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Torsion in the Cohomology of Desingularized
Fiber Products of Elliptic Surfaces

Chad Schoen

0. Introduction

LetW be a smooth projective threefold over an algebraically closed field k. Let
l be a prime distinct from char(k). This paper is concerned with the problem of
computing the torsion subgroupH 3(W, Zl)tors of the étale cohomologyH 3(W, Zl).
Before stating the results, we recall five reasons why one is interested in this group.

1. Relationship to the Brauer group, Br(W ). The subgroup H 3(W, Zl(1))tors is
canonically isomorphic to the l-primary part of the Brauer group modulo its max-
imal divisible subgroup [Gro, Sec. 8.3].

2. Birational invariance for smooth projective varieties [Gro, Thm. 7.4, Thm.
6.1c]. This attribute was used by Artin and Mumford [AMu] to give examples of
unirational threefolds that are not rational.

3. Mirror symmetry. Take k = C. There is tantalizing empirical evidence (see
[BaKr]) that for Calabi–Yau threefolds,H 3(W(C), Z)tors should be isomorphic to
the first homology of the mirror. No natural isomorphism is currently known.

4. The integral Tate problem. Poincaré duality for a smooth projective threefold
gives an isomorphism,

H 4(W, Zl(2))tors � Hom(H 3(W, Zl)tors, Q l/Zl(1)).

An integral version of the Tate conjecture (or if k = C, of the Hodge conjec-
ture) would imply that H 4(W, Zl(2))tors is generated by classes of codimension-2
algebraic cycles. The integral Hodge conjecture is known to hold for Fano three-
folds [V] (see also [Gra]) and for Calabi–Yau threefolds [V]. It is known to fail for
certain threefolds of general type [Ko], although in [Ko] H 4(W, Zl(2))tors = 0.
Some of the threefolds studied in this paper are birational to Calabi–Yau varieties
but most have Kodaira dimension 1, which is unexplored territory.

5. The Abel–Jacobi map. The Abel–Jacobi map applies to algebraic cycles that
are integrally homologous to zero. A consequence of Theorem 0.3(ii) is that the
much-studied complex multiplication cycles have this property (cf. [ST, 3.2]).
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Despite the interest inH 3(W, Zl)tors, little is known about how to compute it. Con-
sider for example the case of hypersurfaces in P 4. If W ⊂ P 4 is smooth, then the
cohomology of W is known by the Lefschetz hyperplane theorem and an Euler
characteristic computation. On the other hand, if W is obtained by desingulariz-
ing a hypersurfaceW ⊂ P 4 having only nodes as singularities, thenH 3(W, Zl)tors

is poorly understood when deg(W) > 3 and no instance in whichH 3(W, Zl)tors �=
0 seems to be known. A little more is known when W is a desingularization of
a double cover W → P3 branched along a surface S ⊂ P3 with ordinary dou-
ble point singularities. The case deg(S) ≤ 4 is treated in [E]. There are a few
more known interesting examples with deg(S) = 8 and H 3(W, Zl)tors �= 0 [G].
The most comprehensive results so far are for generic Calabi–Yau hypersurfaces
in Gorenstein toric Fano varieties, in which case the Brauer group has a combi-
natorial description [BaKr]. A case in which the Brauer group is not cyclic is the
subject of [GP].

The purpose of this paper is to compute H 3(W, Zl)tors systematically whenW
is the blowup of a certain type of nodal hypersurface W in a smooth projective
fourfold. The construction of W is as follows. Begin with a smooth, irreducible,
projective curve X over k and a pair of elliptic curves E and E ′ over the function
field, K = k(X), whose J -invariants are not contained in k. Write π : Y → X

(resp. π ′ : Y ′ → X) for the relatively minimal model of E (resp. E ′). The fiber
product W := Y ×X Y ′ is a (nonample) hypersurface in the smooth projective
fourfoldY ×k Y ′. The following assumption, which will be in force throughout, is
equivalent to requiring that the only singularities ofW be isolated ordinary double
points.

0.1. Assumption. For each x ∈ X for which both fibers π−1(x) and (π ′)−1(x)

are singular, both are of multiplicative type.

Now blow up the nodes ofW to obtain a smooth projective threefoldW, which we
refer to henceforth as a desingularized fiber product. These varieties have found
application in many different areas, including algebraic cycles (especially com-
plex multiplication or Heegner cycles) [ST], modularity of Galois representations
[M, Chap. 2], phenomena peculiar to positive characteristic [S1], and super string
theory [BDo].

The main result of the paper describesH 3(W, Zl)tors in terms of the Galois repre-
sentations on the torsion inE(K̄) andE ′(K̄) and certain local conditions at places
of bad reduction. To be more precise, define G := Gal(K̄/K)-modules

E[l n] := KerE(K̄)
l n−→ E(K̄) and E ′[l n] := KerE ′(K̄) l n−→ E ′(K̄).

Now consider the group HomG(E[l n],E ′[l n]) or—what amounts to the same
thing, thanks to the Weil pairing—the group (E[l n]⊗E ′[l n])G. We define a sub-
group of this group by imposing local conditions at the places of bad reduction
and then relate the subgroup to H 3(W, Zl)[l n].

In order to describe the local conditions, fix for each x ∈ X a henselization
of OX,x , Oh

X,x ⊂ K̄. Denote by E[l n]0x ⊂ E[l n] the largest subgroup whose
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closure in the Néron model of E at x := Spec(Oh
X,x) is finite over x and meets

only the identity component of the closed fiber. If E has additive reduction at x,
then E[l n]0x = 0 because the identity component of the closed fiber is isomor-
phic to Ga , whose l n-torsion subgroup is 0. If E has multiplicative reduction then
E[l n]0x � Z/l n, since the identity component of the closed fiber is isomorphic to
Gm with l n-torsion subgroup µln . Define E ′[l n]0x analogously. Let S (resp. S ′)
denote the locus of bad reduction for E (resp. E ′).

