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An Algorithm to Detect Full Irreducibility by Bounding
the Volume of Periodic Free Factors

Matt Clay, Johanna Mangahas, & Alexandra Pettet

Abstract. We provide an effective algorithm for determining whether
an element φ of the outer automorphism group of a free group is fully
irreducible. Our method produces a finite list that can be checked for
periodic proper free factors.

1. Introduction

Let F be a finitely generated nonabelian free group of rank at least 2. An outer au-
tomorphism φ is reducible if there exists a free factorization F = A1 ∗ · · · ∗Ak ∗B

such that φ permutes the conjugacy classes of the Ai ; else it is irreducible. Al-
though irreducible elements have nice properties, for example, they are known
to possess irreducible train-track representatives, irreducibility is not preserved
under iteration. Thus, one often considers elements that are irreducible with ir-
reducible powers (iwip), or fully irreducible. These are precisely the outer auto-
morphisms φ for which there does not exist a proper free factor A < F whose
conjugacy class [A] satisfies φp([A]) = [A] for any p > 0. If φp([A]) = [A]
for some proper free factor A < F and for some p > 0, then we say that [A] is
φ-periodic and, to avoid cumbersome language, also that the free factor A is φ-
periodic. Fully irreducible elements are considered analogous to pseudo-Anosov
mapping classes of hyperbolic surfaces. As such, they play an important role in
the geometry and dynamics of the outer automorphism group Out(F ) of F .

Although considered in some sense a “generic” property in Out(F ), full irre-
ducibility is not generally easy to detect. Kapovich [16] gave an algorithm for
determining whether a given φ ∈ Out(F ) is fully irreducible, inspired by Pfaff’s
criterion for full irreducibility in [21]. At points in his algorithm, two processes
run simultaneously, and although it is known that one of these must terminate,
it is not a priori known which will; it thus seems unclear that the complexity of
Kapovich’s algorithm can be found without running the algorithm itself.

For mapping class groups and braid groups, there exist algorithms for deter-
mining whether or not a given element is pseudo-Anosov [6; 8; 3; 4; 20; 7]. Re-
cently, Koberda and the second author [17] provided an elementary algorithm
for determining whether or not a given mapping class is pseudo-Anosov, using
a method of “list and check”. They show that if a mapping class f is reducible,
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that is, has an invariant multicurve, then the curves in its reduction system have
length bounded by an exponential function in terms of the number of generators
needed to write f . Therefore, given a mapping class f , a list is produced of all
multicurves whose curves are sufficiently short. The action of f is then checked
on these finitely many multicurves. If f fixes a multicurve from the list, it is re-
ducible; otherwise, it is necessarily pseudo-Anosov.

In this article, we provide, in essence, a method of “list and check” for elements
of Out(F ), akin to that of Koberda and the second author. That is, we provide an
algorithm that, given an element φ expressed as a product of generators from a
finite generating set of Out(F ), produces a finite list of free factors and checks
each for φ-periodicity. The algorithm effectively determines whether or not the
given element φ is fully irreducible. By effective we understand that there is a
computable function that bounds the number of steps in terms of the size of the
input and that does not utilize the algorithm. In particular, we avoid the use of
dual processes, one of which must terminate.

2. Statement of Results

By rk(F ) we denote the rank of the free group F . Let ξ(F ) = 3 rk(F ) − 3. This
is the maximum number of edges in a finite graph with fundamental group F and
without degree one or two vertices. This is also the maximum number of isotopy
classes of disjoint, essential (not bounding a ball) spheres in the double of the
handlebody of genus rk(F ). An element φ ∈ Out(F ) that is not fully irreducible
is cyclically reducible if there exists a φ-periodic rank 1 free factor; else it is
noncyclically reducible.

Our algorithm to determine full irreducibility of an element φ ∈ Out(F ) con-
sists of two effective processes. Process I determines (in the absence of an ob-
vious reduction) if φ is cyclically reducible. As we shall see in Section 3, this
will exploit algorithms that are already well known. Our main contribution to the
algorithm is in process II. For this, we construct a finite list of conjugacy classes
of proper free factors that contains a φ-periodic free factor if φ is noncyclically
reducible. The length of this list is controlled by the word length of φ; this is the
content of Theorem 1. A systematic check of the list then determines whether or
not φ is fully irreducible.

