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The Trace Map of Frobenius and Extending
Sections for Threefolds

Hiromu Tanaka

Abstract. In this paper, by using the trace map of Frobenius, we con-
sider problems on extending sections for positive characteristic three-
folds.

0. Introduction

In characteristic zero, by the Kodaira vanishing theorem and its generaliza-
tions, we can establish some results on adjoint divisors, such as the Kawamata–
Shokurov basepoint-free theorem (see, e.g., [Kollár–Mori, Theorem 3.3]) and
the Hacon–McKernan extension theorem [HM, Theorem 5.4.21]. These theorems
claim, under suitable conditions, that an adjoint divisor m(KX +�+A) has good
properties, where m ∈ Z>0, (X,�) is a pair, and A is an ample divisor. In this pa-
per we only consider the following very simple situation: X is a smooth projective
variety, � = S is a smooth prime divisor, and A is an ample Cartier divisor. The
following fact immediately follows from the Kodaira vanishing theorem.

Fact 0.1. Let k be an algebraically closed field of characteristic zero. Let X be
a smooth projective variety over k. Let S be a smooth prime divisor on X, and let
A be an ample Cartier divisor on X such that KX + S + A is nef. Fix m ∈ Z>0.
Then, by the Kodaira vanishing theorem, we obtain

H 1(X,KX + A + (m − 1)(KX + S + A)) = 0.

Thus, the natural restriction map

H 0(X,m(KX + S + A)) → H 0(S,m(KS + A|S))

is surjective.

It is natural to consider whether this fact also holds in positive characteristic.
Unfortunately, however, there exists the following example.

Example 0.2 (cf. Example 4.4). Let k be an algebraically closed field of positive
characteristic. Then, there exist a smooth projective surface X over k, a smooth
prime divisor C on X, and an ample Cartier divisor A on X such that KX +C +A

is nef and the natural restriction map

H 0(X,KX + C + A) → H 0(C,KC + A|C)

is not surjective.
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Thus, we would like to find a suitable analogue of Fact 0.1 in positive character-
istic. In this paper, we prove the following two theorems.

Theorem 0.3 (cf. Corollary 4.3). Let k be an algebraically closed field of positive
characteristic. Let X be a smooth projective surface over k. Let C be a smooth
prime divisor on X, and let A be an ample Cartier divisor on X. If H 0(C,KC +
A|C) �= 0, then the natural restriction map

H 0(X,KX + C + A) → H 0(C,KC + A|C)

is a nonzero map.

Theorem 0.4 (cf. Theorem 7.3). Let k be an algebraically closed field of positive
characteristic. Let X be a smooth projective threefold over k. Let S be a smooth
prime divisor on X, and let A be an ample Cartier divisor on X. Assume the
following two conditions:

(1) KX + S + A is nef.
(2) κ(S,KS + A|S) �= 0.

Then, there exists m0 ∈ Z>0 such that, for every integer m ≥ m0, the natural
restriction map

H 0(X,m(KX + S + A)) → H 0(S,m(KS + A|S))

is surjective.

To show these two theorems, we use the trace map of Frobenius. This strategy
is essentially the same as that used in [Schwede2, Proposition 5.3] and its proof.
Let us see the idea of the proofs. Let X be a smooth projective variety. Let S be a
smooth prime divisor on X, and let A be an ample Cartier divisor on X. Then, for
every e ∈ Z>0, we obtain the following commutative diagram by using the trace
map of Frobenius:

H 0(X,KX + S + peA) −−−→ H 0(S,KS + peA|S) −−−→ H 1(X,KX + peA)⏐⏐� ⏐⏐�TreS(A|S)

H 0(X,KX + S + A)
ρ−−−→ H 0(S,KS + A|S),

where the lower horizontal arrow ρ is the natural restriction map, and the upper
horizontal sequence is exact. By the Serre vanishing theorem, for large e � 0, we
obtain the vanishing H 1(X,KX + peA) = 0. Thus, to prove that the restriction
map ρ is surjective (resp. a nonzero map), it is sufficient to show that the trace map
TreS(A|S) is surjective (resp. a nonzero map). Therefore, to prove Theorems 0.3
and 0.4, we establish the following results on the trace map of Frobenius.

Theorem 0.5 (cf. Theorem 4.1). Let k be an algebraically closed field of positive
characteristic. Let C be a smooth projective curve over k. Let A be an ample
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Cartier divisor on C. If H 0(C,KC + A) �= 0, then the trace map

TreC(A) : H 0(C,KC + peA) → H 0(C,KC + A)

is a nonzero map for every e ∈ Z>0.

Theorem 0.6 (cf. Theorem 7.1). Let k be an algebraically closed field of positive
characteristic. Let S be a smooth projective surface over k. Let A be an ample
Cartier divisor on S. Assume the following two conditions:

(1) KS + A is nef.
(2) κ(S,KS + A) �= 0.

Then, there exists m1 ∈ Z>0 such that the trace map

TreS(A + m(KS + A)) : H 0(S,KS + pe(A + m(KS + A)))

→ H 0(S,KS + (A + m(KS + A)))

is surjective for every integer m ≥ m1 and for every e ∈ Z>0.

We also consider whether Theorem 0.4 and Theorem 0.6 hold for the case where
κ(S,KS +A) = 0. Let us compare Theorem 0.4 with the following basepoint-free
conjecture (cf. [Kollár–Mori, Theorem 3.3]).

Conjecture 0.7. Let k be an algebraically closed field of positive characteristic.
Let X be a smooth projective threefold over k. Let S be a smooth prime divisor
on X, and let A be an ample Cartier divisor on X such that KX + S + A is nef.
Then, |b(KX + S + A)| is basepoint-free for every b � 0.

Remark 0.8. After the first version of this paper was circulated, [BW, Theo-
rem 1.2] proved that, in the above situation, |b(KX + S + A)| is basepoint-free
for every sufficiently large and divisible b in characteristic p > 5.

If Conjecture 0.7 holds, then Theorem 0.4 also holds when κ(S,KS + A) = 0.
It is natural to ask whether Theorem 0.6 also holds when κ(S,KS + A) = 0.
Unfortunately, the answer is negative. We can construct the following example in
characteristic two.

Theorem 0.9 (cf. Theorem 8.3). Let k be an algebraically closed field of charac-
teristic two. Then, there exists a smooth projective surface S over k such that:

(1) −KS =: A is ample. In particular, κ(S,KS + A) = 0.
(2) For every e ∈ Z>0, the trace map

TreS(A) : H 0(S,KS + 2eA) → H 0(S,KS + A)

is the zero map.

Moreover, Theorem 0.9 also shows that we cannot generalize Theorem 0.5 to
dimension two.

In the Appendix, we establish the following analogue of the Hacon–McKernan
extension theorem for surfaces.
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Theorem 0.10 (cf. Theorem A.1). Let k be an algebraically closed field of pos-
itive characteristic. Let X be a smooth projective surface over k, and let C be a
smooth prime divisor on X. Let � := C +B , where B is an effective Q-divisor on
X that satisfies the following properties:

(1) C �⊂ SuppB , �B� = 0 and (X,�) is plt;
(2) B ∼Q A + F , where A is an ample Q-divisor, and F is an effective Q-divisor

such that C �⊂ SuppF ; and
(3) no prime component of � is contained in the stable base locus of KX + �.

Then, there exists an integer m0 > 0 such that, for every integer m > 0, the re-
striction map

H 0(X,mm0(KX + �)) → H 0(C,mm0(KX + �)|C)

is surjective.

However, the proof of Theorem 0.10 does not use the trace map of Frobenius. We
use instead results on the minimal model theory established in [T2] and [T3].

0.1. Overview of Contents

In Section 1, we summarize the notation. In Section 2, we give the definition and
some basic properties of the trace map of Frobenius. The trace map of Frobenius
is obtained by applying the functor HomOX

(−,ωX) to the Frobenius map OX →
F∗OX . In Section 3, we recall some known facts about the Cartier operator. We
can consider the trace map of Frobenius as a Cartier operator. The Cartier operator
is defined by the de Rham complex. We use the Cartier operator to consider the
relation between the trace map of Frobenius and étale base change. In Section 4,
we prove Theorem 0.3 and Theorem 0.5. In Section 5, we prove Theorem 0.6
when κ = 1. In Section 6, we prove Theorem 0.6 when κ = 2. In Section 7, by
using Theorem 0.6 we show Theorem 0.4. In Section 8, we prove Theorem 0.9.
In the Appendix, we prove Theorem 0.10.

0.2. Overview of Related Literature

We give some general references to the literature related to this paper in con-
nection with the basepoint-free theorem, the extension theorem, the trace map of
Frobenius, and the minimal model theory in positive characteristic.

Basepoint-Free Theorem and Extension Theorem. The motivation of this paper
comes from the basepoint-free theorem and the extension theorem in character-
istic zero. Thus, let us summarize some known results on this topic. Kawamata
and Shokurov established the basepoint-free theorem for klt pairs (cf. [KMM;
Kollár–Mori]). [Ambro] generalized this result (cf. [Fujino]). The extension theo-
rem is established by Hacon and McKernan [HM, Theorem 5.4.21]. This theorem
is a key to proving the existence of flips [BCHM]. For related topics, see [DHP]
and [FG].
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The Trace Map of Frobenius. At the heart of this paper is the trace map of Frobe-
nius. This map plays a crucial role in the theory of F -singularities (cf. [BST;
Schwede1; Schwede2]). Moreover, [CHMS] and [Mustata] establish results re-
lated to birational geometry by using the trace map of Frobenius and the theory
of F -singularities. For related topics, see [BSTZ] and [TW].

