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Circle-Valued Morse Theory for Frame Spun Knots and
Surface-Links

Hisaaki Endo & Andrei Pajitnov

Abstract. Let Nk ⊂ Sk+2 be a closed oriented submanifold. Denote
its complement by C(N) = Sk+2 \ N . Denote by ξ ∈ H 1(C(N)) the
class dual to N . The Morse–Novikov number of C(N) is by definition
the minimal possible number of critical points of a regular Morse map
C(N) → S1 belonging to ξ . In the first part of this paper, we study
the case where N is the twist frame spun knot associated with an m-
knot K . We obtain a formula that relates the Morse–Novikov numbers
of N and K and generalizes the classical results of D. Roseman and
E. C. Zeeman about fibrations of spun knots. In the second part, we
apply the obtained results to the computation of Morse–Novikov num-
bers of surface-links in 4-sphere.

1. Introduction

1.1. Overview of the Paper

Let Nk ⊂ Sk+2 be a closed oriented submanifold, and let C(N) = Sk+2 \N be its
complement. Alexander duality implies an isomorphism

Hk(N,Z) ≈ H 1(C(N),Z).

We denote the image of the fundamental class [N ] ∈ Hk(N,Z) of the manifold N

by this isomorphism by

ξ ∈ H 1(C(N),Z) ≈ [C(N),S1]. (1)

This cohomology class takes value 1 on the boundary of each small two-
dimensional disc normal to N and positively oriented. We say that N is fibered if
there is a Morse map f : C(N) → S1 homotopic to ξ that is regular nearby N (see
Definition 1.1) and has no critical points. In general, a Morse map C(N) → S1

has some critical points; the minimal number of these critical points is called the
Morse–Novikov number of N and denoted by MN (N).

In the first part of this paper, we study this invariant in relation with construc-
tions of spinning. The classical Artin’s spinning construction [2] associates with
each knot K ⊂ S3 a 2-knot S(K) ⊂ S4. A twisted version of this construction is
due to Zeeman [21]. Roseman [17] introduced a frame spinning construction, and
Friedman [5] gave a generalization of Roseman’s construction to include twisting.
The input data for frame twist spinning construction are as follows:
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(TFS1) A closed manifold Mk ⊂ Sm+k with trivial (and framed ) normal bundle.
(TFS2) An m-knot Km ⊂ Sm+2.
(TFS3) A C∞ map λ : M → S1.

With these data one associates an n-knot σ(M,K,λ), where n = k + m (see
Section 2). When λ is a constant map, we denote this knot by σ(M,K); this is
the Roseman’s frame spun knot. We prove in Section 2 the following formula:

MN (σ (M,K,λ)) ≤ MN (K) ·NN (M, [λ]) (2)

(where NN (M, [λ]) is the minimal number of critical points of a Morse map
M → S1 homotopic to λ). If λ is null-homotopic, then we have

MN (σ (M,K)) ≤MN (K) ·M(M)

(where M(M) is the Morse number of M). In particular, if K is fibered, then
the framed spun knot σ(M,K) is fibered (a theorem of Roseman [17]). If in for-
mula (2) the map λ : M → S1 has no critical points, then the knot σ(M,K,λ)

is fibered, and we recover the classical result of Zeeman [21]: for any knot, its
twist-spun knot is fibered. In Section 3, we discuss a geometric construction re-
lated to spinning, namely rotation of a knot Km ⊂ Sm+2 around equatorial sphere
� of Sm+2. The resulting submanifold R(K) is diffeomorphic to S1 × Sm and is
sometimes called the spun torus of K . We prove that

MN (R(K)) ≤ 2MN (K) + 2.

Section 4 is about Morse–Novikov theory for surface-links, that is, embeddings
of orientable surfaces to S4. In this case the invariant MN (F ) is related to a
simple geometric invariant of the surface-links F , namely the saddle number. For
a given surface F ⊂ R4, let sdl(F ) denote the minimal number of saddle points of
the restriction to F of an orthogonal projection R4 → R (the minimum taken over
the nondegenerate restrictions). Define the saddle number of F as the minimum of
numbers sdl(F ′) over all surfaces F ′ ⊂ R4 ambient isotopic to F . In Section 4.1,
we prove the formula

MN (F ) ≤ 2 sd(F ) + χ(F ) − 2. (3)

In Section 4.2, we discuss the case of spun 2-knots.
Section 4.3 is dedicated to computations. Recall that there is a method of

tabulating surface-links, developed in the works of Kawauchi, Shibuya, and
Suzuki [11] and Yoshikawa [20]. Kawauchi, Shibuya, and Suzuki [11] intro-
duced a method of representing surface-links by diagrams. Based on this method,
Yoshikawa [20] defined a numerical invariant ch(F ) of surface-links F and enu-
merated all the (weakly prime) surface-links F with ch(F ) ≤ 10. Yoshikawa’s
table can be considered as a two-dimensional analog of Rolfsen’s knot table. In
Section 4.3, we compute the Morse–Novikov numbers of the majority of the ori-
ented surface-links of Yoshikawa’s table.
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1.2. Basic Definitions and Lower Bounds for Morse–Novikov Numbers

We start with the definition of a regular Morse map.