0.2. Definition. �ln(W ) := {θ ∈ (E[l n]⊗E ′[l n])G : (i), (ii), and (iii) hold}:
(i) for all s ∈ S − (S ∩ S ′), θ ∈E[l n]0s ⊗ E ′[l n];

(ii) for all s ∈ S ′ − (S ∩ S ′), θ ∈E[l n]⊗ E ′[l n]0s .

(iii) for all s ∈ S ∩ S ′, θ ∈E[l n]⊗ E ′[l n]0s + E[l n]0s ⊗ E ′[l n].

0.3. Theorem. Let W be a desingularized fiber product as defined previously.
Then the following statements hold.

(i) H i(W, Zl)tors = 0 for i /∈ {3, 4}.
(ii) IfE is isogenous toE ′overK, thenH •(W, Zl)tors :=⊕6

i=0H
i(W, Zl)tors = 0.

(iii) If E is not isogenous to E ′ over K, then �ln(W ) � H 3(W, Zl)[l n] �
H 4(W, Zl)[l n].

A consequence of the theorem is that the possible isomorphism classes of the
groupH 3(W, Zl)tors are quite restricted. More precisely, we will prove the follow-
ing result.

0.4. Theorem. Let W be as defined before.

(i) H 3(W, Zl)tors is a cyclic group.
(ii) If E or E ′ has a place of additive reduction, then H •(W, Zl)tors = 0.

(iii) If S ∩ S ′ = ∅, then H •(W, Zl)tors = 0.

In concrete situations, the group �ln(W ) (and hence also H 3(W, Zl)tors) is fre-
quently quite computable. The next result shows that there are no restrictions on
these groups beyond Theorem 0.4(i).

0.5. Theorem. Given m ∈ N prime to p := char(k), there exists a W as de-
scribed previously with H 3

(
W,

∏
l �=p Zl

)
tors � Z/m.

WhenH 4(W, Zl(2))tors �= 0, it is natural to ask whether these cohomology classes
come from algebraic cycles. Toward this end, let Z2(W )0 denote the subgroup of
the group of codimension-2 algebraic cycles onW that is generated by cycles in
the smooth fibers of f : W → X (or, equivalently, of f̄ : W → X) whose inter-
section with each factor Y and Y ′ is a degree-0 zero cycle.

0.6. Theorem. Suppose that E is not isogenous to E ′. Then the image of the
cycle class map Z2(W )0 −→ H 4(W, Zl(2)) is H 4(W, Zl(2))tors.

The contents of the individual sections of this paper are as follows. For easy
reference, the notation is summarized in Section 1. Section 2 recalls tools from
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étale cohomology that will be used in the sequel. In particular, the groundwork
is laid for identifying H 3(W, Zl)tors with the quotient of H 2(W, Z/l n) by a max-
imal free Z/l n-submodule—provided n is sufficiently large. Thus the focus will
be on computingH 2(W, Z/l n). The main tool will be the Leray spectral sequence
for the canonical morphism f : W → X. To prepare the way, Section 3 treats
the Leray spectral sequence for π : Y → X and Section 4 deals with the Leray
spectral sequence for the canonical map f̄ : W → X. In Section 5 we show that
H 3(W, Zl)tors is controlled byH 0(X,R2f∗Z/l n) for large n. The sheaf R2f∗Z/l n

is analyzed in Section 6 with the help of [S2, Sec. 7]. There is a direct fac-
tor, Gl n , of R2f∗Z/l n with the property that if E and E ′ are not isogenous then
H 0(X, Gl n ) � H 3(W, Zl)[l n]. Interpreting the global sections of Gl n in the lan-
guage of Definition 0.2 proves Theorem 0.3(iii). The proofs of the remaining
assertions in Theorems 0.3 and 0.4 are completed in Section 7.

With the explicit formula for H 3(W, Zl)[l n] in Theorem 0.3(iii) in hand, one
turns to constructing examples where this group is nonzero. In fact, such exam-
ples are rare because the requirements that�ln(W ) �= 0 andE not be isogenous to
E ′ are seldom satisfied simultaneously. Section 8 is devoted to an easy but anoma-
lous example in which the torsion can be made to disappear by extending the base
field K. Theorem 0.5 is proved in Section 9 by constructing certain special fiber
products with S �= S ∩ S ′ �= S ′. A different construction is presented in Sec-
tion 10, which gives many examples with S = S ′. Each construction requires that
the genus of X be large if |H 3(W )tors| is large. In general, it is unknown whether
|H 3(W )tors| can be bounded in terms of the genus of X.

Section 11 concerns the cycle class map to cohomology. Here Theorem 0.6 is
proved. The Betti numbers of Y and W are given in Section 12, since this infor-
mation is useful in other contexts [M, Chap. 2].

The related article [SSha] contains concrete examples of desingularized fiber
products W that are birational to Calabi–Yau varieties or Calabi–Yau algebraic
spaces and have H 3(W, Zl)tors �= 0 for small primes l.

1. Notation

This section serves as an index for notation that is in force throughout. The nota-
tion defined in Section 1.n is first used in Section n.

1.2.

N = Z≥1.

A[n] = KerA
·n−→ A for an abelian group A and n∈Z.

M∨ = HomR(M,R) for a module M over a commutative ring R.
k = an algebraically closed field.
l = a prime number distinct from the characteristic of k.
V = a projective k-scheme.
F is an étale sheaf.
H i(V, F ) denotes étale cohomology.
hi(V, Z/l) := dimZ/l(H

i(V, Z/l)).
hi(V, Q l) = dimQ l

(H i(V, Q l)).
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X = a smooth irreducible projective curve over k.
j : η→ X denotes the inclusion of the generic point.
j : η̄→ X denotes a geometric generic point algebraic over j.