To state our main theorem, we start by fixing a basis X for the free group F .
Let T = TX denote the Cayley graph for F with respect to X . Given a subgroup
A ≤ F , the volume ‖A‖X of A is the number of edges in the Stallings core of
the graph T/F . Recall that the Stallings core is the graph TA/A, where TA is the
minimal subtree of T with respect to the action of A; or, equivalently, the Stallings
core is the smallest subgraph of the cover of T/F associated to A that contains
every embedded cycle (see [22] for details). Note that the volume function ‖ · ‖X
is constant on conjugacy classes of subgroups. The quantity ‖A‖X gives some
measure of the complexity of the subgroup A in terms of the basis X . For instance,
if A = 〈a〉 is a cyclic subgroup, then the volume ‖〈a〉‖X is the cyclic length of
the element a as a word in the basis X .
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Now fix a finite generating set S for Out(F ). Denote by |φ|S the word length
of φ ∈ Out(F ) with respect to S . Our main theorem describes a relation between
the word length of a noncyclically reducible element of Out(F ) and the volume
of one of its periodic free factors.

Theorem 1. There is a computable constant C = C(X ,S) such that, for any
φ ∈ Out(F ), either

(i) φ is fully irreducible, or
(ii) φ has a periodic rank-1 free factor, or

(iii) φ has a periodic proper free factor A such that ‖A‖X ≤ C|φ|S .

In other words, if φ is noncyclically reducible, then C|φ|S bounds the volume of
some proper φ-periodic free factor. An exact formula for C is given at the end of
Section 7.

As there are a finite number of conjugacy classes of free factors A of F for
which ‖A‖X is bounded, the theorem provides a bound for the size of a list
of conjugacy classes of free factors that can be used to conclusively determine
whether or not an element φ ∈ Out(F ) of length |φ|S is fully irreducible if φ is
not cyclically reducible.

To prove Theorem 1, we utilize the notion of intersection number i(S, T ) de-
fined between a pair of trees S and T equipped with an isometric action by F , as
defined by Guirardel [11]. Horbez [15] related the intersection number i(T ,T φ)

to the word length of φ ∈ Out(F ) (Section 5, Theorem 5). We thus need only
bound the volume of a φ-periodic proper free factor by i(T ,T φ) (Section 7,
Proposition 13).

Before embarking on the details of the proof of Theorem 1, we will first de-
scribe the procedure used in our algorithm for detecting fully irreducible elements
of Out(F ). This is contained in the next section, where we establish the following:

Theorem 2. There exists an effective algorithm for determining if an outer auto-
morphism is fully irreducible.

3. List and Check Algorithm

The input of our algorithm is an element φ0 ∈ Out(F ). Recall that φ0 ∈ Out(F )

is not fully irreducible if there exists a periodic proper free factor and note that
the periodic free factors of φ0 are exactly the periodic free factors of each of
its powers. Feighn and Handel [10] showed that there is a power Q, depend-
ing on the rank of F but not on the element φ0, so that any periodic free factor
of φ

Q
0 is in fact invariant. An explicit function for Q depending only on rk(F )

can be found in [12] and [9]. For instance, Handel and Mosher show that this
property is shared by all elements in ker(Out(F ) → GL(rk(F ),Z3)) and hence
Q = ∏rk(F )

j=1 (3rk(F ) − 3j−1) suffices. This is analogous to the fact that the map-
ping class group has a finite index subgroup all of whose elements are pure; that
is, any invariant multicurve is curve-wise fixed. As a preliminary step to our al-
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gorithm, we replace the element φ0 by φ = φ
Q
0 , so that henceforth we need only

look for invariant free factors. Note that φ is irreducible if and only if it is fully
irreducible if and only if φ0 is fully irreducible.

Process I. To begin process I, we apply an effective algorithm due to Bestvina
and Handel [5], which finds a relative train track1 representative f : � → � of φ.
At its conclusion, if � has a nontrivial f -invariant subgraph, then φ fixes a proper
free factor and is therefore reducible. Otherwise, the algorithm gives us an hon-
est train track map representing φ. Recall that Bestvina and Handel [5] proved
that the fixed subgroup of an automorphism whose outer class is irreducible is at
most rank 1. Thus, we next want to check for loops homotopically fixed by f ,
which correspond to a fixed conjugacy classes of φ, and then see whether their
corresponding elements generate a higher-rank subgroup of F .

