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On Degree Growth and Stabilization of
Three-Dimensional Monomial Maps
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1. Introduction

Given a rational self-map f : X ��� X on an n-dimensional Kähler manifold X,
one can define a pullback map f ∗ : Hp,p(X) → Hp,p(X) for 0 ≤ p ≤ n. In
general, the pullback does not commute with iteration; that is, (f ∗)k �= (f k)∗.
Following Sibony ([Si]; see also [FoSi]), we call the map f (algebraically) stable
if the action on the cohomology of X is compatible with iterations. More pre-
cisely, f is called p-stable if the pullback onHp,p(X) satisfies (f ∗)k = (f k)∗ for
all k ∈N.

If f is not p-stable onX, one might try to find a birational change of coordinate
h : X ′ ��� X such that f̃ = h−1 
 f 
 h is p-stable. This is not always possible
even for p = 1, as shown by Favre [Fa]. However, for p = 1 and n = 2, one
can find such a stable model (with at worst quotient singularities) for quite a few
classes of surface maps [DFa; FaJ]. Also for p = 1, such a model can be obtained
for certain monomial maps [Fa; JW; L].

For an n × n integer matrix A = (ai,j ), the associated monomial map
fA : (C∗)n→ (C∗)n is defined by

fA(x1, . . . , xn) =
(∏
j

x
a1,j
j , . . . ,

∏
j

x
an,j
j

)
.

The morphism fA extends to a rational map, which is also denoted fA, on any
n-dimensional toric variety. The question of finding a stable model for fA (or
showing that there is no stable model for certain fA) has been studied in [Fa; JW;
L]. In particular, the stabilization problem is fully classified for dimension two in
[Fa] and [JW].

In this paper, we focus on the case when n = 3 and A is diagonalizable. We
deal with both the 1-stable and the 2-stable problems. There are more cases than
dimension two. A main case where a model that is both 1-stable and 2-stable can
be obtained by performing proper modification is summarized in the following
theorem.

Theorem 1.1. Let � be a fan in N ∼= Z3, and let fA : X(�) ��� X(�) be the
monomial map associated to A. Suppose that A is diagonalizable and that, for
each eigenvalue µ of A, µ/µ̄ is a root of unity. Then there exists a complete
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simplicial refinement�′ of� and k0 ∈N such that the map f kA : X(�′) ��� X(�′)
is both 1-stable and 2-stable for all k ≥ k0.

We note that even better results will hold in certain subcases. For example, if the
eigenvalues have different modulus then we can make X(�′) smooth and projec-
tive. Another particularly nice subcase is when the set {Ak | k ∈ N} is a finite
set; then we can find a smooth projective X(�′) such that fA is an automorphism
on X(�′). This is related to the resolution of indeterminacy of pairs for birational
maps (see Sections 3–5 for more details).

The case when there are two complex eigenvaluesµ, µ̄ ofAwithµ/µ̄ not a root
of unity is more complicated (see Section 6). This case contains several interesting
subcases. For instance, the following phenomena are possible.

• The map fA can be 1-stable on a smooth projective variety while not having a
2-stable model (and vice versa).

• Given a toric varietyX, there can be a birational model for fA that is stable even
when fA cannot be made stable by performing the blowup process on X.

• The map fA may have no 1-stable model and also no 2-stable model.

The rest of this paper is organized as follows. In Section 2 we review known
facts about toric varieties and monomial maps, after which we develop some tech-
nical tools about stabilization and the degree sequence in Section 3. A case that
is related to the resolution of indeterminacy of pairs is studied in Section 4, and
Theorem 1.1 is proved in Section 5. Finally, in Section 6 we discuss the more com-
plicated case of two complex eigenvalues µ, µ̄ of A with µ/µ̄ not a root of unity.
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The author would like to thank the ICERM for its hospitality and would also like
to thank Elizabeth Wulcan for helpful discussions.

2. Preliminaries on Toric Varieties

A toric variety is a (partial) compactification of the torus T ∼= (C∗)m, which con-
tains T as a dense subset and which admits an action of T that extends the natural
action of T on itself. We briefly recall some of the basic definitions. All results
stated in this section are known, so the proofs are omitted. We refer the reader
to [F] and [O] for details about toric varieties.

