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Rank Gradients of Infinite Cyclic Covers of 3-Manifolds

JasoN DEBLOIS, STEFAN FRIEDL, & STEFANO VIDUSSI

ABSTRACT. Given a 3-manifold M with no spherical boundary compo-
nents, and a primitive class ¢ € H 1 (M; Z), we show that the following
are equivalent:

(1) ¢ is a fibered class,

(2) the rank gradient of (M, ¢) is zero,

(3) the Heegaard gradient of (M, ¢) is zero.

1. Introduction

A directed 3-manifold is a pair (M, ¢) where M is a compact, orientable, con-
nected 3-manifold with toroidal or empty boundary, and ¢ € H'(M;Z) =
Hom(w (M), Z) is a primitive class, that is, ¢ viewed as a homomorphism
w1 (M) — Z is an epimorphism. We say that a directed 3-manifold (M, ¢) fibers
over S! if there exists a fibration p : M — S' such that the induced map p :
(M) — m1(S) = Z coincides with ¢. We refer to such ¢ as a fibered class.

It is well known that the pair (771 (M), ¢ : 71 (M) — Z) determines whether ¢
is fibered or not. Indeed, it follows from Stallings’ theorem [ ] (together with
the resolution of the Poincaré conjecture) that ¢ is a fibered class if and only if
Ker(¢ : w1 (M) — 7Z) is finitely generated.

Stallings’ theorem can be generalized in various directions (see e.g. [
Theorem 5.2], [ ; ], and [ ]). Our main result gives a new
fibering criterion, which is also a strengthening of Stallings’ theorem. In order to
state our result, we need the notion of rank gradient, which was first introduced
by Lackenby [ ]. Given a finitely generated group m, we denote by rk(;r) the
rank of m, that is, the minimal number of generators of 7. If (M, ¢) is a directed
3-manifold, then we write

71, = Ker(ry (M) > 72— 7,),
and we refer to
1
rg(M, ¢) :=liminf — rk(m,)
n—oo n

as the rank gradient of (M, ¢). (In the notation of [ ] this is the rank gradient
of (mi M, {mx}).)
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If ¢ is a fibered class, then ¢ is dual to a fiber S of a fibration M — St (a con-
nected surface), and it is straightforward to show that rk(z,) < 1 4 genus(S) for
any n (see e.g. Lemma 2.3). In particular, rg(M, ¢) = 0.

Our main result now says that the converse to this statement holds. More pre-
cisely, we will prove the following theorem.

THEOREM 1.1. Let (M, ¢) be a directed 3-manifold. Then the following three
statements are equivalent:

(1) the class ¢ is fibered,
(2) the sequence tk(my,), n € N, is bounded,

(3) rg(M, $) =0.

It follows from the discussion preceding the theorem that it suffices to prove that
(3) implies (1). In fact, we will present two quite different approaches to the proof
of this statement.

The first, discussed in Section 3, uses tools from geometric group theory:
acylindrical accessibility and the finite height property. It applies only to closed
hyperbolic manifolds but has the advantage of generalizing more readily to the
broader setting of hyperbolic groups, where the separability results used for the
general case are not currently available. Moreover, with more work, this approach
yields explicit lower bounds on the rank gradient. In the sequel the first author

[ ] refines Theorem in this way for M closed and hyperbolic, bounding
rg(M, ¢) below in terms of the Thurston norm of a nonfibered class ¢.
The second proof, discussed in Section 4, uses the recent proof (see [ D

that given any nonfibered directed 3-manifold (M, ¢), there exists a twisted Alex-
ander polynomial that vanishes. This proof in turn relies on the recent results of
Wise [ ; ; ].

To describe our second result, we need to introduce the notion of Heegard
gradient. A Heegaard surface for a compact 3-manifold M is an embedded sep-
arating surface S C M such that the two components of M cut along S are com-
pression bodies. The minimal genus of a Heegaard surface is called the Heegaard
genus h(M) of M. Given a class ¢ € H'(M; Z) = Hom(rr{ (M), 7)), we can then
define the Heegaard gradient hg(M, ¢) in a similar fashion to the rank gradient.
We refer to Section for more details. In that section we will also see that the
subsequent theorem is a straightforward consequence of Theorem

THEOREM 1.2. Let (M, ¢) be a directed 3-manifold. Then the following three
statements are equivalent:

(1) ¢ is fibered,

(2) the sequence h(M,), n € N, is bounded,

(3) hg(M,¢)=0.