For this, we make use of an algorithm of Turner in [23]. For an outer automor-
phism φ with train track map f : � → �, Turner begins by describing a graph Df

equipped with a graph map Df → �. The components of Df are in one-to-one
correspondence with the fixed subgroups of the automorphisms in the outer class
of φ, so that, restricted to a component of Df , the map Df → � is the cover-
ing map corresponding to the fixed subgroup of one of the elements of the outer
class of φ. The algorithm provides an effective procedure for obtaining a finite
subgraph Cf of Df that carries the fundamental group of Df . If any component
of Cf has rank greater than 1, then φ is reducible. Otherwise, Whitehead’s al-
gorithm provides an effective method for determining whether any component of
Cf corresponds to a primitive element. If one does, then φ is cyclically reducible.
This marks the end of process I. At this point, we stop if we have found that φ is
reducible, and we continue to process II if we have only managed to determine
that φ is noncyclically reducible or fully irreducible.

Process II. Theorem 1 gives an upper bound V = C|φ|S on the volume of the
smallest φ-invariant free factor if φ is noncyclically reducible. (Recall that we
have replaced our original input φ0 by φ = φ

Q
0 for which invariance and period-

icity are the same.) There are a finite number of conjugacy classes of subgroups
H with volume less than this bound, and these can be systematically listed since
they correspond to core graphs made from at most V edges, where each edge is
oriented and labeled by an element of X . For a gross overestimate of the number
of these, one has V · (2 rk(F ))V · B2V , where Bn, known as the nth Bell num-
ber, counts the number of partitions of n objects. In our case this is equivalent
to the number of ways one can glue the 2V endpoints of V edges to obtain a
graph. In particular, the number of conjugacy classes is less than V (8V 2 rk(F ))V

since B2V ≤ (2V )2V . Whitehead’s algorithm is then used to eliminate conjugacy
classes that are not free factors. We obtain a list of conjugacy classes of free fac-
tors that are checked (using, say, Stallings’s graph pull backs [22]) one-by-one for

1Loosely speaking, a relative train track representative is akin to a Jordan form for a linear transfor-
mation; we will not make use of any properties of relative train track representatives and refer
the reader to the references for details.
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φ-invariance. This process, and hence the algorithm, stops once either an invariant
free factor is identified, concluding with φ reducible, or once every item on the list
is checked and found not to be invariant, determining that φ is fully irreducible.

This completes the proof of Theorem 2, with the assumption of Theorem 1. Now
we proceed with the proof of Theorem 1.

4. Outer Space, Trees, and Morphisms

For mapping class groups, the intersection number between curves on the surface
is in various contexts useful in comparison to distances in, for instance, Teich-
müller space or the complex of curves. Similar methods have been emerging for
Out(F ) and its associated spaces. Culler and Vogtmann’s outer space is the space
cv consisting of metric simplicial trees T equipped with simplicial, free F -actions
that are minimal (meaning that they leave no proper subtree invariant) up to isom-
etry that commutes with the action. The action of Out(F ) on cv is defined by
precomposing the free group action with the outer automorphism; this action is
therefore on the right. In some contexts, it is convenient to consider the projec-
tivized outer space CV in which the sum of the lengths of the edges of the quotient
T/F is 1. Outer space is treated as the analogue for Out(F ) of Teichmüller space;
we refer the reader to Vogtmann’s survey [24] for a more detailed description.

For a tree T ∈ cv, we use dT (·, ·) to denote the metric on T , �T (·) to denote the
length of edges or paths, and E(T ) to denote the set of edges. We may consider
edges oriented, depending on the context. In the special case that T has a single
vertex orbit and unit length on every edge, we call T a unit rose.

Any pair of unit roses S, T are related by a morphism f : S → T , by which
we mean a cellular F -equivariant map that linearly expands every edge of S over
a nonbacktracking edge path of T . The length of a morphism f : S → T is

�(f ) = max{�T (f (s)) | s ∈ E(S)},
and the length of S in T is

�T (S) = min{�(f ) | f : S → T is a morphism}.
We use �T (S) instead of Lipschitz distance to simplify computations in the next
section, but we remark that the two values are easily related by [15, Lemma 2.4].
If f : S → T satisfies �(f ) = �T (S), then we say that f is length minimizing.
In general, �T (S) and �S(T ) are not equal, but it is known that the ratio of their
logarithms is bounded away from zero, independently of S and T , when both
trees are unit roses (or more generally, in the “thick part” of cv) [1; 13]. We do
not require this fact in what follows. Instead, it is convenient to define

λ(S,T ) = max{�T (S), �S(T )}.

