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Quasi-conformal Maps on Model Filiform Groups

Xiangdong Xie

Abstract. We describe all quasi-conformal maps on the higher (real
and complex) model Filiform groups equipped with the Carnot metric,
including nonsmooth ones. These maps have very special forms. In
particular, they are all bi-Lipschitz and preserve multiple foliations.
The results in this paper have implications to the large-scale geometry
of nilpotent Lie groups and negatively curved solvable Lie groups.

1. Introduction

In this paper we study quasi-conformal maps on the higher real and complex
model Filiform groups equipped with the Carnot metric. We identify all such
maps. They are all bi-Lipschitz and preserve multiple foliations. We do not im-
pose any regularity condition on the quasi-conformal maps. However, the group
structure forces rigidity and regularity. In particular, in the case of higher complex
model Filiform groups, up to taking complex conjugation, all quasi-conformal
maps are biholomorphic and in fact affine.

Let K be a field. We only consider the case where K is R or C. The n-step
(n ≥ 2) model Filiform algebra fnK over K is an (n + 1)-dimensional Lie algebra
over K . It has a basis {e1, e2, . . . , en+1}, and the only nontrivial bracket relations
are [e1, ej ] = ej+1 for 2 ≤ j ≤ n. The Lie algebra fnK admits a direct sum decom-
position of vector subspaces fnK = V1 ⊕ · · ·⊕ VN , where V1 is the linear subspace
spanned by e1, e2, and Vj (2 ≤ j ≤ n) is the linear subspace spanned by ej+1. It is
easy to check that [V1,Vj ] = Vj+1 for 1 ≤ j ≤ n, where Vn+1 = {0}. Hence, fnK is
a stratified Lie algebra. For K = R or C, the connected and simply connected Lie
group with Lie algebra fnK will be denoted by Fn

K and is called the n-step model
Filiform group over K .

The two-dimensional subspace V1 of fn
R

determines a left-invariant distribution
(so called horizontal distribution) on Fn

R
. On V1, we consider the inner product

with e1, e2 as an orthonormal basis. This norm on V1 then induces a Carnot metric
dc on Fn

R
. Similarly, the first layer V1 of fn

C
is a four-dimensional real vector

subspace spanned by e1, ie1, e2, ie2 (i = √−1), and it determines a left-invariant
distribution on Fn

C
. On V1 of fn

C
, we consider the inner product with e1, ie1, e2,

ie2 as an orthonormal basis. This norm on V1 then induces a Carnot metric dc on
Fn
C

.
Recall that, for a connected and simply connected nilpotent Lie group G with

Lie algebra g, the exponential map exp : g → G is a diffeomorphism. We shall
identify g and G via the exponential map and denote the group operation by ∗.
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Notice that every element x ∈ fn
R

can be uniquely written as x = x1e1 ∗ (x2e2 +
· · · + xn+1en+1), where xi ∈ R, 1 ≤ i ≤ n + 1.

Fix n ≥ 2. Let h : R → R be a Lipschitz function. Set h2 = h and define
hj : R →R, 3 ≤ j ≤ n + 1, inductively as follows:

hj (x) = −
∫ x

0
hj−1(s) ds.

Define Fh : Fn
R

→ Fn
R

by

Fh

(
x1e1 ∗

n+1∑
j=2

xj ej

)
= x1e1 ∗

n+1∑
j=2

(xj + hj (x1))ej .

Theorem 1.1. Let n ≥ 3. A homeomorphism F : (F n
R
, dc) → (F n

R
, dc) is quasi-

conformal if and only if it is a finite composition of left translations, graded iso-
morphisms, and maps of the form Fh, where h : R →R is a Lipschitz function.

We remark that Ben Warhurst [W] previously proved a similar statement under the
assumption that the map F is smooth. We do not impose any regularity assump-
tions on the quasi-conformal maps. Theorem 1.1 also provides lots of examples
of nonsmooth quasi-conformal maps on Fn

R
.

The quasi-conformal maps on the complex Filiform groups are even more
rigid.

Theorem 1.2. Let n ≥ 3. A homeomorphism F : (F n
C
, dc) → (F n

C
, dc) is a quasi-

conformal map if and only if it is a finite composition of left translations and
graded isomorphisms.

Model Filiform groups are an important class of the so-called nonrigid Carnot
groups [W; O; OW]. Recall that a Carnot group is rigid if the space of smooth con-
tact maps is finite-dimensional and called nonrigid otherwise. Our results show
that, on these nonrigid Carnot groups, quasi-conformal maps are rigid in the sense
that they are bi-Lipschitz and have very special forms.

When n = 2, the group F 2
R

is simply the first Heisenberg group. It is well
known that quasi-conformal maps on the Heisenberg groups are very flexible.
For instance, there exist quasi-conformal maps between Heisenberg groups that
change the Hausdorff dimension of certain subsets; see [B]. There also exist bi-
Lipschitz maps of the Heisenberg groups that map vertical lines to nonvertical
curves [X1].

The group F 2
C

is the first complex Heisenberg group. Recall that the nth com-
plex Heisenberg algebra hn

C
is a (2n + 1)-dimensional complex Lie algebra and

has a complex vector space basis Xi,Yi,Z (1 ≤ i ≤ n) with the only nontrivial
bracket relations [Xi,Yi] = Z, 1 ≤ i ≤ n. The Lie algebra hn

C
is a two-step Carnot

algebra. The first layer V1 of hn
C

is spanned by the Xi,Yi , 1 ≤ i ≤ n, and has
complex dimension 2n. The second layer V2 is spanned by Z and has complex
dimension 1. The nth complex Heisenberg group Hn

C
is the connected and simply

connected nilpotent Lie group with Lie algebra hn
C

. We always equip Hn
C

with a
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Carnot metric associated with V1. We identify both Hn
C

and its Lie algebra hn
C

with C2n+1. So V1 = C2n × {0} and V2 = {0} ×C.
It seems that complex Heisenberg groups are also very rigid with respect to

quasi-conformal maps. In fact, using the result of Reimann and Ricci [RR], we
can show that if a quasi-conformal map F : Hn

C
→ Hn

C
is also a C2 diffeomor-

phism, then it is complex affine after possibly taking complex conjugation; see
Proposition 4.2.

Conjecture 1.3. A homeomorphism F : Hn
C

→ Hn
C

of the nth complex Heisen-
berg group is a quasi-conformal map if and only if it is a finite composition of left
translations and graded isomorphisms.

For general Carnot groups, we have the following.

Conjecture 1.4. Let G be a Carnot group equipped with a Carnot metric. If G

is not an Euclidean group or an Heisenberg group, then every quasi-conformal
map F : G → G is bi-Lipschitz.

The results in this paper have implications for the large-scale geometry of nilpo-
tent groups and negatively curved homogeneous manifolds. Each Carnot group
arises as (one point complement of) the ideal boundary of some negatively curved
homogeneous manifold [H]. Our results imply that each quasi-isometry of the
negatively curved homogeneous manifold associated to the higher model Filiform
group is a rough isometry, that is, it must preserve the distance up to an additive
constant. Furthermore, each quasi-isometry between finitely generated nilpotent
groups descends to a bi-Lipschitz map between the asymptotic cones which are
Carnot groups. Our results say that these bi-Lipschitz maps preserve multiple fo-
liations. So they provide information about the structure of the quasi-isometries,
at least after passing to the asymptotic cones.

The ideas in this paper can be used to show that quasi-conformal maps on
many Carnot groups are bi-Lipschitz; see [X2; X4].

In Section 2, we recall the basics about Carnot groups and the definition of
model Filiform groups. In Section 3, we study quasi-conformal maps on the real
model Filiform groups and prove Theorem 1.1. In Section 4, we consider complex
Heisenberg groups; in particular, we prove a special case of Conjecture 1.3, which
will be used later in Section 5. In Section 5, we prove a rigidity result about quasi-
conformal maps on the higher complex model Filiform groups (Theorem 1.2).

2. Preliminaries

In this section, we collect definitions and results that will be needed later. We
first recall the basic definitions related to Carnot groups in Section 2.1. Then we
review the definition of model Filiform groups (Section 2.2), the BCH formula
(Section 2.3), the definitions of quasi-similarity and quasi-symmetric maps (Sec-
tion 2.4), and the Pansu differentiability theorem (Section 2.5).
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2.1. The Basics

A Carnot Lie algebra is a finite-dimensional Lie algebra g together with a direct
sum decomposition g = V1 ⊕ V2 ⊕ · · · ⊕ Vr of nontrivial vector subspaces such
that [V1,Vi] = Vi+1 for all 1 ≤ i ≤ r , where we set Vr+1 = {0}. The integer r is
called the degree of nilpotency of g. Every Carnot algebra g = V1 ⊕V2 ⊕· · ·⊕Vr

admits a one-parameter family of automorphisms λt : g → g, t ∈ (0,∞), where
λt (x) = t ix for x ∈ Vi . Let g = V1 ⊕ V2 ⊕ · · · ⊕ Vr and g′ = V ′

1 ⊕ V ′
2 ⊕ · · · ⊕ V ′

s

be two Carnot algebras. A Lie algebra homomorphism φ : g → g′ is graded if
φ commutes with λt for all t > 0, that is, if φ ◦ λt = λt ◦ φ. We observe that
φ(Vi) ⊂ V ′

i for all 1 ≤ i ≤ r .
A connected and simply connected nilpotent Lie group is a Carnot group if

its Lie algebra is a Carnot algebra. Let G be a Carnot group with Lie algebra
g = V1 ⊕· · ·⊕Vr . The subspace V1 defines a left-invariant distribution HG ⊂ T G

on G. We fix a left-invariant inner product on HG. An absolutely continuous
curve γ in G whose velocity vector γ ′(t) is contained in Hγ(t)G for a.e. t is called
a horizontal curve. By Chow’s theorem ([BR, Theorem 2.4]), any two points of G

can be connected by horizontal curves. For p,q ∈ G, the Carnot metric dc(p, q)

between them is defined as the infimum of length of horizontal curves that join p

and q .
Since the inner product on HG is left-invariant, the Carnot metric on G is also

left-invariant. Different choices of inner product on HG result in Carnot metrics
that are bi-Lipchitz equivalent. The Hausdorff dimension of G with respect to a
Carnot metric is given by

∑r
i=1 i · dim(Vi).

Recall that, for a connected and simply connected nilpotent Lie group G with
Lie algebra g, the exponential map exp : g → G is a diffeomorphism. Under this
identification, the Lebesgue measure on g is a Haar measure on G. Furthermore,
the exponential map induces a one-to-one correspondence between Lie subalge-
bras of g and connected Lie subgroups of G.

It is often more convenient to work with homogeneous distances defined using
norms than with Carnot metrics. Let g = V1 ⊕ V2 ⊕ · · · ⊕ Vr be a Carnot algebra.
Write x ∈ g as x = x1 +· · ·+xr with xi ∈ Vi . Fix a norm | · | on each layer. Define
the norm ‖ · ‖ on g by

‖x‖ =
r∑

i=1

|xi |1/i .

Now define a homogeneous distance on G = g by d(g,h) = ‖(−g) ∗ h‖. An im-
portant fact is that d and dc are bi-Lipschitz equivalent. That is, there is a constant
C ≥ 1 such that d(p,q)/C ≤ dc(p, q) ≤ C · d(p,q) for all p,q ∈ G. It is often
possible to calculate or estimate d by using the BCH formula (see Section 2.3).
Since we are only concerned with quasi-conformal maps and bi-Lipschitz maps,
it does not matter whether we use d or dc .

Let G be a Carnot group with Lie algebra g = V1 ⊕ · · · ⊕ Vr . Since λt : g → g

(t > 0) is a Lie algebra automorphism and G is simply connected, there is a
unique Lie group automorphism �t : G → G whose differential at the iden-
tity is λt . For each t > 0, �t is a similarity with respect to the Carnot metric:
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d(�t(p),�t (q)) = t d(p, q) for any two points p,q ∈ G. A Lie group homomor-
phism f : G → G′ between two Carnot groups is a graded homomorphism if it
commutes with �t for all t > 0, that is, if f ◦�t = �t ◦f . Notice that a Lie group
homomorphism f : G → G′ between two Carnot groups is graded if and only if
the corresponding Lie algebra homomorphism is graded.