2.1. Fans and Toric Varieties

Let N be a lattice isomorphic to Zn and letM = Hom(N, Z) denote the dual lat-
tice. The algebraic torus T = TN ∼= (C∗)n is canonically identified with the group
HomZ(M, C∗). Set NQ := N ⊗Z Q and NR := N ⊗Z R, and defineMQ andMR

analogously. Let R+ and R− denote the sets of nonnegative and nonpositive num-
bers, respectively.

A convex rational polyhedral cone σ is of the form σ = ∑
R+vi for some

vi ∈N. We will simply say that σ is a cone generated by the vectors vi. If σ is
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convex and does not contain any line in NR, then it is said to be strictly convex.
A face of σ is the intersection of σ and a supporting hyperplane. The dimension
of σ is the dimension of the linear space spanned by σ. One-dimensional cones are
called rays. Given a ray γ, the associated ray generator is the first nonzero lattice
point on γ. A k-dimensional cone is simplicial if it can be generated by k vectors.
A cone is regular if it is generated by part of a basis for N.

A fan� in N is a finite collection of rational strongly convex cones in NR such
that (a) each face of a cone in� is also a cone in� and (b) the intersection of two
cones in � is a face of each of them. Let �(k) denote the set of cones in � of di-
mension k. A fan � determines a toric variety X(�) by patching together affine
toric varietiesUσ corresponding to the cones σ ∈�. The support |�| of the fan�
is the union of all cones of �. In fact, given any collection of cones �, we will
use |�| to denote the union of the cones in �. If |�| = NR, then the fan� is said
to be complete. If all cones in� are simplicial then� is said to be simplicial, and
if all cones are regular then � is said to be regular. A fan �′ is a refinement of �
if, for each cone σ ′ in �′, there is a cone σ ∈� such that σ ′ ⊂ σ.

A toric varietyX(�) is compact if and only if� is complete. If� is simplicial,
then X(�) has at worst quotient singularities; that is, X(�) is an orbifold. Also,
X(�) is smooth (nonsingular) if and only if� is regular. For any fans�1 and�2

in N, there is a common refinement such that there exist resolutions of singulari-
tiesX(�′)→ X(�j). In particular,X(�1) andX(�2) are birationally equivalent.

2.2. Monomial Maps and the Condition for Being Stable

Suppose A : N → N ′ is a homomorphism of lattices, � is a fan in N, and �′ is a
fan in N ′. A homomorphism of lattices A : N → N ′ induces a group homomor-
phism fA : TN → TN ′ that is given by monomials on each coordinate. One can
extend fA to an equivariant rational map fA : X(�) ��� X(�′). On a complete
toric variety, fA is dominant if and only if AR = (A⊗ R) : NR → N ′R is surjec-
tive. The map fA is called semisimple if A is diagonalizable. Given a cone σ ∈�,
we say that σ maps regularly to�′ byA if there is a cone σ ′ ∈�′ such thatA(σ) ⊆
σ ′. In this case, we call the smallest such cone in�′ the cone closure of the image
of σ and denote it by A(σ).

For a complete toric variety X(�) associated to a complete fan �, the group
of torus-invariant Cartier divisors on X(�) is denoted by CDivT (X(�)) and the
Picard group is denoted by Pic(X(�)). Given a monomial map fA : X(�) ���
X(�′), we can define a pullback map f ∗A : Pic(X(�)) → Pic(X(�′)) as well
as the pullback map f ∗A : CDivT (X(�)) → CDivT (X(�′)). A toric rational
map fA : X(�) ��� X(�) is strongly 1-stable if (f kA )

∗ = (f ∗A )k as maps of
CDivT (X(�))Q for all k ∈ N; it is simply 1-stable if (f kA )

∗ = (f ∗A )k as maps of
Pic(X(�))Q for all k. On a projective toric variety, fA is strongly 1-stable if and
only if it is 1-stable. The following theorem gives a geometric condition for being
strongly 1-stable.

Theorem 2.1. A toric rational map fA : X(�) ��� X(�) is strongly 1-stable if
and only if, for all rays τ ∈�(1) and all n∈N, An(τ) maps regularly to � by A.
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For the proof of Theorem 2.1 and for additional details on the 1-stability of mono-
mial maps, see [JW; L]. Notice that what we call “1-stable” here is called “(alge-
braically) stable” in those papers.