5. Intersection and the Guirardel Core

The utility of the intersection number between curves on a surface is carried over
to free groups via the so-called Guirardel core C(S × T ): a certain closed, F -
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invariant (with the diagonal action) cellular subset of the product S × T of trees
in S,T ∈ cv. The intersection number i(S, T ) is the covolume of C(S × T ), that
is, the sum of the areas of the 2-cells in C(S × T )/F . Often we may assume
that S and T are unit roses, in which case i(S, T ) simply counts the squares in
C(S × T )/F .

For our purpose, we do not need the full definition of C(S × T ), for which we
refer the reader to [11; 15]. Rather, we make use of two approaches to computing
i(S, T ). In one of these, intersection numbers are interpreted as the geometric
intersection between sphere systems in the doubled handlebody. This connection
is recalled in the proof of Lemma 11, where it is used.

The other approach is a simple criterion, given by Behrstock, Bestvina, and the
first author [2], for when two edges s ∈ E(S), t ∈ E(T ) determine a square s × t in
the core C(S ×T ). For a tree T ∈ cv, we let ∂T denote its boundary, that is, equiv-
alence classes of geodesic rays where two rays are equivalent if their images lie in
a bounded neighborhood of one another. An oriented edge t ∈ E(T ) determines a
subset Cyl+T (t) ⊂ ∂T , its (forward) one-sided cylinder, which consists of equiv-
alence classes of geodesics that contain a representative whose image contains t

with the correct orientation. The complement of Cyl+T (t) in ∂T will be denoted
by Cyl−T (t); clearly Cyl−T (t) = Cyl+T (t̄), where t̄ is t with the reverse orientation.
We will typically not bother with specifying an orientation since we will consider
both one-sided cylinders simultaneously. For S,T ∈ cv, there exists a canonical
F -equivariant homeomorphism ∂ : ∂S → ∂T , which is induced by any morphism
f : S → T .

Lemma 3 [2, Lemma 2.3]. Let S,T ∈ cv, and let ∂ : ∂S → ∂T denote the canon-
ical F -equivariant homeomorphism. Given two edges s ∈ E(S) and t ∈ E(T ), the
rectangle s × t is in the core C(S × T ) if and only if each of the four subsets
∂(Cyl(±)

S (s)) ∩ Cyl(±)
T (t) is nonempty.

Let S,T ∈ cv and t ∈ E(T ). The slice of the core C(S × T ) above t is the set

Ct = {s ∈ E(S) | s × t ⊂ C(S × T )}.
Similarly, define the slice Cs = {t ∈ E(T ) | s × t ⊂ C(S ×T )} for s ∈ E(S). A sim-
ple application of Lemma 3 can be used to describe the slice.

Lemma 4 [2, Lemma 3.7]. Let S,T ∈ cv and suppose f : S → T is a morphism.
Given an edge t ∈ E(T ) and a point y in the interior of t , the slice Ct ⊂ S of the
core C(S × T ) is contained in the subtree spanned by f −1(y).

Since F acts freely on the edges of T , for any point y that is in the interior of t ,
the subtree Ct × {y} embeds in the quotient C(S × T )/F . Similarly, for a point
x in the interior of s, the subtree {x} × Cs embeds in the quotient. Therefore, the
intersection number i(S, T ) can be expressed as

i(S, T ) =
∑

e∈E(T /F )

�T (ẽ)vol(Cẽ) =
∑

e∈E(S/F )

�S(ẽ)vol(Cẽ), (1)
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where by ẽ we denote any lift of the edge e to T or S, respectively, and by vol(·)
we denote the sum of the lengths of the edges in the respective slice.

As mentioned in Section 2, Horbez [15] has recently given, for two trees in
cv, a bound on their Guirardel intersection number based on F -equivariant maps
between them, which in turn we can relate to the geometry of Out(F ). We require
a more precise formulation of his result than what is stated in [15], and we need
only consider intersection between unit roses:

Theorem 5 (Horbez [15]). Let S,T ∈ cv be unit roses. Then

i(S, T ) ≤ 2 rk(F )3λ(S,T )4.