This theorem was proved by Lackenby [ Theorem 1.11] for closed hyper-
bolic 3-manifolds. To the best of our knowledge, the general case has not been
proved before. The equivalence presented in the abstract immediately follows
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from Theorems 1.1 and 1.2 if M has empty or toroidal boundary. In the general
case see Lemma

The equivalence between vanishing of rank and Heegaard gradients holds with
no restriction on boundaries. This is proved at the end of Section 4.

THEOREM 1.3. For a compact, orientable, connected 3-manifold M and a primi-
tive class ¢ € HY\(M:7), rg(M, ¢) =0 if and only if hg(M, ¢) = 0.

We will now formulate the last theorem of the paper. Recall that a group 7 is
normally generated by a subset S C 7 if 7 is the smallest normal subgroup of &
that contains S. We define the normal rank n(;) of  to be the smallest cardinality
of a normal generating set of 7. The first part of this theorem can also be viewed
as a strengthening of Stallings’ fibering theorem.

THEOREM 1.4. (1) If (M, @) is a nonfibered directed 3-manifold, then Ker(¢)
admits a finite index subgroup with infinite normal rank.

(2) There exists a nonfibered directed 3-manifold (M, ¢) such that Ker(¢) has
finite normal rank.

ConvENTION. Unless it says specifically otherwise, all groups are assumed to
be finitely generated, all manifolds are assumed to be orientable, connected, and
compact, and all 3-manifolds are assumed to have empty or toroidal boundary.

2. The Rank Gradient and the Heegaard Gradient
2.1. The Rank Gradient

We start out with the following well-known lemma.

LEMMA 2.1. Let G be a finitely generated group, and let H C G be a finite index
subgroup. Then

tk(H) <[G:H]-(k(G) -1 +1<[G:H] 1k(G). (1)

Proof. Leta : F — G be an epimorphism where F is a free group of rank rk(G).
Note that «~'(H) is a subgroup of F of index d :=[G : H]. It follows from
elementary properties of the free group that « ! (H) is a free group of rank

d-(k(F)—1)=[G: H]- k(G — 1)).

Since « restricts to an epimorphism from the free group ! (H) onto H, it now
follows that

tk(H) <[G: H]- (tk(G) — 1) + 1 < [G : H] - k(G). O

We now let 7 be a finitely generated group and let ¢ : m — Z be a homomor-
phism. Then we write

7, = Ker(mr (M) 4, Z— Zy),
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and we refer to
1
rg(m, ¢) := liminf — rk(s,,)
n—oo n

as the rank gradient of (7, ¢). It is a consequence of (1) that this limit does indeed
exist. (Note that Lackenby defines the rank gradient using %(rk(nn) — 1) instead
of % rk(sry,), but it is clear that this gives rise to the same limit.)

The following lemma is now an immediate consequence of (1) and the defini-
tions.

LEMMA 2.2. Let w be a finitely generated group, and let ¢ : w — Z be a homo-
morphism.
(1) Ifa : T — 7 is an epimorphism, then
1g(l, ¢ o) > 1g(7, @).
(2) If T C & is a finite index subgroup, then

g(l', @) <[ :T]-rg(m, ¢).

The following two lemmas show that Theorem is indeed a strengthening of
Stallings’ fibering theorem.

LEMMA 2.3. Let m be a finitely generated group, and let ¢ : m — 7 be an epi-
morphism. If Ker(¢) is generated by k elements, then for any n € N, we have
tk(m,) <k + 1; in particular, rg(rw, ¢) = 0.

Proof. We write K = Ker(¢). Note that the epimorphism ¢ : 7 — Z = (t) splits
since (¢) is in particular a free group. We can thus view 7 as a semidirect product
7 = (t) x K. Under this identification, we furthermore have that 7, = (t") x K.
In particular, if {gq,..., g¢} is a generating set for K, then {t", g1,..., gk} is a
generating set for ;. (]

LEMMA 2.4. There exist a finitely presented group w and an epimorphism ¢ : w —
Z such that Ker(¢) is infinitely generated but such that tk(;r,) <2 for all n.