3. Degrees and Stabilization

In this section we give various results about the degrees and stabilization of mono-
mial maps. Although they serve as tools to prove Theorem 1.1, these results hold
not only in dimension three but also, in many cases, in arbitrary dimensions.

3.1. Duality between p and (n− p)
For A∈Mn(Z), let

A′ = |det(A)| · A−1 = sgn(det(A)) · ad(A),

where sgn(·) is the sign function and ad(A) is the classical adjoint matrix of A.
Notice that A′ ∈Mn(Z) and that, if det(A) �= 0, then det(A′) = det(A)n−1 is also
nonzero.

Proposition 3.1. For a monomial map fA, its pullback map f ∗A on Hp,p is ad-
joint (up to a scalar ) to the pullback map f ∗A′ on Hn−p,n−p under the intersection
pairing.

More precisely, let 〈·, ·〉 be the intersection pairing, and let α ∈ Hp,p(X(�))

and β ∈Hn−p,n−p(X(�)). Then

〈f ∗Aα,β〉 = |det(A)|p−n+1 · 〈α, f ∗A′β〉.
Proof. First assume that X(�) is simplicial and projective. Under this assump-
tion, H ∗,∗(X(�)) ∼= A∗(X(�)) is generated by Pic(X(�))R. Moreover, every
divisor in a projective variety is a difference of two ample divisors. Therefore, it
suffices to prove the equation for products of ample divisors of X(�). Recall the
following diagram for toric rational map fA:

X(�̃)

π

����������
f̃A

����������

X(�)
fA

����������� X(�).

Let α = [D1]. · · · .[Dp] and β = [Dp+1]. · · · .[Dn], where Di is an ample
divisor with associated polytope Pi, i = 1, . . . , n. Then, as a consequence of the
Riemann–Roch theorem for toric varieties (see [F, pp. 116–117]), we have

〈f ∗Aα,β〉 = π∗f̃ ∗A(D1. · · · .Dp).(Dp+1. · · · .Dn)
= f̃ ∗A(D1. · · · .Dp).π∗(Dp+1. · · · .Dn)
= n! ·MV( tAP1, . . . , tAPp,Pp+1, . . . ,Pn)

= n! · |det( tA)| ·MV(P1, . . . ,Pp, tA−1Pp+1, . . . ,
tA−1Pn)
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= |det( tA)|p−n+1 · n! ·MV(P1, . . . ,Pp, tA′Pp+1, . . . ,
tA′Pn)

= |det( tA)|p−n+1 · 〈α, f ∗A′β〉.
Here MV(·) denotes the mixed volume of polytopes.

Finally, for a general toric variety X(�), we can subdivide � to obtain a
refinement �′ such that X(�′) is simplicial and projective. The induced map
A∗(X(�))→ A∗(X(�′))will be injective, and the formula forX(�) follows from
the result for X(�′).

Two consequences of Proposition 3.1 are described by the next two corollaries.

Corollary 3.2. The map fA is p-stable if and only if fA′ is (n− p)-stable.

Proof. We have

(f ∗A )
k = (f kA )∗ ⇐⇒ 〈(f ∗A )kα,β〉 = 〈(f kA )∗α,β〉 ∀α ∈Hp,p, ∀β ∈Hn−p,n−p

⇐⇒ 〈α, (f ∗A′)
kβ〉 = 〈α, f ∗

(Ak )′β〉
⇐⇒ (f ∗A′)

k = (f kA′)∗.
The last implication follows because we have (Ak)′ = (A′)k for all k. Thus the
corollary is proved.

Given an ample divisor D on a projective toric variety X(�), we define the pth
degree of fA with respect to D, denoted degD,p(fA), as

degD,p(fA) = 〈f ∗ADp,Dn−p〉.
Because the intersection pairing is symmetric, we have the following relation be-
tween the pth degree and the (n − p)th degree of a monomial map with respect
to D.

Corollary 3.3. For any ample divisor D,

degD,p(fA) = |det(A)|p−n+1 degD,n−p(fA′).

In particular, for p = n− 1 we have degD,n−1(fA) = degD,1(fA′).

3.2. Stability and Linear Recurrence of the Degree Sequence

The following proposition describes the relation between being p-stable and the
pth degree satisfying a linear recurrence relation. This result is probably well
known to experts; we include it here for completeness.