Definition 1.1. Let Nk ⊂ Sk+2 be a closed oriented submanifold. A Morse map
f : C(N) → S1 is said to be regular if there is an orientation-preserving C∞
trivialization

� : T (N) → N × B2(0, ε) (4)

of a tubular neighborhood T (N) of N such that the restriction f | (T (N) \ N)

satisfies f ◦ �−1(x, z) = z/|z|.
Observe that the homotopy class of any regular map f in the set [C(N),S1] ≈

H 1(C(N),Z) equals the class ξ defined in the beginning of the Introduction; see
the formula (1). An f -gradient v of a regular Morse map f : C(N) → S1 is
called regular if there is a C∞ trivialization (4) such that �∗(v) equals (0, v0)

where v0 is the Riemannian gradient of the map z �→ z/|z|.
If f is a Morse function on a manifold or a Morse map of a manifold to S1, then
we denote by mp(f ) the number of critical points of f of index p. The number
of all critical points of f is denoted by m(f ).

Definition 1.2. The minimal number m(f ) where f : C(N) → S1 is a regular
Morse map is called the Morse–Novikov number of N and denoted by MN (N).

To obtain lower bounds for numbers mp(f ), we use the Novikov homology. Let
L = Z[t, t−1]; denote by L̂ = Z((t)) the ring of all series in one variable t with
integer coefficients and finite negative part. Consider the infinite cyclic covering
C(N) → C(N); the Novikov homology of C(N) is defined as follows:

Ĥ∗(C(N)) = H∗(C(N)) ⊗
L

L̂.

Recall that L̂ is a PID (see, e.g., [13], Ch. 10, Thm. 2.4); therefore, for every k, the
finitely generated L̂-module Ĥk(C(N)) admits a decomposition into a finite direct
sum of cyclic modules. The rank and torsion number of the L̂-module Ĥk(C(N))

are denoted by b̂k(C(N)) and q̂k(C(N)), respectively. For any regular Morse map
f and a transverse regular f -gradient v, there is the Novikov complex N∗(f, v)

over L̂ generated in degree k by critical points of f of index k and such that
H∗(N∗(f, v)) ≈ Ĥ∗(C(N)) (see [13], Ch. 11). Therefore we have the Novikov
inequalities ∑

k

(̂bk(C(N)) + q̂k(C(N)) + q̂k−1(C(N))) ≤MN (N).

These inequalities, which are far from being exact in general, are however very
useful in particular in the case of surface-links (see Section 4).

2. Frame Twist-Spun Knots

We start with a recollection of the frame twist spinning construction following
[17; 6; 5]. See the input data (TFS1)–(TFS3) for this construction in Section 1.1.
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Let a ∈ Km. Removing a small open disk D(a) from Sm+2, we obtain an em-
bedded (knotted) disk K0 in the disk Dm+2 ≈ Sm+2 \ D(a). We identify Dm+2

with the standard Euclidean disk of radius 1 and center 0 in Rm+2, and then
∂Dm+2 = Sm+1. We have the usual diffeomorphism

χ : Sm+1×]0,1] ≈−→ Dm+2 \ {0}, (x, t) �→ tx.

We can assume that K0 ∩ ∂Dm+2 is an equatorial sphere1 Sm−1 in ∂Dm+2 =
Sm+1. Moreover, we can assume that the intersection of K0 with a neighbourhood
of ∂Dm+2 is also standard, that is,

K0 ∩ χ(Sm+1 × [1 − ε,1]) = χ(Sm−1 × [1 − ε,1]).
We have a framing of M in Sn (recall that n = m + k); combining this with the
standard framing of Sn in Sn+2, we obtain a diffeomorphism

� : T (M,Sn+2)
≈−→ M × Dm × D2,

where T (M,Sn+2) is a tubular neighbourhood of M in Sn+2. We can assume that
the restriction of � to T (M,Sn) is a diffeomorphism

� : T (M,Sn)
≈−→ M × Dm × {0}

induced by the given framing of M . The Euclidean disc Dm+2 is a subset of
Dm × D2, so that K0 ⊂ Dm × D2.

For θ ∈ S1, denote by Rθ the rotation of D2 around its center. The disc
Dm+2 ⊂ Dm × D2 is invariant with respect to this rotation as well as the in-
tersection of K0 with a small neighbourhood of ∂Dm+2. We have �(Sn ∩
T (M,Sn+2)) = M × Dm × {0}. Let

Z = {(x, y, z) | (y, z) ∈ Rλ(x)(K0)}.
This is an n-dimensional submanifold of M × Dm × D2. We define σ(M,K,λ)

as follows:
σ(M,K,λ) = (Sn \ T (M,Sn)) ∪ �−1(Z).

This is the image of an embedded n-sphere, knotted in general.

Examples and Particular Cases

(1) Let dimM = 0, so that M is a finite set; denote by p its cardinality. Then the
n-knot σ(M,K,λ) is equivalent to the connected sum of p copies of K .

(2) If M is the equatorial circle of the sphere S2, which is in turn considered as
an equatorial sphere of S4, and λ(x) = 1, then we obtain the classical Artin’s
construction. If λ : S1 → S1 is a map of degree d , then we obtain Zeeman’s
twist-spinning construction [21].

(3) If λ(x) = 1 for all x ∈ M , then we obtain Roseman’s construction of spinning
around the manifold M [17]. In this case, we denote σ(M,K,λ) by σ(M,K).

1By equatorial sphere in SN ⊂ RN+1 we mean the intersection of a linear subspace L ⊂RN+1 with

SN ; this intersection is a Euclidean sphere of dimension dimL − 1.
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Theorem 2.1.

MN (σ (M,K,λ)) ≤ MN (K) ·NN (M, [λ])
(where [λ] ∈ H 1(M,Z) ≈ [M,S1] is the homotopy class of λ).