Proof. We consider the semidirect product
= (t) X Z[l]
2
where 1" acts on Z[1/2] by multiplication by 2" together with the epimorphism

¢ : m — Z defined by ¢ (") = n and ¢(a) =0 for a € Z[1/2]. It is clear that
Ker(¢) = Z[1/2] is not finitely generated. On the other hand, it is straightforward

to see that
1
Ty = <ln> X Z[Ei|

is generated by ¢ and 1 € Z[1/2]. We thus showed that tk(,,) <2 foralln. O

This raises the following question.
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QUESTION 2.5. Do there exist a finitely presented group 7 and a homomor-
phism ¢ : m — Z such that rg(;r, ¢) = 0 but such that the sequence k(i) is
unbounded?

We conclude this section with the following elementary lemma.

LEMMA 2.6. Let F be a free group on k generators, and ¢ : F — 7 an epimor-
phism. Then

rg(F,¢) =k — 1.
The statement of the lemma already appears in [ ], but for the reader’s conve-
nience, we provide a proof.
Proof of Lemma 2.6. 1t is well known that any subgroup of F of index » is a free

group on n(k — 1) + 1 generators. (This follows, for example, for an elementary
argument using Euler characteristics of finite covers of graphs.) The lemma is
now an immediate consequence of this observation. O

2.2. The Heegaard Gradient

We now recall several basic definitions and facts on Heegaard splittings of 3-
manifolds. We refer to [Jo] and [ ] for more details. We start out with several
definitions:

(1) A compression body H 1is the result of gluing disjoint 2-handles to ¥ x [0, 1],
where X is a closed surface, along ¥ x 1 and then capping off some spherical
boundary components with 3-balls. We then write 04 H =¥ x 0 and 0_H =
0H \ 0+ H. Note that a compression body with 0_ H = is a handlebody.

(2) A Heegaard surface for a 3-manifold M is an embedded separating surface
S C M such the two components of M cut along S are compression bodies
Hj and Hy with 0+ Hy = ¥ = 04 H>.

Note that every compact 3-manifold admits a Heegaard surface (see e.g. [

Section 2]). In the following we refer to the minimal genus of a Heegaard surface

as the Heegaard genus h(M) of M.

Furthermore, given a directed 3-manifold (M, ¢) with corresponding cyclic
covers M,,, n € N, we define, following [ 1, the Heegaard gradient of (M, ¢)
to be

1
hg(M, ¢) :=liminf —h(M,).
n—oo n

Note thatif p : M — M is a k-fold cover, then the preimage of a Heegaard surface
is again a Heegaard surface; it now follows easily that h(A7I ) <k-h(M). We
therefore see in particular that the Heegaard gradient is well defined.

We summarize a few key properties of the Heegaard genus in a lemma.

LEMMA 2.7. Let M be a 3-manifold. Then the following hold:
(1)
h(M)  if M is closed,

k(my(M)) < {Zh(M) otherwise.
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() If p € H'(M; Z) is a primitive class, then

hg(M)  if M is closed,
rg(m1 (M), ¢) < {Zhg(M) otherwise.

(3) Ifp € H'(M; Z) is a primitive fibered class, then
h(M) <2 - genus of the fiber + 1.

REMARK. (1) Note that there exist closed 3-manifolds with rk(w{ (M)) < h(M).
In fact, there exist examples of such 3-manifolds that are Seifert fibered
[ ], graph manifolds [ ; ], and hyperbolic [ ]. On the other
hand, Souto [ ] and Namazi and Souto [ ] showed that rk(r(N)) =
h(N) for hyperbolic 3-manifolds that are “sufficiently complicated” in a certain
sense.

(2) To the best of our knowledge, it is not known whether there exist closed
3-manifold pairs (M, ¢) with rg(M, ¢) < hg(M, ¢).

(3) Note that Theorem is an immediate consequence of Theorem and
Lemma

Proof of Lemma 2.7. First note that if M is a closed 3-manifold and ¥ is a Hee-
gaard surface of genus g, then the compression bodies obtained by cutting M
along ¥ are in fact handlebodies. We can thus view M as the result of gluing
together two handlebodies Hy, H» with g 1-handles each. In particular, we can
build M out of H; by adding g 2-handles and one 3-handle. Since 71 (H}) is gen-
erated by g elements, it follows that rk(7;(M)) < g. This evidently implies (1)
and (2) for closed 3-manifolds.

If M is any 3-manifold and ¥ is a Heegaard surface of genus g, then we can
view M as the result of gluing 2-handles and 3-handles to ¥ x [—1, 1]. It follows
that r1 (M) is generated by a generating set for 71 (X), that is, tk(mr (M)) < 2g.
This evidently implies (1) and (2) for 3-manifolds that are not closed.