Proposition 3.4. Given a projective simplicial toric varietyX = X(�), suppose
that the monomial map fA is p-stable onX. Then, for any TN -invariant ample di-
visor D of X, the degree sequence {degD,p(f

k
A )}∞k=1 satisfies a linear recurrence

relation.

Proof. Since Dn = n!Vol(PD) > 0 for an ample divisor D, we know that the
cohomology class [Dp] is nonzero in Hp,p(X). Hence we can extend [Dp] to
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form a basis B = {[Dp], θ1, . . . , θr} for Hp,p(X) such that Dn−p.θi = 0 for all
i = 1, . . . , r. Then degD,p(fA) is the (1, 1)-entry of the matrix A for f ∗A with re-
spect to B. Since fA is p-stable (i.e., (f kA )

∗ = (f ∗A )k for all k ∈ N), we know
that degD,p(f

k
A ) is the (1, 1)-entry of the matrix Ak. Therefore, by the Cayley–

Hamilton theorem, the sequence {degD,p(f
k
A )}∞k=1 satisfies the linear recurrence

relation induced by the characteristic polynomial of A.

In practice, however, it is usually difficult to make a birational change of coordi-
nate to make the map stable—even for p = 1. Instead, we impose the following
slightly weaker condition. This is a “stable version of p-stable”; thus we write
p-SS (stably stable) for the condition.

(p-SS) There exists an integer k0 ≥ 1 such that, for all k, l ≥ k0, we have
(f k+l)∗ = (f k)∗ 
 (f l)∗.

Remark. We have the following consequences of p-SS.

(1) For all k ≥ k0, the map f k is p-stable.
(2) The degree sequences {degD,p(f

kj+l
A )}∞j=1 satisfy a (same) linear recurrence

relation for all k, l ≥ k0. The proof is similar to the proof of Proposition 3.4.
Thus, the sequence {degD,p(f

k
A )}∞k=1 also satisfies a linear recurrence relation.

3.3. Simultaneous Stabilization

Given an n× n matrix A ∈Mn(R) with det(A) �= 0, let µ1, . . . ,µn be the eigen-
values of A, counting multiplicities. We say that A has isolated spectrum if µi �=
µj for i �= j and that A has absolutely isolated spectrum if |µi | �= |µj | for i �= j.
Theorem 3.5. Let� be a fan in N ∼= Zn, and let A1, . . . ,Am ∈Mn(Z) be matri-
ces with absolutely isolated spectrum. Then there exists a complete refinement�′of
� such thatX(�′) is smooth and projective and the induced maps fAi : X(�

′) ���
X(�′) are 1-SS for all i = 1, . . . ,m.

The m = 1 case of the theorem is proved in [JW, Thm. A′ ]. The proof here basi-
cally follows theirs, with a slight modification. So we begin by briefly recalling
their proof.

In [JW], the authors introduced the notion of adapted systems of cones, which
is a collection of simplicial cones satisfying certain conditions. We list some prop-
erties of adapted systems of cones in the following lemmas. For details, see [JW,
Sec. 4].

Lemma 3.6 [JW, Lemma 4.5]. Let S = {σ(V, η)} be an adapted system of cones,
and let v ∈ N. Then there exists a k0 ∈ N such that, for k ≥ k0, Ak(v) ∈ σ(V, η)
for some σ(V, η)∈ S.

Lemma 3.7 [JW, Lemma 4.6]. Let S = {σ(V, η)} be an adapted system of cones,
and let v ∈ N. Then there exists a k0 ∈ N such that, for k ≥ k0, S is invariant
under Ak.
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Lemma 3.8 [JW, Lemma 4.11]. Let � be a fan in N that contains an adapted
system of cones, and let�′ be a refinement of�. For every invariant rational sub-
space V of NR, suppose there is a subfan of �′ with support V. Then �′ contains
a unique adapted system of cones.

Lemma 3.9 [JW, Lemma 4.12]. There exists a rational adapted system of cones
for every A∈Mn(Z) with absolutely isolated spectrum.

Proof of Theorem 3.5. First, we refine the fan� so that, for each rational invariant
subspace V of each Ai, there is a subfan of � whose support is V.

Next, we refine � so that it contains an adapted system of cones for each Ai.
We achieve this goal as follows. Let Si be a rational adapted system of cones
for Ai; its existence is guaranteed by Lemma 3.9. Let �i be a complete fan gen-
erated by cones in Si . Now take a common refinement of � and all �i, and then
take a further refinement to make the fan both regular and projective. Call this re-
fined fan �′. By Lemma 3.8, �′ contains a unique adapted system of cones S ′i for
each Ai.

