander condition is
strictly weaker than (H2).

Finally, we give an application of our result for multilinear Fourier multipliers
m
T S = [ a0 [] 70 a5,
Rmn .
i=1

It is shown in [3] that the multilinear Mihlin condition implies assumption (H2).
However, for the multilinear Hérmander condition ([11]), that is,

sup [la(RE) 1 <i<21ll s eon) < 00, == <5 <, (32)
R>0
which is weaker than the multilinear Mihlin condition, it is unknown. Very re-
cently, Chaffee, Torres, and Wu [4] showed that (3.2) implies the multilinear
L"-Hormander condition with r = mn/s. Therefore, Theorem also applies
to multilinear Fourier multipliers whose symbols satisfy (3.2).
As a consequence of our sparse domination theorem, we can give quantitative
weighted bounds for them. We have the following:
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THEOREM 3.5. Let T satisfy the assumption in Theorem |.2. Then
_ _max{l,max; %}
T WL qwnysexrom o) = LP @z) = Copn, 7, 51045 ,
where

p(p;i—r)

moopN\ M __r_ pir
[J)]A};/r = Sgp( Ql_[wim)l_[<f\Q wi P1r>

i=1 i=1

For the proof, we refer the readers to [2]. We can also follow the maximal function
trick used in [9] and then utilize the resultin [22]. We can also obtain the A, — A
type bounds; see [23; 9] for details. As we have discussed, all these estimates
apply to the multilinear Fourier multipliers with symbols satisfying (3.2). Notice
that the qualitative result was obtained by the author and Sun in [24].
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