Minimal Model Theory in Positive Characteristic. For results on the minimal
model theory in positive characteristic, we refer to [Fujita3; KK; T2], and [T3]
for the case of surfaces and to [Birkar; BW; CTX; HX; Kawamata; Keel; Kollár],
and [Xu] for the case of threefolds.

1. Notation

We freely use the notation and terminology in [Kollár–Mori]. We do not distin-
guish in notation between invertible sheaves and divisors. For example, we often
write L+M for invertible sheaves L and M . For a coherent sheaf F and a Cartier
divisor L, we define F(L) := F ⊗OX(L).

Throughout this paper, we work over an algebraically closed field k of positive
characteristic and let chark =: p > 0. In this paper, a variety means an integral
scheme, separated and of finite type over k. A curve (resp. a surface) means a
variety of dimension one (resp. two).

2. The Trace Map of Frobenius

In this section, we define the trace map of Frobenius and we discuss some fun-
damental properties. We only use the smooth case. For the singular case, see
[Schwede2, Section 2].

Proposition 2.1. Let X be a smooth projective variety. Let E be an effective Z-
divisor, and let D be a Z-divisor. Then, for every positive integer e, there exists a
natural OX-module homomorphism

TreX,E(D) : Fe∗ (ωX(E + peD)) → ωX(E + D).

We call this a trace map.

Proof. Consider the Frobenius map

OX → Fe∗OX,

that is, the peth power map a �→ ape
. Since E is effective, we obtain by tensoring

with OX(−E)

OX(−E) → Fe∗ (OX(−peE)) ↪→ Fe∗ (OX(−E)).

Tensoring with OX(−D) we obtain

OX(−E − D) → Fe∗ (OX(−E)) ⊗OX(−D)

� Fe∗ (OX(−E − peD)).
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By the duality theorem for finite morphisms we obtain

HomOX
(F e∗ (OX(−E − peD)),ωX) � Fe∗ (ωX(E + peD)).

Then, we apply the functor HomOX
(−,ωX) and obtain

Fe∗ (ωX(E + peD)) → ωX(E + D).

This is the trace map TreX,E(D). �

Remark 2.2. By this construction, TreX,E(D) factors through TreX(E + D) :=
TreX,0(E + D):

TreX,E(D) : Fe∗ (ωX(E +peD)) ↪→ Fe∗ (ωX(peE +peD))
TreX(E+D)−−−−−−→ ωX(E +D).

Remark 2.3. Let X be a smooth projective variety. Let SpecR ⊂ X be an affine
open subset such that R has a p-basis {x1, . . . , xn}. Then, we obtain

�(SpecR,ωX) = R dx1 ∧ · · · ∧ dxn

and

�(SpecR,F e∗ωX) =
⊕

0≤ij <pe

Rpe

x
i1
1 · · ·xin

n dx1 ∧ · · · ∧ dxn.

The trace map

TreX : �(SpecR,F e∗ωX) → �(SpecR,ωX)

is described as follows:

(1) TreX(x
pe−1
1 · · ·xpe−1

n dx1 ∧ · · · ∧ dxn) = dx1 ∧ · · · ∧ dxn.

(2) TreX(x
i1
1 · · ·xin

n dx1 ∧ · · · ∧ dxn) = 0 if 0 ≤ ij < pe − 1 for some 1 ≤ j ≤ n.

The following two lemmas give some fundamental properties.

Lemma 2.4. Let X be a smooth projective variety, and let E be an effective Z-
divisor. If D1 and D2 are linearly equivalent Z-divisors, then the two trace maps
TreX(D1) and TreX(D2) are the same for every positive integer e, that is, there
exists a commutative diagram:

Fe∗ (ωX(E + peD2))
TreX(D2)−−−−→ ωX(E + D2)⏐⏐��

⏐⏐��

Fe∗ (ωX(E + peD1))
TreX(D1)−−−−→ ωX(E + D1).

Proof. The assertion follows from TreX(Di) = TreX ⊗OX
OX(Di). �

Lemma 2.5. Let X be a smooth projective variety, and let E be an effective Z-
divisor. Let D be a Z-divisor. Then, for every positive integer e,

Tre+1
X,E(D) = TreX,E(D) ◦ Fe∗ (Tr1

X,E(peD)),
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that is,

Tre+1
X,E(D) : Fe+1∗ (ωX(E + pe+1D))

Fe∗ (Tr1
X,E(peD))−−−−−−−−−→ Fe∗ (ωX(E + peD))

TreX,E(D)−−−−−→ ωX(E + D).

Proof. Consider the Frobenius maps

OX(−E) → Fe∗ (OX(−E)) → Fe+1∗ (OX(−E)).

Tensoring with OX(−D) we obtain

OX(−E − D) → Fe∗ (OX(−E − peD)) → Fe+1∗ (OX(−E − pe+1D)).

Applying the functor HomX(−,ωX), we obtain the assertion. �

In this paper, we often use the following two commutative diagrams.

Lemma 2.6. Let X be a smooth projective variety, and let S be a smooth prime
divisor. Then, there exist the following commutative diagrams:

(1)

0 −−−−→ Fe∗ ωX −−−−→ Fe∗ (ωX(S)) −−−−→ Fe∗ωS −−−−→ 0⏐⏐�TreX

⏐⏐�TreX,S

⏐⏐�TreS

0 −−−−→ ωX −−−−→ ωX(S) −−−−→ ωS −−−−→ 0,

(2)

0 −−−−→ Fe∗ωX −−−−→ Fe∗ (ωX(peS)) −−−−→ Fe∗ (ωpeS) −−−−→ 0⏐⏐�TreX

⏐⏐�TreX(S)

⏐⏐��

0 −−−−→ ωX −−−−→ ωX(S) −−−−→ ωS −−−−→ 0.

Moreover, TreS factors through �:

TreS : Fe∗ωS → Fe∗ (ωpeS)
�→ ωS.

Proof. (1) Consider the following commutative diagram:

0 −−−−→ Fe∗ (OX(−S)) −−−−→ Fe∗OX −−−−→ Fe∗OS −−−−→ 0�⏐⏐ �⏐⏐Fe
X

�⏐⏐Fe
S

0 −−−−→ OX(−S) −−−−→ OX −−−−→ OS −−−−→ 0.

Applying the functor HomX(−,ωX), we obtain the assertion.
(2) Consider the following commutative diagram:

0 −−−−→ Fe∗ (OX(−peS)) −−−−→ Fe∗OX −−−−→ Fe∗OpeS −−−−→ 0�⏐⏐ �⏐⏐Fe
X

�⏐⏐
0 −−−−→ OX(−S) −−−−→ OX −−−−→ OS −−−−→ 0.
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Applying the functor HomX(−,ωX), we obtain the required commutative dia-
gram. Since

Fe
S : OS → Fe∗OS

factors through Fe∗OpeS , we obtain the last assertion in the lemma. �

Remark 2.7. Given a smooth projective variety X and an ample Z-divisor A on
X, it is natural to ask whether for every e ∈ Z>0, the trace map TreX(A) is sur-
jective. However, this has a negative answer. Indeed, [Tango] constructs a smooth
projective curve X and an ample Z-divisor A on X such that the trace map TreX(A)

is not surjective for e = 1.

On the other hand, we obtain an affirmative answer for the following two cases:
Abelian varieties and F -split varieties.

Proposition 2.8. If X is an Abelian variety and A is an ample Z-divisor, then
the trace map

TreX(A) : H 0(X,ωX(peA)) → H 0(X,ωX(A))

is surjective for every e ∈ Z>0.

Proof. Fix e ∈ Z>0. For m ∈ Z, let mX : X → X be the m-multiplication map of
the Abelian variety X. If n ∈ Z>0 is not divisible by p, then

nX : X → X

is a finite morphism whose degree is not divisible by p. Thus,

OX → (nX)∗OX

is split as an OX-module homomorphism (cf. [Kollár–Mori, Proposition 5.7(2)]).
We obtain the following commutative diagram:

Fe∗ (nX)∗(OX(pe(nX)∗A)) ←−−−− (nX)∗(OX((nX)∗A))�⏐⏐ �⏐⏐ñX

F e∗ (OX(peA)) ←−−−− OX(A).

Applying the functor HomOX
(−,ωX) (cf. the proof of Proposition 2.1) and taking

global sections gives

H 0(X,ωX(pe(nX)∗A))
TreX((nX)∗A)−−−−−−−→ H 0(X,ωX((nX)∗A))⏐⏐� ⏐⏐�ñX

′

H 0(X,ωX(peA))
TreX(A)−−−−→ H 0(X,ωX(A)).

Here, ñX
′ is surjective by the splitting of OX → (nX)∗OX . Therefore, it is suffi-

cient to show that TreX((nX)∗A) is surjective. By [Mumford, Corollary 3 in Sec-
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tion 6] we obtain

n∗
XA = n2 + n

2
A + n2 − n

2
(−1)∗XA.

Note that, since (−1)X is an automorphism, (−1)∗XA is ample. Therefore, by the
Fujita vanishing theorem ([Fujita1, Theorem (1)], [Fujita2, Section 5]), we can
find n ∈ Z>0 such that TreX((nX)∗A) is surjective. �

Definition 2.9. Let X be a smooth projective variety. We say that X is F-split if
the Frobenius map

OX → F∗OX

is split as an OX-module homomorphism.

Proposition 2.10. Let X be an F -split smooth projective variety, and let D be a
Z-divisor. Then, the trace map

TreX(D) : H 0(X,ωX(peD)) → H 0(X,ωX(D))

is surjective for every e ∈ Z>0.