Finally, by Lemma 3.6, there is a number k0 such that, for all k ≥ k0 and γ ∈
�′(1), we have Aki(γ ) ⊂ σ for some σ ∈ S ′i . Furthermore, by Lemma 3.7, we can
choose an even larger k0 such that, for all k ≥ k0, each S ′i is invariant under Aki .
These conditions will imply that each Ai is 1-SS, which concludes our proof.

Corollary 3.10. Let� be a fan inN ∼= Zn, and letA∈Mn(Z) be a matrix with
absolutely isolated spectrum. Then there exists a complete refinement�′ of� such
thatX(�′) is smooth and projective and such that the induced map fA : X(�′) ���
X(�′) is both 1-SS and (n− 1)-SS.

Proof. By Corollary 3.2, the claim follows from applyingA andA′ to Theorem 3.5.

3.4. Stabilization in a Special Case

Our next proposition addresses a case that arises when we prove Theorem 1.1. We
prove a version of it that is valid in all dimensions.

Proposition 3.11. Let� be a fan in N ∼= Zn, and let A∈Mn(Z) be a diagonal-
izable matrix whose eigenvalues are two distinct real numbers µ1,µ2 ∈ R (each
with some multiplicities) such that |µ1| �= |µ2|. Then there exists a complete re-
finement �′ of � such that X(�′) is simplicial and projective and such that the
induced map fA : X(�′) ��� X(�′) is both 1-stable and (n− 1)-stable.

Proof. For each ray γ ∈ �(1), consider its ray generator v. Write v = v1 + v2,
where vi is an eigenvector of µi for i = 1, 2. If one of the vi is zero, then γ is
actually invariant under A. Now suppose that both v1 and v2 are nonzero, and let
(γ := span{v1, v2} be the two-dimensional vector space spanned by v1 and v2.

Then (γ is invariant under A (i.e., A((γ ) = A−1((γ ) = (γ ) and Ak(γ ) ⊂ (γ for
all k ∈Z.
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Observe that (γ ∩ N has rank 2, since both v and A(v) are in (γ ∩ N and are
independent. Thus, (γ ∩ � := {(γ ∩ σ | σ ∈ �} is a fan of rational polyhedral
cones with support (γ . We can refine (γ ∩� to obtain a refinement�γ such that,
under the map A|(γ , each ray in �γ either maps to another ray or maps into a
two-dimensional cone σ of �γ with A(σ) ⊂ σ. Moreover, we can find a refine-
ment �γ such that the same requirement holds for A′ as well.

Now take a common simplicial refinement of � and �γ , γ ∈ �(1), without
adding rays, to obtain a new fan �′. We then have �′(1) = ⋃

γ∈�(1) �γ(1) and
so, under the map A, each ray in �′ is either invariant or eventually maps to some
two-dimensional cone that is invariant. Thus fA is 1-stable. Similarly, we know
fA′ is 1-stable; hence fA is (n− 1)-stable, too.

More generally, we now assume that A is diagonalizable and that there exist r1 >
r2 > 0 such that, for each eigenvalue µ of A, µ/µ̄ is a root of unity and either
|µ| = r1 or |µ| = r2. Then there exists some ) such thatA) satisfies the conditions
of Proposition 3.11. For any ray γ with generator v, let (γ be the plane spanned
by v and A)(v); then the orbit {Ak(v) | k ∈Z} is contained in finitely many planes
Ak((γ ), k = 0, . . . , )−1.We can then simultaneously refine the fansAk((γ )∩� so
that, under A, each ray in the subdivided fan either maps into another ray or maps
into a two-dimensional cone σ0; in this case there exist two-dimensional cones
σ1, . . . , σ) = σ0 in the refined cones such that A(σk) ⊂ σk+1 for k = 0, . . . , )− 1.
This implies that A)(σk) ⊂ σk. We can also achieve the same requirement for A′
simultaneously, as in the proof of Proposition 3.11. Now take a common refine-
ment of � with all these refined fans, without adding more rays, to obtain a new
fan �′ such that fA is both 1-stable and (n− 1)-stable on X(�′).