We now turn to the proof of (3). Suppose that X is the fiber of a fibration M —
S'. We can then identify M with (X x [0, 1])/(x,0) ~ (f(x), 1) for some self-
diffeomorphism f of ¥. If M is a closed 3-manifold, then we pick two disjoint
disks D and D, on X. Then

(Z\(D1UDy) x0U(X\ (D1 UDy)) x %UaDl X [0, %:|U3D2X [%,1:|

is a surface of genus 2g + 1, and it is in fact a Heegaard surface for M: it cuts M
into

1 1
(X —int D) x [0, §i| U (int Dy) X |:5, 1] and
. 1 ) 1
(X —int D) x |:§, 11| U (int D7) X |:O, §:|,

each the union of a 1-handle with a handlebody of the form (bounded surface) x
(interval).
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If M is not closed, then X has nontrivial boundary, and M has toroidal bound-
ary 02 x [0, 1]/(x,0) ~ (f(x), 1). Let n be a closed, f-invariant tubular neigh-
borhood of 9% in X, so N = (nn x [0, 1])/(x,0) ~ (f(x), 1) is a tubular neigh-
borhood of M in M, and let D; be a disk in X disjoint from 7. Taking H; =
(X —intDy) x [0,1/2] U N, we claim that the frontier S of H; in M is a Hee-
gaard surface.

A maximal collection of disjoint, nonparallel, nonboundary-parallel arcs em-
bedded in ¥ — (int D LIn) that each begin and end on d D; gives rise, by crossing
with [0, %], to a collection D of disjoint compressing disks for S in H; with the
property that H; — (SU|J{D € D}) retracts onto d M. Thus, H; is a compression
body. It is easy to see that the other side H> of S in M is a handlebody of the form
described in the closed case, and the claim follows. O

3. Proof of the Main Theorem for Closed Hyperbolic 3-Manifolds

Given a finitely generated group I' acting on a tree 7', an “accessibility” principle
relates the combinatorics of I' \ T to the structure of I". Acylindrical accessibility,
introduced by Sela [ ], does not require prior knowledge of the structure of
vertex or edge stabilizers, but only that their action on T is “nice enough”:

DEeFINITION. The action I' x T — T is k-acylindrical if no g € ' — {1} fixes a
segment of length greater than k and k-cylindrical otherwise.

We will later on make use of the following theorem of R. Weidmann.

THEOREM 3.1 (Weidmann [ 1). Let T" be a noncyclic, freely indecomposable,
finitely generated group, and I’ x T — T a k-acylindrical, minimal (i.e. leaving
no proper subtree invariant) action. Then I' \ T has at most 1 + 2k(k(I") — 1)
vertices.

We will use the height of edge stabilizers, a notion from [ ], to bound
cylindricity of the action under consideration.

DEerINITION. The height of an infinite subgroup A in I' is k if there is a collec-
tion of k essentially distinct conjugates of A such that the intersection of all the
elements of the collection is infinite and k is maximal possible. (The conjugate of
A by y is essentially distinct from the conjugate by ¥’ if Ay # Ay’.)

LeEMMA 3.2. Suppose that a torsion-free group T acts on a tree T on the left,
transitively on edges. If the stabilizer A of an edge ey has height k in T, then the
action of T on T is k-acylindrical.

Proof. Because the action is transitive on edges, each edge stabilizer is conjugate
to A, and the conjugates corresponding to distinct edges are essentially distinct:
for an edge e # ep, the stabilizer of e in I' is y "' Ay, where y € I' satisfies
y - e = eg. Every element Ly of Ay thus also satisfies (Ay) - e = ep.
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Now suppose that y € I' — {1} fixes an edge arc of length n. Then y, hence
also the subgroup (y) that it generates, is in the intersection of the conjugates
corresponding to the edges of this arc. Since I is torsion-free, (y) is infinite, and
A has height at least n. But A has height k, so it follows that ' x T — T is
k-acylindrical. O

Let (M, ¢) be a directed 3-manifold. We pick a properly embedded oriented sur-
face S in M dual to ¢ of minimal complexity. (Here, recall that the complexity
of a surface S with connected components S1 U --- U S is defined as x_(S) =
Zle max{—x (S;), 0}.) We also pick a tubular neighborhood § x [—1, 1] of §
inM.