2.2. The Model Filiform Groups

Let K be a field. We only consider the case where K is R or C. The n-step
(n ≥ 2) model Filiform algebra fnK over K is an (n + 1)-dimensional Lie algebra
over K . It has a basis {e1, e2, . . . , en+1}, and the only nontrivial bracket relations
are [e1, ej ] = ej+1 for 2 ≤ j ≤ n. When n = 2, f2K is simply the Heisenberg al-
gebra over K . When K = C, fn

C
can also be viewed as a real Lie algebra. Since

the brackets in fn
C

are complex linear, fn
C

(when viewed as a real Lie algebra) has
the following additional nontrivial bracket relations: [ie1, ej ] = [e1, iej ] = iej+1,
[ie1, iej ] = −ej+1 for 2 ≤ j ≤ n.

For K = R or C, the n-step (n ≥ 2) model Filiform group Fn
K over K is the

connected and simply connected Lie group whose Lie algebra is fnK . For Fn
R

, we
use the Carnot metric corresponding to the inner product on V1 with e1 and e2
as an orthonormal basis. The homogeneous distance on Fn

R
is determined by the

following norm:
∥∥∥∥

n+1∑
i=1

xiei

∥∥∥∥ = (x2
1 + x2

2)1/2 +
n+1∑
i=3

|xi |1/(i−1).

We make the obvious modifications in the case of Fn
C

.

2.3. The Baker–Campbell–Hausdorff Formula

Let G be a connected and simply connected nilpotent Lie group with Lie alge-
bra g. The exponential map exp : g → G is a diffeomorphism. One can then pull
back the group operation from G to get a group structure on g. This group struc-
ture can be described by the Baker–Campbell–Hausdorff formula (BCH formula
in short), which expresses the product X ∗ Y (X,Y ∈ g) in terms of the iterated
Lie brackets of X and Y . The group operation in G will be denoted by ·. The
pull-back group operation ∗ on g is defined as follows. For X,Y ∈ g, define

X ∗ Y = exp−1(expX · expY).

Then the BCH formula ([CG], page 11) says

X ∗ Y =
∑
n>0

(−1)n+1

n

∑
pi+qi>0,1≤i≤n

(
∑n

i=1(pi + qi))
−1

p1!q1! · · ·pn!qn!
× (adX)p1(adY)q1 · · · (adX)pn(adY)qn−1Y,

where adA(B) = [A,B]. If qn = 0, the term in the sum is · · · (adX)pn−1X; if
qn > 1 or if qn = 0 and pn > 1, then the term is zero. The first few terms are well
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known:

X ∗ Y = X + Y + 1

2
[X,Y ] + 1

12
[X, [X,Y ]] − 1

12
[Y, [X,Y ]]

− 1

48
[Y, [X, [X,Y ]]] − 1

48
[X, [Y, [X,Y ]]]

+ (commutators in five or more terms).

Lemma 2.1. There are universal constants cj ∈ Q, 2 ≤ j ≤ n − 1, with the fol-
lowing property: for any X ∈ fnK and any Y ∈ Ke2 ⊕ V2 ⊕ · · · ⊕ Vn, we have

X ∗ Y = X + Y + 1

2
[X,Y ] +

n−1∑
j=2

cj (adX)jY (2.1)

and

Y ∗ X = Y + X + 1

2
[Y,X] +

n−1∑
j=2

(−1)j cj (adX)jY. (2.2)

Proof. Formula (2.1) follows from the fact that [Z1,Z2] = 0 for any two Z1,Z2 ∈
Ke2 ⊕ V2 ⊕ · · · ⊕ Vn. In particular, [Y, [X,Y ]] = 0, so the only possible nonzero
terms in the BCH formula are multiples of (adX)jY . We stop at j = n − 1 since
fnK has n layers.

Formula (2.2) follows from (2.1) by taking the inverse of both sides and then
replacing X with −X and Y with −Y . �

Corollary 2.2. In fnK the following holds for all t, x2, . . . , xn+1 ∈ K :

(−te1) ∗
n+1∑
j=2

xj ej ∗ te1 =
n+1∑
j=2

x′
j ej ,

where x′
2 = x2, x′

j = xj − txj−1 +Gj for 3 ≤ j ≤ n+1. Here Gj is a polynomial

of t and xi , and each of its terms has a factor tk for some k ≥ 2.

Proof. We apply Lemma 2.1 to Z := (−te1) ∗ ∑n+1
j=2 xj ej and obtain:

Z = (−te1) ∗
n+1∑
j=2

xj ej

= −te1 +
n+1∑
j=2

xj ej + 1

2

[
−te1,

n+1∑
j=2

xj ej

]
+

n+1∑
j=4

Hjej ,

where Hj is a polynomial of t and xi , and each of its terms has a factor tk for
some k ≥ 2. Notice that the last term in the formula in Lemma 2.1 contains only
higher-degree terms in t . Now we apply the BCH formula to Z ∗ te1. The first
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three terms are

Z + te1 + 1

2
[Z, te1] =

n+1∑
j=2

xj ej + 1

2

[
−te1,

n+1∑
j=2

xj ej

]
+

n+1∑
j=4

Hjej

+ 1

2

[n+1∑
j=2

xj ej , te1

]
+

n+1∑
j=4

Ij ej

= x2e2 +
n+1∑
j=3

(xj − txj−1)ej +
n+1∑
j=4

(Hj + Ij )ej ,

where Ij is a polynomial of t and xi , and each of its terms has a factor tk for
some k ≥ 2. For the iterated brackets in the BCH formula for Z ∗ te1, we only
need to consider the terms of the form (adZ)j te1 (2 ≤ j ≤ n − 1) since all the
other terms involve te1 at least twice and so have higher degree in t . However, a
direct calculation shows that (adZ)2te1 also has higher degree in t . So the same
is true for all the terms (adZ)j te1, 2 ≤ j ≤ n − 1. The corollary follows. �

2.4. Various Maps

Here we recall the definitions of quasi-similarity and quasi-symmetric maps.
Let K ≥ 1 and C > 0. A bijection F : X → Y between two metric spaces is

called a (K,C)-quasi-similarity if

C

K
d(x, y) ≤ d(F (x),F (y)) ≤ CK d(x, y)

for all x, y ∈ X.
Clearly, a map is a quasi-similarity if and only if it is bi-Lipschitz. The point

here is that often there is control on K but not on C. In this case, the notion of
quasi-similarity provides more information about the distortion. To see this, just
compare the (1,100)-quasi-similarity and 100-bi-Lipschitz properties.

Let F : X → Y be a homeomorphism between two metric spaces. For any
x ∈ X and any r > 0, set

HF (x, r) = sup{d(F (y),F (x)) : d(y, x) ≤ r}
inf{d(F (y),F (x)) : d(y, x) ≥ r} .

The map F is called quasi-conformal if there is some H < ∞ such that

lim sup
r→0

HF (x, r) ≤ H

for all x ∈ X.
Let η : [0,∞) → [0,∞) be a homeomorphism. A homeomorphism F : X →

Y between two metric spaces is η-quasi-symmetric if for all distinct triples
x, y, z ∈ X, we have

d(F (x),F (y))

d(F (x),F (z))
≤ η

(
d(x, y)

d(x, z)

)
.
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If F : X → Y is an η-quasi-symmetry, then F−1 : Y → X is an η1-quasi-
symmetry, where η1(t) = (η−1(t−1))−1. See [V], Theorem 6.3. A homeomor-
phism between metric spaces is quasi-symmetric if it is η-quasi-symmetric for
some η.

We remark that quasi-symmetric homeomorphisms between general metric
spaces are quasi-conformal. In the case of Carnot groups (and more generally
Loewner spaces), a homeomorphism is quasi-symmetric if and only if it is quasi-
conformal; see [HK].

Theorem 1.1 in [BKR] implies that a quasi-conformal map between two
proper, locally Ahlfors Q-regular (Q > 1) metric spaces is absolutely continuous
on almost every curve. This result applies to quasi-conformal maps F : G → G

on Carnot groups.
Pansu [P2] proved that a quasisymmetric map F : G1 → G2 between two

Carnot groups is absolutely continuous. That is, a measurable set A ⊂ G1 has
measure 0 if and only if F(A) has measure 0.

2.5. Pansu Differentiability Theorem

We begin with the definition.

Definition 2.3. Let G and G′ be two Carnot groups endowed with Carnot met-
rics, and U ⊂ G, U ′ ⊂ G′ open subsets. A map F : U → U ′ is Pansu differen-
tiable at x ∈ U if there exists a graded homomorphism L : G → G′ such that

lim
y→x

d(F (x)−1 · F(y),L(x−1 · y))

d(x, y)
= 0.

In this case, the graded homomorphism L : G → G′ is called the Pansu differen-
tial of F at x and is denoted by dF(x).

We have the following chain rule for Pansu differentials.

Lemma 2.3 (Lemma 3.7 in [CC]). Suppose that F1 : U1 → U2 is Pansu differen-
tiable at p and F2 : U2 → U3 is Pansu differentiable at F1(p). Then F2 ◦ F1 is
Pansu differentiable at p, and d(F2 ◦ F1)(p) = dF2(F1(p)) ◦ dF1(p).

Notice that the Pansu differential of the identity map U1 → U1 is the identity
isomorphism. Hence, if F : U1 → U2 is bijective, F is Pansu differentiable at p ∈
U1, and F−1 is Pansu differentiable at F(p), then dF−1(F (p)) = (dF (p))−1.

The following result (except the terminology) is due to Pansu [P2].

Theorem 2.4. Let G,G′ be Carnot groups, and U ⊂ G, U ′ ⊂ G′ open subsets.
Let F : U → U ′ be a quasi-conformal map. Then F is a.e. Pansu differentiable.
Furthermore, at a.e. x ∈ U , the Pansu differential dF(x) : G → G′ is a graded
isomorphism.

In Theorem 2.4 and the proofs below, “a.e.” is with respect to the Lebesgue mea-
sure on g = G.
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To simplify the exposition, we introduce the following terminology.

Definition 2.4. Let F : U → U ′ be a quasi-conformal map between open sub-
sets of Carnot groups. A point p ∈ U is called a good point (with respect to F )
if:

(1) F is Pansu differentiable at p, and dF(p) is a graded isomorphism;
(2) F−1 is Pansu differentiable at F(p), and dF−1(F (p)) is a graded isomor-

phism.

It follows from the Pansu differentiability theorem and the Pansu theorem on ab-
solute continuity of quasi-conformal maps that a.e. p ∈ U is a good point.

Let G be a Carnot group with Lie algebra g = V1 ⊕ · · ·⊕Vr . A horizontal line
in G is the image of a map γ : R → G of the form γ (t) = g ∗ tv for some g ∈ g

and some v ∈ V1 \ {0}. A nondegenerate compact connected subset of a horizontal
line is called a horizontal line segment.

Lemma 2.5. Let F : G → G be a continuous map on a Carnot group G. Sup-
pose that F is Pansu differentiable a.e. and is absolutely continuous on almost all
curves. If the Pansu differential is a.e. the identity isomorphism, then F is a left
translation of G.

Proof. After composing F with a left translation, we may assume that F(0) = 0.
For each v ∈ V1 \ {0}, consider the family of horizontal lines consisting of the
left cosets of Rv. Then for a.e. horizontal line L = g ∗ Rv in this family, the
Pansu differential of F is a.e. on L the identity isomorphism, and F is absolutely
continuous on L. It follows that F(L) = F(g)∗Rv and F(g ∗ tv) = F(g)∗ tv for
all t ∈ R. Since this is true for a.e. L in the family and F is continuous, the same
is true for all horizontal lines in the family. Since the vector v ∈ V1 is arbitrary,
the same is true for all horizontal lines.

Let now g ∈ G be arbitrary. Then there exists a finite sequence of points
0 = p0,p1, . . . , pn = g and horizontal line segment αi from pi−1 to pi . The first
paragraph applied to α1 implies that F fixes all points on α1. An induction argu-
ment shows that F fixes all points on αi . In particular, F(g) = g. �

3. Quasi-conformal Maps on the Real Model Filiform Groups

In this section, we will prove Theorem 1.1. Given a quasi-conformal map
F : Fn

R
→ Fn

R
(n ≥ 3), we shall precompose and postcompose F with left trans-

lations and graded automorphisms to obtain a map of the form Fh described in
the Introduction.