Proof. We use the terminology from the previous construction of σ(M,K,λ). We
have the standard fibration

ψ0 : Sn+2 \ Sn → S1

obtained from the canonical framing of Sn in Sn+2. Observe that the map α =
ψ0 ◦ �−1 is given by the formula

α(x, y, z) = z

|z| .

Let f : Sm+2 \K → S1 be a regular Morse map. We denote the restriction of f to
the subset Dm+2 \K0 by the same letter f . We can assume that the map f equals
α in a neighbourhood of ∂Dm+2 = Sm+1. In particular, in a neighbourhood of
∂Dm+2, we have

f (Rθ (p)) = f (p) + θ for p ∈ Sm+1 \ K0.

(Here and elsewhere we use the additive notation for the group operation on S1.)
Define the map g on (M × Dm+2) \ Z by the formula

g(x, ξ) = f (R−λ(x)(ξ)) + λ(x) (5)

(for x ∈ M and ξ ∈ Dm+2). Define the map ψ on the complement of σ(M,K,λ)

by the following formula:

(1) If p /∈ T (M,Sn+2), then ψ(p) = ψ0(p);
(2) If p ∈ T (M,Sn+2), then ψ(p) = g(�−1(p)).

We will now prove that if λ is a Morse map (this can be achieved by a small
perturbation of λ), then ψ is also a Morse map, and the number m(ψ) of its
critical points satisfies

m(ψ) = m(λ) · m(f ).

All the critical points of ψ are in T (M,Sn+2). In this domain the map ψ is dif-
feomorphic to g, and the count of critical points of g is easily achieved with the
help of the next lemma.

Lemma 2.2. Let g1 : N1 → S1 and g2 : N2 → S1 be Morse maps on manifolds N1

and N2. Let F : N1 ×N2 → N2 be a C∞ map such that, for each a ∈ N1, the map
x �→ F(a, x) is a diffeomorphism N2 → N2. Define the map g : N1 × N2 → S1

by the formula

g(x1, x2) = g1(x1) + g2(F (x1, x2)).

Then g is a Morse map, there is a bijection B : Crit(g1) × Crit(g2)
≈−→ Crit(g),

and for a1, a2 ∈ Crit(g1) × Crit(g2), we have indB(a1, a2) = inda1 + inda2.
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Proof. Define the map g0 on N1 × N2 by the formula

g0(x1, x2) = g1(x1) + g2(x2).

The conclusions of our lemma obviously hold if we replace g by g0 in the state-
ment of the lemma. Observe now that the map g is diffeomorphic to g0 via the
diffeomorphism

(x1, x2) �→ (x1,F (x1, x2)).

The lemma follows. �

The proof of Theorem 2.1 is now complete. �

Corollary 2.3. Let K ⊂ S3 be a classical knot, and denote by S(K) the spun
knot of K . Then

MN (S(K)) ≤ 2MN (K). (6)

Proof. In this case, M = S1 and [λ] = 0. We have M(S1) = 2, and the result
follows. �

The classical theorems concerning fibrations of spun knots follow from Theo-
rem 2.1:

Corollary 2.4 (Roseman [17]). If K is fibered, then σ(M,K) is fibered.

Proof. Since MN (K) = 0, Theorem 2.1 implies MN (σ (M,K)) = 0. �

Corollary 2.5 (Zeeman [21]). The d-twist spun knot of any classical knot K is
fibered for d ≥ 1.

Proof. Let � be an equatorial circle in S2. The d-twist spun knot of K is by
definition the 2-knot σ(�,K,λ) in S4, where λ : � → � is a map of degree d .
The assertion follows, since NN (S1, [λ]) = 0. �

Remark 2.6. Zeeman’s theorem immediately generalizes to the following state-
ment: If NN (M, [λ]) = 0, then the knot σ(M,K,λ) is fibered for any knot K .

3. Rotation

Let � be an equatorial n-sphere of Sn+1. We can view the sphere Sn+1 as the
union of two (n + 1)-dimensional discs D+ ∪ D− intersecting by �. Consider
Sn+1 as the equatorial sphere of Sn+2. The sphere Sn+2 can be considered as
the result of rotation of the disc D+ around its boundary �. We have the (linear
orthogonal) action of S1 on Sn+2 such that � is the fixed point set of the action,
and the action is free on the rest of the sphere Sn+2. Let Kn−1 be an (n − 1)-
knot in Sn+1. We can assume that Kn−1 ⊂ IntD+. Rotation of Kn−1 around �

gives a submanifold R(K) of codimension 2 in Sn+2. The manifold R(K) is
diffeomorphic to S1 × K . We call this construction rotation. When dimK = 1,
the manifold R(K) is sometimes called the spun torus of K . In this section, we
relate the Morse–Novikov numbers of R(K) with those of K .
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Theorem 3.1.

MN (R(K)) ≤ 2MN (K) + 2.

To prove the theorem, we associate with each given regular Morse map φ :
Sn+1 \ Kn−1 → S1 a regular Morse map R(φ) : Sn+2 \ R(Kn−1) → S1 such
that m(R(φ)) = 2m(φ) + 2. We begin by an outline of this construction for the
simplest case where n = 1 and K consists of two points in S2 (Section 3.1). In
Section 3.2, we give a detailed proof of the theorem in full generality.