Proof. By the definition of F -splitting we see that the Frobenius map

OX(−D) → Fe∗ (OX(−peD))

is split. Applying the functor HomOX
(−,ωX), we obtain the assertion. �

3. Facts on Cartier Operator

In this section, we collect some facts on the Cartier operator. By Remark 3.4 we
consider the trace map of Frobenius as the Cartier operator.

Definition 3.1. Let X be a smooth variety. Consider the de Rham complex of X

	•
X : OX

d0→ 	1
X

d1→ 	2
X

d2→ ·· · ,

where 	i
X := 	i

X/k . Applying F∗, we obtain a complex

F∗	•
X : F∗OX

F∗d0→ F∗	1
X

F∗d1→ F∗	2
X

F∗d2→ ·· · .

Then, it is easy to see that F∗di is an OX-module homomorphism. We define

Bi
X := Image(F∗di−1 : F∗	i−1

X → F∗	i
X),

Zi
X := Ker(F∗di : F∗	i

X → F∗	i+1
X ).

Note that Bi
X and Zi

X are coherent sheaves.

Fact 3.2. Let X be a smooth variety. For every i ∈ Z such that 1 ≤ i ≤ dimX,
consider the map

C−1
X : 	i

X → Zi
X/Bi

X
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locally defined by

C−1
X |SpecR : �(SpecR,	i

X) → �(SpecR,Zi
X/Bi

X),

da1 ∧ · · · ∧ dai �→ a
p−1
1 · · ·ap−1

i da1 ∧ · · · ∧ dai,

where SpecR is an open affine subset of X, and a1, . . . , ai ∈ R. This map C−1
X

is a well-defined OX-module isomorphism. We call CX := (C−1
X )−1 the Cartier

operator.

Proof. See, for example, [EV, Theorem 9.14]. �

Remark 3.3. Let X be an n-dimensional smooth variety. We obtain the following
exact sequences:

(1) 0 → OX → F∗OX → B1
X → 0,

(2) 0 → Zi
X → F∗	i

X → Bi+1
X → 0 for 1 ≤ i ≤ n, and

(3) 0 → Bi
X → Zi

X

Ci
X→ 	i

X → 0 for 1 ≤ i ≤ n.

By (2) for i = n, we obtain Zn
X � F∗ωX . By (3) for i = n, we obtain

0 → Bn
X → F∗ωX

Cn
X→ ωX → 0.

Remark 3.4. Let X be an n-dimensional smooth projective variety. By Re-
mark 2.3 the Cartier operator Cn

X and the trace map of Frobenius are the same:
Cn

X = Tr1
X .

Lemma 3.5. Let γ : X → Y be a finite étale morphism between smooth varieties.
Then, for every i,

γ ∗Bi
Y � Bi

X and γ ∗Zi
Y � Zi

X.

Proof. We may assume that X = SpecB and Y = SpecA. Let

φ : A → B

be the homomorphism induced by γ . Let

FA : A → A and FB : B → B

be the respective pth-power maps. Since φ is étale, the following diagram is a
tensor product:

A
FA−−−−→ A⏐⏐�φ

⏐⏐�φ

B
FB−−−−→ B.

Thus, we see that the natural B-module homomorphism

θi : ((FA)∗	i
A) ⊗A B → (FB)∗(	i

A ⊗A B),(∑
J

aJ dxJ

)
⊗A b �→

(∑
J

aJ dxJ

)
⊗A bp
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is an isomorphism where aJ ∈ A and dxJ := dxj1 ∧ · · · ∧ dxji
for some xjl

∈ A.
Since φ is étale, the natural B-module homomorphism

ρi : 	i
A ⊗A B → 	i

B,(∑
J

aJ dxJ

)
⊗A b �→

∑
φ(aJ )b d(φ(xJ ))

is an isomorphism. Since φ is flat, the isomorphisms in the lemma follow from
the commutativity of the following diagram:

(FB)∗	i
B

d−−−−→ (FB)∗	i+1
B�⏐⏐(FB)∗ρi

�⏐⏐(FB)∗ρi+1

(FB)∗(	i
A ⊗A B)

d−−−−→ (FB)∗(	i+1
A ⊗A B)�⏐⏐θi

�⏐⏐θi+1

((FA)∗	i
A) ⊗A B

d−−−−→ ((FA)∗	i+1
A ) ⊗A B,

which is easy to check. �

We state the following vanishing result on F -split varieties for later use.

Proposition 3.6. If X is an n-dimensional F -split smooth projective variety and
A is an ample Z-divisor, then

H 1(X,Bn
X(A)) = 0.

Proof. Consider the exact sequence

0 → Bn
X → F∗ωX

Cn
X→ ωX → 0.

Then, by Proposition 2.10, the trace map

Cn
X = Tr1

X(A) : H 0(X,ωX(pA)) → H 0(X,ωX(A))

is surjective. Therefore, we obtain the exact sequence

0 → H 1(X,Bn
X(A)) → H 1(X,ωX(pA)).

Since F -split varieties satisfy the Kodaira vanishing theorem [MR, Proposition 2],
we obtain the vanishing H 1(X,Bn

X(A)) = 0. �

4. The Trace Map of Frobenius for Curves

In this section, we calculate the trace map

TreX(A) : H 0(X,ωX(peA)) → H 0(X,ωX(A))

when X is a curve. By Remark 2.7, TreX(A) is not surjective in general. However,
we show that TreX(A) is almost always a nonzero map.



238 Hiromu Tanaka

Theorem 4.1. Let X be a smooth projective curve whose genus g(X) is not zero.
Let A be an ample Z-divisor. Then, for every e ∈ Z>0, the trace map

TreX(A) : H 0(X,ωX(peA)) → H 0(X,ωX(A))

is a nonzero map.

Proof. Fix e ∈ Z>0. Since A is ample, we have degA ≥ 1. We consider two cases,
degA > 1 and degA = 1.

Step 1. In this step, we assume that degA > 1, and we prove the assertion. The
following argument follows the proof of [Schwede2, Theorem 3.3].

Fix a point Q ∈ X. By Lemma 2.6 we obtain the following commutative dia-
gram:

H 0(X,KX + peA) −→ H 0(peQ,KpeQ + pe(A − Q))→ H 1(X,KX + pe(A − Q))⏐⏐�TreX(A)

⏐⏐��

H 0(X,KX + A)
ρ−→ H 0(Q,KQ + A − Q).

By the Serre duality we obtain the vanishing

H 1(X,KX + pe(A − Q)) = 0.

On the other hand, � is surjective because the composition

TreQ : H 0(Q,KQ + pe(A − Q)) → H 0(peQ,KpeQ + pe(A − Q))

�→ H 0(Q,KQ + A − Q)

is surjective. Therefore, the composition map ρ ◦ TreX(A) is surjective. We con-
clude that TreX(A) is a nonzero map since H 0(Q,KQ + A − Q) �= 0.

Step 2. In this step, we prove that if degA = 1, then there exists a point Q ∈ X

such that the natural injective map

H 0(X,ωX(peA − peQ)) → H 0(X,ωX(peA − (pe − 1)Q))

is not surjective.
Since H 0(Q,L|Q) � k for every invertible sheaf L on X, we obtain the fol-

lowing exact sequence:

0 → H 0(X,ωX(peA − peQ)) → H 0(X,ωX(peA − (pe − 1)Q)) → k

→ H 1(X,ωX(peA − peQ)).

Therefore, it is sufficient to show that

h1(X,ωX(peA − peQ)) = h0(X,−(peA − peQ)) = 0

for some point Q ∈ X. Note that the first equality follows from the Serre dual-
ity. Assume the contrary, that is, assume that peA ∼ peQ for every point Q ∈ X.
Since the genus g(X) is not zero, there exists a nonzero l-torsion divisor D for a
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prime number l �= p. Note that D is not a pe-torsion. Take the prime decomposi-
tion

D =
∑

miQi −
∑

njRj .

Since degD = ∑
mi − ∑

nj = 0, we obtain the following contradiction:

peD =
∑

mip
eQi −

∑
njp

eRj

∼
∑

mip
eA −

∑
njp

eA

=
(∑

mi −
∑

nj

)
peA

= 0.

Step 3. In this step, we assume that degA = 1 and prove the assertion in the
theorem.

We fix a point Q ∈ X as in Step 2. If A ∼ A′, then the corresponding trace
maps are the same by Lemma 2.4. Therefore, we may assume that Q /∈ SuppA.
By Step 2 there exists an element

η ∈ H 0(X,ωX(peA − (pe − 1)Q)) \ H 0(X,ωX(peA − peQ)).

Take the local ring (R,m) corresponding to the point Q. Note that Fe∗ R is a free
R-module. Let {x} be a p-basis. Then, we obtain

ωR =
⊕

0≤i<pe

Rpe

xi dx.

Thus, we can write

η|SpecR =
∑

0≤i<pe

f
pe

i xi dx.

The fact that η /∈ H 0(X,ωX(peA − peQ)) means that fi /∈ m for some 0 ≤ i <

pe. Since η ∈ H 0(X,ωX(peA − (pe − 1)Q)), we have fi ∈ m for every 0 ≤ i <

pe − 1. Therefore, we obtain fpe−1 /∈ m. Then, we can find c ∈ k× and μ ∈ m

such that

fpe−1 = c + μ.

By Remark 2.3 we see that TreX(A)(η)|SpecR �= 0. �

Corollary 4.2. Let X be a smooth projective curve. Let A be an ample Z-divisor.
If H 0(X,ωX(A)) �= 0, then for every e ∈ Z>0, the trace map

TreX(A) : H 0(X,ωX(peA)) → H 0(X,ωX(A))

is a nonzero map.