3.1. Graded Automorphisms of fn
R

In this subsection, we will identify all the graded automorphisms of fn
R

.
For an element x ∈ g in a Lie algebra, let rank(x) be the rank of the linear

transformation ad(x) : g → g, ad(x)(y) = [x, y]. In other words, rank(x) is the
dimension of the image of ad(x).
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Lemma 3.1. Let fn
R

be the n-step real model Filiform algebra. Assume that n ≥ 3.
Let X = ae1 + be2 ∈ V1 be a nonzero element in the first layer. Then rank(X) = 1
if and only if a = 0.

Proof. Let Y = y1e1 + · · · + yn+1en+1. Then

[X,Y ] = a(y2e3 + · · · + ynen+1) − by1e3.

If a = 0, then [X,Y ] = −by1e3, and so rank(X) = 1. If a �= 0, then we can vary
the yi , and it is clear that rank(X) = n − 1 ≥ 2. The lemma follows. �

It is clear that a Lie algebra isomorphism preserves the rank of elements. A graded
isomorphism also preserves the first layer V1. Hence, we obtain the following.

Lemma 3.2. Suppose n ≥ 3. Then h(Re2) = Re2 for every graded isomorphism
h : fn

R
→ fn

R
.

Given a1, a2 ∈R \ {0} and b ∈ R, define the linear map h = ha1,a2,b : fn
R

→ fn
R

by

h(e1) = a1e1 + be2,

h(ej ) = a
j−2
1 a2ej for 2 ≤ j ≤ n + 1.

It is easy to check that h is a graded isomorphism of fn
R

. The following lemma
says that these are the only graded isomorphisms of fn

R
.

Lemma 3.3. A linear map h : fn
R

→ fn
R

is a graded isomorphism if and only if
h = ha1,a2,b for some a1, a2 ∈R \ {0} and b ∈ R.

Proof. Let h : fn
R

→ fn
R

be a graded isomorphism. Then h(Vi) = Vi . Hence, there
are constants a1, a2, b, c ∈R and aj ∈ R, 3 ≤ j ≤ n+1, such that h(e1) = a1e1 +
be2, h(e2) = ce1 + a2e2, h(ej ) = aj ej for 3 ≤ j ≤ n+ 1. By Lemma 3.2 we have
c = 0. Since h is a Lie algebra isomorphism, for 2 ≤ j ≤ n, we have

aj+1ej+1 = h(ej+1) = h([e1, ej ]) = [h(e1), h(ej )]
= [a1e1 + be2, aj ej ] = a1aj ej+1,

so aj+1 = a1aj . It follows that aj = a
j−2
1 a2 for 2 ≤ j ≤ n + 1 and h = ha1,a2,b .

�

Lemma 3.4. Let F : Fn
R

→ Fn
R

be a map. Suppose that there are functions
f : R → R, fj : Rn+1 →R, 2 ≤ j ≤ n + 1, such that

F

(
x1e1 ∗

n+1∑
j=2

xj ej

)
= f (x1)e1 ∗

n+1∑
j=2

fj (x)ej ,

where x = (x1, . . . , xn+1). If F is Pansu differentiable at p := x1e1 ∗ ∑n+1
j=2 xj ej

with Pansu differential dF(p) = ha1(p),a2(p),b(p), then f ′(x1) and ∂f2(x)/∂x2 ex-
ist, and

f ′(x1) = a1(p) and
∂f2

∂x2
(x) = a2(p).
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Proof. For q ∈ Fn
R

, let y = (y1, . . . , yn+1) ∈ Rn+1 be determined by q = y1e1 ∗∑n+1
j=2 yj ej . By the definition of the Pansu differential we have

lim
q→p

d((−F(p)) ∗ F(q), dF (p)((−p) ∗ q))

d(p, q)
= 0. (3.1)

In particular, this limit is 0 if q = p ∗ (y1 − x1)e1 and y1 → x1. Let q = p ∗
(y1 − x1)e1. Then (−p) ∗ q = (y1 − x1)e1, and so d(p,q) = d(0, (y1 − x1)e1) =
|y1 − x1| and

dF(p)((−p) ∗ q) = (y1 − x1)(a1(p)e1 + b(p)e2).

Notice that the coefficient of e1 in q is y1, and so the coefficient of e1 in (−F(p))∗
F(q) is f (y1)−f (x1). The coefficient of e1 in [−dF(p)((−p)∗q)] ∗ (−F(p))∗
F(q) is f (y1) − f (x1) − a1(p)(y1 − x1). Hence,

d((−F(p)) ∗ F(q), dF (p)((−p) ∗ q)) ≥ |f (y1) − f (x1) − a1(p)(y1 − x1)|.
Now (3.1) implies

lim
y1→x1

|f (y1) − f (x1) − a1(p)(y1 − x1)|
|y1 − x1| = 0.

Hence, f is differentiable at x1, and f ′(x1) = a1(p).
The proof of the statement about ∂f2(x)/∂x2 is similar. Let q = p∗(y2 −x2)e2.

Since [ei, ej ] = 0 for i, j ≥ 2, we can write

q = x1e1 ∗
n+1∑
i=2

xiei ∗ (y2 − x2)e2 = x1e1 ∗
(

y2e2 +
n+1∑
i=3

xiei

)
.

So x and y differ only in the second coordinate. Notice that we have (−p) ∗ q =
(y2 − x2)e2, d(p,q) = |y2 − x2| and dF(p)((−p) ∗ q) = a2(p)(y2 − x2)e2. Also
the coefficient of e2 in (−F(p)) ∗ F(q) is

f2(y) − f2(x) = f2(x1, y2, x3, . . . , xn+1) − f2(x1, x2, x3, . . . , xn+1).

Hence,

d((−F(p)) ∗ F(q), dF (p)((−p) ∗ q)) ≥ |f2(y) − f2(x) − a2(p)(y2 − x2)|.
Now (3.1) implies

lim
y2→x2

|f2(y) − f2(x) − a2(p)(y2 − x2)|
|y2 − x2| = 0.

Hence, ∂f2(x)/∂x2 exists, and ∂f2(x)/∂x2 = a2(p). �

3.2. Quasi-conformal Implies bi-Lipschitz

In this subsection, we show that every quasi-conformal map of Fn
R

(n ≥ 3) is
bi-Lipschitz.

Let n ≥ 3, and let F : Fn
R

→ Fn
R

be an η-quasi-symmetric map for some η.
Pansu’s differentiability theorem says that F is Pansu differentiable a.e. and the
Pansu differential is a.e. a graded isomorphism. Notice that the Lie subalgebra
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generated by Re2 is itself. We shall abuse notation and also denote the corre-
sponding connected subgroup of Fn

R
by Re2. It follows from Fubini’s theorem

that for a.e. left coset L of Re2, the map F is Pansu differentiable a.e. on L

and the Pansu differential is a.e. a graded isomorphism on L. By Lemma 3.2,
dF(x)(Re2) = Re2 for a.e. x ∈ Fn

R
. Now the following result implies that F sends

left cosets of Re2 to the left cosets of Re2.

Proposition 3.5 (Proposition 3.4 in [X3]). Let G and G′ be two Carnot groups,
and W ⊂ V1, W ′ ⊂ V ′

1 be subspaces. Denote by gW ⊂ g and g′
W ′ ⊂ g′ respectively

the Lie subalgebras generated by W and W ′. Let H ⊂ G and H ′ ⊂ G′ respec-
tively be the connected Lie subgroups of G and G′ corresponding to gW and g′

W ′ .
Let F : G → G′ be a quasi-symmetric homeomorphism. If dF(x)(W) ⊂ W ′ for
a.e. x ∈ G, then F sends left cosets of H into left cosets of H ′.

To simplify the exposition, we introduce the following terminology (see Defini-
tion 2.4 for the definition of a “good point”).

Definition 3.2. Let n ≥ 3, and let F : Fn
R

→ Fn
R

be a quasi-symmetric map.
A left coset L of Re2 is called a good left coset (with respect to F ) if the following
conditions hold:

(1) a.e. point p ∈ L is a good point with respect to F ;
(2) F |L is absolutely continuous;
(3) F−1|F(L) is absolutely continuous.

Lemma 3.6. Let n ≥ 3, and let F : Fn
R

→ Fn
R

be a quasi-symmetric map. Then
a.e. left coset of Re2 is a good left coset.

Proof. Since a.e. point is a good point, Fubini’s theorem implies (1) for a.e. left
coset L. Theorem 1.1 of [BKR] implies that F |L is absolutely continuous on
a.e. left coset L of Re2. Since F−1 is also quasi-symmetric, F−1|L′ is absolutely
continuous on a.e. left coset L′ of Re2. Since quasi-symmetric maps preserve the
conformal modulus of curve families and F maps left cosets of Re2 to left cosets
of Re2, we see that (2) and (3) hold for a.e. left coset L. �

For a good point x ∈ Fn
R

, let b(x), a1(x), a2(x) ∈ R be such that dF(x) =
ha1(x),a2(x),b(x); see Lemma 3.3. Then dF(x)(e1) = a1(x)e1 + b(x)e2,
dF(x)(ej ) = (a1(x))j−2a2(x)ej for 2 ≤ j ≤ n + 1. Set an+1(x) = (a1(x))n−1 ×
a2(x). Notice that dF(x)(v) = an+1(x)v for any v ∈ Vn = Ren+1.

Lemma 3.7. Let L be a good left coset of Re2. Then there is a constant aL ∈
R \ {0} such that an+1(x) = aL for a.e. x ∈ L.

Proof. Suppose that there exist good points p,q ∈ L such that an+1(p) �=
an+1(q). We shall show that this implies an+1(z) → +∞ as z → ∞ along L.
This provides a contradiction since the same claim applied to F−1 implies
an+1(z) → 0 as z → ∞ along L; see the remark after Lemma 2.3 about the rela-
tion between the Pansu differential of F and that of F−1.
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We may assume that |an+1(p)| ≥ |an+1(q)|. Notice that L = p ∗ Re2 and
F(L) = F(p) ∗ Re2. In particular, there are y, y0 ∈ R such that q = p ∗ ye2 and
F(q) = F(p) ∗ y0e2. After composing with the inverse of dF(p), we may as-
sume that dF(p) = Id is the identity isomorphism. Then an+1(p) = 1 and either
|an+1(q)| < 1 or an+1(q) = −1. We shall consider the image of the left coset
rnen+1 ∗ L under the map F as r → 0.

Notice that d(0, rnen+1) = r . Since dF(p) = Id, the definition of the Pansu
differential implies that there exists some x̃ = ∑

i x̃iei with x̃i = x̃i (r) such that
d(0, x̃) = o(r) and F(rnen+1 ∗ p) = F(p) ∗ rnen+1 ∗ x̃, where o(r) is the little-o
notation. Here we used the fact that rnen+1 is in the center. Similarly, there is some
ỹ = ∑

i ỹiei with ỹi = ỹi (r, y) such that d(0, ỹ) = o(r) and F(rnen+1 ∗ q) =
F(q) ∗ an+1(q)rnen+1 ∗ ỹ. For later use, we notice here that x̃1, x̃2, ỹ2 = o(r) and
x̃n+1, ỹn+1 = o(rn). Since F sends left cosets of Re2 to left cosets of Re2, we
have

Lr := F(rnen+1 ∗ L) = F(rnen+1 ∗ p) ∗Re2 = F(p) ∗ rnen+1 ∗ x̃ ∗Re2.