3.1. Rotation of S0

Let us consider the Euclidean unit sphere S2 and the 0-knot K0 = {b, c} ⊂ S2

consisting of two opposite points b, c on S2. The manifold S2 \ {b, c} is fibered
over S1, and the structure of the level lines of this fibration is shown on Figure 1
(left). Endow S2 with the Riemannian metric induced from R3. Let a be any point
of S2 equidistant from the points b and c. Let D− = D−(α) be the disc of radius
α around a of f with respect to this metric. We assume that α < 1/4, so that
the points b, c are not in D−. Denote by D+ the complement S2 \ IntD−, so
that S2 = D+ ∪ D− and the discs D± intersect by their common boundary �.
Removing D−, we obtain a map f : D+ \ {a, b} → S1. The structure of the level
lines of f is shown on Figure 1 (middle).

The restriction f | � has two nondegenerate critical points, N and S. The
arrow in the figure depicts the gradient of the map f . Applying the rotation
construction to K0, we obtain a trivial 2-component link R(K0) in S3. Let
F0 : S3 \R(K0) → S1 be the unique S1-invariant map such that F0 | D+ = f . This
map is continuous, but not smooth, since its level surfaces have conical singulari-
ties in the points of �. To repair this, we modify the map f in a neighbourhood of
� so that the level lines of the modified map g : D+ \ {a, b} → S1 are as depicted
on Figure 1 (right). The map g in a neighbourhood of S has a standard quadratic
singularity. Namely, it is locally diffeomorphic to the restriction of the function
g0(x, y) = y2 − x2 to the upper half-plane H+ = {(x, y) ∈ R2 | y ≥ 0}. The dif-
feomorphism sends the point S to the point (0,0) ∈ H+; a neighbourhood of S

Figure 1
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in � is sent to a neighbourhood of (0,0) in the real line {(x,0) | x ∈ R} ⊂ H+.
Similar description holds for the map g in a neighbourhood of N .

Each nonsingular level line intersecting � is orthogonal to � at the intersection
point. Let G0 : S3 \ R(K0) → S1 be the unique S1-invariant map such that G0 |
D+ = g. Then G0 is a C∞ map having two critical points N and S. Observe that
the descending disc of the critical point S of the map G0 is in �; therefore the
descending disc of the critical point S of G0 will have the same dimension 1, and
indG0 S = 1. A similar reasoning holds for the ascending disc of the critical point
N , and therefore indG0 N = 2.

3.2. The General Case

Consider the Euclidean unit sphere Sn+1 in Rn+2, that is,

Sn+1 = {(x0, . . . , xn+1) | x2
0 + · · · + x2

n+1 = 1}.
Denote by � its intersection with the hyperplane xn+1 = 0. Let a = (0, . . . ,0,1);
for each point z ∈ �, denote by C(z) the great circle through a,−a, z and
by C′(z) the closed semicircle containing these three points. The projection p

onto the last coordinate gives the bijection of C′(z) onto the closed interval
[−1,1]; this bijection is a diffeomorphism when restricted to C′(z) \ {a,−a}. Let
β : [−1,1] → [−1,1] be a diffeomorphism such that β(x) = x for x in a neigh-
bourhood of ±1. Then there is a unique diffeomorphism σβ of Sn+1 onto itself
such that, for every z, the curve C′(z) is σβ -invariant and p(σβ(v)) = β(p(v)) for
every v. The diffeomorphism σβ is called the sliding associated with β . Observe
that every sliding is isotopic to the identity map. Let Dρ ⊂ Sn+1 be the geodesic
disc of radius ρ centered in −a. Let

D− = Dπ/2 = {(x0, . . . , xn+1) | xn+1 ≤ 0},
D+ = {(x0, . . . , xn+1) | xn+1 ≥ 0}.

Put �ρ = ∂Dρ . Let T (�ρ, ε) denote the geodesic tubular neighbourhood of �ρ .
For given ρ and ε > 0 sufficiently small, there is a sliding σ sending Dρ to D−
and sending each normal geodesic segment of length 2ε in T (�ρ, ε) isometrically
to the corresponding normal geodesic segment in T (�, ε). We therefore have a
commutative diagram

T (�ρ, ε)
σ

T (�, ε)

�ρ×]−ε, ε[
�

σ̄
�×]−ε, ε[

�

where the vertical arrows are the restrictions of the exponential map of the sphere
to the normal bundles of the submanifolds �ρ and respectively �. We have
σ̄ (x, τ ) = (σ (x), τ ). It is not difficult to write down explicit formulas for � and
�−1. Namely,

�(x, t) = (cos t · x, sin t), where x ∈ � ⊂ Rn+1, t ∈]−ε, ε[. (7)
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As for �−1, we have

�−1(y,u) =
(

y√
1 − u2

, arcsin(u)

)
,

where (y,u) ∈ T (�, ε) ⊂ Rn+1 ×R = Rn+2. (8)

Let K be an (n − 1)-knot in Sn+1, and φ : Sn+1 \ K → S1 a regular Morse
map. We can assume that

(1) K ⊂ IntD+,
(2) φ(−a) is a regular value of φ.

Choosing ρ sufficiently small, we can assume that φ(Dρ) misses at least one
point in S1, and therefore φ | �ρ can be considered as a real-valued Morse func-
tion. Consider the stereographic projection P : Sn+1 \ {a} →Rn+1. The image of
the disc Dρ with respect to P is a Euclidean disc in Rn+1 centered in the origin.
The function φ ◦ P −1 is a C∞ function on Rn+1. For ρ sufficiently small, the
restriction of this function to the sphere P(�ρ) has exactly two critical points,
one minimum and one maximum, as it follows from the next lemma. Therefore
the function φ | �ρ also has exactly two critical points, one minimum and one
maximum, if only ρ is sufficiently small.