4. Resolution of Indeterminacy of Pairs
for Toric Varieties

Let X be a projective variety and let G be a finite subgroup of the group of bira-
tional transformations Bir(X). A resolution of indeterminacy of the pair (X,G)
consists of a smooth variety X ′, birationally equivalent to X, and a birational map
π : X ′ → X such that, for every g ∈G, the composite map π−1gπ is an automor-
phism of X.

In a paper of de Fernex and Ein [dFE], the authors show that in characteristic 0
the resolution of indeterminacy of a pair (X,G) always exists. They also obtain
an explicit construction of the resolution in some two-dimensional cases. Also, in
Chel′tsov’s paper [Ch], an explicit construction of resolution of indeterminacy of
pairs is given in dimension three using the minimal model program.

In this section, we first recall a known proposition implying the resolution of in-
determinacy of pairs in the case of toric varieties and equivariant birational maps.
Then we will modify the condition slightly, obtaining a theorem that can be ap-
plied to a case in our classification.

Proposition 4.1 [B; CHS]. Let N be a lattice and let � ∼= Zn be a fan of NR.

Let G be a finite group of automorphisms of N. Then there exists a refinement �′
of � that is smooth, projective, and invariant by G.
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In [B; CHS], the authors use this result to show the existence of smooth projective
compactification of an algebraic torus over a scheme. The proposition also gives
an explicit way to construct the resolution of indeterminacy of pairs in the case of
toric varieties. Moreover, this explicit resolution works for all characteristic.

Theorem 4.2 (Resolution of Indeterminacy of Pairs). Let X(�) be a toric va-
riety, and let G be a finite group of equivariant birational maps of X(�). Then
there exist a smooth projective toric variety X(�′) and a birational morphism
π : X(�′)→ X such that, for each g ∈G, the composite map π−1gπ is an equi-
variant automorphism of X(�′). In other words, elements in G are birational
conjugate to automorphisms of X(�′).

In order to suit our general purpose, however, we shall need a different condition.
Recall that the set of dominant monomial maps of n-dimensional toric varieties
corresponds to the set of integer matrices with nonzero determinant:

Mn(Z) ∩ GLn(Q) = {A∈Mn(Z) | det(A) �= 0}.
For matrices of the form d · In with d > 0, every cone is invariant under the action
of d · In. Thus every fan is invariant, too. Denote by Q+ the set of positive ratio-
nal numbers and identify Q+ with Q+ · In. Let F be the set of complete rational
fans in NR. Then GLn(Q) acts on F and

Q+ =
⋂
�∈F

GLn(Q)�,

where GLn(Q)� is the stabilizer of �∈F in GLn(Q).
Let p : GLn(Q)→ PGL+n(Q) := GLn(Q)/Q+ be the projection map.

Proposition 4.3. Let N be a lattice and let� ∼= Zn be a fan of NR. LetG be a
submonoid of Mn(Z) ∩ GLn(Q). If p(G) is finite, then there exists a refinement
�′ of � that is projective and invariant by G.

Proof. First, take all the hyperplanes in NR that contain some of the (n − 1)-
dimensional cones of �. These hyperplanes determine a complete refinement �1

of�.Moreover, the corresponding varietyX(�) is projective (see [O, Prop. 2.17]).
Then we consider the fan

�′ =
⋂
g∈G

g�1,

where g�1 = {gσ | σ ∈ �1}. The intersection is finite because p(G) is a finite
set. Thus�′ is a finite fan. Moreover, the fan�′ is invariant underG, and it is also
projective since it contains all the hyperplanes spanned by its (n−1)-dimensional
cones.

One can translate Proposition 4.3 into the following toric version.

Proposition 4.4. Let X(�) be a toric variety, and let G be a submonoid of
Mn(Z) ∩ GLn(Q) with p(G) finite. Then there exist a projective toric variety
X(�′) and a birational morphism π : X(�′)→ X such that, for each A ∈G, the
composite map π−1 
 fA 
 π is an equivariant morphism of X(�′).
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Remark. In the proof of Proposition 4.3, one can make a simplicial refinement
�′′ of �′ such that �′′(1) = �′(1). Then we obtain a projective, simplicial toric
variety on which fA is 1-stable for all A∈G.
Corollary 4.5. Let X(�) be a toric variety and let A ∈Mn(Z) ∩ GLn(Q) be
diagonalizable. Assume that all the eigenvalues ofA are of the same modules and
that µ/µ̄ is a root of unity for each eigenvalue µ. Then

(1) there exist a projective toric variety X(�′) and a birational morphism
π : X(�′)→ X such that fA is conjugate to a morphism on X(�′); and

(2) there exist a projective, simplicial toric variety X(�′′) and a birational
morphism π : X(�′′)→ X such that the conjugate f̃A is both 1-stable and
2-stable on X(�′′).