1.3.

|A| = the cardinality of A, where A is a finite set.
g = the genus of X.
K = k(X).
E is an elliptic curve over K whose J -invariant is not contained in k.
π : Y → X denotes a relatively minimal elliptic surface with generic fiber E.
S ⊂ X, the locus of a bad reduction of E.
Sa , Sm ⊂ S, the locus of an additive (respectively, a multiplicative) reduction

of E.
ms = the number of irreducible components of π−1(s).

K̄ = a separable closure of K.
G = Gal(K̄/K).
E[l n] = KerE(K̄)

l n−→ E(K̄).

E[l n]0s ⊂ E[l n] (depends on the choice of a henselization Oh
X,s ⊂ K̄ of OX,s),

the largest subgroup whose closure in the Néron model of E over Oh
X,s is fi-

nite over the base and meets only the identity component of the closed fiber.
(Equivalently, E[l n]0s depends on the choice of the inertia group above s,
Is = Aut(K̄/Oh

X,s) < G.)

1.4.

T := E[l n], T ′ := E ′[l n], Ts := E0s[l n], and T ′
s := E ′

0s[l
n] when l and n are

understood.
Bln = Hom(E[l n]G, Z/l n).
E ′ is an elliptic curve over K with J -invariant not contained in k.
π ′ : Y ′ → X, S ′, S ′a , m′

s , E
′[l n]0s , B ′

l n , . . . denote the analogues for E ′ of
π : Y → X, S, Sa , ms , E[l n]0s , Bln , . . . .

S ′′ = S ∩ S ′.
W, f̄ ,W and f are defined only under the additional assumption that Sa ∩ S ′ =
S ∩ S ′a = ∅ (cf. Assumption 0.1).

W = Y ×X Y ′.
f̄ : W → X denotes the tautological map.

1.5.

σ : W →W denotes the blowup of the reduced singular locus of W.
f = f̄ � σ : W → X.

N∗ = the quotient of the finitely generated Z/l n-module N by a maximal free
submodule N0; the isomorphism class of N∗ is independent of the choice
of N0.

1.6. Gl n is a quotient sheaf of R2f∗Z/l n defined in Section 6.

1.8. Ẑ′ = ∏
l �=char(k) Zl .
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2. Preliminaries on Étale Sheaves and Étale Cohomology

This section collects basic facts about étale cohomology used in the sequel. It may
initially be skipped and referred back to as needed. Notation is as in Section 1.2.

2.1. Proposition.

(i) H i(V, Z/l n) is a finite group.
(ii) H i(V, Zl) is a finitely generated Zl-module.

(iii) H i(V, Z/l n) = 0 for i > 2 dim(V ).
(iv) The rank of H i(V, Zl) is independent of l.

Proof.

(i) [SGA4.5, Théorèmes de finitude, Thm. 1.1].
(ii) [Mi, V.1.11].

(iii) [Mi, VI.1].
(iv) [Mi, VI.12.5b and VI.4.2].

The next lemma provides the criteria that will be used to determine whether or not
a given cohomology group is torsion free.

2.2. Lemma. (i) IfH i(V, Zl)tors = 0, then the quotient ofH i(V, Z/l n) by a max-
imal free Z/l n-submodule is isomorphic to H i+1(V, Zl)[l n] for n� 0.

(ii) If H i(V, Z/l n) is a free Z/l n-module for n � 0, then H i(V, Zl)tors = 0 =
H i+1(V, Zl)tors.

(iii) If hi(V, Z/l) > hi(V, Z/l ′) for some prime l ′ �= char(k), thenH i(V, Zl)tors

and H i+1(V, Zl)tors are not both zero.

Proof. The first two assertions follow from Proposition 2.1(ii) and the exact
sequence

H i(V, Zl)
l n−→ H i(V, Zl) −→ H i(V, Z/l n) −→ H i+1(V, Zl)

l n−→ H i+1(V, Zl)

[Mi, V.1.11]. When n = 1 this sequence implies hi(V, Z/l) = r + ti(l )+ ti+1(l ),
where r = rank(H i(V, Zl)) is independent of l and tj(l ) = dimZ/l(H

j(V, Zl)[l]).
Now (iii) follows.

2.3. Proposition. Suppose thatV is smooth and irreducible and that dim(V ) =
d. Then:

(i) the finite groups H i(V, Zl)tors and H 2d−i+1(V, Zl(d ))tors are dual and hence
(noncanonically) isomorphic; and

(ii) H i(V, Zl)tors = 0 for all except finitely many primes l.

Proof. (i) For each n, Poincaré duality gives an isomorphism

H i(V, Z/l n) � Hom

(
H 2d−i

(
V,

1

l n
Z/Z

)
, Q l/Zl(−d)

)
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[Mi, VI.11.1]. Apply lim← n to get

H i(V, Zl) � Hom(H 2d−i(V, Q l/Zl), Q l/Zl(−d)).
Use the exact sequence

H 2d−i(V, Q l)
b−→ H 2d−i(V, Q l/Zl) −→ H 2d−i+1(V, Zl)tors −→ 0

[CSaSo, (13)] to conclude

H i(V, Zl)tors � Hom(H 2d−i+1(V, Zl)tors, Q l/Zl(−d)).
(ii) [Ga].

In the remainder of this section we recall some facts about constructible étale
sheaves on curves. Let S ⊂ X be a finite subset of closed points on a smooth,
projective, connected k-curve. Fix an integer n > 1. Denote by C the category of
constructible sheaves of Z/n-modules on X whose restriction to X − S is locally
constant. It is convenient to work in a category M, which is equivalent to C, that
we now describe.