We view S as the topological space underlying a graph G, with a single vertex
v and a single edge e. Note that there exists a canonical continuous map p : M —
G given by sending S x (—1,1) = (—1,1) — e and by sending every point in
M\ S x (—1,1) to v. The induced map ps : 711 (M) — w1(G) = Z is precisely
the map given by ¢ € H'(M; Z) = Hom(wr (M), 7).

We denote by Gy the graph that has one vertex for each component of M \
S x (—1,1) and one edge for each component of § x [—1, 1] with the obvious
attaching maps. Note that there exist canonical maps ¢ : M — Ggp and r : Gy —
G that make the following diagram commute:

M
N
Gy—————=G.

It is clear from the definitions that all the maps induce epimorphisms on funda-
mental groups. In particular, Gy is not a tree, and hence its Euler characteristic
x (Go) is nonpositive. If x(Gg) is negative, then the conclusion of Theorem
requires no machinery.

LEmMMA 3.3. Let (M, ¢) be a directed 3-manifold. If the graph Gq has x (Go) <O,
then 1g(M, ¢) = —x (Go).

Proof. Recall that g, : w1 (M) — m1(Gyp) is an epimorphism; it thus follows from
Lemma that

1g8(M, ¢) = 1g(1(Go), r+)-

The lemma is now an immediate consequence of Lemma 2.6. O

Recall that G is the underlying graph of a graph-of-spaces decomposition of M,
with vertex spaces the components of M \ § x (—1, 1) and edge spaces those
of S. (We use the perspective on graphs of groups and spaces from [ ]; for
definitions, see p. 155 there. See also [ ] and [ 1.) This has an associated
left action of 7 on a tree T, without involutions, such that each vertex stabilizer
is conjugate to 1 (M) for some component X of M — § x (—1, 1) and each edge
stabilizer to 1 (Sp) for some component Sy of S (see [ pp. 166-167]).
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Using this, we can now prove the nontrivial implication of Theorem for
closed hyperbolic 3-manifolds.

THEOREM 3.4. Let (M, ¢) be a directed 3-manifold where M is a closed hyper-
bolic 3-manifold. If ¢ is nonfibered, then rg(M, ¢) > 0.

Proof. Let (M, ¢) be a directed 3-manifold where M is a closed hyperbolic 3-
manifold and where ¢ is nonfibered. We write w = 71 (M), and we pick a surface
S of minimal complexity dual to ¢. Since M is hyperbolic, we can and will as-
sume that no component of S is a sphere or a torus. We denote by G the graph
defined previously.

On account of Lemma we may also assume that the graph G has Euler
characteristic 0. We will show below that S is connected and nonseparating, that
is, Go = G. Assuming this for the moment, let us prove the result.

Since § is not a fiber surface, 71 (S) is a quasi-Fuchsian subgroup of  (see e.g.
[ 1). Therefore, by the main theorem of [ ], m1(S) has finite height
in 7 (cf. Corollary on [ p. 322]), so by Lemma 3.2 the 7t (M)-action on
the tree determined by S is k-acylindrical for some k € N. This action has quotient
G, with one edge and vertex, so in particular it is minimal. Since M is hyperbolic
and closed, 7 is also noncyclic, freely indecomposable, and finitely generated.

For each n € N, m,, also acts on T, with quotient a graph G, with n edges and
vertices. The action of m,, inherits k-acylindricity from that of 7, and since m,, has
finite index in 7, its action is also minimal. It now follows from Theorem that

—1
k() > o + 1. )
2k

We thus see that rg(M, ¢) > 0.

We return to showing that Gy = G, assuming that x (Go) = 0. Since G has
Euler characteristic zero, it is homotopy equivalent to its minimal-length closed
edge path, call it y. Each edge of G that is not in y is contained in a subtree T
of Gy that intersects y at a single vertex vg with the property that Ty — {vp} is a
component of Go — {vp}. Since T is a subtree, the component of S corresponding
to any edge in Ty is nullhomologous. Removing such a component thus reduces
the complexity of S, so the fact that S has minimal complexity implies that there
are none, that is, Go = y.

We claim also that all edges of G point in the same direction. Note that iden-
tifying 71 (G) with Z requires choosing an orientation for e. This in turn gives
an orientation to the interval fibers of each component of S x [—1, 1] or, equiv-
alently, an orientation to each edge of Gy. If these do not all point in the same
direction, at least one vertex vy of y is the initial vertex of each edge contain-
ing it. The sum of the components of S corresponding to these edges is trivial in
homology, again contradicting the fact that S has minimal complexity. The claim
follows and implies that Go covers G. But p, = ¢ maps onto 71 (G), so we must
have Gy =G. O
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4. Proof of the Main Theorem for 3-Manifolds with Empty or
Toroidal Boundary

4.1. Twisted Alexander Polynomials

In this section we quickly recall the definition of twisted Alexander polynomials.