Proof. For part (1), apply Proposition 4.4 to the monoid generated by A. For (2),
pick �′′ to be the fan in the Remark after Proposition 4.4 for G to be the mon-
oid generated by A. Recall that A′ = |det(A)| · A−1 and that the fan �′′ satisfies
−�′′ = �′′. Thus the rays of �′′ still map to rays of �′′, which means that X(�′′)
is 1-stable for both f̃A and f̃A′ . Therefore, f̃A is also 2-stable onX(�′′). This con-
cludes the proof of part (2).

5. Proof of Theorem 1.1

Under the assumptions of Theorem 1.1, there are four cases: |µ1| > |µ2| > |µ3|,
|µ1| = |µ2| > |µ3|, |µ1| > |µ2| = |µ3|, and |µ1| = |µ2| = |µ3|.

The first case is proved in Corollary 3.10. Indeed, in this case the refinement
�′ can be regular and projective. The second case is shown in the discussion after
Proposition 3.11. The third case is dual to the second case and is thus also ac-
counted for.

Finally, the case |µ1| = |µ2| = |µ3| is proved in Corollary 4.5. Thus we have
proved all cases for Theorem 1.1.

6. Conjugate Pair of Eigenvalues Whose Argument
Is an Irrational Multiple of 2π

When there are two complex eigenvalues µ, µ̄ with µ/µ̄ not a root of unity, there
are three possible cases. Assume that ν is the third (real) eigenvalue; then we can
have |µ| > |ν|, |µ| < |ν|, or |µ| = |ν|. The first and the second cases are dual to
each other. In fact, if A is in the first case then A′ will be in the second, and vice
versa. Hence we need only consider the 1-stability problem for each case. The
results for 2-stability follow by duality.

6.1. Case 1: |µ| > |ν|
For the first case, the following theorem shows that we cannot make fA 1-stable.

Theorem [L, Thm. 4.7(2)]. Suppose that A ∈ Mn(Z) is a integer matrix. If
µ, µ̄ are the only eigenvalues ofA that have maximal modulus with algebraic mul-
tiplicity 1 and if µ/µ̄ is not a root of unity, then there is no toric birational model
that makes fA strongly algebraically stable.
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Next, notice that the 2-stabilization problem for the case |µ| > |ν| is equivalent
to the 1-stabilization problem for the case |µ| < |ν|.

6.2. Case 2: |µ| < |ν|
We also consider the 1-stabilization problem for this case. First, if we do not start
with any given toric variety, then we can certainly find some simplicial toric va-
riety X(�) such that fA is 1-SS on X(�) (see [L, Thm. 4.7(1)]). However, the
situation is more complicated when we are given a fixed toric variety X(�) and
want to stabilize fA by refining �. We need to consider several subcases.

Under the prevailing assumptions, let v be an eigenvector associated with ν and
let γ = R+v. Let ( be the two-dimensional invariant subspace associated with
the eigenvalues µ, µ̄. First, we need a lemma.

Lemma 6.1. Suppose that � satisfies the following conditions:

• γ lies on a lower-dimensional cone (i.e., a cone of dimension ≤ 2); and
• there exists a ray γ1∈�(1), γ1 �= γ, such thatAkγ1 → γ as k→∞ (this means

that the angle between γ1 and γ approaches zero as k approaches infinity).

Then, for any refinement�′ of�, fA is not 1-stable on�′ and so we cannot stabi-
lize fA by subdividing �.

Proof. Observe that, for any refinement�′ of�, γ still lies on a lower-dimensional
cone. Moreover, for any refinement �′, we still have γ1 ∈ �′(1) and Akγ1 → γ.

Hence it suffices to show that fA is not 1-stable on X(�).
UnderA, these two-dimensional cones with γ as a face rotate around γ with an

irrational rotating angle because γ is invariant under Ak for all k. Thus, none of
the three-dimensional cones with a face γ can be mapped regularly under all Ak.
However, since Akγ1 → γ it follows that, for large k, Akγ1 must be in the inte-
rior of some three-dimensional cone with a face γ. Therefore, the condition for
1-stability cannot be satisfied, and we conclude that fA is not1-stable onX(�).