Let j : η → X be the inclusion of the generic point. Let j : η̄ → X denote a
geometric point that is algebraic over η. For each s ∈ S, fix an inertia group Is ∈
π1(X−S, j). Now the objects of M are pairs (M, {Ms ,φs}s∈S) in whichM is a fi-
nite Z/n-module with a continuousπ1(X−S, j)-action,Ms is a finite Z/n-module,
and φs : Ms → MIs is a Z/n-linear map. Morphisms in M are given by pairs,

(ψ, {ψs}s∈S) : (M, {Ms ,φs}s∈S) −→ (M̂, {M̂s , φ̂s}s∈S);
here ψ : M → M̂ is a homomorphism of Z/n[π1(X−S, j)]-modules, ψs : Ms →
M̂s is a Z/n-module homomorphism, and φ̂s � ψs = ψ � φs.

For F ∈ Ob(C ), no notational distinction will be made between the sheaf j∗F
and the associated π1(X − S, j)-module (cf. [Mi, II.1.9]).

2.4. Lemma. (i)The functor C → M,F �→ ( j∗F, {Fs ,φs}s∈S), whereφs : Fs →
( j∗ j∗F )s � ( j∗F )Is is the natural map, is an equivalence of categories.

(ii) If (F, {Fs ,φs}s∈S) corresponds to the étale sheaf F, then

H 0(X, F ) �
{
(f, {fs})∈F ×

∏
s∈S

Fs : f∈F π1(X−S, j̄), fs ∈Fs , φs(fs) = f

}
.

(iii) The kernel K of the canonical map F r−→ j∗j ∗F is supported on S. If the
stalk Ks is a free Z/l n-module for each s ∈ S, then K is a direct summand of F.
Proof. (i) [Mi, II.3.10-16 and V.1.3].

(ii) [Mi, II.3.16(c)].
(iii) The exact sequence in M corresponding to 0 → K → F → j∗j ∗F is

0 −→ (0, {Ks , 0}s) −→ (M, {Ms ,φs}s) −→ (M, {MIs,ψs}s),
where ψs : MIs → M is the inclusion. The hypotheses imply thatMs � Ks ⊕M ′

s

with φs : M ′
s → MIs injective and φs(Ks) = 0. It is apparent that the first mor-

phism has a left inverse.
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Let ρ : X̂→ X denote a finite morphism of smooth, projective, irreducible curves,
and let Ŝ = ρ−1(S). Fix a lifting ĵ : η̄→ X̂ of j. For each ŝ ∈ Ŝ, choose an inertia
group Iŝ ⊂ π1(X̂ − Ŝ, ĵ). Choose gŝ ∈ π1(X − S, j) such that Iŝ = ρ−1∗ (gŝIsg

−1
ŝ
),

where ρ∗ is the induced map on fundamental groups and ρ(ŝ) = s.
2.5. Lemma. If F ∈ Ob(C ) corresponds to (F, {Fs ,φs}s∈S), then ρ∗F corre-
sponds to (F, {Fρ(ŝ), gŝ � φρ(ŝ)}ŝ∈Ŝ).

2.6. Remark. When ρ = Id, Lemma 2.5 describes the dependence of φs(Fs) ⊂
F on the choice of the inertia group Is.

3. Cohomology of Elliptic Surfaces

In preparation for the computation of the cohomology of desingularized fiber prod-
ucts, the cohomology of elliptic surfaces is computed in this section by means of
the Leray spectral sequence. The notation of previous sections, and especially that
defined in Section 1.3, remains in force. In particular, π : Y → X is a relatively
minimal and nonisotrivial elliptic surface with section. Write g for the genus of
X and ms for the number of irreducible components in the fiber π−1(s).

3.1. Proposition. (i) The terms Ep,q

2 � Hp(X,Rqπ∗Z/l n) in the Leray spec-
tral sequence for π are presented in the usual format in the following table, where
numbers indicate ranks of free Z/l n-modules (e.g., 2g stands for (Z/l n)2g).

1+∑
s∈S(ms − 1) 2g 1

0 H1(X,R1π∗Z/l n) Hom(E[l n]G, Z/l n)

1 2g 1

(ii) The differential d 0,2
2 : E 0,2

2 → E
2,1
2 is surjective.

(iii) For each i, H i(Y, Z/l n) is a free Z/l n-module.

Proof. (i) The form of the bottom row of the E2-term follows from π∗Z/l n �
Z/l n. To analyze the E 21

2 -term, use Poincaré duality:

H 2(X,R1π∗Z/l n) � H 2(X, j∗j ∗R1π∗Z/l n)

� H 0(X, j∗j ∗R1π∗µln)∨ � Hom(E[l n]G, Z/l n)

[Mi, V.2.2(b)]. The form of the top row follows from the next lemma.

3.2. Lemma. R2π∗Z/l n � Z/l n ⊕∑
s∈S is∗(Z/l n)ms−1.

Proof. Write π̄ : Ȳ → X for the Weierstrass model of E. Blowing down the irre-
ducible components of the singular fibers of π that do not meet the identity section
gives a morphism, w : Y → Ȳ. Now R2π̄∗Z/l n � Z/l n and so the spectral se-
quence for the composition of functors π∗ � π̄∗ � w∗ gives an exact sequence,

0 → Z/l n −→ R2π∗Z/l n −→
∑
s∈S

is∗(Z/l n)ms−1 −→ 0.