This invariant was initially introduced by Lin [ ], Wada [ ], and Kirk
and Livingston [ ]. We refer to the survey paper [ ] for a detailed pre-
sentation.

Let M be a 3-manifold, let ¢ € HY(M;7) = Hom(m; (M), Z), and let « :
m1(M) — G be an epimorphism onto a finite group G. We write 7 = 1 (M). We
can now define a left Q[ ]-module structure on Q[G] ®g Q™! =: QIGI[+*!]
as follows:

g-(w®p)i=(a(g) v)® 1?¢p),

where g € 7 and v ® p € Q[G] ®q QI [t = Q[G][*!].

Denote by M the universal cover of M. We then use the representation o ® ¢ to
regard Q[G1[t*!] as a left Q[ ]-module. The chain complex C*(M ) is also a left
Q[7]-module via deck transformations. Using the natural involution g > g~
on the group ring Q[x], we can view C*(]VI) as a right Q[ ]-module. We can
therefore consider the tensor products

25%(M; QIGIIrH") = C. (M) ®qir) QLG
which form a complex of Q[til ]-modules. We then consider the Q[til]-modules
HE® (M QIGIH") = Ho (CL% (M; QLG T)).

When ¢ is understood, we will drop it from the notation; similarly, if « is the
trivial representation to GL(1, Q), then we will also drop it from the notation. We
will later on also consider the modules H,(M; Q(¢)) and H,(M; Q[t*']/(t* —
1)), which are defined analogously.

Since M is compact and since Q[r*!] is a PID, we have an isomorphism

Q"

+1
e 2

HY® (M QG ) = P
i=1
for some p; € Q[t*']. We define the rwisted Alexander polynomial as follows:

Ao =[P Q"

i=1

Note that A%], 6 € Q[¢*!] is well defined up to multiplication by a unit in Q[¢].
We also adopt the convention that we drop « from the notation if « is the trivial
representation to GL(1, Q).

We will later on make use of the following two facts about (twisted) Alexander
polynomials.
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LEMMA 4.1. Let (M, ¢) be a directed 3-manifold, anc{ leta: mi(M)— G bean
epimorphism onto a finite group. We denote by p : M — M the corresponding
finite cover. We write ¢ .= p*¢. Then

A%fl,¢=AM,q§'

The lemma thus says that we can view a twisted Alexander polynomial of a
directed 3-manifold (M, ¢) as an untwisted Alexander polynomial of a corre-
sponding cover of M. The lemma is a straightforward consequence of the Shapiro
lemma. We refer to [ Lemma 3.3] or [ Section 3] for details.

LEMMA 4.2. Let (M, ¢) be a directed 3-manifold with Ay 4 =0. Let n € Z, and
let w, ;= Ker(ir g Z — Z/n). Then

by (my) > n.
Proof. First note that the assumption that Ay 4 = O implies that H;(M;

Q') = Q'@ H for some Q[+ ]-module H. It now follows from the uni-
versal coefficient theorem that for any n, we have a short exact sequence

+1
0— Hi(M; QIr*']) ®qp1 Q]

m—1
[t
— Hi| M,
m—1

+1
N TorQ[,ﬂ](Ho(M; QI (?[t_ 1]> ~o0.

Since Hi(M; Q[t*!]) = Q[T @ H, it follows that
+1 +1
dimQ<H1 <M; %[t_ 1]>> > dimQ<(tQ;[t_ 1]) =n

Recall that we assumed that ¢ is primitive, which implies that the map = 2 7 —
Z/n is surjective. We can thus apply Shapiro’s lemma, which in this case states

that
+1 +1
H1(nn;Q)§H1<n;%[f_ 1]>;H1<M; Qrr ]). .

m—1

4.2. Twisted Alexander Polynomials and Fibered Classes

Let (M, ¢) be a directed 3-manifold, and let @ : 71(M) — G be an epimorphism
onto a finite group. If ¢ is fibered, then it was shown by many authors at varying
levels of generality that A‘]’(,L ® is monic, in particular, nonzero. We refer to [ ;
; ; ; ; ] for details.
In[ ], extending earlier results in [ ; ; ], the following
converse was proved.
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THEOREM 4.3. Let (M, ¢) be a directed 3-manifold. If ¢ € HY(M) is nonfibered,
then there exists an epimorphism « : w1 (M) — G onto a finite group G such that

A‘}(,I’ 0= 0.
The proof of this theorem relies heavily on the result of Wise [ ; ] that
subgroups of hyperbolic 3-manifolds that are carried by an embedded surface are
separable. (See also [ ] for precise references.)