For the remainder of this section, we derive this statement by a variation on the ar-
guments in [15, Section 2.2]. Using trees rather than marked graphs, and keeping
track of the precise dependence on the F -equivariant maps, we obtain inequalities
not stated directly in [15] but needed for our applications.

Remark 6. If f : S → T is a morphism between unit roses, then f is a bijection
between the vertices of S and the vertices of T . Indeed, this follows since F acts
freely and transitively on the vertex sets.

Lemma 7 (cf. Lemmas 2.3 and 2.5 in [15]). Suppose that S,T ∈ cv are unit roses
and f : S → T is a length minimizing morphism. If v0, v1 are vertices of T , then
there exist vertices u0, u1 of S such that f (u0) = v0, f (u1) = v1, and

dS(u0, u1) ≤ λ(S,T )dT (v0, v1) + λ(S,T )2.

Proof. Since the existence of u0 and u1 is clear by Remark 6, we need only prove
the inequality. Let g : T → S be a length minimizing morphism. For any vertices
u, u′ in S, it is clear by concatenating the images of edges that

dS(gf (u), gf (u′)) ≤ �(g)dT (f (u), f (u′)) ≤ �(g)�(f )dS(u,u′).
Now consider the geodesic edge path q from u to u′′ = gf (u). There is a
w ∈ F for which dS(u,wu) = 1 and whose axis intersects q only at u. Thus,
dS(u′′,wu′′) = 2dS(u,u′′) + 1. On the other hand,

dS(u′′,wu′′) = dS(gf (u),wgf (u)) = dS(gf (u), gf (wu)) ≤ �(g)�(f )

by our first observation and our choice of w. These last two statements together
imply 2dS(u,gf (u)) ≤ �(g)�(f ). Since u was arbitrary,

dS(u0, u1) ≤ dS(gf (u0), gf (u1)) + dS(u0, gf (u0)) + dS(u1, gf (u1))

≤ �(g)dT (v0, v1) + �(g)�(f ),

from which the lemma follows. �

Lemma 8 (cf. Proposition 2.8 in [15]). Suppose that S,T ∈ cv are unit roses and
that f : S → T is a length minimizing morphism. Given any edge t ∈ E(T ) and a
point y in the interior of t , for any x, x′ ∈ f −1(y), we have

dS(x, x′) ≤ 4λ(S,T )2 + 2.



286 M. Clay, J . Mangahas, & A. Pettet

Proof. Fix v0 a vertex on one end of t , and let u0 be the vertex of S such that
f (u0) = v0. Consider x ∈ f −1(y). Let s ∈ E(S) be the edge that contains x. Let
u1 be a vertex on one end of s, and set v1 = f (u1). Observe that f (s) is a geodesic
of length at most �(f ). Because f (s) contains both v0 and v1, dT (v0, v1) ≤ �(f ).
By Lemma 7,

dS(u0, u1) ≤ λ(S,T )�(f ) + λ(S,T )2 ≤ 2λ(S,T )2.

Because dS(u1, x) ≤ 1, dS(u0, x) ≤ 2λ(S,T )2 + 1. The same is true replacing x

with x′, hence the conclusion. �

Corollary 9. Suppose that S,T ∈ cv are unit roses. Given an edge t ∈ E(T ),
the diameter of the slice Ct ⊂ S of the core C(S × T ) is at most 4λ(S,T )2.

Proof. Let f : S → T be a length minimizing morphism. Suppose that y is a
point in the interior of the edge t . By Lemma 4 any two points in the slice Ct

are contained in a geodesic between points in f −1(y), which by Lemma 8 has
length at most 4λ(S,T )2 +2. The endpoints of this geodesic are interior to edges,
whereas the slice is a union of closed edges; in particular, the slice must exclude
the partial edges at each end of the geodesic. Thus, the two points in the slice have
distance at most 4λ(S,T )2. �

Proof of Theorem 5 (cf. Proposition 2.8 in [15]). Fix an edge t ∈ E(T ) and a
point y in the interior of t . Let f : S → T be a length minimizing morphism.
The cardinality of f −1(y) is at most rk(F )�(f ). By Lemma 4 and Corollary 9,
the slice Ct is covered by the union of 1