The map R2π∗Z/l n → j∗j ∗R2π∗Z/l n � Z/l n splits this sequence.
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3.3. Lemma. In the notation of Section 1.3 and Lemma 2.4, the object of
the category M corresponding to R1π∗Z/l n is (E[l n], {E[l n]0s ,ϕs}), where
ϕs : E[l n]0s → E[l n] is the inclusion.

Proof. The espace étalé of the sheaf R1π∗µln may be identified with the maximal
l n-torsion subgroup scheme of the Néron model of E that meets every fiber in the
identity component. This sheaf is constructible, and its restriction to X − S is lo-
cally constant [Mi, VI.2 and VI.4.2].

3.4. Proposition. H 0(X,R1π∗Z/l n) = 0.

Proof. Since each ϕs is injective, Lemma 2.4(ii) implies

H 0(X,R1π∗µln) � E[l n]G ∩
(⋂
s∈S
E[l n]0s

)
.

If there is a place s of additive reduction, the proposition follows immediately be-
cause then E[l n]0s = 0. To treat the general case, it is convenient to base change.
Let K ⊂ K̂ be a finite field extension, ρ : X̂ → X the normalization of X in K̂,
and π̂ : Ŷ → X̂ the relatively minimal model of EK̂ := E ×Spec(K) Spec(K̂).

3.5. Lemma. The canonical map of sheaves, ρ∗R1π∗Z/l n → R1π̂∗Z/l n, is
injective. If ρ is unramified over the locus of additive reduction, Sa , it is an
isomorphism.

Proof. Write w : Y → Ȳ for the morphism from the relatively minimal model of
E to the Weierstrass model. The exceptional fibers of w are trees of P1s. Thus
R1w∗Z/l n = 0 and R1π∗Z/l n � R1π̄∗Z/l n. Hence both Y and Ŷ may be re-
placed by Weierstrass models. If ρ is not ramified over Sa , then the Weierstrass
model for Ŷ is the pullback of the Weierstrass model for Y and the asserted iso-
morphism follows from the proper base change theorem. Even if ρ is ramified
over Sa , the map is injective since R1π∗Z/l n|s = 0 for s ∈ Sa.
Continuing now with the proof of Proposition 3.4, we choose a field extension
K ⊂ K̂ such that all the l-torsion in E becomes rational over K̂. Fix an ordered
basis e1, e2 for the l-torsion. The Weil pairing determines a primitive lth root of
unity, 〈e1, e2〉 = ζ ∈ k∗, and there is an induced morphism from Spec(K̂) to the
moduli of generalized elliptic curves with a basis for the l-torsion. This is a fine
moduli space unless l = 2. When l = 2, the argument that follows will need to be
modified—say, by choosing K̂ such that there is an additional prime l ′ �= char(k)
for which the 2 l ′-torsion is rational over K̂. We leave the necessary modifications
to the reader and assume that l ≥ 3.

The value ζ of the Weil pairing determines a connected component and thus a
generic point 9 of the moduli space. Write E for the generic fiber of the universal
elliptic curve. Write s for a cusp and define E[l]0s ⊂ E[l] for the subgroup whose
closure in the Néron model meets the identity component of the Néron model over
the cusp. We claim that every one-dimensional Z/l-subspace of E[l] has the form
E[l]0s for some cusp s. To see this, begin by noting that the fiber of the Néron



90 Chad Schoen

model at a cusp is isomorphic to Gm×Z/l, so its l-torsion may be identified with
µl × Z/l. The Weil pairing extends to the singular fiber by

〈(ζ a, b), (ζ c, d)〉 = ζ ad−bc
for a, b, c, d ∈Z/l.

An l-gon of rational curves together with an ordered pair of points on the non-
singular locus that identify with l-torsion points (ζ a, b) and (ζ c, d) in Gm × Z/l
gives a generalized elliptic curve with level structure and thus a cusp s of the mod-
uli space. Assume ad − bc = 1 so that s is in the closure of the generic point 9.
By applying an automorphism of the l-gon as a generalized elliptic curve, we may
arrange that the basis e1, e2 of E[l] specializes to (ζ a, b), (ζ c, d). The automor-
phism group is dihedral with generators acting on the smooth locus Gm × Z/l by
(t, b) �→ (t−1,−b) and (t, b) �→ (ζ bt, b) [DR, II.1.10]. The element de1 − be2 ∈
E[l] specializes to (ζ, 0), so E[l]0s = Span{de1 − be2}. The only condition on b
and d is the existence of a and c with ad − bc = 1. Thus every order-l subgroup
of E[l] has the form E[l]0s for some cusp s in the closure of 9. In particular,
intersecting over these cusps gives

⋂
s E[l]0s = 0.

Since Ŷ is the pullback of the universal generalized elliptic curve and since the
locus of bad reduction of EK̂ is the pullback Ŝ ⊂ X̂ of the cusps, it follows that⋂
ŝ∈Ŝ E[l]0 ŝ = 0. Thus, for anyn,

⋂
ŝ∈Ŝ E[l n]0 ŝ = 0 and soH 0(X̂,R1π̂∗Z/l n) =

0. By Lemma 3.5, H 0(X,R1π∗Z/l n) = 0.

The proof of Proposition 3.1(i) is now complete. To prove part (ii) it suffices to
show H 3(Y, Z/l n) � (Z/l n)2g, which follows from H1(Y, Z/l n) � (Z/l n)2g and
Poincaré duality. As for part (iii), the fact that H i(Y, Z/l n) is a free Z/l n-module
for all n and i �= 2 implies thatH i(Y, Zl)tors = 0 for all i by Lemma 2.2(ii), which
implies that H 2(Y, Z/l n) is a free Z/l n-module (cf. the proof of Lemma 2.2(i)).