Now we are ready to study all the subcases of Case 2.
(i) Suppose that both γ and −γ are in the interior of some three-dimensional

cones and that there is no ray of � in (. In this case, if we refine � to make both
the three-dimensional cones containing v and −v (say, σ1 and σ2) lying on one
side of (, then—after certain iterates of A—we know that one of the following
statements holds for all ) large enough:

• A)(σ1) ⊂ A)(σ1) and A)(σ2) ⊂ A)(σ2); or
• A)(σ1) ⊂ A)(σ2) and A)(σ2) ⊂ A)(σ1).

Furthermore, every ray in � will map into either σ1 or σ2 after certain iterates.
Thus there exist a refinement �′ of � and an )0 ≥ 1 such that f )A is 1-stable on
X(�′) whenever ) ≥ )0.

(ii) If there is some ray of � that lies on (, then we can look at A|( and apply
the same argument as in the proof of [L, Thm. 4.7(2)] to show that fA cannot be
made stable by subdividing �.

(iii) If either γ or−γ lies in the relative interior of a two-dimensional cone, we
claim that fA cannot be made stable by subdividing �.
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Without loss of generality, assume that γ lies in the relative interior of a two-
dimensional cone σ. Suppose γ1 and γ2 are the one-dimensional faces of σ. Then,
since σ is strictly convex, one of γ1, γ2 must lie on the same side of ( as γ ; as-
sume it is γ1. Hence Akγ1 → γ as k →∞ and so, by Lemma 6.1, fA cannot be
made stable by subdividing �.

(iv) Suppose that either γ or−γ is a cone in�—say, γ ∈�(1)—and that there
is another γ1 ∈ �(1), γ1 �= γ, such that Akγ1 → γ as k → ∞. Then, again by
Lemma 6.1, one cannot make fA stable by subdividing �.

(v) Finally, suppose γ ∈�(1) but there is no γ1 ∈�(1), γ1 �= γ, withAkγ1 → γ

(so we are not in case (i) or (iv)), and suppose −γ is in the interior of a three-
dimensional cone σ (so we are not in case (iii)). Moreover, assume that there is
no ray of � that lies in ( (so we are not in case (ii)).

Under these assumptions, γ is invariant under Ak for any k and, for all γ1 ∈
�(1), γ1 �= γ, we have Akγ1 →−γ as k→∞. Thus, Akγ1∈ σ for large k. Note
that γ cannot be one of the one-dimensional faces of σ because σ is strictly con-
vex. Therefore, the one-dimensional faces of σ must also map into σ for large k.
This means that Akσ ⊂ σ for large k. To conclude, in this case we can find a k0

such that Ak is 1-stable for k ≥ k0.

Example 6.1. Let � be the standard fan for P3, and let

A =

1 1 5

4 1 2
1 5 1


.

The three eigenvalues of A are 7 and −2 ± 2
√

2i. Note that the eigenspace as-
sociated to 7 is spanned by v = (1,1,1). The ray generated by −v is in � and is
invariant under A. All other rays of �, which are generated by the three standard
basis elements, will tend to R+v under Ak. Thus we are in Case 2(v). Indeed,
fA is 1-stable on P3. On the other hand, A′ is covered by Case 1 and so fA is not
2-stable for any complete toric variety.

6.3. Case 3: |µ| = |ν|
In this case we claim that, for all complete fans� and all ), f )A is neither 1-stable
nor 2-stable on X(�).

Observe that, after a (rational) conjugation, the action of A on cones is to ro-
tate along an axis with an angle that is irrational modulo 2π. After passing to an
iterate of A, we can make the angle as small as we like. However, for any three-
dimensional polyhedral cone, if we rotate it along any axis for a small angle then
it will not remain in any cone.

There is at least one ray γ in� that is not in the eigenspace of ν and, for some k,
Akγ will lie in the interior of some three-dimensional cone. By the argument in
the previous paragraph, this three-dimensional cone does not always map into an-
other cone. Thus fA is not 1-stable in X(�).

Finally, fA′ will be in this case again and so cannot be made 1-stable. This con-
cludes our claim for Case 3.
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