2 (rk(F )�(f ))2 edge paths of length
at most 4λ(S,T )2. Thus, vol(Ct ) ≤ 2 rk(F )2λ(S,T )4. Hence, by (1) we have
i(S, T ) ≤ 2 rk(F )3λ(S,T )4 as claimed. �

6. Subgroups and Volume Bounds

Given trees S,T ∈ cv and a nontrivial finitely generated subgroup A ≤ F , there
exist nonempty subtrees SA ⊂ S, TA ⊂ T , on each of which A acts minimally.
We can thus consider the Guirardel core C(SA × TA) for these minimal subtrees
with respect to the action of A. We might hope that, if A is a free factor of F ,
then C(SA ×TA) embeds into C(S ×T ), so that i(SA,TA) is always dominated by
i(S, T ). Unfortunately this appears to be too much to expect, but we do achieve
the following.

Proposition 10. Let A be a noncyclic finitely generated subgroup of F . Suppose
that S,T ∈ cv are unit roses and let SA ⊂ S, TA ⊂ T be the minimal subtrees with
respect to A. Then

i(SA,TA) ≤ 6ξ(A) · λ(S,T )3 · i(S, T ).
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Proof. By equation (1) we have:

i(S, T ) =
∑

e∈E(T /F )

vol(Cẽ),

i(SA,TA) =
∑

e∈E(TA/A)

�TA
(ẽ)vol(Aẽ), (2)

where Cẽ ⊂ S and Aẽ ⊂ SA ⊂ S are the slices in the respective cores. We
denote by ∂ : ∂S → ∂T the canonical F -equivariant homeomorphism and by
∂A : ∂SA → ∂TA the canonical A-equivariant homeomorphism. Observe that
∂|∂SA

= ∂A.
First, we claim that for each edge ẽ ⊂ TA ⊂ T , we have that Aẽ ⊆ Cẽ . Indeed,

let s be an edge in Aẽ. By Lemma 3, each of the four sets ∂A(Cyl(±)
SA

(s)) ∩
Cyl(±)

TA
(ẽ) is nonempty. Since ∂A(Cyl(±)

SA
(s)) = ∂(Cyl(±)

SA
(s)) ⊂ ∂(Cyl(±)

S (s))

and Cyl(±)
TA

(ẽ) ⊂ Cyl(±)
T (ẽ), each of the four sets ∂(Cyl(±)

S (s)) ∩ Cyl(±)
T (ẽ) is

nonempty. Hence, s is an edge in Cẽ .
By a natural edge of TA we mean an edge path ẽ = ẽ1, ẽ2, . . . , ẽn that is a con-

nected component of TA − V≥3(TA), where V≥3(TA) is the collection of vertices
of degree at least three. A natural edge in TA/A is the image of a natural edge
in TA; the set of all natural edges is denoted EN(TA/A).

Suppose that ẽ is a natural edge of TA consisting of the edge path ẽ1, ẽ2, . . . , ẽn.
Then since Cyl(±)

TA
(ẽi ) = Cyl(±)

TA
(ẽj ) for all i, j , from Lemma 3 we see that

Aẽi
= Aẽj

. Therefore, we are justified in writing Aẽ to denote any of the
slices Aẽi

. Applying the observation that Aẽi
⊆ Cẽi

, we have that

Aẽ ⊆
n⋂

i=1

Cẽi
. (3)

Next, let us bound �TA
(ẽ) whenever Aẽ is not empty. Let f : S → T be a

length minimizing morphism, and consider interior points x1 ∈ ẽ1 and xn ∈ ẽn.
If there exists a point p ∈ Aẽ ⊆ Cẽ1 ∩ Cẽn

, then it lives in a geodesic between
a pair of points in f −1(x1) by Lemma 4. By Lemma 8, this path has length
at most 4λ(S,T )2 + 2. The same is true replacing x1 with xn. Because p is in
the intersection of these two bounded geodesics, we may choose y1 ∈ f −1(x1)

and yn ∈ f −1(xn) so that d(y1, yn) ≤ 4λ(S,T )2 + 2. Furthermore, d(x1, xn) ≤
�(f )d(y1, yn), and we may choose x1 and xn so that d(x1, xn) is arbitrarily close
to �TA

(ẽ). Thus, we conclude that, when vol(Aẽ) > 0,

�TA
(ẽ) ≤ �T (S)(4λ(S,T )2 + 2) < 6λ(S,T )3.