Proof. If g(X) ≥ 1 where g(X) is the genus of X, then the assertion follows from
Theorem 4.1. Thus, we may assume that X � P1. Since P1 is F -split, the trace
map is surjective by Proposition 2.10. �
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In characteristic zero, the following result follows using the Kodaira vanishing
theorem. In positive characteristic, we obtain the following result by the trace
map of Frobenius.

Corollary 4.3. Let X be a smooth projective surface, and let C be a smooth
prime divisor on X. Let A be an ample Z-divisor on X. If H 0(C,KC +A|C) �= 0,
then the natural restriction map

H 0(X,KX + C + A) → H 0(C,KC + A|C)

is a nonzero map.

Proof. By Lemma 2.6, we obtain the following commutative diagram:

H 0(X,KX + C + peA) −−→ H 0(C,KC + peA|C) −−→ H 1(X,KX + peA)⏐⏐�TreX,C(A)

⏐⏐�TreC(A|C)

H 0(X,KX + C + A) −−→ H 0(C,KC + A|C).

We see H 1(X,KX + peA) = 0 for e � 0 by the Serre vanishing theorem. Thus,
the assertion follows from Corollary 4.2. �
In characteristic zero, in the above situation, the restriction map is surjective by
the Kodaira vanishing theorem. However, in positive characteristic, the restriction
map is not surjective in general.

Example 4.4. There exists a smooth projective surface X, a smooth prime divisor
H on X, and an ample Z-divisor A such that:

(1) |KX + H + A| is basepoint free and
(2) the natural restriction map

H 0(X,KX + H + A) → H 0(H,KH + A|H )

is not surjective.

Construction. Let X be a smooth projective surface, and let A be an ample Z-
divisor on X such that

H 1(X,KX + A) �= 0.

We can find such a surface by [Raynaud]. Take a smooth hyperplane section H of
X such that |KX + H + A| is basepoint-free and

H 1(X,KX + H + A) = 0.

Consider the exact sequence

0 →OX(KX + A) → OX(KX + H + A) → OH (KH + A|H ) → 0.

Then, we obtain the following exact sequence:

H 0(X,KX + H + A) → H 0(H,KH + A|H ) → H 1(X,KX + A) → 0.

Since H 1(X,KX + A) �= 0, the restriction map is not surjective. �
We use the following corollary in Section 8.
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Corollary 4.5. Let X be a smooth projective surface. Let L be a Z-divisor on
X such that

L = C + M,

where C is a smooth prime divisor, and M is a nef and big Z-divisor such that
M|C is ample. If H 0(C,KC + M|C) �= 0, then the trace map

TreX(L) : H 0(X,ωX(peL)) → H 0(X,ωX(L))

is a nonzero map.

Proof. By Lemma 2.6 we obtain the following commutative diagram:

H 0(X,KX + peL) −−→ H 0(peC,KpeC + peM|C) −−→ H 1(X,KX + peM)⏐⏐�TreX(L)

⏐⏐��

H 0(X,KX + L) −−→ H 0(C,KC + M|C).

By [T1, Theorem 2.6] we have H 1(X,KX + peM) = 0 for e � 0. By Corol-
lary 4.2, � is a nonzero map because the composition

TreC(M|C) : H 0(C,KC + peM|C) → H 0(peC,KpeC + peM|peC)

�→ H 0(C,KC + M|C)

is nonzero. Therefore, the trace map TreX(L) also is a nonzero map. �

5. Surjectivity of the Trace Maps for Surfaces (κ = 1)

In this section, we show the surjectivity of the trace map

H 0(X,ωX(pe(A + m(KX + A)))) → H 0(X,ωX(A + m(KX + A)))

when X is a surface and κ(X,KX + A) = 1. For this, we establish the following
vanishing result.

Proposition 5.1. Let C be a smooth curve. Let Y := P1 × C, and let π : Y → C

be the projection. Let f : X → Y be the blowup at one point, and let

θ : X
f→ Y

π→ C.

If AX is a θ -ample Z-divisor on X, then

R1θ∗(B2
X(AX)) = 0.

Proof.

Step 1. In this step, we assume that C is rational and prove the assertion.
Since the assertion is local on C, we may assume that C � P1. For an arbitrary

ample Z-divisor AC on C, by the Leray spectral sequence we obtain the following
exact sequence:

0 → H 1(C, θ∗(B2
X(AX)) ⊗OC(AC))

→ H 1(X,B2
X(AX + θ∗AC))

→ H 0(C,R1θ∗(B2
X(AX)) ⊗OC(AC)) → 0.
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Let AC be an ample Z-divisor on C such that

(1) AX + θ∗AC is ample and
(2) R1θ∗(B2

X(AX)) ⊗OC(AC) is generated by global sections.

Then, it is sufficient to show

H 1(X,B2
X(AX + θ∗AC)) = 0.

Since X is a toric variety hence F -split, this follows from Proposition 3.6.

Step 2. In this step, we prove that the following assertions are equivalent:

(1) R1θ∗(B2
X(AX)) = 0;

(2) H 1(Xc,B
2
X(AX)|Xc) = 0 for every closed point c ∈ C, where Xc = θ−1(c).

By [Hartshorne, Theorem 12.11] there exists an isomorphism

R1θ∗(B2
X(AX)) ⊗ k(c) � H 1(Xc,B

2
X(AX)|Xc).

By Nakayama’s lemma, if

R1θ∗(B2
X(AX)) ⊗ k(c) = 0,

then R1θ∗(B2
X(AX))|U = 0 for some open neighborhood c ∈ U ⊂ C.

Step 3. In this step, we show that H 1(Xc,B
2
X(AX)|Xc) = 0 for the closed points

c ∈ C other than the one corresponding to the singular fiber. Fix such a closed
point c ∈ C. We can shrink C around c ∈ C. Thus, we may assume that X = Y =
P1 × C → C. We can find a Cartesian diagram

X′ := P1 × C′ γX←−−−− P1 × C = X⏐⏐�θ ′
⏐⏐�θ

C′ γC←−−−− C

such that C′ � A1 and γC and γX are finite étale morphisms. Note that γ ∗
XB2

X′ �
B2

X by Lemma 3.5. We can find a θ ′-ample Z-divisor AX′ on X′ such that
(γ ∗

X(OX′(AX′)))|Xc � OX(AX)|Xc . Therefore, we obtain

H 1(Xc,B
2
X(AX)|Xc) = H 1(Xc, γ

∗
XB2

X′(γ ∗
XAX′))

= H 1(X′
c′ ,B2

X′(AX′))

= 0.

The last equality follows from Step 1 and Step 2.

Step 4. In this step, we show that H 1(Xc,B
2
X(AX)|Xc) = 0 for the closed point

c ∈ C corresponding to the singular fiber.
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We can replace C by a neighborhood of c. We find a commutative diagram

X′ γX←−−−− X⏐⏐�f ′
⏐⏐�f

Y ′ γY←−−−− Y⏐⏐�π ′
⏐⏐�π

C′ γC←−−−− C

where C′ � A1, each square is a fiber product, and γC , γY , and γX are finite
étale morphisms. Let θ ′ := π ′ ◦ f ′ and c′ := γC(c). Note that γ ∗

XB2
X′ � B2

X by
Lemma 3.5. Then, γX|Xc : Xc → X′

c′ is an isomorphism.
We show that there exists a θ ′-ample Z-divisor AX′ on X′ such that

(γ ∗
X(OX′(AX′)))|Xc � OX(AX)|Xc . The fiber Xc � X′

c′ =: D is a reduced sim-
ple normal crossing divisor D1 ∪ D2 with Di � P1. We can assume that D1 is the
f ′-exceptional curve and D2 is the proper transform of a fiber of Y ′ → C′. We
consider the following exact sequence:

1 →O×
D → O×

D1
×O×

D2
→ O×

D1∩D2
→ 1.

Since the intersection D1 ∩ D2 is one point,

H 0(X,O×
D1

×O×
D2

) → H 0(X,O×
D1∩D2

)

is surjective. Thus, we obtain the following group isomorphism:

PicD
�−→ PicD1 × PicD2, L �→ (L|Y1 ,L|Y2).

Therefore, it suffices to show that, for given positive integers a1, a2 ∈ Z>0, there
exists an invertible sheaf AX′ on X′ such that AX′ |Di

� ODi
(ai) for each i = 1,2.

Consider a section S′ of Y ′ → C′ passing through the blown-up point and its
proper transform T ′ ⊂ X′. Then, OX′(T ′)|Y1 � OD1(1) and OX′(T ′)|Y2 � OD2 .
Since

OX′(nT ′ + mD1)|D1 � OD1(n − m), OX′(nT ′ + mD1)|D2 � OD1(m),

we are done.
Thus, we obtain

H 1(Xc,B
2
X(AX)) = H 1(Xc, γ

∗
XB2

X′(γ ∗
XAX′))

= H 1(X′
c′ ,B2

X′(AX′))

= 0.

The last equality follows from Step 1 and Step 2.

The assertion in the proposition follows from Step 2, Step 3, and Step 4. �

Let us prove the main theorem in this section.
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Theorem 5.2. Let X be a smooth projective surface, and let A be an ample Z-
divisor on X such that κ(X,KX + A) = 1 and KX + A is nef. Then there exists
m1 ∈ Z>0 such that the trace map

TreX(A + m(KX + A)) : H 0(X,KX + pe(A + m(KX + A)))

→ H 0(X,KX + (A + m(KX + A)))

is surjective for every integer m ≥ m1 and for every e ∈ Z>0.