4. Cohomology of Fiber Products of Elliptic Surfaces

Recall the terms E, E ′, π : Y → X, π ′ : Y ′ → X, S, and S ′ from the Introduc-
tion. In this section we consider the cohomology of W := Y ×X Y ′. Here one
can make good progress using the Leray spectral sequence for the canonical map
f̄ : W → X and the Künneth formula applied to the fiber product. To simplify
notation, define

T := E[l n], T ′ := E ′[l n], Ts := E0s[l
n], T ′

s := E ′
0s[l

n]

when l and n are clear from the context. Also define S ′′ := S ∩ S ′.
4.1. Proposition. H i(W, Zl)tors = 0 for i �= 4.

Proof. By Lemma 2.2(ii) it suffices to show that H i(W, Z/l n) is a free Z/l n-
module for i /∈ {3, 4} and all n. This will be deduced from Lemmas 4.2–4.5.

4.2. Lemma.

(i) f̄∗Z/l n � Z/l n.
(ii) R1f̄∗Z/l n � R1π∗Z/l n ⊕ R1π ′∗Z/l n.
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(iii) R2f̄∗Z/l n � R2π∗Z/l n ⊕ R1π∗Z/l n ⊗ R1π ′∗Z/l n ⊕ R2π ′∗Z/l n.

(iv) R3f̄∗Z/l n � R2π∗Z/l n ⊗ R1π ′∗Z/l n ⊕ R1π∗Z/l n ⊗ R2π ′∗Z/l n.

(v) R4f̄∗Z/l n � R2π∗Z/l n ⊗R2π ′∗Z/l n � Z/l n ⊕∑
s∈S−S ′′ is∗(Z/l n)ms−1⊕∑

s∈S ′−S ′′ is∗(Z/l n)m
′
s−1 ⊕∑

s∈S ′′ is∗(Z/l n)msm
′
s−1.

Proof. By Section 3, Riπ∗Z/l n and Riπ ′∗Z/l n are flat sheaves of Z/l n-modules.
The assertions now follow from the Künneth formula [Mi, VI.8.6]. The final iso-
morphism in part (v) is a direct consequence of Lemma 3.2.

To compactify notation, define:

Bln := Hom(E[l n]G, Z/l n) and B ′
l n := Hom(E ′[l n]G, Z/l n);

Rln := Hom((E[l n]⊗ E ′[l n])G, Z/l n);
R := R1π∗Z/l n and R′ := R1π ′∗Z/l n;
m′
s := the number of irreducible components in the fiber (π ′)−1(s).

4.3. Lemma. The E2-term, E2(f̄ ), of the Leray spectral sequence for the map
f̄ and the sheaf Z/l n is displayed in the usual format below. The numbers 0, 1,
2g, and h0(X,Rif̄∗Z/l) := dimZ/l(H

0(X,Rif̄∗Z/l)) indicate ranks of free Z/l n-
modules.

h0(X,R4f̄∗Z/l) 2g 1

h0(X,R3f̄∗Z/l) H1(X,R3f̄∗Z/l n) Bln ⊕ B ′
l n

h0(X,R2f̄∗Z/l) H1(X,R2f̄∗Z/l n) (Z/l n)2 ⊕ Rln
0 H1(X,R1π∗Z/l n ⊕ R1π ′∗Z/l n) Bln ⊕ B ′

l n

1 2g 1

Proof. The bottom two rows have the indicated form by Proposition 3.4 and
parts (i) and (ii) of Lemma 4.2, and the top row by Lemma 4.2(v). For the
second row, compute explicitly the tensor products in Lemma 4.2(iv) to get that
R3f̄∗Z/l n is isomorphic to

R⊕R′ ⊕
∑

s∈S−S ′′
is∗(Z/l n)2(ms−1)

⊕
∑

s∈S ′−S ′′
is∗(Z/l n)2(m

′
s−1) ⊕

∑
s∈S ′′

is∗(Z/l n)ms+m
′
s−2

and then apply the second row in Proposition 3.1(i). To show that E 02
2 is a free

Z/l n-module, combine Lemma 4.2(iii) with Lemma 3.2 to get that R2f̄∗Z/l n is
isomorphic to

R⊗R′ ⊕ (Z/l n)2 ⊕
∑

s∈S−S ′′
is∗(Z/l n)ms−1

⊕
∑

s∈S ′−S ′′
is∗(Z/l n)m

′
s−1 ⊕

∑
s∈S ′′

is∗(Z/l n)ms+m
′
s−2.

Now the E 2,2
2 -term has the indicated form by Poincaré duality:
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H 2(X, R⊗R′) � H 0(X, j∗j ∗(R⊗R′))∨ � Hom((E[l n]⊗ E ′[l n])G, Z/l n).

[Mi, V.2.2(b)]. The proof of the lemma is now complete—up to the assertion
that the E 02

2 -term is a free Z/l n-module. This is an immediate consequence of
Lemma 3.2, the explicit expression for R2f̄∗Z/l n in Lemma 4.2(iii), and the fol-
lowing statement.

4.4. Lemma. H 0(X,R1π∗Z/l n ⊗ R1π ′∗Z/l n) = 0.

Proof. As in the proof of Proposition 3.4, we may reduce to the case where both
elliptic surfaces π and π ′ are relatively minimal models of pullbacks of universal
elliptic surfaces with full level l n structure. The sheafR1π∗Z/l n⊗R1π ′∗Z/l n cor-
responds (by Lemmas 3.3 and 2.4) to data (M, {Ms ,φs}s∈S∪S ′), whereM = T ⊗T ′
and, for each s ∈ S,φs(Ms) ⊂ Ts⊗T ′. By the proof of Proposition 3.4,

⋂
s∈S Ts =

0. Thus
⋂
s∈S Ts ⊗ T ′ = 0 and the assertion follows from Lemma 2.4(ii).

4.5. Lemma. The differentials d 02
2 : E 02

2 → E 21
2 and d 04

2 : E 04
2 → E 23

2 are each
surjective.