In particular, F(rnen+1 ∗ q) = F(p) ∗ rnen+1 ∗ x̃ ∗ s̃1e2 for some s̃1 ∈ R. Using
Lemma 2.1, we find two expressions for F(rnen+1 ∗ q):

F(rnen+1 ∗ q)

= F(q) ∗ an+1(q)rnen+1 ∗ ỹ

= F(p) ∗ y0e2 ∗ an+1(q)rnen+1 ∗ ỹ

= F(p) ∗ (ỹ1e1 + {ỹ2 + y0}e2 + S1

+ {ỹn+1 + an+1(q)rn + (−1)n−1cn−1ỹ
n−1
1 y0}en+1)

and

F(rnen+1 ∗ q) = F(p) ∗ rnen+1 ∗ x̃ ∗ s̃1e2

= F(p) ∗ (x̃1e1 + {x̃2 + s̃1}e2 + S2

+ {x̃n+1 + rn + cn−1x̃
n−1
1 s̃1}en+1),

where S1 and S2 are linear combinations of the ei with 3 ≤ i ≤ n. Comparing the
coefficients, we obtain:

ỹ1 = x̃1, (3.3)

s̃1 = y0 + (ỹ2 − x̃2), (3.4)

an+1(q)rn + ỹn+1 + (−1)n−1cn−1ỹ
n−1
1 y0

= rn + x̃n+1 + cn−1x̃
n−1
1 s̃1. (3.5)

Pluging (3.3) and (3.4) into (3.2), we get:

(1 − an+1(q))rn + (1 − (−1)n−1)cn−1x̃
n−1
1 y0

= (ỹn+1 − x̃n+1) − cn−1x̃
n−1
1 (ỹ2 − x̃2). (3.6)

Since x̃1, x̃2, ỹ2 = o(r), x̃n+1, ỹn+1 = o(rn), we see that we must have an+1(q) =
1 if cn−1 = 0 or n − 1 is even. In these cases, the lemma holds. So from now on,
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we shall assume that n − 1 is odd and cn−1 �= 0. Then (3.6) implies that, for all
sufficiently small r , we have

−11

10
(1 − an+1(q))rn ≤ 2cn−1x̃

n−1
1 y0 ≤ − 9

10
(1 − an+1(q))rn. (3.7)

Our next goal is to bound |an+1(z)| from below for z ∈ L. For this, we shall
bound from below the distance from a point on F(L) to Lr . So we fix q2 = F(p)∗
s2e2 ∈ F(L) and let q1 ∈ Lr vary. Then q1 = F(rnen+1 ∗ p) ∗ s1e2 = F(p) ∗
rnen+1 ∗ x̃ ∗ s1e2 with s1 ∈R, and d(q2, q1) = d(0, (−s2e2) ∗ rnen+1 ∗ x̃ ∗ s1e2).
Using Lemma 2.1 twice, we obtain

(−s2e2) ∗ rnen+1 ∗ x̃ ∗ s1e2

= x̃1e1 + {x̃2 − s2 + s1}e2 + S

+ {rn + x̃n+1 + cn−1x̃
n−1
1 s2 + cn−1x̃

n−1
1 s1}en+1,

where S is a linear combination of the ei with 3 ≤ i ≤ n. Write s2 = ty0 and s1 −
s2 = u. Fix any t with |t | ≥ 100/(1 − an+1(q)). Notice that 100/(1 − an+1(q)) ≥
50 since |an+1(q)| ≤ 1. Let r be sufficiently small so that |x̃2| ≤ r/10 and (3.7)
holds. If s1 is such that |u| ≥ √|t |r , then d(q2, q1) ≥ |(x̃2 − s2 + s1)| ≥ √|t |r/2 ≥
1
2 |t |1/n · r . If |u| ≤ √|t |r , then (3.7) and the assumption on |t | imply that the
following holds for sufficiently small r :

d(q2, q1) ≥ |rn + x̃n+1 + cn−1x̃
n−1
1 s2 + cn−1x̃

n−1
1 s1|1/n

= |rn + x̃n+1 + 2cn−1x̃
n−1
1 s2 + cn−1x̃

n−1
1 u|1/n

= |rn + x̃n+1 + t · 2cn−1x̃
n−1
1 y0 + cn−1x̃

n−1
1 u|1/n

≥
∣∣∣∣1

2
· t · 2cn−1x̃

n−1
1 y0

∣∣∣∣
1/n

≥
∣∣∣∣9(1 − an+1(q))

20
|t |rn

∣∣∣∣
1/n

=
∣∣∣∣9(1 − an+1(q))

20

∣∣∣∣
1/n

· |t |1/n · r.

It follows that d(q2,Lr) ≥ c|t |1/nr , where c = min{ 1
2 , |9(1 − an+1(q))/20|1/n}.

This implies that an+1(F
−1(q2)) ≥ cn|t |, which goes to +∞ as |t | → ∞, finish-

ing the proof of our claim. �

Recall that F is η-quasi-symmetric.

Lemma 3.8. For every good left coset L of Re2, the restriction F |L : L → F(L)

is a (η(1), |aL|1/n)-quasi-similarity.

Proof. Notice that (L,d) is isometric to the real line and under this identification
the usual derivative of the map F |L : L → F(L) is simply a2(p). So we only need
to control a2(p) for p ∈ L. Since F is η-quasi-symmetric, its Pansu differentials
are also η-quasi-symmetric. Notice that dF(p)(e2) = a2(p)e2, dF(p)(en+1) =
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an+1(p)en+1. So d(0, dF (p)(e2)) = |a2(p)| and d(0, dF (p)(en+1)) =
|an+1(p)|1/n. Since d(0, e2) = d(0, e3) = 1, the quasi-symmetric condition now
implies

1

η(1)
· |an+1(p)|1/n ≤ |a2(p)| ≤ η(1) · |an+1(p)|1/n.

By Lemma 3.7 there is a constant aL such that an+1(p) = aL for a.e. p ∈ L.
Since F |L : L → F(L) is a homeomorphism between two lines, either a2(p) ≥ 0
for a.e. p ∈ L or a2(p) ≤ 0 for a.e. p ∈ L. The lemma now follows from the fact
that F |L is absolutely continuous. �

Lemma 3.9. For every two good left cosets L, L′ of Re2, we have |aL|/
(2nη(1)2n) ≤ |aL′ | ≤ 2nη(1)2n|aL|.
Proof. Let L, L′ be two good left cosets of Re2. We assume that |aL| ≥
2nη(1)2n|aL′ |, and will get a contradiction. Fix g1 ∈ L and g2 ∈ L′. By
Lemma 3.8,

d(F (g1 ∗ te2),F (g1)) ≥ |t ||aL|1/n/η(1) ≥ 2|t |η(1)|aL′ |1/n

and d(F (g2 ∗ te2),F (g2)) ≤ |t |η(1)|aL′ |1/n. It follows that

d(F (g1 ∗ te2),F (g1)) − d(F (g2 ∗ te2),F (g2))

d(F (g2 ∗ te2),F (g2))
≥ 1. (3.8)

It is an easy calculation to show that either d(g1 ∗ te2, g2 ∗ te2) is a constant
function of t if the coefficients of e1 in g1 and g2 are the same, or

d(g1 ∗ te2, g2 ∗ te2) ∼ √
t as t → ∞.

Hence,
d(g1 ∗ te2, g2 ∗ te2)

d(g2, g2 ∗ te2)
→ 0 as t → ∞. (3.9)

The quasi-symmetry condition of F implies

d(F (g1 ∗ te2),F (g2 ∗ te2))

d(F (g2),F (g2 ∗ te2))
→ 0 as t → ∞. (3.10)

Let pt be the point on F(L) between F(g1) and F(g1 ∗ te2) such that
d(F (g1),pt ) = d(F (g2),F (g2 ∗ te2)). Similarly to (3.9), we have

d(pt ,F (g2 ∗ te2))

d(F (g2),F (g2 ∗ te2))
→ 0 as t → ∞. (3.11)

Now (3.10) and (3.11) imply

d(F (g1 ∗ te2),F (g1)) − d(F (g2 ∗ te2),F (g2))

d(F (g2 ∗ te2),F (g2))
= d(pt ,F (g1 ∗ te2))

d(F (g2),F (g2 ∗ te2))
→ 0

as t → ∞, contradicting (3.8). Similarly, we get a contradiction if |aL′ | ≥
2nη(1)2n|aL|. �

Lemma 3.10. Suppose n ≥ 3. Then every η-quasi-symmetric map F : Fn
R

→ Fn
R

is a (2η(1)4,C)-quasi-similarity for some constant C.
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Proof. Fix a good left coset L0. Then F |L0 is an (η(1), |aL0 |1/n)-quasi-similarity.
Lemma 3.8 and Lemma 3.9 now imply that F |L is a (2η(1)3, |aL0 |1/n)-quasi-
similarity for every good left coset L of Re2. Since a.e. left coset of Re2 is a
good left coset (Lemma 3.6) and F is continuous, F |L is a (2η(1)3, |aL0 |1/n)-
quasi-similarity for every left coset L of Re2. Now let p,q ∈ Fn

R
be two arbitrary

points. If p, q lie on the same left coset, then

|aL0 |1/n

2η(1)3
· d(p,q) ≤ d(F (p),F (q)) ≤ 2η(1)3|aL0 |1/n · d(p,q).

Suppose that p, q do not lie on the same left coset. Pick a point q ′ such that p,
q ′ lie on the same left coset and d(p,q ′) = d(p,q). Then the quasi-symmetric
condition implies

d(F (p),F (q)) ≤ η(1) · d(F (p),F (q ′)) ≤ η(1) · 2η(1)3|aL0 |1/n · d(p,q ′)
= 2η(1)4|aL0 |1/n · d(p,q).

Now the same argument applied to F−1 finishes the proof. �

Remark 3.12. The arguments in this section can be modified to show a local
version of Lemma 3.10: if F : U → V is a quasi-symmetric map between two
open subsets of Fn

R
with n ≥ 3, then F is locally bi-Lipschitz, that is, every point

x ∈ U has a neighborhood U ′ such that F |U ′ is bi-Lipschitz. In the proofs of the
above lemmas, it is not necessary to let |t | → ∞. One can get around this by
choosing a sufficiently small neighborhood of x. For instance, for any fixed t > 0,
the quotient in (3.9) becomes very small if g2 is sufficiently close to g1.

3.3. Quasi-conformal Maps Have Special Forms

In this subsection, we show that quasi-conformal maps on Fn
R

(n ≥ 3) have very
special forms.

Let n ≥ 3, and let F : Fn
R

→ Fn
R

be an η-quasi-symmetric map for some home-
omorphism η : [0,∞) → [0,∞). By Lemma 3.10, F is M-bi-Lipschitz for some
M ≥ 1. Let G = Re2 ⊕ V2 ⊕ · · · ⊕ Vn ⊂ Fn

R
. Notice that G is a subgroup of Fn

R
.

Lemma 3.11. F sends left cosets of G to left cosets of G.

Proof. An easy calculation using the BCH formula shows that two left cosets of
Re2 lie in the same left coset of G if and only if the Hausdorff distance between
them is finite. Now the lemma follows since by Lemma 3.10 F is bi-Lipschitz.

�

Lemma 3.12. There is an M-bi-Lipschitz homeomorphism f : R → R such that
F(x1e1 ∗ G) = f (x1)e1 ∗ G.

Proof. Lemma 3.11 implies that there is a homeomorphism f : R → R such
that F(x1e1 ∗ G) = f (x1)e1 ∗ G. We need to prove that f is bi-Lipschitz. Let
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x1, x
′
1 ∈R. Notice that d(x1e1 ∗ G,x′

1e1 ∗ G) = |x1 − x′
1|. Pick p ∈ x1e1 ∗ G and

q ∈ x′
1e1 ∗ G with d(p,q) = |x1 − x′

1|. Then

|f (x1) − f (x′
1)| = d(f (x1)e1 ∗ G,f (x′

1)e1 ∗ G) ≤ d(F (p),F (q))

≤ M · d(p,q) = M · |x1 − x′
1|.

A similar argument shows that f −1 is also M-Lipschitz. �

Lemma 3.13. For every good left coset L of Re2, there exists a constant a2,L ∈
R \ {0} such that a2(p) = a2,L for a.e. p ∈ L. Furthermore, for any g ∈ L, we
have F(g ∗ te2) = F(g) ∗ a2,Lte2 for all t ∈R.

Proof. For p ∈ Fn
R

, let x = (x1, . . . , xn+1) ∈ Rn+1 be determined by p = x1e1 ∗∑n+1
i=2 xiei . By Lemma 3.7 we have a1(p)n−1a2(p) = an+1(p) = aL for a.e.

p ∈ L. On the other hand, there is a homeomorphism f : R → R such that
F(x1e1 ∗G) = f (x1)e1 ∗G. Lemma 3.4 implies that a1(p) = f ′(x1). Since all the
points on L have the same e1 coefficient, a1(p) is a.e. constant along L. There-
fore, a2(p) is a.e. a constant along L. By Lemma 3.4 again, a2(p) = ∂f2(x)/∂x2.
Since F |L is absolutely continuous (being bi-Lipschitz), f2 is an affine function
of x2 (whereas the other variables are fixed), and the last statement in the lemma
holds. �

Lemma 3.14. There exists a constant a2 ∈ R \ {0} such that F(g ∗ te2) = F(g) ∗
a2te2 for every g ∈ Fn

R
.