Proof.

Step 1. We see that KX + A is semiample by [Fujita3, The second theorem in
Introduction].

Step 2. In this step, we prove that, for some n0 ∈ Z>0, the complete linear system

�|n0(KX+A)| = θ : X → C

gives a ruled surface structure, that is, θ is a projective morphism to a smooth
projective curve such that θ∗OX = OC and a general fiber is P1.

We can find n0 ∈ Z>0 such that �|n0(KX+A)| = θ : X → C is a projective mor-
phism to a smooth projective curve such that θ∗OX = OC . By [Bădescu, Corol-
lary 7.3] general fibers are integral. Since a general fiber F satisfies

0 = (KX + A) · F > (KX + F) · F,

we see F � P1. Thus, θ gives a ruled surface structure.

Step 3. In this step, we prove that it is sufficient to show that

R1θ∗(B2
X(A′)) = 0

for every ample Z-divisor A′.
By Remark 3.3 and Remark 3.4 we obtain the following exact sequence:

0 → B2
X → F∗ωX

Tr1
X→ ωX → 0.

By Lemma 2.5 it suffices to find m0 ∈ Z>0 such that

H 1(X,B2
X(pd(A + m(KX + A)))) = 0

for every d ≥ 0 and m ≥ m0. By the Frujita vanishing theorem we can find d0 ∈
Z>0 such that if d > d0, then

H 1(X,B2
X(pd(A + m(KX + A)))) = 0

for every m ≥ 0. Therefore, we fix an integer 0 ≤ d ≤ d0, and it is enough to find
nd ∈ Z>0, depending on d , such that

H 1(X,B2
X(pd(A + m(KX + A)))) = 0
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for every m ≥ nd . We can write KX + A = θ∗H where H is an ample Z-divisor
on C. By the Leray spectral sequence we obtain

0 → H 1(C, θ∗(B2
X(pdA)) ⊗OC

OC(pdmH)) = 0

→ H 1(X,B2
X(pd(A + m(KX + A))))

→ H 0(C,R1θ∗(B2
X(pdA)) ⊗OC

OC(pdmH)) → 0.

If m � 0, then the first term vanishes by the Serre vanishing theorem. Thus, it is
sufficient to show that R1θ∗(B2

X(A′)) = 0 for every ample Z-divisor A′.

Step 4. In this step, we prove the assertion in the theorem. By Step 3 it is suffi-
cient to show that

R1θ∗(B2
X(A′)) = 0

for every ample Z-divisor A′.
Since X → C is a ruled surface structure, after contracting (−1)-curves in

fibers, we obtain morphisms

θ : X
f→ Y

π→ C,

where f is a birational morphism to a smooth projective surface Y . Note that
every fiber of π is irreducible; otherwise, we can find a (−1)-curve in a reducible
fiber. By the adjunction formula every fiber of π is P1. Thus, π is a P1-bundle
structure (cf. [Bădescu, Corollary 11.11]). Since the problem is local on C, we
may assume that θ has only one singular fiber and that Y = P1 ×C. Let Fs be the
singular fiber. We see that

0 = (KX + A) · Fs = −2 + A · Fs.

Thus, Fs has at most two irreducible components. This implies that f is the
blowup at one point or an isomorphism. Then, the equation R1θ∗(B2

X(A′)) = 0
follows from Proposition 5.1. �

6. Surjectivity of the Trace Maps for Surfaces (κ = 2)

In this section, we show the surjectivity of the trace map

H 0(X,ωX(pe(A + m(KX + A)))) → H 0(X,ωX(A + m(KX + A)))

when X is a surface and κ(X,KX + A) = 2. Let us recall a lemma on global
generation.

Lemma 6.1. Let X be a smooth projective variety. Let A be an ample Z-divisor,
and let G be a coherent sheaf. Then, there exists n0 ∈ Z>0, depending only on A

and G, such that

G(n0A + N)

is generated by global sections for every nef Z-divisor N .
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Proof. The assertion immediately follows from Castelnuovo–Mumford regularity
[Lazarsfeld, Theorem 1.8.5] and the Fujita vanishing theorem ([Fujita1, Theorem
(1)], [Fujita2, Section 5]). �

To prove the surjectivity, we establish the following vanishing result.

Proposition 6.2. Let h : X → Z be a birational morphism between smooth pro-
jective surfaces. Let AX be an ample Z-divisor on X, and let AZ be an ample
Z-divisor on Z. Then there exists m0 ∈ Z>0 such that

H 1(X,B2
X(AX + h∗(m0AZ + NZ))) = 0

for every nef Z-divisor NZ on Z.

Proof. The birational morphism h is a composition of n point blowups. We prove
the assertion by induction on n.

Step 1. If n = 0, then the assertion follows from the Fujita vanishing theorem
([Fujita1, Theorem (1)], [Fujita2, Section 5]). Thus, we may assume that n > 0
and the assertion holds for n − 1.

Step 2. In this step, we prove that we may assume that h(Ex(h)) is one point.
Assume that the assertion holds when h(Ex(h)) is one point. The Leray spec-

tral sequence induces a short exact sequence

0 → H 1(Z,h∗(B2
X(AX + h∗(m0AZ + NZ)))) = 0

→ H 1(X,B2
X(AX + h∗(m0AZ + NZ)))

→ H 0(Z,R1h∗(B2
X(AX + h∗(m0AZ + NZ)))) → 0,

where the equation H 1(Z,h∗(B2
X(AX + h∗(m0AZ + NZ)))) = 0 follows from

the Fujita vanishing theorem ([Fujita1, Theorem (1)], [Fujita2, Section 5]). By
Lemma 6.1 the following assertions are equivalent:

• H 1(X,B2
X(AX + h∗(m0AZ + NZ))) = 0.

• R1h∗(B2
X(AX)) = 0.

Set h(Ex(h)) = {z0, z1, . . . , zm} and Z0 := Z \ {z1, . . . , zm}. We only show that
R1h∗(B2

X(AX))|Z0 = 0. Let X′ be the smooth projective surface obtained by
patching Z \ {z0} and X \ h−1({z1, . . . , zm}). We obtain a birational morphism
h′ : X′ → Z of smooth projective surfaces such that h′(Ex(h′)) is equal to {z0}
and h′|h′−1(Z0)

= h|h−1(Z0)
. Let A

(0)

X′ be the closure of AX|h−1(Z0)
. Since A

(0)

X′
and AX|h−1(Z) are the same around Ex(h′), we see that A

(0)

X′ is h′-ample. We fix

n0 � 0 such that AX′ := A
(0)

X′ + n0h
′∗AZ is ample. By our assumption, we obtain

H 1(X′,B2
X′(AX′ + h′∗(m0AZ + NZ))) = 0.

By the previous argument using the Leray spectral sequence, this is equivalent to

R1h′∗(B2
X(AX′)) = 0.
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This implies

0 = R1h′∗(B2
X(A

(0)

X′ ))|Z0 = R1h∗(B2
X(AX))|Z0 .

We are done.

From now on, we assume that h(Ex(h)) is one point.

Step 3. We consider the factorization

h : X
f→ Y

g→ Z,

where g is the blowup of Z at a point. Let EY be the g-exceptional curve. Note
that E2

Y = −1. We see

g∗AZ − 1

l
EY

is an ample Q-divisor for every large integer l � 0. Thus, by replacing AZ with a
multiple we may assume that

AY := g∗AZ − EY

is an ample Z-divisor. In particular, we obtain

h∗AZ = f ∗AY + f ∗EY .

By the induction hypothesis there exists m1 ∈ Z>0 such that

H 1(X,B2
X(AX + f ∗(m1AY + NY ))) = 0

for every nef Z-divisor NY on Y . We have

m1h
∗AZ = m1f

∗AY + m1f
∗EY .

Step 4. Let E1, . . . ,En ⊂ X be the h-exceptional curves. where E1 is the proper
transform of EY . In this step, we construct a sequence of Z-divisors

0 =: E(0) ≤ E(1) ≤ E(2) ≤ · · · ≤ E(R − 1) ≤ E(R) := f ∗EY

such that:

(a) For every 0 ≤ r ≤ R − 1, E(r + 1) − E(r) = Ej for some 1 ≤ j ≤ n;
(b) E(r) · Ei ≥ −1 for every 0 ≤ r ≤ R and for every 1 ≤ i ≤ n.

We consider a decomposition into one-point blowups:

f : X =: X(n) f (n)

→ ·· · f (3)

→ X(2) f (2)

→ X(1) := Y.

We may assume that, for every 2 ≤ j ≤ n, Ej ⊂ X is the proper transform of

the f (j)-exceptional curve. For 1 ≤ j ≤ i ≤ n, let E
(i)
j ⊂ X(i) be the image of Ej

(e.g., the f (i)-exceptional curve is E
(i)
i ⊂ X(i)). Let f (i+1)(Ex(f (i+1))) =: P (i) ∈

X(i) and denote by g(i) the induced map

g(i) : X(i) → Z.

Note that P (i) ∈ Ex(g(i)). Since Supp(Ex(g(i))) is a simple normal crossing, there
are two cases:
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(1) P (i) ∈ E
(i)
j for some j and P (i) /∈ E

(i)

j ′ for every j ′ �= j ;

(2) P (i) ∈ E
(i)
j ∩ E

(i)

j ′ for some j �= j ′ and P (i) /∈ E
(i)

j ′′ for every j ′′ �= j, j ′.
For 1 ≤ i ≤ n, we construct a finite sequence (Seq)i of prime divisors on X in-
ductively as follows. Every member of (Seq)i is equal to Ej for some j . Let

(Seq)1 := (E1).