Lemma 3.2. Denote by D(0, α) the Euclidean ball of radius α in Rm centered in
the origin; let S(0, α) be the sphere of radius α. Let f : D(0, α) → R be a C∞
function such that f ′(0) �= 0. Then, for ε > 0 sufficiently small, the restriction of
f to S(0, ε) is a Morse function having exactly two critical points, one maximum
and one minimum.

Proof. We can assume that f (0) = 0. Put A = f ′(0). The restriction to S(0,1)

of the function x �→ Ax is a Morse function having exactly two critical points.
Put gε(x) = 1

ε
f (εx). It suffices to prove that, for sufficiently small ε, the function

gε : S(0,1) → R has exactly two critical points. Observe that g′
ε(0) = A. It is not

difficult to show that partial derivatives of gε − A converge to zero uniformly as
ε converges to zero, that is, gε − A → 0 in C∞ topology. A classical theorem
about C∞ stability (see, e.g., [7], Ch. 3, §2, Prop. 2.2) implies that, for small ε,
the function gε | S(0,1) is isotopic to the function A | S(0,1). �
Observe that diminishing ε if necessary, we can assume that the sliding σ has the
property σ(K) = K . Indeed, the image p(K) of the knot K with respect to the
projection p onto the last coordinate is in ]0,1[. Therefore if ε > 0 is sufficiently
small, then the set p(K) does not intersect p(T (�, ε)). Then the diffeomorphism
β : [−1,1] used in the definition of σ can be chosen in such a way that β restricted
to p(K) is the identity map, and this implies the required property. Thus we will
assume that σ(K) = K from now on.

Denote the function φ ◦ � by h : �ρ×]−ε, ε[→ R. For ρ and ε sufficiently
small, this function has no critical points. Consider the restriction of φ to the
subset Sn+1 \ (K ∪ Dρ). Composing φ with σ−1, we obtain a map

φ0 : D+ \ K → S1.
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This is a Morse map that extends to a geodesic tubular neighbourhood of � =
∂D+ and can be lifted to a real-valued Morse function in this neighbourhood. The
restriction φ0 | � has two critical points N and S with indN = n and indS = 0.
The map h0 = φ0 ◦ � has no critical points. Now we will modify the map φ0
nearby �. Let λ : [−ε, ε] → R be a C∞ function such that λ(t) = |t | for t in a
neighbourhood of {−ε, ε}, λ(t) = t2 for |t | ≤ ε/2, and λ′(t) �= 0 for t �= 0. Define
the map h1 by the formula

h1(x, t) = h0(x,λ(t))

and the map

φ1 : D+ \ K → S1

(A1) if v /∈ T (�, ε), put φ1(v) = φ0(v);
(A2) if v ∈ T (�, ε), v = �(x, t) with x ∈ �, t ∈] − ε, ε[, put φ1(v) = h1(x, t).

Proposition 3.3. The map φ1 has two critical points in T (�, ε), namely N and
S. They are nondegenerate, and their indices are equal, respectively, to n and 1.

Proof. To find the critical points of φ1, we distinguish two cases:

(1) t = 0. We have ∂h1
∂t

(x,0) = 0 for every x. The derivative ∂h1
∂x

(x,0) =
∂h0
∂x

(x,0) = vanishes exactly at two points N and S.
(2) t �= 0. In this domain the function h1 has no critical points, as it follows from

the chain rule and the fact that λ′(t) �= 0 for t �= 0. �

Now we are ready to construct a Morse map on the complement to R(K). Add
one more coordinate xn+2 and consider the sphere

Sn+2 = {(x0, . . . , xn+2) | x2
0 + · · · + x2

n+2 = 1}.
We have D+ ⊂ Sn+2. The knot R(K) is defined by the formula

R(K) = {
(x0, . . . , xn+2) | (x0, . . . , xn,

√
x2
n+1 + x2

n+2

) ⊂ K
}
.

The circle S1 acts on Sn+2 by rotations in the two last coordinates. Define a Morse
map φ2 on the complement to R(K) by the two following properties:

(1) φ2 | D+ \ K = φ1;
(2) φ2 is S1-invariant.

The second property implies that

φ2(x0, . . . , xn+2) = φ1
(
x0, . . . , xn,

√
x2
n+1 + x2

n+2

)
.

Observe that property (A2) of the map φ1 guarantees that φ2 is C∞ on the subset
Sn+2 \R(K). Indeed, it suffices to verify that φ2 is C∞ in a neighbourhood of �.
In such a neighbourhood, we have

φ1
(
x0, . . . , xn,

√
x2
n+1 + x2

n+2

) = h1
(
�−1(x0, . . . , xn,

√
x2
n+1 + x2

n+2

))
.
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We deduce from formula (8) that, for x2
n+1 + x2

n+2 sufficiently small, we have

φ1
(
x0, . . . , xn,

√
x2
n+1 + x2

n+2

)
= h0

(
(x0, . . . , xn)√

1 − x2
n+1 − x2

n+2

,
(
arcsin

√
x2
n+1 + x2

n+2

)2
)

.

Using the Taylor development for the function arcsin in a neighbourhood of 0, it
is not difficult to show that the function (x, y) �→ (arcsin

√
x2 + y2)2 is of class

C∞ in a neighbourhood of (0,0) in R2. This completes the proof of the fact that
φ2 is of class C∞.