Proof. Since F is continuous, it suffices to show a2,L = a2,L′ for any two good
left cosets L,L′ of Re2. Fix g1 ∈ L and g2 ∈ L′. Then F(g1 ∗ te2) = F(g1) ∗
a2,Lte2 and F(g2 ∗ te2) = F(g2)∗a2,L′ te2. Now the equality a2,L = a2,L′ follows
from the following fact that was derived in the proof of Lemma 3.9:

d(F (g1 ∗ te2),F (g1)) − d(F (g2 ∗ te2),F (g2))

d(F (g2 ∗ te2),F (g2))
→ 0 as t → ∞. �

By replacing F with h1,a−1
2 ,0 ◦ F we may assume that a2 = 1.

Notice that the left cosets of G with the metric induced from d are isometric to
Rn with the metric D((xj ), (yj )) = ∑

j |xj − yj |1/j . It was proved in Section 15
of [T] that each quasi-symmetric map (Rn,D) → (Rn,D) preserves the foliation
consisting of affine subspaces parallel to Ri × {0} for each 1 ≤ i ≤ n − 1. This
implies that there exist continuous functions fj := fj (x1, xj , xj+1, . . . , xn+1),
2 ≤ j ≤ n + 1, such that F has the following form:

F

(
x1e1 ∗

(n+1∑
j=2

xj ej

))
= f (x1)e1 ∗

n+1∑
j=2

fj ej . (3.13)

Let E ⊂ R be the subset consisting of all x1 ∈ R with the following properties:

(1) f is differentiable at x1;
(2) almost every point p in the left coset x1e1 ∗ G is a good point with respect

to F .
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By Fubini’s theorem and the fact that f is bi-Lipschitz, we see that E has full
measure in R.

Lemma 3.15. For x1 ∈ E, there exist functions hj := hj (x1, xj+1, . . . , xn+1), 2 ≤
j ≤ n + 1, such that the following holds when x1 ∈ E:

F

(
x1e1 ∗

(n+1∑
j=2

xj ej

))
= f (x1)e1 ∗

n+1∑
j=2

{(f ′(x1))
j−2xj + hj }ej .

Proof. We shall first show that fj = fj (x1, xj , xj+1, . . . , xn+1), 2 ≤ j ≤ n + 1,
is Lipschitz in xj . Let

p = x1e1 ∗ (x2e2 + · · · + xn+1en+1)

and

q = x1e1 ∗ (x2e2 + · · · + xj−1ej−1 + yj ej + xj+1ej+1 + · · · + xn+1en+1).

Notice that the only difference between p and q is in the coefficient of ej . We
have (−p) ∗ q = (yj − xj )ej and d(p,q) = |yj − xj |1/(j−1). Hence,

d(F (p),F (q)) ≤ M|yj − xj |1/(j−1).

On the other hand, by (3.13) the coefficient of ej in (−F(p)) ∗ F(q) is

fj (x1, yj , xj+1, . . . , xn+1) − fj (x1, xj , xj+1, . . . , xn+1). (3.14)

Hence,

|fj (x1, yj , xj+1, . . . , xn+1) − fj (x1, xj , xj+1, . . . , xn+1)|1/(j−1)

≤ d(F (p),F (q)) ≤ M · |yj − xj |1/(j−1),

and so

|fj (x1, yj , xj+1, . . . , xn+1) − fj (x1, xj , xj+1, . . . , xn+1)| ≤ Mj−1|yj − xj |.
Hence, fj is Lipschitz in xj .

Set Gj = Re2 ⊕ · · · ⊕ (̂Rej ) ⊕ · · · ⊕Ren+1, where (̂Rej ) means that the term
Rej is absent. For x1 ∈ E, define the subset Ex1 ⊂ Gj as follows:

w = x2e2 + · · · + xj−1ej−1 + xj+1ej+1 + · · · + xn+1en+1 ∈ Ex1

if and only if the point

p = p(x1,w,xj )

:= x1e1 ∗ (x2e2 + · · · + xj−1ej−1 + xj ej + xj+1ej+1 + · · · + xn+1en+1)

is a good point for a.e. xj ∈ R. Since a.e. point in x1e1 ∗G is a good point, Fubini’s
theorem implies that Ex1 has full measure in Gj . Fix x1 ∈ E and w ∈ Ex1 . Let xj

be such that p = p(x1,w,xj ) is a good point. By Lemma 3.4, a1(p) = f ′(x1).
By our normalization a2 = 1, we obtain aj (p) = (f ′(x1))

j−2. Let q be as defined
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at the beginning of the proof. Then dF(p)((−p) ∗ q) = (f ′(x1))
j−2(yj − xj )ej .

By the definition of the Pansu differential we have

d(0, [−dF(p)((−p) ∗ q)] ∗ (−F(p)) ∗ F(q))

d(p, q)
→ 0 (3.15)

as yj → xj . Notice that (−F(p)) ∗ F(q) ∈ G and the coefficient of ej in
(−F(p)) ∗ F(q) is given by (3.14). It follows that the coefficient of ej in
[−dF(p)((−p) ∗ q)] ∗ (−F(p)) ∗ F(q) is

Aj := fj (x1, yj , xj+1, . . . , xn+1) − fj (x1, xj , xj+1, . . . , xn+1)

− (f ′(x1))
j−2(yj − xj ).

Now (3.15) implies

|Aj |1/(j−1)

|yj − xj |1/(j−1)
= |Aj |1/(j−1)

d(p, q)

≤ d(o, [−dF(p)((−p) ∗ q)] ∗ (−F(p)) ∗ F(q))

d(p, q)
→ 0.

It follows that ∂fj (x)/∂xj = (f ′(x1))
j−2. Since this is true for a.e. xj and fj

is Lipschitz in xj , we see that fj is an affine function of xj (when the other
variables are fixed). Hence, there is a real number Hj := Hj(x1, xj+1, . . . , xn+1)

such that fj = (f ′(x1))
j−2xj + Hj . So far, Hj(x1, xj+1, . . . , xn+1) is defined

only for those (xj+1, . . . , xn+1) such that there are (x2, . . . , xj−1) with

x2e2 + · · · + xj−1ej−1 + xj+1ej+1 + · · · + xn+1en+1 ∈ Ex1 .

Since Ex1 has full measure, Fubini’s theorem implies that Hj is defined for a.e.
(xj+1, . . . , xn+1).

Let x1 ∈ E be fixed. Set

hj (x1, xj , xj+1, . . . , xn+1) = fj (x1, xj , . . . , xn+1) − (f ′(x1))
j−2xj .

To complete the proof of the lemma, it suffices to show that hj is independent
of xj . We have proved in the preceding paragraph that for a.e. (xj+1, . . . , xn+1),
the function hj (x1, xj , xj+1, . . . , xn+1) is independent of xj . Since hj is continu-
ous in (xj , xj+1, . . . , xn+1), it is independent of xj for all (xj+1, . . . , xn+1). �

Next, we show that f is an affine function and that hi(x1, xi+1, . . . , xn+1) depends
only on x1.

Let x1 ∈ E. Let p = x1e1 ∗∑n+1
i=2 xiei and q = x1e1 ∗ (

∑n
i=2 xiei + x̃n+1en+1).

Then d(p,q) = |xn+1 − x̃n+1|1/n. Since F is M-bi-Lipschitz, we have

d(F (p),F (q)) ≤ M|xn+1 − x̃n+1|1/n.

On the other hand,

(−F(q)) ∗ F(p) =
n∑

i=2

(hi(x1, xi+1, . . . , xn+1) − hi(x1, xi+1, . . . , x̃n+1))ei

+ f ′(x1)
n−1(xn+1 − x̃n+1)en+1.
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It follows that for 2 ≤ i ≤ n,

|hi(x1, xi+1, . . . , xn+1) − hi(x1, xi+1, . . . , x̃n+1)|
≤ Mi−1 · |xn+1 − x̃n+1|(i−1)/n. (3.16)

Lemma 3.16. The function f is affine.

Proof. Let x1, x̃1 ∈ E. We prove that f ′(x1) = f ′(x̃1). The lemma then fol-
lows since f is bi-Lipschitz and E has full measure in R. Let p = x1e1 ∗
xn+1en+1 and q = x̃1e1 ∗ xn+1en+1. Eventually, we will let xn+1 → ∞. Set
sn+1 = f ′(x1)

n−1xn+1 + hn+1(x1) and s̃n+1 = f ′(x̃1)
n−1xn+1 + hn+1(x̃1). By

Lemma 3.15,

F(p) = f (x1)e1 ∗
{( n∑

i=2

hiei

)
+ sn+1en+1

}

and

F(q) = f (x̃1)e1 ∗
{( n∑

i=2

h̃iei

)
+ s̃n+1en+1

}
,

where hi = hi(x1,0, . . . ,0, xn+1) and h̃i = hi(x̃1,0, . . . ,0, xn+1). Denote a :=
f (x1) − f (x̃1). Now

(−F(q))∗F(p) =
{
−

( n∑
i=2

h̃iei

)
− s̃n+1en+1

}
∗ae1 ∗

{( n∑
i=2

hiei

)
+sn+1en+1

}
.

Notice that d(p,q) = |x1 − x̃1|. Hence, d(F (p),F (q)) ≤ M · |x1 − x̃1| is bounded
from above by a constant independent of xn+1. By using Lemma 2.1 twice we find
that the coefficient of en+1 in (−F(q)) ∗ F(p) is given by

sn+1 − s̃n+1 + 1

2
a(hn + h̃n) +

n−1∑
j=2

cja
jhn−j+1 +

n−1∑
j=2

(−1)j+1cj a
j h̃n−j+1

= [f ′(x1)
n−1 − f ′(x̃1)

n−1]xn+1 + hn+1 − h̃n+1

+ 1

2
a(hn + h̃n) +

n−1∑
j=2

cja
jhn−j+1 +

n−1∑
j=2

(−1)j+1cj a
j h̃n−j+1,

which is bounded from above by a constant independent of xn+1. By (3.16),

|hi(x1,0, . . . ,0, xn+1) − hi(x1,0, . . . ,0)| ≤ Mi−1 · |xn+1|(i−1)/n;
we see that |hi | (for 2 ≤ i ≤ n) is bounded from above by a sublinear function
of xn+1 as xn+1 → ∞. The same is true for h̃i . It follows that [f ′(x1)

n−1 −
f ′(x̃1)

n−1]xn+1 is also bounded above by a sublinear function of xn+1. This can
happen only when (f ′(x1))

n−1 = (f ′(x̃1))
n−1. Since f : R → R is a homeomor-

phism, f ′(x1) and f ′(x̃1) have the same sign, and hence f ′(x1) = f ′(x̃1). �
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By Lemma 3.16 there are constants a ∈ R \ {0}, b ∈R such that f (x1) = ax1 + b.
After replacing F with ha−1,1,0 ◦ L−F(0) ◦ F , we may assume that f (x1) = x1 is
the identity map. So, for x1 ∈ E, we have

fi(x1, xi, . . . , xn+1) = xi + hi(x1, xi+1, . . . , xn+1). (3.17)

Now we can extend the definition of hi to the case where x1 /∈ E. For any
(x1, xi, . . . , xn+1), set

Hi(x1, xi, xi+1, . . . , xn+1) = fi(x1, xi, . . . , xn+1) − xi.

Notice that Hi is continuous in all variables since fi is. Equality (3.17) implies
that Hi(x1, xi, . . . , xn+1) is independent of xi when x1 ∈ E. Since E has full
measure and Hi is continuous, we conclude that Hi is independent of xi for all
x1 ∈ R. Hence, Hi(x1, xi, . . . , xn+1) is a function of x1, xi+1, . . . , xn+1 only. So
we can define

hi(x1, xi+1, . . . , xn+1) = Hi(x1, xi, . . . , xn+1)

for any (x1, xi+1, . . . , xn+1). Now the following holds for all points in Fn
R

:

F

(
x1e1 ∗

(n+1∑
i=2

xiei

))
= x1e1 ∗

n+1∑
i=2

{xi + hi(x1, xi+1, . . . , xn+1)}ei .

Next, we shall show that hi(x1, xi+1, . . . , xn+1) depends only on x1.

Lemma 3.17. For each 2 ≤ i ≤ n, the function hi(x1, xi+1, . . . , xn+1) depends
only on x1.