Assume that we obtain (Seq)i . We construct (Seq)i+1 as follows. There are two
cases (1) and (2) as before. Assume (1), that is, Pi ∈ E

(i)
j and Pi /∈ E

(i)

j ′ for every
j ′ �= j . If

(Seq)i = (. . . ,Ej , . . . ,Ej ′ , . . . ),

then we define (Seq)i+1 by

(Seq)i+1 := (. . . ,Ei+1,Ej , . . . ,Ej ′ , . . . ).

In other words, we add Ei+1 only in front of Ej (for each appearance of Ej ).

Assume (2), that is, P (i) ∈ E
(i)
j ∩ E

(i)

j ′ for some j �= j ′ and Pi /∈ E
(i)

j ′′ for every
j ′′ �= j, j ′. If

(Seq)i = (. . . ,Ej , . . . ,Ej ′ , . . . ,Ej ′′ , . . . ),

then we define (Seq)i+1 by

(Seq)i+1 := (. . . ,Ei+1,Ej , . . . ,Ei+1,Ej ′, . . . ,Ej ′′, . . . ).

In other words, we add Ei+1 only in front of Ej and Ej ′ (for each appearance of
Ej or Ej ′ ). We obtain a finite sequence (Seq)i for 1 ≤ i ≤ n. Let

(Seq)n = (Ea(1),Ea(2),Ea(3), . . . ,Ea(R)),

where a(l) ∈ {1, . . . , n}. We define the finite sequence (SEQ) by

(SEQ) = (Ea(1),Ea(1) + Ea(2),Ea(1) + Ea(2) + Ea(3), . . . )

=: (E(1),E(2),E(3), . . . ,E(R)).

It suffices to show that E(r) · Ej ≥ −1 for every j and E(R) = f ∗EY . By our
construction we can check that E(R) = f ∗EY . We prove that E(r) · Ej ≥ −1 for
every j and r by induction on n.

We show that E(r) · En ≥ −1 for every 1 ≤ r ≤ R. We consider the behavior
of the sequence

E(1) · En,E(2) · En, . . . .

If E(r) · En > E(r + 1) · En, then Ea(r+1) = En. Thus, we consider the subset
K := {k1, . . . , kν} ⊂ {1, . . . ,R} with k1 < k2 < · · · < kν such that Ea(k1) = · · · =
Ea(kν) = En and that Ea(r ′) �= En for every r ′ ∈ {1, . . . ,R} \ K :

(Seq)n = (. . . ,Ea(k1) = En,Ea(k1+1), . . . ,Ea(k2) = En,

Ea(k2+1), . . . ,Ea(kν) = En,Ea(kν+1), . . . ).

By the construction we see En ∩ Ea(k+1) �= ∅ for every k ∈ K . Therefore, we
obtain

E(k1) · En ≥ −1,

E(k1 + 1) · En = (E(k1) + Ea(k1+1)) · En ≥ −1 + Ea(k1+1) · En ≥ 0,
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E(k2) · En ≥ −1,

E(k2 + 1) · En = (E(k2) + Ea(k2+1)) · En ≥ −1 + Ea(k2+1) · En ≥ 0,

· · · .

Thus, we see that E(r) · En ≥ −1 for every 1 ≤ r ≤ R.
We consider the corresponding sequences (Seq)

(n−1)
n−1 and (SEQ)(n−1) on

X(n−1), that is,

(Seq)(n−1)
n := (E

(n−1)
a(1) ,E

(n−1)
a(2) ,E

(n−1)
a(3) , . . . ,E

(n−1)
a(R) ),

(SEQ)(n−1) := (E
(n−1)
a(1) ,E

(n−1)
a(1) + E

(n−1)
a(2) ,E

(n−1)
a(1) + E

(n−1)
a(2) + E

(n−1)
a(3) , . . . )

=: (E(n−1)(1),E(n−1)(2),E(n−1)(3), . . . ,E(n−1)(R)),

where we set E
(n−1)
n := 0. By the induction hypothesis we obtain

E(n−1)(r) · E(n−1)
i ≥ −1

for every 1 ≤ r ≤ R and 1 ≤ i ≤ n. By our construction we see that

(f (n))∗(E(n−1)(r)) = E(r)

for every r ∈ {1, . . . ,R} \ K . Therefore, for r ∈ {1, . . . ,R} \ K and 1 ≤ i ≤ n, we
obtain

E(r) · Ei = (f (n))∗(E(n−1)(r)) · Ei = E(n−1)(r) · E(n−1)
i ≥ −1.

Thus, it suffices to show that

E(r) · Ei ≥ −1

for r ∈ K and 1 ≤ i ≤ n − 1. This follows from

E(r) ·Ei = (E(r − 1)+Ea(r)) ·Ei = (E(r − 1)+En) ·Ei ≥ E(r − 1) ·Ei ≥ −1.

We are done.

Step 5. In this step, we construct a sequence of Z-divisors

0 =: D(0) ≤ D(1) ≤ D(2) ≤ · · · ≤ D(S − 1) ≤ D(S) := m1f
∗EY

such that:

(a) For every 0 ≤ s ≤ S − 1, D(s + 1) − D(s) = Ej for some j ;
(b) D(s) + AX + m1f

∗AY is nef for every 0 ≤ s ≤ S.

We define the sequence {D(s)}Ss=0 by

E(0),

E(1),E(2), . . . ,E(R),

E(R) + E(1),E(R) + E(2), . . . ,2E(R),

2E(R) + E(1),2E(R) + E(2), . . . ,3E(R),

· · ·
(m1 − 1)E(R) + E(1), (m1l − 1)E(R) + E(2), . . . ,m1E(R).



250 Hiromu Tanaka

Then, the sequence {D(s)}Ss=0 satisfies (a). We now show (b). For every 0 ≤ s ≤ S,
we can write

D(s) + AX + m1f
∗AY = E(r) + tf ∗EY + AX + m1f

∗AY

for some 0 ≤ r ≤ R and some 0 ≤ t ≤ m1 − 1. To show that this divisor is nef, it
is sufficient to show that

(E(r) + tf ∗EY + AX + m1f
∗AY ) · Ej ≥ 0

for every 1 ≤ j ≤ n. By Step 4, for every 2 ≤ j ≤ n, we obtain

(E(r) + tf ∗EY + AX + m1f
∗AY ) · Ej = (E(r) + AX) · Ej ≥ 0.

On the other hand, when j = 1, we have

(E(r) + tf ∗EY + AX + m1f
∗AY ) · E1 ≥ (tf ∗EY + m1f

∗AY ) · E1

= (tEY + m1AY ) · EY

≥ (m1EY + m1AY ) · EY

= 0.

Step 6. For a Z-divisor D on X and for a curve E � P1 in X, by Lemma 2.6 we
obtain the following diagram:

0 −−→ H 0(X,ωX(pD)) −−→ H 0(X,ωX(E + pD)) −−→ H 0(E,ωE(pD)) −−→ H 1(X,ωX(pD))⏐⏐�α:=TrX(D)

⏐⏐�β:=TrX,E(D)

⏐⏐�γ :=TrE(D)

0 −−→ H 0(X,ωX(D)) −−→ H 0(X,ωX(E + D)) −−→ H 0(E,ωE(D)),

where the horizontal sequences are exact, and the vertical arrows are the trace
maps. Then the following assertions hold:

(1) γ is surjective.
(2) If H 1(X,ωX(pD)) = 0 and α is surjective, then β also is surjective.
(3) If β is surjective, then the trace map

TrX(E + D) : H 0(X,ωX(p(E + D))) → H 0(X,ωX(E + D))

also is surjective.

The assertion in (1) holds because E � P1 is F -split (Proposition 2.10). We de-
duce (2) from the snake lemma. The assertion in (3) follows from Remark 2.2.

Step 7. Let m2 ∈ Z>0 such that

H 1(X,ωX(m2h
∗AZ + NX)) = 0

for every nef Z-divisor NX on X. Note that, since h∗AZ is nef and big, we can
find such an integer m2 by [T1, Theorem 2.6]. Let m0 := m1 + m2 and fix a nef
Z-divisor NZ on Z.

We would like to apply the diagram in Step 6 for

D = D(s) + AX + m1f
∗AY + m2h

∗AZ + h∗NZ,

E = D(s + 1) − D(s),
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where 0 ≤ s ≤ S − 1. Note that by Step 5 this divisor D is nef. By Step 3, α =
TrX(D) in Step 6 is surjective for

D = D(0) + AX + m1f
∗AY + m2h

∗AZ + h∗NZ.

We have

H 1(X,ωX(p(D(s) + AX + m1f
∗AY + m2h

∗AZ + h∗NZ))) = 0

by the choice of m2. Therefore, by Step 5 and Step 6 we obtain the surjection

TrX(D) : H 0(X,ωX(pD)) → H 0(X,ωX(D))

for

D = D(S) + AX + m1f
∗AY + m2h

∗AZ + h∗NZ

= m1f
∗EY + AX + m1f

∗AY + m2h
∗AZ + h∗NZ

= AX + m1h
∗AZ + m2h

∗AZ + h∗NZ

= AX + (m1 + m2)h
∗AZ + h∗NZ

= AX + h∗(m0AZ + NZ).