Proposition 3.4. (1) Crit(φ2) = S1 · Crit(φ1) ∪ {N,S}.
(2) The critical points N and S are nondegenerate, and

indφ2 N = indφ1 N = n, indφ2 S = indφ1 S + 1 = 2.

Proof. Point (1) is easy to deduce from the definition of φ2. As for the indices
of the critical points, observe that the descending disc of the critical point N

in T (�, ε) belongs to the sphere �, which is fixed by the action of S1. Thus
the index of N does not change when we replace φ1 by φ2. A similar argument
applies to the ascending disc of S, and this implies the rest of the proposition. �

Each critical point of φ1 gives rise to a circle of critical points of φ2. The map φ2
is constant on each of these circles C1, . . . ,Ck . Using the classical perturbation
techniques for Morse–Bott functions (see, e.g., [3], p. 87), it is not difficult to
perturb φ2 in a small neighbourhood of each of Ci so as to obtain a Morse map ψ

on the complement of R(K) that has exactly two critical points on each Ci . Thus

m(ψ) = 2m(φ2) + 2.

Theorem 3.1 is proved.

3.3. 4-Thread Spinning

In this subsection, we give a brief description of one more construction of surface-
links. Let L ⊂ S3 be a classical link, and φ : S3 \L → S1 a Morse map. Let p,q ∈
L, and let γ : [0,1] → S3 be a C∞ curve joining p and q and belonging entirely to
one of the regular level surfaces φ−1(λ) of the map φ. We assume moreover that
Imγ ∩L = {p,q} and that γ ′(0) and γ ′(1) are not tangent to L. Let D be a small
neighbourhood of Imγ diffeomorphic to a 3-disc. Denote by � its boundary. We
can assume that L ∩ � consists of four points and that the tangent space of L is
orthogonal to the tangent space of � at each of these points. Denote by S2

0 the
2-sphere with four points removed. Recall that there is a standard circle-valued
Morse map φ0 on S2

0 having two critical points both of index 1. We can assume
that the restriction of φ to � \ L is diffeomorphic to φ0. Remove the interior of
D from S3 and rotate the remaining manifold S3 \ IntD around �. We obtain the
sphere S4; the subset that is spun by L \ IntD during the rotation is an embedded
2-surface in S4. We call this construction 4-thread spinning to distinguish it from
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the usual spinning and denote the resulting surface-link by S′(L). If p and q are on
different connected components of L, then the number of connected components
of S′(L) is the same as for L. If p and q are in the same connected component of
L, then the number of connected components of S′(L) equals that of L increased
by 1. Applying the same method as in the Section 3.2, we can construct a circle-
valued Morse map φ̃ on S4 \ S′(L) such that m(φ̃) = 2m(φ) + 2.

Corollary 3.5.

MN (S′(L)) ≤ 2MN (L) + 2.

4. Surface-Links

In this section, we develop circle-valued Morse theory for surface-links.

4.1. Motion Pictures and Saddle Numbers

Let F be a surface-link, that is, a closed oriented two-dimensional C∞ submani-
fold of S4. We can assume that F ⊂ R4.

Choose a projection p of R4 onto a line. Assume that the critical points of
the function p | F are nondegenerate. Denote by sdl(F ) the minimal number of
saddle points of p | F over all the projections p.

Definition 4.1. The saddle number sd(F ) is the minimum of numbers sdl(F ′)
where F ′ ranges over all surface-links F ′ ambiently isotopic to F .

The invariant sd(F ) is closely related to the ch-index of F , introduced and studied
by Yoshikawa [20]. In particular, we have sd(F ) ≤ ch(F ). To relate the number
sd(F ) to MN (F ), we will reformulate the definition of the saddle number.

Let F ⊂ S4 be a surface-link. The equatorial 3-sphere �3 of the standard Eu-
clidean sphere S4 divides S4 into two parts:

S4 = D4+ ∪ D4− with D4+ ∩ D4− = �3.

We assume that F is included in Int(D4−) and F does not contain the center of D4−.
Perturbing the embedding F ⊂ D4− if necessary, we can assume that the restric-
tion ρ = r|F of the radius function r : D4− → [0,1] is a Morse function. The
family {(r−1(t), ρ−1(t))}t∈[0,1] of possibly singular links can be drawn as a mo-
tion picture (see [10], Ch. 8). Each singularity of a link in the family corresponds
to a critical point of ρ. A critical point of ρ of index 0 (1, 2, respectively) is
called a minimal point (saddle point, maximal point, respectively) of ρ, which is
represented by a minimal band (saddle band, maximal band, respectively) in (a
modification of) the motion picture.

It is clear that the minimal number of the saddle points for all such Morse
functions ρ is equal to sd(F ).

Theorem 4.2. MN (F ) ≤ 2 sd(F ) + χ(F ) − 2.
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Proof. Choose a trivialization

� : U(F)
≈−→ F × D2(0, ε)

of a neighbourhood U(F) of F and let T (F ) = �−1(F × D2(0, ε/2)). Since
ρ is a Morse function, the manifold D4− \ IntT (F ) admits a handle decomposi-
tion with one 0-handle and mi(ρ) handles of index (i + 1) for i ∈ {0,1,2} (see
[9] and also [8], Proposition 6.2.1). The exterior E(F) = S4 \ IntT (F ) of F is
obtained by attaching a 4-handle D4+ to D4− \ IntT (F ). Since D4− \ IntT (F ) is
connected, there is a 3-handle in D4− \ IntT (F ) that connects ∂T (F ) with ∂D4−.
Thus the 3-handle cancels the 4-handle D4+ (see [12], Section 5). Turning the
handlebody upside down, we obtain a dual handle decomposition of E(F) and a
corresponding Morse function f : E(F) → R, which is constant on ∂E(F ), and
the following Morse numbers:

m0(f ) = 0,

m1(f ) = m2(ρ) − 1,

m2(f ) = m1(ρ),

m3(f ) = m0(ρ),

m4(f ) = 1.