Proof. The projection maps W → Y and W → Y ′ give rise to morphisms of
spectral sequences E(π) → E(f̄ ) and E(π ′) → E(f̄ ). The surjectivity of d 02

2
follows from the analogous statements for the spectral sequencesE(π) andE(π ′)
(cf. Proposition 3.1(ii)). The surjectivity of d 04

2 follows from the surjectivity of
d 02

2 by taking a cup product with the cohomology class of the Cartier divisor
s×X Y ′ + Y ×X s′ inH 0(X,R2π∗Z/l n)⊕R2π ′∗Z/l n(1)), where s ⊂ Y and s′ ⊂
Y ′ denote sections.

Proof of Proposition 4.1 (continued). It is immediately apparent from Lemma 4.3
thatH i(W, Z/l n) is a free Z/l n-module for i ∈ {0,1, 6}. Freeness for i = 5 follows
from the surjectivity of d 04

2 . For the case i = 2, consider the commutative diagram
of exact sequences arising from the morphism of spectral sequencesE(π⊕π ′) :=
E(π)⊕ E(π ′)→ E(f̄ ):

0 �� E11
2 (π ⊕ π ′) ��

!
��

H 2(Y )• ⊕H 2(Y ′)• ��

α
��

E 02
2 (π ⊕ π ′) ��

β
��

Bln ⊕ B ′
l n

��

!
��

0

0 �� E11
2 (f̄ )

�� H 2(W, Z/l n)•
�� E 02

2 (f̄ )
�� Bln ⊕ B ′

l n
�� 0,

where the • means “take the quotient by H 2(X, Z/l n)”. By Lemmas 4.2(iii)
and 4.4, β is an isomorphism. Thus α is an isomorphism by the five lemma. Now
H 2(Y, Z/l n) and H 2(Y ′, Z/l n) are free Z/l n-modules by Proposition 3.1. Since
taking the quotient by the image ofH 2(X, Z/l n) preserves freeness,H 2(W, Z/l n)
is also free.

5. Applications to the Cohomology of
Desingularized Fiber Products

Write σ : W → W for the blowup of the ideal sheaf of the reduced singular locus
Wsing ⊂ W. A point w = (y, y ′) ∈ π−1(x) × (π ′)−1(x) ⊂ W lies in Wsing pre-
cisely when π is not smooth at y and π ′ is not smooth at y ′. Assumption 0.1
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implies that, locally analytically, the map π at the first component y of w is given
by the standard inclusion of k-algebras: k[[t]] → k[[t, u, v]]/(uv− t), t �→ t (cf.
[Si2, IV.8–9]). Since π ′ has an analogous description, the completion Ô

W,w
�

k[[u, v, u′, v ′ ]]/(uv − u′v ′). ConsequentlyW is a smooth projective variety and
each connected component of the exceptional divisor Q ⊂ W is isomorphic to a
hypersurface in P3 defined by uv − u′v ′ = 0.

5.1. Proposition.

(i) The map σ ∗ : H i(W, Z/l n) → H i(W, Z/l n) is an isomorphism for i ∈
{0,1, 5, 6}.

(ii) For i /∈ {3, 4}, H i(W, Zl)tors = 0.
(iii) The map σ ∗ : H 4(W, Zl)tors → H 4(W, Zl)tors is an isomorphism.
(iv) H 3(W, Zl)tors and H 4(W, Zl)tors are (noncanonically) isomorphic.

Proof. (i) This is a straightforward computation using the Leray spectral sequence
for the map σ. Note that σ∗Z/l n � Z/l n,R1σ∗Z/l n = 0, andHp(W,Rqσ∗Z/l n)=
0 for p > 0 and q > 0, since Rqσ∗Z/l n is supported on the (zero-dimensional)
locusWsing. Furthermore, the differential

d 04
5 : H 0(W,R4σ∗Z/l n)→ H 5(W, σ∗Z/l n)

is zero because the map H 4(W, Z/l n) → H 0(W,R4σ∗Z/l n) is surjective. To
see this, take a line Lw in the exceptional divisor Qw := σ−1(w) and compute
the intersection product: Lw · Qw = c1(NQ/W |Lw), which is minus the class
of a point. Thus the cohomology class [Lw] ∈ H 4(W, Z/l n)(2) restricts to a
generator of H 4(Qw, Z/l n)(2) for each w ∈Wsing. Since H 0(W,R4σ∗Z/l n) �⊕

w∈Wsing
H 4(Qw, Z/l n), the surjectivity follows.

(ii) By part (i) and the proof of Proposition 4.1, Hj(W, Z/l n) is a free Z/l n-
module for j ∈ {0,1, 5, 6} and each n. The assertion follows from Lemma 2.2.

(iii) The Leray spectral sequence for σ gives an exact sequence

0 → H 4(W, Z/l n(2))→ H 4(W, Z/l n(2))→ H 4(Q, Z/l n(2))→ 0,

which is split by the classes [Lw], w ∈ Wsing. Now take the inverse limit over n
and use that H 4(Q, Zl(2))tors = 0.

(iv) This is a special case of Proposition 2.3(i).

5.2. Remark. Generally it is not easy to computeH 4(W, Zl)tors � H 4(W, Zl)tors

directly, even with the help of the spectral sequence in Lemma 4.3. The problem
is computing the differential d 03

2 . (See Remark 8.2 for a special situation where
this is manageable.)

The next lemma establishes the approach we take when computingH 4(W, Zl)tors �
H 3(W, Zl)tors: reduce the problem to understanding H 2(W, Z/l n).