Thus, the assertion in the proposition follows from

H 1(X,ωX(p(AX + h∗(m0AZ + NZ)))) = 0. �

Proposition 6.3. Let h : X → Z be a birational morphism between smooth
projective surfaces. Let AX be an ample Z-divisor on X, and let AZ be an
ample Z-divisor on Z. Then, there exists m1 ∈ Z>0 such that the trace map
TreX(AX + h∗(m1AZ + NZ))

H 0(X,ωX(pe(AX +h∗(m1AZ +NZ)))) → H 0(X,ωX(AX +h∗(m1AZ +NZ)))

is surjective for every e ∈ Z>0 and for every nef Z-divisor NZ on Z.

Proof. For m ∈ Z>0 and a nef Z-divisor NZ on Z, set

D(m,NZ) := AX + h∗(mAZ + NZ).

By Lemma 2.5 we obtain

Trd+1
X (D(m,NZ)) = TrdX(D(m,NZ)) ◦ Fd∗ (TrX(pdD(m,NZ))).

Thus, it suffices to find m1 ∈ Z>0 such that TrX(pdD(m1,NZ)) is surjective for
every d ∈ Z≥0 and nef Z-divisor NZ on Z. By the Fujita vanishing theorem we
can find d0 ∈ Z>0 such that TrX(pdD(m1,NZ)) is surjective for every d > d0,
m1 ∈ Z>0 and nef Z-divisor NZ on Z. By Proposition 6.2, for every 0 ≤ i ≤ d0,
we can find ni ∈ Z>0 such that TrX(piD(m,NZ)) is surjective for every m ≥
ni and nef Z-divisor NZ on Z. Therefore, for m1 := max1≤i≤d0{ni}, the trace
map TrX(pdD(m1,NZ)) is surjective for every d ∈ Z≥0 and nef Z-divisor NZ

on Z. �

Let us prove the main theorem in this section.
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Theorem 6.4. Let X be a smooth projective surface. Let A be an ample Z-divisor
on X such that KX + A is nef and big. Then there exists m1 ∈ Z>0 such that the
trace map TreX(A + m(KX + A))

H 0(X,ωX(pe(A + m(KX + A)))) → H 0(X,ωX(A + m(KX + A)))

is surjective for every m ≥ m1 and for every e ∈ Z>0.

Proof. By Proposition 6.3 it is sufficient to prove that there exists a birational
morphism

h : X → Z

to a smooth projective surface Z such that KX +A is the pull-back of an ample Z-
divisor on Z. If KX + A is ample, then there is nothing to show. We may assume
that KX + A is not ample. Then, by the Nakai–Moishezon criterion we can find a
curve E such that (KX + A) · E = 0. This implies KX · E < 0. Moreover, since
KX + A is big, the equation (KX + A) · E = 0 implies E2 < 0. Therefore, E is a
(−1)-curve. Let g : X → Y be the contraction of E. Set AY := g∗A. Then, we see
that AY is ample and KX + A = g∗(KY + AY ). We can apply the same argument
to Y and AY , that is, KY + AY is ample, or we can find a (−1)-curve EY on Y

with (KY + AY ) · EY = 0. Since ρ(Y ) = ρ(X) − 1, this procedure terminates.
Thus, we obtain a birational morphism h : X → Z to a smooth projective surface
such that KX + A = h∗(KZ + h∗A), where KZ + h∗A is ample. �

7. Main Theorem for Threefolds

In this section, we prove the main theorem for threefolds. Let us summarize the
results on the trace map obtained in the previous sections.

Theorem 7.1. Let X be a smooth projective surface. Let A be an ample Z-divisor
on X such that KX +A is nef and κ(X,KX +A) �= 0. Then there exists m1 ∈ Z>0
such that the trace map

TreX(A + m(KX + A)) : H 0(X,KX + pe(A + m(KX + A)))

→ H 0(X,KX + (A + m(KX + A)))

is surjective for every m ≥ m1 and for every e ∈ Z>0.

Proof. If κ(X,KX + A) = −∞, then there is nothing to show. Thus, we may
assume that κ(X,KX + A) ≥ 1. Then, the assertion follows from Theorem 5.2
and Theorem 6.4 �

Remark 7.2. In the previous situation, one can show κ(X,KX +A) �= −∞ using
the abundance theorem obtained in [Fujita3, Theorem 1.4]. Indeed, by Bertini’s
theorem we can find an effective Q-divisor D such that �D� = 0 and A ∼Q D.

Let us prove the main theorem.

Theorem 7.3. Let X be a smooth projective threefold. Let S be a smooth prime
divisor on X, and let A be an ample Z-divisor on X such that
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(1) KX + S + A is nef and
(2) κ(S,KS + A|S) �= 0.

Then there exists m0 ∈ Z>0 such that, for every integer m ≥ m0, the natural re-
striction map

H 0(X,m(KX + S + A)) → H 0(S,m(KS + A|S))

is surjective.

Proof. Let L := KX + S + A. By Lemma 2.6 we obtain the following commuta-
tive diagram:

H 0(X,ωX(S + peA + pemL)) −−→ H 0(S,ωS(peA|S + mpeL|S)) −−→ H 1(X,ωX(peA + pemL))⏐⏐�TreX,S (A+mL)

⏐⏐�TreS (A|S+mL|S )

H 0(X,ωX(S + A + mL)) −−→ H 0(S,ωS(A|S + mL|S)).

By (2) and Theorem 7.1 we can find m0 ∈ Z>0 such that the trace map TreS(A|S +
mL|S)

H 0(S,KS + peA + pemL) → H 0(S,KS + A|S + mL|S)

is surjective for every m ≥ m0 and e ∈ Z>0. Fix an integer m ≥ m0. By the Serre
vanishing theorem we have

H 1(X,ωX(peA + pemL)) = 0

for e � 0. Therefore, the natural restriction map

H 0(X, (m + 1)(KX + S + A))

= H 0(X,ωX(S + A + mL))

→ H 0(S,ωS(A|S + mL|S))

= H 0(S, (m + 1)(KS + A|S))

is surjective. �

8. Calculation for the Case κ = 0

In this section, we consider whether Theorem 7.1 holds for the case κ(X,KX +
A) = 0. Let X be a smooth projective surface, and let A be an ample Z-divisor
on X. Assume that KX + A is nef and κ(X,KX + A) = 0. By the abundance
theorem [Fujita3, The second theorem in Introduction] we see that KX +A ∼Q 0.
Then, −KX is ample. In particular, X is a rational surface. In this case, Pic(X)

has no torsion; hence, KX + A ∼ 0. We consider the following question.

Question 8.1. Let X be a smooth projective surface such that −KX is ample. Is
the trace map

TreX(−KX) : H 0(X,ωX(−peKX)) → H 0(X,ωX(−KX))

surjective?

If K2
X ≥ 4, then we obtain an affirmative answer.
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Proposition 8.2. Let X be a smooth projective surface such that −KX is ample.
If K2

X ≥ 4, then the trace map

TreX(−KX) : H 0(X,ωX(−peKX)) → H 0(X,ωX(−KX))

is surjective for every e ∈ Z>0.

Proof. Since h0(X,ωX(−KX)) = 1, it is sufficient to show that the trace map

TreX(−KX) : H 0(X,ωX(−peKX)) → H 0(X,ωX(−KX))

is a nonzero map. Since K2
X ≥ 4, X is obtained by blowing up P2 at ≤ 5 points.

Therefore, we can find a smooth conic C0 passing through these points. Let L0
be a line that does not pass through these points. Let C and L be the proper trans-
forms of C0 and L0, respectively. We see that L|C is ample, H 0(C,ωC(L|C)) �= 0,
and L is nef and big. Since C + L ∈ |−KX|, we can apply Corollary 4.5. �
If X is F -split, then the trace map TreX(−KX) in Question 8.1 is surjective. Note
that, by [Hara, Example 5.5] and [Smith, Proposition 4.10], if K2

X ≥ 4, then X is
F -split. However, since [Hara] contains no explicit proof, we decided to include
the previous proof. Moreover, [Hara, Example 5.5] and [Smith, Proposition 4.10]
show that if K2

X = 3 and X is not F -split, then X is a Fermat-type cubic surface in
characteristic two. Indeed, this example gives a negative answer to Question 8.1
as follows.

Theorem 8.3. Let chark = p = 2. Consider P3 and let [x : y : z : w] be the
homogeneous coordinates. Let

X := {[x : y : z : w] ∈ P3|x3 + y3 + z3 + w3 = 0}.
Then the trace map

TreX(−KX) : H 0(X,ωX(−2eKX)) → H 0(X,ωX(−KX))

is the zero map for every e ∈ Z>0.

Proof. By Lemma 2.5, we may assume that e = 1. By Lemma 2.6 we obtain the
following commutative diagram:

0 −−−−→ F∗ωP3 −−−−→ F∗(ωP3(X)) −−−−→ F∗ωX −−−−→ 0⏐⏐� ⏐⏐� ⏐⏐�
0 −−−−→ ωP3 −−−−→ ωP3(X) −−−−→ ωX −−−−→ 0.

Tensoring OP3(−KP3 − X) and taking H 0, we obtain

H 0(P3,ωP3(X − 2KP3 − 2X))
β−−−−→ H 0(X,ωX(−2KX))⏐⏐�Tr

P3,X
(−K

P3−X)

⏐⏐�TrX(−KX)

H 0(P3,ωP3(X − KP3 − X))
α−−−−→ H 0(X,ωX(−KX)).

Since H 1(P3,L) = 0 for an arbitrary invertible sheaf L, β is surjective. Therefore,
it is sufficient to prove that the trace map TrP3,X(−KP3 − X) is the zero map. By
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Lemma 2.4 we obtain

TrP3,X(−KP3 − X) = TrP3,X(H),

where H is defined by

H := {[x : y : z : w] ∈ P3|w = 0}.
Thus, we show that

Tr := TrP3,X(H) : H 0(P3,ωP3(X + 2H)) → H 0(P3,ωP3(X + H))

is the zero map. Let us take a k-linear basis of H 0(P3,ωP3(X + 2H)). Note that

h0(P3,ωP3(X + 2H)) = 4.