We can assume that the restriction of f to �−1(F × (D2(0, ε) \ D2(0, ε/2)))

equals the function μ ◦ p2 ◦ � where p2 : F × D2(0, ε) → D2(0, ε) is the pro-
jection onto the second argument and μ(z) = |z|. Applying the argument from
the work of the second author [14], p. 629, we can deform the real-valued
Morse function f to a circle-valued regular Morse map φ : E(F) → S1 such
that mk(f ) = mk(φ) for every k. It is not difficult to show using a partition of
unity argument that we can choose the map φ in such a way that its restric-
tion to �−1(F × (D2(0,3ε/4) \ D2(0, ε/2))) equals the map ν ◦ p2 ◦ � where
ν(z) = z/|z|. Thus the map φ extends to a regular Morse map on the complement
to F ; we will keep the symbol φ to denote this extension as well.

Lemma 4.3. Let f : S4 \F → S1 be a regular Morse map. Then there is a regular
Morse map g : S4 \ F → S1 such that mi(g) ≤ mi(f ) for every i and g has no
local maxima or minima.

This lemma is proved in [19], Lemmas 3.1 and 3.2, for the case of Morse maps
f : S3 \ K → S1 where K is a classical knot in S3. The proofs carry over readily
to the present case. Applying Lemma 4.3, we obtain a regular Morse map g :
S4 \ F → S1 with

m(g) ≤ m2(ρ) − 1 + m1(ρ) + m0(ρ) = m(f ) − 1

and m0(g) = m4(g) = 0. Observe that the parity of m(g) equals the parity of
m(f ) (both being equal to the parity of χ(S4 \ F)); therefore we actually have

m(g) ≤ m(f ) − 2 = m2(ρ) − 1 + m1(ρ) + m0(ρ) − 1.
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Recall that m0(ρ) − m1(ρ) + m2(ρ) = χ(F ), and therefore the total number of
critical points of g equals 2m1(ρ) + χ(F ) − 2. Choosing the function ρ with
m1(ρ) = sd(F ), we accomplish the proof of Theorem 4.2. �

Corollary 4.4. Let K ⊂ S4 be a 2-knot. Then MN (K) ≤ 2 sd(K).

Proposition 4.5. Let F ⊂ S4 be the trivial k-component surface-link. Then
MN (F ) = 4k − 2 − χ(F ).

Proof. It is not difficult to show that b̂1(C(F )) ≥ k − 1, b̂3(C(F )) ≥ k − 1. (In-
deed, there is a map of S4 \ F to the wedge Wk of k circles, inducing an epimor-
phism in π1. The corresponding map of the infinite cyclic coverings induces an
epimorphism in H1, and therefore it induces an epimorphism in the Novikov ho-
mology modules in degree 1. The Novikov homology module of Wk in degree 1
is free of rank k − 1. This proves the first inequality, and the second follows from
the Poincaré duality.) Therefore, for every regular Morse map f : C(F) → S1, we
have m1(f ) + m3(f ) ≥ 2(k − 1). Assuming that m0(f ) = m4(f ) = 0, we have
m1(f )− m2(f )+ m3(f ) = 2 − χ(F ) and MN (F ) ≥ 4k − 2 − χ(F ); this lower
bound coincides with the upper bound derived from Theorem 4.2. �

4.2. Spun Knots

Recall that the spun knot of a knot K is denoted by S(K). Corollary 2.3 says that
MN (S(K)) ≤ 2MN (K). In this subsection we show that if K is a classical knot
with tunnel number 1, then MN (S(K)) = 2MN (K). This equality is obviously
true when K is fibered, so it remains to consider the case of nonfibered classical
knots with tunnel number 1.

This is the subject of the Proposition 4.8. The proof makes use of some more
techniques from the Morse–Novikov theory, which we will recall now. We refer
to [13; 18; 15], and [4] for a detailed exposition and proofs.

The construction of the Novikov complex mentioned in Section 1.2 can be gen-
eralized so as to obtain a chain complex over a special completion of the group
ring of the fundamental group of the knot. This completion is usually called the
Novikov ring. To recall its definition, let G be any group, and ξ : G → Z be a ho-
momorphism. Consider the set of all infinite series of the form

∑∞
k=1 nkgk where

nk ∈ Z, gk ∈ G, and ξ(gk) → −∞ as k → ∞. This set obviously contains the
group ring � = ZG of G. It is denoted by �̂ξ . It is easy to see that it has a natural
ring structure and the inclusion � ⊂ �̂ξ is a ring homomorphism. For a connected
topological space X with π1(X) ≈ G, we define the Novikov completion of the
module C∗(X̃) of the chains of the universal covering of X as follows:

Ĉ∗(X, ξ) = C∗(X̃) ⊗
�

�̂ξ .

Its homology is called the Novikov homology of X with respect to ξ , and we
denote it by Ĥ∗(X, ξ). The next simple proposition is certainly known to experts,
but we could not find it in the literature, so we include a proof.
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Proposition 4.6. Let X,Y be connected CW-complexes such that their funda-
mental groups are both isomorphic to G. Let χ : π1(X) → π1(Y ) be an isomor-
phism, and let ξ : π1(Y ) → Z be a homomorphism. Then Ĥ1(Y, ξ) ≈ Ĥ1(X, ξ ◦
χ).