Rewriting (2), we get:

i(SA,TA) =
∑

e∈E(TA/A)

�TA
(ẽ)vol(Aẽ) =

∑

e∈EN(TA/A)

�TA
(ẽ)vol(Aẽ)

≤
∑

e∈EN(TA/A)

6λ(S,T )3 vol(Aẽ).
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By (3), vol(Aẽ) ≤ i(S, T ) for every natural edge e ∈ EN(TA/A). Since TA/A has
at most ξ(A) natural edges, the proof is completed. �
In order to eventually relate intersection number to the volume of an invariant free
factor, we find an effective lower bound for intersection under a bounded iterate
of a fully irreducible automorphism.

Lemma 11. Let φ be a fully irreducible element of Out(F ) and consider a tree
T ∈ cv with edge lengths at least 1. Then, for some 1 ≤ P ≤ ξ(F ),

vol(T /F ) ≤ ξ(F ) · i(T ,T φP ).

Proof. The lemma will be proved once we establish that, for some 1 ≤ P ≤ ξ(F ),
the slice of the core C(T × T φP ) above the longest edge of T contains at least
one edge of T φP and hence has volume at least 1. This is because, if the longest
edge is ẽ, by equation (1) we would have

vol(T /F ) ≤ ξ(F ) · �T (ẽ) ≤ ξ(F ) · �T (ẽ) · vol(Cẽ) ≤ ξ(F ) · i(T ,T φP ).

To prove the claim above, we compute the intersection number using sphere
systems in the doubled handlebody with fundamental group F . Briefly, let M be
the connect sum of as many copies of S1 × S2 as the rank of F . By S we denote
the simplicial complex whose n-simplices correspond to n + 1 isotopy classes of
disjoint essential spheres in M , and by S

∞ we denote the subcomplex of S con-
sisting of simplices where the complement of the corresponding sphere system
in M has a non-simply-connected component. By work of Laudenbach [18; 19],
there is a well-defined simplicial action of Out(F ) on S that leaves S

∞ invari-
ant. In this action, fully irreducible elements of Out(F ) act on S without periodic
orbits. Hatcher [14] established an Out(F )-equivariant isomorphism between pro-
jectivized outer space CV and S−S

∞. Under this isomorphism, edges of a marked
graph T/F correspond bijectively to spheres in some sphere system.

Horbez details the correspondence between geometric intersection of the
sphere systems and the volume of the Guirardel core [15]. In particular, he
shows that, if T0, T1 are trees in CV , then for the corresponding sphere systems
�0,�1 ∈ S−S

∞, we have i(T0, T1) = i(�0,�1), where the latter counts the min-
imal number of circles common to each sphere system, weighted appropriately.
This minimum is achieved by representative sphere systems in a notion of normal
position first described by Hatcher [14]. Whereas not stated explicitly in [15], it
can be verified that each circle of intersection occurring on a given component
σ0 ∈ �0 corresponds to an edge in the slice of the core C(T0 × T1) above an edge
in T0 corresponding to the lift of the edge in T0/F dual to σ0. This is because
C(T0 × T1) can be built as the 2-complex dual to preimages of �1 and �2 in the
universal cover of M , where �1 and �2 are assumed to be in normal position. For
our considerations, the weights on the spheres do not matter since we are only
concerned with showing that some slice is nonempty, that is, that the correspond-
ing sphere has nontrivial intersection with another sphere.

Now, given T ∈ cv, we scale its edges equally by 1/vol(T /F ) to get a point
T ∈ CV . The slice over the longest edge of T in C(T × T φP ) is nonempty if
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and only if the slice over the longest edge of T in C(T × T φP ) is nonempty.
Suppose that � is the sphere system dual to T and that σ ∈ � is dual to the longest
edge of T . Since the maximum number of isotopy classes of disjoint essential
spheres in M is ξ(F ) and since φ is fully irreducible, at least two of the spheres
σ,φ(σ ), . . . , φξ(F )(σ ) have essential intersection, so in particular σ essentially
intersects φP (σ ) for some 1 ≤ P ≤ ξ(F ). By the foregoing discussion, this means
that the slice above the longest edge in T/F contains at least one edge, proving
the lemma. �

Remark 12. We use sphere systems in the proof to potentially give intuition on
how the reasoning parallels that for its mapping class group analogue in [17].
Alternatively, Lemma 11 can be proved using trees instead; we give a sketch of
that argument here. As in Lemma 11, we will show that the slice of the core above
the longest edge in T contains at least one edge.