Let Speck[X,Y,Z] ⊂ P3 be the affine open subset defined by w �= 0. Consider
the following four 3-forms:

η1 := 1

X3 + Y 3 + Z3 + 1
dX ∧ dY ∧ dZ,

ηX := X

X3 + Y 3 + Z3 + 1
dX ∧ dY ∧ dZ,

ηY := Y

X3 + Y 3 + Z3 + 1
dX ∧ dY ∧ dZ,

ηZ := Z

X3 + Y 3 + Z3 + 1
dX ∧ dY ∧ dZ.

These are elements of ωk(X,Y,Z) = (ωP3)ξ where ξ is the generic point of
P3. By a direct calculation, these four elements are linearly independent, and
η1, ηX,ηY , ηZ ∈ H 0(P3,ωP3(X + 2H)). In particular, these four elements form a
k-linear basis of H 0(P3,ωP3(X + 2H)). The trace map is a p−1-linear map, that
is, for a, b, c, d ∈ k,

Tr(aη1 + bηX + cηY + dηZ)

= a1/p Tr(η1) + b1/p Tr(ηX) + c1/p Tr(ηY ) + d1/p Tr(ηZ).

Thus, it is sufficient to show

Tr(η1) = Tr(ηX) = Tr(ηY ) = Tr(ηZ) = 0.

Let us only prove Tr(ηX) = 0. This follows from

(Tr(ηX))|Spec k[X,Y,Z]

= Tr

(
X

X3 + Y 3 + Z3 + 1
dX ∧ dY ∧ dZ

)

= Tr

(
X(X3 + Y 3 + Z3 + 1)

(X3 + Y 3 + Z3 + 1)2
dX ∧ dY ∧ dZ

)

= 1

X3 + Y 3 + Z3 + 1
Tr((X4 + XY 3 + XZ3 + X)dX ∧ dY ∧ dZ)

= 0.

The last equality follows from Remark 2.3. �
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We do not know whether the conclusion of Theorem 7.3 holds when κ(S,KS +
A|S) = 0. However, the following example shows that when this is the case, we
cannot argue as in the proof of the theorem.

Example 8.4. Let chark = p = 2. Then, there exist smooth projective threefold
X over k, a smooth prime divisor S0 on X, and an ample Z-divisor A on X that
satisfy the following properties.

(1) |KX + S0 + A| is basepoint free.
(2) The natural restriction map

H 0(X,m(KX + S0 + A)) → H 0(S0,m(KS0 + A|S0))

is surjective for every m ∈ Z>0.
(3) The trace map TreS0

(A|S0 + m(KS0 + A|S0))

H 0(S0,ωS0(2
e(A|S0 +m(KS0 +A|S0)))) → H 0(S0,ωS0(A|S0 +m(KS0 +A|S0)))

is the zero map for every m ∈ Z>0 and for every e ∈ Z>0.

Proof. Let S be the surface in Theorem 8.3, and let AS := −KS . Take an arbi-
trary smooth projective curve C and fix an arbitrary ample Z-divisor AC on C.
Let X := S × C, and let πS and πC be the projections onto the first and second
components, respectively. Fix a point c0 ∈ C and let S0 := S × {c0}. Let

A := π∗
SAS + π∗

CAC.

Note that A|S0 = −KS0 . Thus, (3) follows from Theorem 8.3. The assertion in (1)
follows from

KX + S0 + A = π∗
S (KS + AS) + π∗

C(KC + c0 + AC)

= π∗
C(KC + c0 + AC).

Therefore, in order to conclude the proof, it is sufficient to show (2). This follows
from

H 1(X,KX + A + (m − 1)(KX + S0 + A))

= H 1(X,π∗
C(KC + AC + (m − 1)(KC + c0 + AC)))

� H 1(S,OS) ⊗k H 0(C,KC + AC + (m − 1)(KC + c0 + AC))

⊕ H 0(S,OS) ⊗k H 1(C,KC + AC + (m − 1)(KC + c0 + AC))

= 0.

The last equality holds since H 1(S,OS) = 0 and

degC(AC + (m − 1)(KC + c0 + AC)) > 0. �

Appendix: Extension Theorem for Surfaces

For the surface case, we can freely use the minimal model theory (cf. [Fujita3;
KK; T2]). By using results obtained in [Fujita3; T2], and [T3] we can establish
an analogue of [HM, Theorem 5.4.21] as follows.
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Theorem A.1 (extension theorem). Let X be a smooth projective surface, and
let C be a smooth prime divisor on X. Let � := C + B , where B is an effective
Q-divisor that satisfies the following properties:

(1) C �⊂ SuppB , �B� = 0, and (X,�) is plt,
(2) B is a big Q-divisor, and
(3) no prime component of � is contained in the stable base locus of KX + �.

Then, there exists an integer m0 > 0 such that, for every integer m > 0, the re-
striction map

H 0(X,mm0(KX + �)) → H 0(C,mm0(KX + �)|C)

is surjective.

Proof.

Step 1. In this step, we prove that if E is a curve in X such that E2 < 0 and
(KX + �) · E < 0, then the following three assertions hold:

(a) KX · E = E2 = −1,
(b) E is not a prime component of �, and
(c) E · C = 0.

Since E2 < 0, we obtain (KX +E) ·E ≤ (KX +�) ·E < 0. Then, there exists
a birational morphism f : X → Y to a normal Q-factorial surface Y such that
Ex(f ) = E (cf. [T2, Theorem 6.2]). Let �Y := f∗� and define d ∈ Q by

KX + � = f ∗(KY + �Y ) + dE.

The inequalities (KX + �) · E < 0 and E2 < 0 imply d > 0. We can find an
integer l > 0 such that l(KY + �Y ) is Cartier. Then, E is a fixed component of

l(KX + �) = f ∗(l(KY + �Y )) + dlE.

We deduce that assumption (3) implies (b). This gives E · � ≥ 0. Thus, assertion
(a) follows from

KX · E ≤ (KX + �) · E < 0.

Let us show (c). If E · C > 0, then E · C ≥ 1. This implies the following contra-
diction:

0 > (KX + �) · E = KX · E + C · E + B · E ≥ −1 + 1 + 0 = 0.

Step 2. In this step, we prove that we may assume that KX + � is nef.
Assume that KX + � is not nef. Then, there exists a curve E such that (KX +

�) · E < 0. By (3) there exists an integer l > 0 such that |l(KX + �)| �= ∅. This
implies E2 < 0. We see that E is a (−1)-curve by Step 1. Let f : X → Y be the
contraction of E. Let

�Y := f∗�, CY := f∗C, BY := f∗B.
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We can check that Y and these divisors also satisfy conditions (1), (2), and (3).
Let m1 > 0 be an integer such that m1� is a Z-divisor. Then we have

m1(KX + �) = f ∗(m1(KY + �Y )) + eE

for some e ∈ Z>0. Let n be an arbitrary positive integer. Since f∗OX = OY , we
have

f∗(OX(nm1(KX + �))) � f∗(OX(nm1f
∗(KY + �Y ))) � OY (nm1(KY + �Y )).

Since C ∩ E = ∅ by Step 1, we have

f∗(OC(nm1(KX +�))) � f∗(OC(nm1f
∗(KY +�Y ))) � OCY

(nm1(KY +�Y )).

We conclude that we have the following commutative diagram:

H 0(X,nm1(KX + �)) −−−−→ H 0(C,nm1(KX + �)|C)∥∥∥ ∥∥∥
H 0(Y,nm1(KY + �Y )) −−−−→ H 0(CY ,nm1(KY + �Y )|CY

),

where the horizontal arrows are the natural restriction maps. Thus, we can reduce
the problem on X to the problem on Y . After repeating this argument finitely
many times, we reduce to the case where KX + � is nef.

Step 3. By the abundance theorem [Fujita3, The second theorem in Introduction],
KX + � is semiample. Let

f := φ|m2(KX+�)| : X → R

for some m2 ∈ Z>0 such that f∗OX = OR . In this step, we prove that f∗OC =
Of (C).

Assume that f∗OC �= Of (C). We run the (KX + {�})-MMP, where {�} de-
notes the fractional part of �. By [T3, Proposition 2.8] there exist morphisms

X
g→ V → R,

where V is a smooth projective curve such that a general fiber G of g satisfies
G � P1 and ��� ·G = 2. Note that B = {�} and C = ���. Since G is a fiber and
B is big, we deduce G · B > 0. Thus, we obtain the following contradiction:

0 = (KX + �) · G = (KX + B) · G + 2 > (KX + G) · G + 2 = 0.

Step 4. In this step, we prove the assertion in the theorem. Let

f := φ|m2(KX+�)| : X → R

be such that f∗OX = OR , and let f (C) =: D. By Step 3 we have f∗OC = OD .
Let H be an ample Cartier divisor on R such that m2(KX + �) = f ∗H . By the
Serre vanishing theorem we can find m3 ∈ Z>0 such that

H 0(R,mm3H) → H 0(D,mm3H)
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is surjective for every m ∈ Z>0. Since f∗OX = OR and f∗OC = OD , we have the
following commutative diagram:

H 0(X,mm2m3(KX + �)) −−−−→ H 0(C,mm2m3(KX + �)|C)∥∥∥ ∥∥∥
H 0(R,mm3H) −−−−→ H 0(D,mm3H |D).

This implies the assertion in the theorem. �
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