4.3. Proof of Theorem

As discussed in the introduction, the proof of Theorem reduces to the proof of
the following theorem.

THEOREM 4.4. If (M, @) is a directed 3-manifold which is not fibered, then rg(M,
¢) > 0.

Proof. Let (M, ¢) be a directed 3-manifold such that ¢ is not fibered. We have
to show that rg(M, ¢) > 0. By Theorem 4.3, there exists an epimorphism o :
m1(M) — G onto a finite group G such that

A‘/’(,,)d) =0.
We write m := w1 (M) and 7 := Ker(«), and we denote by M the cover cor-
responding to 7. Note that ¢ (1) = dZ for some d # 0 € Z. We write ¢ :=
ép* (¢) e Hom(m,Z) = H'(M: 7). Note that ¢ is a primitive class.
For any n € N, we furthermore write
7, = Ker{mr ﬂ 7Z.— Z,} and 7, :=Ker{mw f) 7 — T }.

We now have the following claim.
Cram. For any n € N, the group 7, is a subgroup of 7y, of index at most [z : 7].

Note that for any n € N, we have

7o =Kerlf 5 7 — 7,) = Ker{ft 5> 7 — Zay).

We thus see that the group 77, is indeed a subgroup of mg4,. We thus have the
equalities
[m 7] (7 7] =[m 7]l = i 7wan] - [an : 7al.

It now follows from [ : 7,] = n and [ : 74,] = dn that
- 1 . _
[7Tan : 0l = E[T[ ] <|[m: 7).

This concludes the proof of the claim.
It follows from Lemmas that A oo = 0, which in turn implies that

A = 0. It now follows from Lemma that

M,

S

by(7,) >n forany n. 3)
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For any n, we thus have by (1) and (3) that

1 1 1 1 1 1
—rk > —rk bi(my) > — .
" k() > dn tk(7wgn) > d [ ] rk(7,) > [JT 7] 1(7T0) > dim 7]

It thus follows that rg(M, ¢) > 0 as desired. O

Recall that we assumed throughout the paper that M is a compact 3-manifold
with empty or toroidal boundary. The statement of Theorem does not hold if
M has a spherical boundary component. Indeed, if (M, ¢) is a fibered directed
3-manifold, then deleting a 3-ball gives rise to a 3-manifold with the same funda-
mental group but which is no longer fibered. It is therefore reasonable to restrict
ourselves to 3-manifolds with no spherical boundary components. Extending ver-
batim the definition of rank gradient to this context, it is straightforward to see
that the statement of Theorem 1.1 applies also to this slightly more general case:

LEMMA 4.5. Let M be a compact 3-manifold with no spherical boundary com-
ponents that has at least one nontoroidal boundary component. Then M is not
fibered, and for any primitive ¢ € H' (M ; 7)), we have rg(M , ¢) > 0.

Proof. If M fibers over S', then the boundary components also have to fiber over
S', which means that all boundary components have to be tori.

Now let M be a compact 3-manifold that has at least one nontoroidal boundary
component F, and let ¢ € H Y(M; 7) = Hom(z; (M), 7Z) be a primitive element.
We have to show that rg(M, ¢) > 0.

We denote by d € Z>o the unique element such that ¢ (71 (F)) = dZ. We first
suppose that d > 0. Given n € N, we consider the finite cover M4 of M cor-
responding to 71 (M) 2, 7 — 7Z/nd, and we furthermore consider the cover F,
of F corresponding to w1 (F) — m1(M) 4 dZ — d7Z/nd = 7/n. Note that by
the assumption that d is positive the cover F}, is a connected cover of F. By the
multiplicativity of the Euler characteristic under finite covers we see that

by (Fn) =2=n(b1(F) - 2).

Since F is nonspherical and nontoroidal, we see in particular that by (F,) > 2n.
Note that M,,4 contains d copies of F), as boundary components. By the stan-
dard half-live-half-die argument coming from Poincaré duality, we deduce that

1
bl (Mnd) = E(d . b] (Fn)) =dn.