To this end, let ẽ be the longest edge in T and consider T1 = X, the tree ob-
tained by collapsing every edge other than the ones in the orbit of ẽ. If i(T1,Xφ) �=
0, then the slice Cẽ ⊂ Xφ is nonempty since i(T1,Xφ) = �T1(ẽ)vol(Cẽ). Since T φ

collapses to Xφ, we see that the slice of the core above ẽ in C(T × T φ) is also
nonempty.

If i(T1,Xφ) = 0, then by [11, Theorem 6.1] the core is tree, denote it T2.
Moreover, T2 is a common refinement for both T1 and Xφ. That is, there are
edge collapse maps T1 ← T2 → Xφ. There is a unique edge in T2 that is mapped
homeomorphically to ẽ ⊂ T1. Abusing notation, we denote this edge by ẽ as well.

As before, if i(T2,Xφ2) �= 0, then we see that the slice Cẽ ⊂ Xφ2 is nonempty,
and therefore the slice above ẽ in C(T ×T φ2) is also nonempty. If i(T2,Xφ2) = 0,
then the core is a common refinement for the two trees T2 and Xφ2, denote it T3.

Continuing in this fashion, if i(Tk,Xφk) = 0, denote the common refinement
by Tk+1. Since φ is fully irreducible, at each step Tk/F has k edges. Thus, for
some 1 ≤ P ≤ ξ(F ), we must have that i(TP ,XφP ) �= 0. Hence, the slice of the
core above ẽ in C(T × T φP ) contains at least one edge, proving the lemma.

We apply the previous two results to prove the following.

Proposition 13. Let T = TX be the Cayley graph with respect to the basis X ,
with all edges of unit length. If φ ∈ Out(F ) acts fully irreducibly on a proper free
factor A of rank at least 2, then for some 1 ≤ P ≤ ξ(F ),

‖A‖X ≤ 6ξ(F )2 · λ(T ,T φP )3 · i(T ,T φP ).

Proof. The minimal tree TA ⊂ T of A has natural edge-lengths at least 1, and as
such can be thought of as an element of cv(A), the unprojectivized outer space
for A. We can apply Lemma 11 to TA with its free A-action to obtain P ≤ ξ(A)

for which

‖A‖X = vol(TA/A) ≤ ξ(A) · i(TA,TAφP ).

The conclusion follows by applying Proposition 10, noting that ξ(A) ≤ ξ(F ). �
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7. Proof of Theorem 1

In this section we prove the key new result for our algorithm, which is Theorem 1.
We wish to show that if φ ∈ Out(F ) is noncyclically reducible, then there is a φ-
periodic free factor whose volume is bounded above by an exponential function
in terms of the word length |φ|S . Since φ is noncyclically reducible, there is a
φQ-invariant free factor A for which 1 < rk(A) < rk(F ), where Q = Q(rk(F )) is
the constant power mentioned at the beginning of Section 3. We can assume that
φQ|A is fully irreducible.

Now let us complete the proof of Theorem 1. Let T = TX be the Cayley graph
with respect to the basis X , with all edges of unit length. Combining with Theo-
rem 5 with Proposition 13, we have some 1 ≤ P ≤ ξ(F ) for which

‖A‖X ≤ 6ξ(F )2 · λ(T ,T φQP )3 · i(T ,T φQP )

≤ 12ξ(F )5 · λ(T ,T φQP )7.

Let λX (S) = max{λ(T ,T ψ) | ψ ∈ S}. Since the length of a composition of
morphisms is bounded by the product of their lengths, we have λ(T ,T φQP ) ≤
λX (S)QP |φ|S .

The proof of Theorem 1 is complete with

‖A‖X ≤ 12ξ(F )5 · λX (S)7QP |φ|S

≤ C|φ|S ,

where C = 12ξ(F )5 · λS(X )7Qξ(F) depends only on X and S .
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