Proof. The idea is very simple: F sends horizontal vectors to horizontal vectors.
Notice that for any g ∈ Fn

R
, the tangent vectors of g ∗ te1 (t ∈ R) are horizontal.

Since F is Pansu differentiable a.e., we see that for a.e. g ∈ Fn
R

, the tangent vector
of the curve F(g ∗ te1) at t = 0 exists and is horizontal. We shall calculate this
tangent vector.

Let g = x1e1 ∗∑n+1
i=2 xiei be a point where F is Pansu differentiable. By Corol-

lary 2.2 we have:

g ∗ te1 = x1e1 ∗
n+1∑
i=2

xiei ∗ te1 = (x1 + t)e1 ∗ (−te1) ∗
n+1∑
i=2

xiei ∗ te1

= (x1 + t)e1 ∗
n+1∑
i=2

x′
iei ,

where x′
2 = x2 and x′

i = xi − txi−1 +Gi for 3 ≤ i ≤ n+1. Here Gi is a polynomial
of t and the xj and each of its terms has a factor tk for some k ≥ 2. Denote
x′

1 = x1 + t , hi = hi(x1, xi+1, . . . , xn+1) and h̃i = hi(x
′
1, x

′
i+1, . . . , x

′
n+1). Now

F(g ∗ te1) = F

(
x′

1e1 ∗
(n+1∑

i=2

x′
iei

))
= x′

1e1 ∗
n+1∑
i=2

(x′
i + h̃i )ei .
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Since

F(g) = F

(
x1e1 ∗

(n+1∑
i=2

xiei

))
= x1e1 ∗

n+1∑
i=2

(xi + hi)ei,

by Corollary 2.2 we obtain

(−F(g)) ∗ F(g ∗ te1)

=
n+1∑
i=2

(−xi − hi)ei ∗ (te1) ∗
n+1∑
i=2

(x′
i + h̃i )ei

= (te1) ∗ (−te1) ∗
n+1∑
i=2

(−xi − hi)ei ∗ (te1) ∗
n+1∑
i=2

(x′
i + h̃i )ei

= (te1) ∗
n+1∑
i=2

x′′
i ei ∗

n+1∑
i=2

(x′
i + h̃i )ei

= (te1) ∗
n+1∑
i=2

(x′′
i + x′

i + h̃i )ei ,

where x′′
2 = −[x2 + h2], x′′

j = −[xj + hj ] + t[xj−1 + hj−1] + Hj for 3 ≤ j ≤
n + 1. Here Hj is a polynomial, and all its terms have degree at least 2 in t . Set
x̃i = x′′

i + x′
i + h̃i for 2 ≤ i ≤ n + 1. Observe that x̃2 = −[x2 + h2] + x2 + h̃2 =

h̃2 − h2 and for 3 ≤ i ≤ n + 1,

x̃i = x′′
i + x′

i + h̃i = −[xi + hi] + t[xi−1 + hi−1] + Hi + xi − txi−1 + Gi + h̃i

= h̃i − hi + thi−1 + Gi + Hi.

We continue the calculation by using Lemma 2.1:

(−F(g)) ∗ F(g ∗ te1)

= (te1) ∗
n+1∑
i=2

x̃iei = te1 + x̃2e2 +
n+1∑
i=3

(
x̃i + 1

2
t x̃i−1 + Ii

)
ei,

where Ii is a polynomial in t , and the x̃j and all its terms have degree at least 2
in t . So for 3 ≤ i ≤ n + 1, the coefficient of ei is

x̃i + 1

2
t x̃i−1 + Ii

= h̃i − hi + thi−1 + Gi + Hi

+ 1

2
t[h̃i−1 − hi−1 + thi−2 + Gi−1 + Hi−1] + Ii

= h̃i − hi + thi−1 + 1

2
t (h̃i−1 − hi−1) + Ji,

where Ji is a polynomial, and all its terms have degree at least 2 in t . Now the
fact that the tangent vector of the curve F(g ∗ te1) at t = 0 is horizontal implies
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that for all 3 ≤ i ≤ n + 1,

lim
t→0

x̃i + t x̃i−1/2 + Ii

t
= 0.

Hence,

lim
t→0

h̃i − hi + thi−1 + t (h̃i−1 − hi−1)/2 + Ji

t
= 0.

Clearly, limt→0 Ji/t = 0. Since limt→0 h̃i−1 = hi−1, we have limt→0 t (h̃i−1 −
hi−1)/t = 0. Hence, we have

−hi−1 = lim
t→0

h̃i − hi

t

= lim
t→0

hi(x
′
1, x

′
i+1, . . . , x

′
n+1) − hi(x1, xi+1, . . . , xn+1)

t
. (3.18)

For i = n + 1, we have

−hn(x1, xn+1) = lim
t→0

hn+1(x
′
1) − hn+1(x1)

t

= lim
t→0

hn+1(x1 + t) − hn+1(x1)

t
= h′

n+1(x1).

We have shown that −hn(x1, xn+1) = h′
n+1(x1) at every point x1e1 ∗∑n+1

i=2 xiei , where F is Pansu differentiable. Since F is Pansu differentiable
a.e., Fubini’s theorem implies that for a.e. x1 ∈ R, the equality −hn(x1, xn+1) =
h′

n+1(x1) holds for a.e. xn+1. The continuity of hn implies that −hn(x1, xn+1) =
h′

n+1(x1) for all xn+1. In particular, for a.e. x1 ∈ R, hn(x1, xn+1) is independent
of xn+1. Now the continuity of hn implies that for all x1, hn(x1, xn+1) is inde-
pendent of xn+1. This shows that hn(x1, xn+1) is a function of x1 only. Now an
induction argument on i using (3.18) implies that for all 2 ≤ i ≤ n + 1, hi is a
function of x1 only. �

3.4. Completing the Proof of Theorem 1.1

Here we finish the proof of Theorem 1.1.
We shall first show that every map of the form Fh is bi-Lipschitz and hence

quasi-conformal. For this part, we shall use the Carnot metric dc . Recall that dc

and d are bi-Lipschitz equivalent. Let h be M-Lipschitz, and F := Fh be defined
as in the Introduction. Clearly, F isometrically maps each left coset of G to itself.
Since hj (x) = − ∫ x

0 hj−1(s) ds, the calculation in the proof of Lemma 3.17 shows
that the curve F(g ∗ te1) is horizontal. Furthermore, the coefficients of e1 and e2

in −F(g) ∗ F(g ∗ te1) are t and x̃2 = h2(x1 + t) − h2(t) = h(x1 + t) − h(x1). So
the tangent vector of F(g ∗ te1) is e1 + h′(x1)e2 and has the length ≤ √

1 + M2.
It follows that for each horizontal line segment S contained in some left coset
of Re1, its image F(S) has the length at most

√
1 + M2 · length(S). Now let
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p,q ∈ Fn
R

be arbitrary. Then p ∈ x1e1 ∗ G and q ∈ x′
1e1 ∗ G for some x1, x

′
1 ∈ R.

If

dc(q,p ∗ G) ≥ 1

10
√

1 + M2
dc(p, q),

then

dc(F (q),F (p)) ≥ dc(F (q ∗ G),F (p ∗ G)) = dc(q ∗ G,p ∗ G) = dc(q,p ∗ G)

≥ 1

10
√

1 + M2
dc(p, q).

Now suppose that

dc(q,p ∗ G) ≤ 1

10
√

1 + M2
dc(p, q).

We may assume that x1 ≥ x′
1. In this case, the horizontal line segment S = {q ∗

te1|t ∈ [0, x1 − x′
1]} has the length |x1 − x′

1| and connects q and q ′ = q ∗ (x1 −
x′

1)e1 ∈ p ∗ G. It follows that F(S) has the length ≤ √
1 + M2 · |x1 − x′

1|. Hence,

dc(F (q),F (q ′)) ≤
√

1 + M2 · |x1 −x′
1| =

√
1 + M2 ·dc(q,p∗G) ≤ dc(p, q)/10.

On the other hand, dc(F (p),F (q ′)) = dc(p, q ′) ≥ (1−1/(10
√

1 + M2))dc(p, q).
By the triangle inequality we have

dc(F (p),F (q)) ≥ dc(F (p),F (q ′)) − dc(F (q ′),F (q))

≥
(

1 − 1

10
√

1 + M2
− 1

10

)
dc(p, q).

Hence, dc(F (p),F (q)) is bounded from below in terms of dc(p, q). Since F−1
h =

F−h, the same argument applied to F−1
h shows that dc(p, q) is bounded from

below in terms of dc(F (p),F (q)). Hence, F is bi-Lipschitz.
Conversely, let n ≥ 3, and let F : Fn

R
→ Fn

R
be a quasi-conformal map. We

have shown that after composing F with graded automorphisms and left transla-
tions, F has the following form:

F

(
x1e1 ∗

(n+1∑
i=2

xiei

))
= x1e1 ∗

n+1∑
i=2

{xi + hi(x1)}ei .

We next show that h2 is Lipschitz. Given x1, x
′
1 ∈ R, let p = x1e1, q = x′

1e1.
Then d(p,q) = |x1 − x′

1|. Since we have shown that F is bi-Lipschitz, we have
d(F (p),F (q)) ≤ M · d(p,q) = M · |x1 − x′

1|. On the other hand, the coefficient
of e2 in (−F(q)) ∗ F(p) is h2(x1) − h2(x

′
1). It follows that

|h2(x1) − h2(x
′
1)| ≤ d(0, (−F(q)) ∗ F(p)) = d(F (q),F (p)) ≤ M · |x1 − x′

1|.
Hence, h2 is Lipschitz. Now consider the quasi-conformal map F0 := F−1

h2
◦ F =

F−h2 ◦F . Its projection on the first layer is the identity map. That is, if π1 : Fn
R

→
V1 denotes the projection onto the first layer, and if g ∈ Fn

R
is such that π1(g) =

x1e1 + x2e2, then π1(F0(g)) = x1e1 + x2e2. It follows that the Pansu differential
of F0 is the identity isomorphism whenever it exists. Now Lemma 2.5 implies
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that F0 is a left translation. Hence, the original map F is a composition of left
translations, graded isomorphisms, and a map of the form Fh.

The proof of Theorem 1.1 is now complete.

4. The Complex Heisenberg Groups

In this section, we will provide evidence that quasi-conformal maps on the com-
plex Heisenberg groups are very special (Section 4.3). For this purpose, we
need to introduce differential forms associated with two-step Carnot groups (Sec-
tion 4.1) and discuss their relations with horizontal liftings (Section 4.2).

4.1. Differential Forms Associated with Two-Step Carnot Groups

Here we introduce differential forms associated with two-step Carnot groups.
Let g = V1 ⊕V2 be a two-step Carnot group. We identify the Lie group with its

Lie algebra via the exponential map. The Lie bracket restricted to the first layer
V1 gives rise to a skew symmetric bilinear map

ω : V1 × V1 → V2,

ω(X,Y ) = [X,Y ].
We view ω as a (constant) V2-valued differential 2-form on V1.

We next define a V2-valued differential 1-form α on V1 as follows. For each
X ∈ V1, we need to define a linear map αX : TXV1 → V2. We identify TXV1
with V1. Let αX : V1 → V2 be given by

αX(Y ) = [X,Y ] for Y ∈ V1.

It is convenient to write the differential forms α and ω in coordinates. Fix
a vector space basis {e1, . . . , em} for V1 and a vector space basis {η1, . . . , ηn}
for V2. Then a point X ∈ V1 can be written as X = x1e1 + x2e2 + · · ·+ xmem. For
X = x1e1 + x2e2 + · · · + xmem and Y = y1e1 + y2e2 + · · · + ymem, we obtain:

ω(X,Y ) = [X,Y ] =
∑
i,j

xiyj [ei, ej ].

It follows that

ω =
∑
i,j

[ei, ej ]dxi ∧ dxj = 2
∑
i<j

[ei, ej ]dxi ∧ dxj

and
α =

∑
i,j

xi[ei, ej ]dxj .