It is now obvious that rg(M, ¢) > 1.
The case that d = 0 is proved almost in the same way. We leave the details to
the reader. (]

Proof of Theorem 1.3. For a compact 3-manifold M, let M be obtained from
M by filling all spherical boundary components with balls. The inclusion map
M — M takes Heegaard surfaces to Heegaard surfaces and induces an isomor-
phism of fundamental groups. Moreover, every Heegaard surface for M may be
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isotoped into M by an innermost disk argument, giving a Heegaard surface there.
In particular, the Heegaard genus of M equals that of M as does the rank of 7.
Since both spheres and balls lift to covers (havmg trivial 771), if M — M is a
finite-degree cover, then M M’ is the cover of M corresponding to 1M’ <t M =
71 M. 1t follows that the rank and Heegaard gradients of any family of covers
{M,, — M} may be computed in the corresponding family {M M }, reducing
Theorem 1.3 to our prior results. (]

5. Normal Generating Sets

In this section we will prove Theorem , whose statement we recall for the
reader’s convenience:

THEOREM 5.1. (1) If (M, @) is a nonfibered directed 3-manifold, then Ker(¢)
admits a finite index subgroup with infinite normal rank.

(2) There exists a nonfibered directed 3-manifold (M, ¢) such that Ker(¢) has
finite normal rank.

Proof. We first note that if 7 is any group, then any set of elements that normally
generates 7 is also a generating set of Hy(rr; Z). It thus follows that

n(mw) = bi(m).

If (M, ¢) is a nonfibered directed 3-manifold, then by Theorem there exists
an epimorphism « : 1 (M) — G onto a finite group G such that

A% =0.

We write 77 := Ker(«), and we denote by M the cover of M corresponding to 7.
As in the proof of Theorem 4.4, we note that ¢(7) = d7Z for some d # 0 € Z,
and we write ¢ := %p*(d)) € Hom(#,7) = H'(M; 7). Note that by Lemma
A‘X,Ld) = 0 implies that A/&m} = 0. This in turn is equivalent to saying that H; (M
Q[r*!']) is not a Q[s*!]-torsion, that is,

dim(H, (¢-cover of M; Q) =0

We thus see that b (Ker(a x ¢)) = oo, that is, n(Ker(x x ¢p)) = 00. Since Ker(a x
¢) is a finite index subgroup of Ker(¢), this concludes the proof of (1).

We now turn to the proof of (2). Let (N, ) be a fibered directed 3-manifold
with N # S' x D?. We denote the fiber surface by S and the monodromy by ¢.
We can then identify N with (S x [0, 1])/(x, 0) ~ (¢(x), 1). We pick an essential
simple closed curve C on § x %, and we pick an open tubular neighborhood vC of
Cin § x (0, 1). We furthermore pick a nontrivial knot K C S 3. We then consider
the 3-manifold

= (N \vC) U (S?\ vK),
where we glue the meridian of K to a push-off of C in § x %, and where we glue
the longitude of K to a meridian of C. We denote by ¢ € H'(M:; Z) the class dual
toSx0C M.
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We claim that (M, ¢) has all the desired properties. We denote by M the infi-
nite cyclic cover of M corresponding to ¢. Given i € Z, we write

Wi = ((S x [0, 1]\ vC) U (§° \ vK)) x i.

Note that we can canonically identify M with

<U Wi>/(x, i)~ (p(x),i + 1).

i€Z
Also note that M contains the incompressible tori 9vC x i;in particular, (M )
is not a surface group. It thus follows that ¢ is not a fibered class.

We now denote by I' the smallest normal subgroup of 4 (1\71 ) = Ker(¢) that
contains 771 (S x 0). We are done with the proof of Theorem once we showed
that I = Ker(¢). First note that C, and hence the meridian of K x 0, lies in I".
Since the meridian of K normally generates 71 (S° \ vK), it follows that the lon-
gitude of K x 0 also lies in I'. It is now straightforward to see that 71 (Wy) C IT'.
This in particular implies that 771 (S x 1) lies in I'. But then the same argument as
above shows that 1 (W7) C I'. Iterating this argument, we see that 71 (W;) lies in
I' for all i € N. Almost the same argument also shows that 771 (W;) lies in T" for
all i € Z<p. It now follows that 7 (M) is contained in T". O
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