Proof. It suffices to prove the proposition for the case where Y = K(G,1). In this
case, we have a map φ : X → Y inducing an isomorphism in π1 and epimorphism
in π2. Therefore the chain map φ∗ : C∗(X̃) → C∗(Ỹ ) induces an isomorphism
in H1 and epimorphism in H2 (here C∗ denotes the module of cellular chains).
Therefore the homology of the chain cone C(φ∗) vanishes up to degree 2. Denote
by φ̂∗ the chain map induced by φ in the Novikov completions. Then the homol-
ogy of the chain cone C(φ̂∗) equals zero up to degree 2, and this completes the
proof of the proposition. �

Let Kn ⊂ Sn+2 be an n-knot, G the fundamental group of the complement to K ,
and ξ : G → Z the canonical homomorphism (see (1)). For a regular transverse
gradient of a regular Morse map, there is a chain complex Ñ∗(f, v) of free �̂ξ -
modules such that the number of its free generators in degree k equals mk(f ), and
there exists a chain equivalence

Ñ∗(f, v) ∼ Ĉ∗(S̃3 \ K) ⊗
�

�̂ξ .

The reason to consider this complicated object is that in some cases the vanishing
of homology of this complex implies that the knot K is fibered. In particular, we
have the following theorem.

Theorem 4.7 (Sikorav [18]). Let K ⊂ S3 be a classical knot. Then the condition
Ĥ1(S

3 \ K,ξ) = 0 implies that K is fibered.

Now we can continue our study of spun knots.
Let K be a classical knot in S3; denote by S(K) the corresponding spun knot.

Proposition 4.8. If K is a nonfibered knot of tunnel number 1, then
MN (S(K)) = 4.

Proof. Recall that MN (S(K)) ≤ 2MN (K) (Corollary 2.3). In the paper [14] of
the second author, it is shown that MN (K) ≤ 2t (K), and hence MN (S(K)) ≤ 4
by Corollary 2.3. Put G = π1(S

3 \ K). Then π1(S
4 \ S(K)) ≈ G (see [16], Ch. 3,

Section J, Section 6). Let f : S4 \ S(K) → S1 be a regular Morse map with-
out local minima and maxima. We claim that m1(f ) ≥ 1. Indeed, assume that
m1(f ) = 0. Then Ĥ1(S

4 \ S(K), ξ) = 0, and by Proposition 4.6 we also have
Ĥ1(S

3 \ K,η) = 0, where η is one of generators of the group H 1(S3 \ K) ≈ Z.
By the preceding theorem the knot K is fibered, which contradicts to our assump-
tions. Therefore m1(f ) ≥ 1. Observe that the Euler characteristic of the Novikov
complex associated with the map f equals the Euler characteristic of S4 \ S(K),
which equals 0. Therefore, m1(f ) + m3(f ) = m2(f ). Hence m2(f ) ≥ 2, and the
proposition is proved. �
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4.3. Surface-Links of Yoshikawa’s Table

Yoshikawa [20] suggested a method for enumerating surface-links. With each
surface-link F , he associated a natural number ch(F ). His methods allowed him
to make a list of all (weakly prime) surface-links F with ch(F ) ≤ 10. It is clear
from the definition of the invariant ch(F ) that we have sd(F ) ≤ ch(F ). In the rest
of this section, we assume that the reader is familiar with Yoshikawa’s work and
his terminology. There are six two-knots in Yoshikawa’s table, namely

01,81,91,101,102,103.

The trivial 2-knot 01 is obviously fibered. The knots 81 and 101 are spun knots of
the trefoil knot and respectively of the figure 8 knot, and thus both 81 and 101 are
fibered by [1].

The case of 91 is more complicated. The saddle number of this 2-knot is 2.
Therefore MN (91) ≤ 4. Using the presentation of the fundamental group of
the complement to 91 (see [20]) and the Poincaré duality properties, it is easy
to compute the Novikov torsion numbers of 91. Namely we have q̂1 = 1, q̂2 =
q̂3 = 0. Therefore

2 ≤ MN (91) ≤ 4.

The 2-knot 102 is the 2-twist-spun knot of the trefoil knot and hence fibered by
Zeeman’s theorem [21]. Similarly, 103 is fibered, being the 3-twist spun of the
trefoil knot.

The surface-link 60,1
1 is the result of spinning the Hopf link, which is fibered

(see the left of Figure 2), and therefore MN (60,1
1 ) = 0.

The surface-link 81,1
1 is the spun torus of the Hopf link. Applying Theorem 3.1,

we get the upper bound MN (81,1
1 ) ≤ 2. Computing the Euler characteristic im-

plies the inverse inequality, so that MN (81,1
1 ) = 2.

The same argument applies to the surface-link 101
1, which is the spun torus of

the trefoil knot, so that MN (101
1) = 2.

The surface-link 100,1
1 is the result of spinning of the link 42

1; see Figure 2

(middle). The link 42
1 is fibered, and therefore MN (100,1

1 ) = 0.

Figure 2
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The case of the surface-link F = 100,0,1
1 is more complicated. This surface-

link is the result of 4-thread spinning of the connected sum L of two copies of the
Hopf link; see Figure 2 (right). Applying Corollary 3.5, we deduce MN (F ) ≤ 2.
The computation of Euler characteristic gives the lower bound 2 for the Morse–
Novikov number, and thus MN (100,0,1

1 ) = 2.
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