We notice that dα = ω.
Now we work out the differential forms associated to the complex Heisenberg

group H 1
C

= C3. Let X,Y,Z be the basis for the complex Lie algebra with bracket
relation [X,Y ] = Z. We choose a basis for the real Lie algebra {e1 = X,e2 =
iX, e3 = Y, e4 = iY, η1 = Z,η2 = iZ}. The nontrivial bracket relations for the
real Lie algebra are [e1, e3] = η1, [e1, e4] = η2, [e2, e3] = η2, and [e2, e4] = −η1.
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A point with coordinates (x1, x2, x3, x4) with respect to the real vector space basis
{e1, e2, e3, e4} has the coordinates (w1,w2) with respect to the complex vector
space basis {X,Y }, where w1 = x1 + ix2,w2 = x3 + ix4. Then dw1 = dx1 + i dx2

and dw2 = dx3 + i dx4. We obtain:

ω = 2[e1, e3]dx1 ∧ dx3 + 2[e1, e4]dx1 ∧ dx4

+ 2[e2, e3]dx2 ∧ dx3 + 2[e2, e4]dx2 ∧ dx4

= 2(dx1 ∧ dx3 − dx2 ∧ dx4)η1 + 2(dx1 ∧ dx4 + dx2 ∧ dx3)η2

= 2[(dx1 ∧ dx3 − dx2 ∧ dx4) + i(dx1 ∧ dx4 + dx2 ∧ dx3)]Z
= 2(dw1 ∧ dw2)Z.

Similarly,

α = [e1, e3]x1 dx3 + [e3, e1]x3 dx1 + [e1, e4]x1 dx4 + [e4, e1]x4 dx1

+ [e2, e3]x2 dx3 + [e3, e2]x3 dx2 + [e2, e4]x2 dx4 + [e4, e2]x4 dx2

= (x1 dx3 − x3 dx1 + x4 dx2 − x2 dx4)η1

+ (x1 dx4 − x4 dx1 + x2 dx3 − x3 dx2)η2

= [(x1 dx3 − x3 dx1 + x4 dx2 − x2 dx4)

+ i(x1 dx4 − x4 dx1 + x2 dx3 − x3 dx2)]Z
= (w1 dw2 − w2 dw1)Z.

4.2. Horizontal Lifts in Two-Step Carnot Groups

Here we give a criterion for a closed curve in V1 whose horizontal lifts to g are
also closed curves.

We first recall that a horizontal curve is completely determined by its initial
point and its first layer component. This result is well known.

Let c(t) = (c1(t), c2(t)) ∈ g = V1 ⊕V2 be an absolutely continuous curve in g.
For each t0, let γ (t) = L−c(t0)c(t) be the translated curve. Notice that γ (t0) = 0.
Using the BCH formula, we find that the tangent vector of γ at t = t0 is(

c′
1(t0), c

′
2(t0) − 1

2
[c1(t0), c

′
1(t0)]

)
.

It follows that the curve c(t) is horizontal if and only if

c′
2(t) = 1

2
[c1(t), c

′
1(t)] for a.e. t. (4.1)

Here is a criterion for a closed curve in V1 to have closed horizontal lifts to g.

Lemma 4.1. Let c1 : [0,1] → V1 be a closed Lipschitz curve. Then the following
conditions are equivalent:

(1) The horizontal lifts of c1 to g are closed curves;
(2)

∫
c1

α = 0;
(3)

∫
D

ω = 0 for any Lipschitz 2-disk D with boundary curve c1.
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Proof. (1) ⇐⇒ (2) Let c(t) = (c1(t), c2(t)) be a horizontal lift of c1. Then c

is closed if and only if c2(1) = c2(0). By (4.1) we have c′
2(t) = 1

2 [c1(t), c
′
1(t)]

for a.e. t ∈ [0,1]. Write c1(t) = ∑
i xi(t)ei . Then c′

1(t) = ∑
i x

′
i (t)ei and

[c1(t), c
′
1(t)] = ∑

i,j xi(t)x
′
j (t)[ei, ej ]. Now the fundamental theorem of calculus

gives

c2(1) − c2(0) =
∫ 1

0
c′

2(t) dt = 1

2

∫ 1

0
[c1(t), c

′
1(t)]dt

= 1

2

∫ 1

0

∑
i,j

xi(t)x
′
j (t)[ei, ej ]dt = 1

2

∫
c1

α.

Hence, (1) and (2) are equivalent.
Conditions (2) and (3) are equivalent due to Stokes’ theorem and the fact that

dα = ω. �

4.3. Quasi-conformal Maps on the Complex Heisenberg Groups

Here we provide evidence that quasi-conformal maps on the complex Heisenberg
groups are affine.

Recall that the nth complex Heisenberg group Hn
C

is the simply connected
Lie group whose Lie algebra hn

C
is a complex Lie algebra and has a complex

vector space basis Xi,Yi,Z (1 ≤ i ≤ n) with the only nontrivial bracket rela-
tions [Xi,Yi] = Z, 1 ≤ i ≤ n. Of course, it has more bracket relations as a real
Lie algebra coming from the fact that the bracket is complex linear: [Xj , iYj ] =
[iXj ,Yj ] = iZ, and [iXj , iYj ] = −Z. The first layer V1 of hn

C
is spanned by the

Xi,Yi , 1 ≤ i ≤ n, and has complex dimension 2n. The second layer V2 is spanned
by Z and has complex dimension 1. We identify both Hn

C
and its Lie algebra hn

C

with C2n+1. So V1 = C2n × {0} and V2 = {0} ×C. Let π1 : Hn
C

= C2n+1 → C2n

be the projection onto V1. A map F : C2n+1 → C2n+1 is called a lifting of a map
f : C2n →C2n if F(π−1

1 (p)) = π−1
1 (f (p)) for all p ∈ C2n.

Let τ : Hn
C

→ Hn
C

be defined by τ(w1, . . . , z) = (w̄1, . . . , z̄). It is easy to see
that τ is a graded isomorphism of Hn

C
.

Here is the first evidence for Conjecture 1.3.

Proposition 4.2. Let F : Hn
C

→ Hn
C

be a homeomorphism of the complex
Heisenberg group. If F is both a quasi-conformal map and a C2 diffeomorhism,
then, after possibly composing with τ , F is the lifting of a complex affine map.
Furthermore, F or F ◦ τ is a complex affine map.

Proof. Write F as F(w1, . . . ,w2n, z) = (F1, . . . ,F2n,F2n+1), where Fi = Fi(w1,

. . . ,w2n, z) is the ith component function of F . Since F is quasi-conformal
and Hn

C
is connected, F is power quasi-symmetric. This implies that the Fi

have polynomial growth. On the other hand, by the main result in [RR], F or
F ◦ τ is biholomorphic. We shall assume that F is biholomorphic. By a Liou-
ville type theorem we conclude that the Fi are actually polynomials. By sym-
metry, the component functions of F−1 are also polynomials. It follows that the
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horizontal Jacobian JH (F,x) of F is a polynomial (recall that the horizontal
Jacobian JH (F,x) is the determinant of the linear map dF(x)|V1 : V1 → V1).
The same is true for the horizontal Jacobian JH (F−1, y) of F−1. However, the
horizontal Jacobian of Id = F−1 ◦ F is 1 = JH (F,x) · JH (F−1,F (x)). So the
product of the polynomials JH (F,x) and JH (F−1,F (x)) is 1. This happens
only when both polynomials are constants. Therefore, JH (F,x) is a constant
function. This implies that F is bi-Lipschitz. It follows that there is a constant
L > 0 such that d(F (p),F (q)) ≤ L · d(p,q) for all p,q ∈ Hn

C
. Let p = 0 and

q = (w1, . . . ,w2n, z). We see that for each 1 ≤ i ≤ 2n,

|Fi(w1, . . . ,w2n, z) − Fi(0, . . . ,0)| ≤ L ·
{∑

i

|wi | + |z|1/2
}
.

Since Fi is a polynomial, we conclude that Fi is independent of z and is
affine in w1, . . . ,w2n. Hence, F is the lifting of a complex affine map f :=
(F1, . . . ,F2n) : C2n → C2n.

Let g be the linear part of f . Notice that g = dF(p)|V1 for any point p. In
other words, g lifts to the graded isomorphism dF(p) of Hn

C
. The translational

part of f of course lifts to a left translation Lq (for some q ∈ Hn
C

) in Hn
C

. Let F ′ =
Lq ◦dF(p). Notice that dF(x)|V1 = g = dF ′(x)|V1 for all x ∈ Hn

C
. It follows that

dF(x) = dF ′(x) for all x ∈ Hn
C

. By Lemma 2.5 there is some q ′ ∈ Hn
C

such that
F = Lq ′ ◦ F ′ = Lq ′ ◦ Lq ◦ dF(p), which is a complex affine map. �

Here is more evidence for Conjecture 1.3.

Proposition 4.3. Let F : H 1
C

→ H 1
C

be a quasi-conformal map. Suppose that F

is the lifting of a map f : C2 → C2 of the form f (w1,w2) = (w1,w2 + g(w1)),
where g : C → C is a map. Then there are constants a, b ∈ C such that g(w1) =
aw1 + b.

Proof. Notice that for each fixed w1 ∈ C, we have f ({w1} × C) = {w1} × C.
Since F is a lifting of the map f , it follows that F preserves each left coset of
{0} ×C2 in H 1

C
. Now the arguments in [SX] show that F is bi-Lipschitz.

Fix w2, z ∈C and let c : [0,1] → C× {w2} × {z} ⊂ H 1
C

be a closed C1 curve.
Then c is a horizontal curve in H 1

C
. Since F is bi-Lipschitz, F ◦ c is also a closed

horizontal curve in H 1
C

. The projection π1 ◦ F ◦ c of F ◦ c under π1 is a closed
Lipschitz curve in C2 that admits a closed horizontal lift. By Lemma 4.1 we have∫

π1◦F◦c
w1 dw2 − w2 dw1 = 0.

Since
∫
γ

w1 dw2 +w2 dw1 = 0 for any closed curve γ , we have
∫
π1◦F◦c w2 dw1 =

0. Notice that π1 ◦ F ◦ c(t) = (c(t),w2 + g(c(t))). So

0 =
∫

π1◦F◦c
w2 dw1 =

∫
c

[w2 + g(w1)]dw1 =
∫

c

g(w1) dw1.
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Hence,
∫
c
g(w1) dw1 = 0 for any closed C1 curve in the complex plane. Since

g is continuous (actually Lipschitz; see the next paragraph), Morera’s theorem
implies that g(w1) is holomorphic.

We next show that g is Lipschitz. Let w1,w
′
1 ∈C be arbitrary. Fix any w2, z ∈

C and let p = (w1,w2, z), q = (w′
1,w2, z + 1

2 (w1 − w′
1)w2). Then d(p,q) =

|w1 − w′
1|. Notice that π1 ◦ F(p) = f (w1,w2) = (w1,w2 + g(w1)) and π1 ◦

F(q) = f (w′
1,w2) = (w′

1,w2 + g(w′
1)). It follows that d(F (p),F (q)) ≥ |(w2 +

g(w1)) − (w2 + g(w′
1))| = |g(w1) − g(w′

1)|. By the first paragraph, F is M-bi-
Lipschitz for some M > 0. Hence,

|g(w1) − g(w′
1)| ≤ d(F (p),F (q)) ≤ M · d(p,q) = M · |w1 − w′

1|.
So g is Lipschitz. Since g is also holomorphic, it has to be affine. �

5. Quasi-conformal Maps on the Complex Model Filiform Groups

In this section, we show that quasi-conformal maps on the higher complex model
Filiform groups are affine. The proof is mostly similar to the real case. We will
only indicate the difference in the proofs.

5.1. Graded Automorphisms of fn
C

In this subsection, we identify the graded automorphisms of fn
C

.
Let Fn

C
be the n-step complex model Filiform group. Recall that its Lie algebra

fn
C

is a complex Lie algebra with basis {e1, e2, . . . , en+1} and the only nontrivial
bracket relations are [e1, ej ] = ej+1 for 2 ≤ j ≤ n. Viewed as a real Lie algebra,
fn
C

has the additional bracket relations [ie1, ej ] = iej+1 = [e1, iej ], [ie1, iej ] =
−ej+1. The Lie algebra fn

C
decomposes as fn

C
= V1 ⊕ V2 ⊕ · · · ⊕ Vn, where V1 =

Ce1 ⊕Ce2 is the first layer, and Vj = Cej+1, 2 ≤ j ≤ n, is the j th layer.
The proof of the following lemma is similar to that of Lemma 3.1.

Lemma 5.1. Let fn
C

be the n-step complex model Filiform algebra. Assume that
n ≥ 3. Let X = ae1 + be2 ∈ V1 be a nonzero element in the first layer. Then
rank(X) = 2 if a = 0 and rank(X) > 2 otherwise.

Hence, we have the following.

Lemma 5.2. Suppose n ≥ 3. Then h(Ce2) = Ce2 for every graded isomorphism
h : fn

C
→ fn

C
.

A graded isomorphism h : fn
C

→ fn
C

is in particular an isomorphism between real
vector spaces. In general, h needs not to be an isomorphism of the complex vector
spaces. Here is an example. Define τ : fn

C
→ fn

C
by

τ

(∑
zj ej

)
=

∑
z̄j ej .

It is easy to check that τ is a graded isomorphism of fn
C

. Notice that τ is complex
antilinear, not complex linear.
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Lemma 5.3. Let h : fn
C

→ fn
C

be a graded isomorphism. Then h is either complex
linear or complex antilinear.

Proof. The map h satisfies [hv,hw] = h[v,w] for all v,w ∈ V1. In particu-
lar, we have [h(ie1), h(ie2)] = h([ie1, ie2]) = −h([e1, e2]), [h(ie1), h(e2)] =
h([ie1, e2]) = h([e1, ie2]) = [h(e1), h(ie2)], and [h(e1), h(ie1)] = h([e1,

ie1]) = 0.
By Lemma 5.2 we know that h(Ce2) = Ce2. Hence, there are 0 �= w1,w2 ∈ C

such that

h(e2) = w1e2,

h(ie2) = w2e2.

There are also constants a, b, c, d ∈C such that

h(e1) = ae1 + be2,

h(ie1) = ce1 + de2.

The equation [h(ie1), h(e2)] = [h(e1), h(ie2)] yields cw1 = aw2. Similarly,
[h(ie1), h(ie2)] = −[h(e1), h(e2)] yields cw2 = −aw1, and [h(e1), h(ie1)] = 0
yields ad − bc = 0. It follows that c(w2

1 + w2
2) = 0. Assume that c = 0; then

ad = 0. Since h is an isomorphism, d �= 0. So a = 0, which implies that h maps
V1 into Ce2, contradicting the fact that h is an isomorphism. Hence, c �= 0. It
follows that w2 = iw1 or w2 = −iw1.

If w2 = iw1, then c = ia and d = ib. In this case, h|V1 is complex linear.
Since the bracket is also complex linear, an induction argument shows that h|Vj

is
complex linear for all j . If w2 = −iw1, then c = −ia and d = −ib. In this case,
h|V1 is complex antilinear. A similar argument also shows that h|Vj

is complex
antilinear for all j . �

Lemma 5.4. A real linear map h : fn
C

→ fn
C

is a graded isomorphism if and only
if h has one of the following two forms:

(1) h = ha1,a2,b for some a1, a2 ∈ C \ {0} and b ∈ C; in this case, h is complex
linear;

(2) h = τ ◦ha1,a2,b for some a1, a2 ∈ C\ {0} and b ∈ C; in this case, h is complex
antilinear.

Proof. One direction is clear. So we start with a graded isomorphism h : fn
C

→ fn
C

.
By Lemma 5.3 h is complex linear or complex antilinear. If h is complex linear,
then the proof of Lemma 3.3 shows that h = ha1,a2,b for some a1, a2 ∈ C \ {0}
and b ∈ C. If h is complex antilinear, then τ ◦ h is a graded isomorphism and is
complex linear. Hence, τ ◦ h = ha1,a2,b for some a1, a2 ∈ C \ {0} and b ∈ C. It
follows that h = τ ◦ ha1,a2,b . �

5.2. Proof of Theorem 1.2

In this subsection, we show that each quasi-conformal map of Fn
C

(n ≥ 3)
is a composition of left translations and graded automorphisms. Hence, by
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Lemma 5.4, after possibly taking complex conjugation (that is, composing with
τ ), each quasi-conformal map of Fn

C
(n ≥ 3) is biholomorphic.

Let n ≥ 3, and let F : Fn
C

→ Fn
C

be a quasi-conformal map. Then F is a quasi-
symmetric map and sends left cosets of Ce2 to left cosets of Ce2. For a.e. left
coset L of Ce2, the map F is Pansu differentiable a.e. on L. For any point x ∈ Fn

C

where F is Pansu differentiable, let aj (x), b(x) ∈ C, 1 ≤ j ≤ n + 1, be such
that dF(x)(e1) = a1(x)e1 + b(x)e2, dF(x)(ej ) = aj (x)ej (2 ≤ j ≤ n + 1). Then
aj (x) = (a1(x))j−2a2(x) for 2 ≤ j ≤ n + 1. If dF(x) is complex linear, then
dF(x)(zej ) = z · dF(x)(ej ) for any z ∈ C. If dF(x) is complex antilinear, then
dF(x)(zej ) = z̄ · dF(x)(ej ) for any z ∈C.

Lemma 5.5. Let L be a good left coset of Ce2. Then there is a constant aL ∈
C \ {0} such that an+1(x) = aL for a.e. x ∈ L. Furthermore, if x, y ∈ L are two
good points, then either both dF(x) and dF(y) are complex linear, or both are
complex antilinear.

Proof. The proof of the first statement is the same as in the proof of Lemma 3.7
with R replaced by C. For the second statement, if dF(x) is complex linear and
dF(y) is complex antilinear, then use the left coset irnen+1 ∗L instead of rnen+1 ∗
L and repeat the argument to get a contradiction. For this, one uses the fact that
dF(x)(irnen+1) = irnan+1(x)en+1 and dF(y)(irnen+1) = −irnan+1(y)en+1 =
−irnan+1(x)en+1. �

Now statements similar to Lemma 3.8 through Lemma 3.13 all hold, and the
proofs are the same. In particular, F is bi-Lipschitz, and if we denote by G =
Ce2 ⊕· · ·⊕Cen+1, then F sends left cosets of G to left cosets of G. Hence, there
is a homeomorphism f : C → C such that F(x1e1 ∗ G) = f (x1)e1 ∗ G. For a.e.
left coset L of Ce2, there exists a constant a2,L ∈ C \ {0} such that a2(x) = a2,L

for a.e. x ∈ L. Furthermore, for any g ∈ L, either F(g ∗ te2) = F(g) ∗ a2,Lte2 for
all t ∈C, or F(g ∗ te2) = F(g) ∗ a2,Lt̄e2 for all t ∈ C.

Lemma 5.6. There is a constant a2 ∈ C \ {0} such that either F(g ∗ te2) = F(g)∗
a2te2 for all g ∈ Fn

C
or F(g ∗ te2) = F(g) ∗ a2 t̄ e2 for all g ∈ Fn

C
.

Proof. Let L,L′ be two good left cosets of Ce2. We run the argument in the proof
of Lemma 3.14 for t ∈ R to show a2,L = a2,L′ . If F(g ∗ te2) = F(g) ∗ a2,Lte2 on
L and F(g ∗ te2) = F(g) ∗ a2,L′ t̄ e2 on L′, then we get a contradiction by using
t ∈ iR. Since F is a homeomorphism and a.e. left coset L of Ce2 is a good left
coset, the lemma follows by continuity. �

After composing F with a graded isomorphism, we may assume that a2 = 1 and
F(g ∗ te2) = F(g)∗ te2 for all g ∈ Fn

C
. So the Pansu differential is complex linear

whenever it exists.
When the Pansu differential is complex linear, the derivatives that appear in

the proofs in Section 3 can be taken to be complex derivatives:

(1) proof of Lemmas 3.4 and 3.13, a1(p) = f ′(x1) and a2(p) = ∂f2(x)/∂x2;
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(2) proof of Lemma 3.15, ∂fj (x)/∂xj = (f ′(x1))
j−2; here both are complex

derivatives;
(3) proof of Lemma 3.17, −hn(x1, xn+1) = h′

n+1(x1).

Notice that the left cosets of G are isometric to Cn with the metric D((zi),

(wi)) = ∑
i |zi − wi |1/i . By the proof in Section 15 of [T] each quasi-symmetric

map h : (Cn,D) → (Cn,D) preserves the foliation consisting of affine subspaces
parallel to Ci × {0} for each 1 ≤ i ≤ n − 1. An analogue of Lemma 3.15 holds,
and so for a.e. x1 ∈C, F has the following form:

F

(
x1e1 ∗

(n+1∑
i=2

xiei

))

= f (x1)e1 ∗
n+1∑
i=2

{(f ′(x1))
i−2xi + hi(x1, xi+1, . . . , xn+1)}ei .

We next show the following.

Lemma 5.7. The function f is complex affine.

Proof. Recall that f : C → C is a homeomorphism such that F(x1e1 ∗ G) =
f (x1)e1 ∗ G. This implies that at any point p ∈ Fn

C
where F is Pansu differen-

tiable, a1(p) = f ′(x1). Here x1 is the coefficient of e1 in the expression for p, and
f ′(x1) is the complex derivative. Hence, at a.e. x1 ∈ C, f has nonzero complex
derivative. In particular, f : C → C is a 1-quasi-conformal map. It follows that
f is a similarity. Since f has complex derivative, the linear part of f cannot be a
reflection, and so f must be a complex affine map. �

After composing F with a graded isomorphism and a left translation, we may
assume that f (x1) = x1. So F has the following form:

F

(
x1e1 ∗

(n+1∑
i=2

xiei

))
= x1e1 ∗

n+1∑
i=2

{xi + hi(x1, xi+1, . . . , xn+1)}ei .

Now the proof of Lemma 3.17 shows that hi is a function of x1 only. We shall
show that hi is a holomorphic function of x1.

Let H3 = Ce4 ⊕ · · · ⊕ Cen+1. Then H3 is a closed normal subgroup of Fn
C

,
and Fn

C
/H3 is isomorphic to H 1

C
(the first complex Heisenberg group). It is easy

to see from the expression of F that F maps left cosets of H3 to left cosets of H3.
Hence, F induces a map F : Fn

C
/H3 = H 1

C
→ H 1

C
= Fn

C
/H3, and F admits the

following expression:

F(x1e1 ∗ (x2e2 + x3e3)) = x1e1 ∗ [(x2 + h2(x1))e2 + (x3 + h3(x1))e3].
It follows that F is the lifting of the map f : C2 → C2, f (x1, x2) = (x1, x2 +
h2(x1)). Here we identified the first layer V1 of H 1

C
with C2 via x1e1 + x2e2 →

(x1, x2).
Let π : Fn

C
→ Fn

C
/H3 = H 1

C
be the quotient map. Since H3 is normal in Fn

C
,

and the quotient group Fn
C
/H3 is also Carnot, it is not hard to check that for
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any p,q ∈ Fn
C
/H3 = H 1

C
and any x ∈ π−1(p), we have dc(π

−1(p),π−1(q)) =
dc(x,π−1(q)) = dc(p, q). Since F is quasi-symmetric, it now follows from the
following lemma of Tyson that F : Fn

C
/H3 = H 1

C
→ H 1

C
= Fn

C
/H3 is also quasi-

symmetric.

Lemma 5.8 [T, Lemma 15.9]. Let g : X1 → X2 be an η-quasi-symmetry, and
A,B,C ⊂ X1. If d(A,B) ≤ td(A,C) for some t ≥ 0, then there is a ∈ A such
that

d(g(A), g(B)) ≤ η(t)d(g(a), g(C)).

Now we apply Proposition 4.3 to F to conclude that h2(x1) is a complex affine
function of x1. So there are constants a, b ∈ C such that h2(x1) = ax1 + b. Af-
ter composing F with the map F−h2 (see the Introduction), we may assume that
h2(x1) = 0. It follows that the Pansu differential of F is a.e. the identity isomor-
phism. Lemma 2.5 implies that it is a left translation. Notice that Fh2 is a composi-
tion of a graded isomorphism and a left translation. Hence, every quasi-conformal
map of Fn

C
is a finite composition of left translations and graded isomorphisms.

This finishes the proof of Theorem 1.2.
Notice that left translations in Fn

C
are polynomial maps with polynomial in-

verse (this follows from the BCH formula). By Lemma 5.4 each graded isomor-
phism is complex linear after possibly composing with τ (taking complex conju-
gation). Hence, Theorem 1.2 implies that for n ≥ 3, every quasi-conformal map of
Fn
C

is a polynomial map with polynomial inverse after possibly composing with τ .
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