5.3. Lemma. For sufficiently large n, H 3(W, Zl)[l n] is isomorphic to the quo-
tient of H 2(W, Z/l n) by a maximal free Z/l n-submodule.

Proof. Combine Proposition 5.1(ii) with Lemma 2.2(i).
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The main tool for analyzing H 2(W, Z/l n) will be the Leray spectral sequence
associated to the canonical morphism f : W → X.

5.4. Lemma. (i) The E2-term, E2(f ), of the Leray spectral sequence for f is
displayed below in the usual format ; the numbers 1, 2g, and h0(X,R4f∗Z/l)
indicate the ranks of free Z/l n-modules.

h0(X,R4f∗Z/l) 2g 1

H 0(X,R3f∗Z/l n) H1(X,R3f∗Z/l n) Bln ⊕ B ′
l n

H 0(X,R2f∗Z/l n) H1(X,R2f∗Z/l n) (Z/l n)2 ⊕ Rln
0 H1(X,R1f∗Z/l n) Bln ⊕ B ′

l n

1 2g 1

(ii) The differentials d 02
2 : E 02

2 (f )→ E 21
2 (f ) and d 04

2 : E 04
2 (f )→ E 23

2 (f ) are
surjective.

Proof. (i) Consider the restriction map υi : Rif̄∗Z/l n → Rif∗Z/l n. Since
σ∗Z/l n � Z/l n and R1σ∗Z/l n = 0, we may identify the bottom two rows in
E2(f ) with the corresponding rows in E2(f̄ ) (cf. Lemma 4.3). The top row in
E2(f )may be deduced from the top row inE2(f̄ ) thanks to the split exact sequence

0 −→ R4f̄∗Z/l n
υ4−→ R4f∗Z/l n −→ f̄∗R4σ∗Z/l n −→ 0

(cf. the proof of Proposition 5.1(iii)). The right-hand columns inE2(f ) andE2(f̄ )

may be identified. Indeed, Ker(υ i) and Coker(υ i) are supported on S ∪ S ′ and so
H 2(X, υi) is an isomorphism for all i.

(ii) This follows from the morphism of spectral sequences, E(f̄ )→ E(f ), and
the analogous fact for the differentials in E2(f̄ ) (see Lemma 4.5).

For a finitely generated Z/l n-module N, let N∗ denote the quotient by a maximal
free Z/l n-submodule. The isomorphism class of N∗ is independent of the choice
of maximal free submodule.

5.5. Lemma. H 2(W, Z/l n)∗ � H 0(X,R2f∗Z/l n)∗.

Proof. The map σ : W → W gives rise to a morphism of spectral sequences,
E(f̄ )→ E(f ), and to a morphism of exact sequences,

0 �� E11
2 (f̄ )

��

!
��

H 2(W, Z/l n)•
��

α

��

E 02
2 (f̄ )

��

β

��

Bln ⊕ B ′
l n

��

!
��

0

0 �� E11
2 (f )

�� H 2(W, Z/l n)•
�� E 02

2 (f )
�� Bln ⊕ B ′

l n
�� 0;

as before, the • means “take the quotient by the image of H 2(X, Z/l n)”. Split-
ting each four-term exact sequence into two short exact sequences shows that the
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map Coker(α)→ Coker(β) is an isomorphism. By Lemma 4.3, E 02
2 (f̄ ) is a free

Z/l n-module. The same holds for H 2(W, Z/l n)• by the proof of Proposition 4.1.
If α and β are injective, then they are split injective and the lemma will follow.
The injectivity of β follows from the injectivity of the map

R2f̄∗Z/l n
υ2−→ R2f∗Z/l n,

which is an easy consequence of the spectral sequence for the composition of func-
tors, f∗ = f̄∗σ∗. The injectivity of α follows from the five lemma.

5.6. Corollary. H 0(X,R2f∗Z/l n)∗ � H 3(W, Zl)[l n] for n� 0.

Proof. Combine Lemmas 5.3 and 5.5.

6. The Cohomology Group H 0(X, R2f∗ZZZ/ln)

Let’s begin by describing R2f∗Z/l n as a direct sum of simpler sheaves. Write
j : η→ X for the inclusion of the generic point, and let

r : R2f∗Z/l n −→ j∗j ∗R2f∗Z/l n

denote the canonical map. Define Gl n to be the image of the composition

R2f∗Z/l n
r−→ j∗j ∗R2f∗Z/l n

j∗�pr−−−→ j∗j ∗(R1π∗Z/l n ⊗ R1π ′∗Z/l n),

where pr denotes the Künneth projector on the generic fiber.

6.1. Proposition.

(i) The sheaf Ker(r) is supported on S ∪ S ′.
(ii) For each s ∈ S ∪ S ′, the stalk Ker(r)s is a free Z/l n-module.

(iii) R2f∗Z/l n � Ker(r)⊕ (Z/l n)2 ⊕ Gl n .
(iv) Gl n |X−S ′′ � (R1π∗Z/l n ⊗ R1π ′∗Z/l n)|X−S ′′ .
(v) H 0(X,R2f∗Z/l n)∗ � H 0(X, Gl n )∗.

Proof. (i) [Mi, II.3.15 and VI.4.2].
(ii) Away from S ∩ S ′ one may identify R2f∗Z/l n with R2f̄∗Z/l n. For s /∈

S ∩ S ′, the assertion follows from Lemmas 4.2(iii), 3.2, and 3.3. For s ∈ S ∩ S ′,
this is [S2, 7.3].

(iii) By Lemma 2.4(iii), Ker(r) is a direct summand of R2f∗Z/l n. The de-
composition of the image of r as a direct sum follows from the Künneth formula
applied to j∗j ∗R2f∗Z/l n [Mi, VI.8.5].

(iv) Apply Lemma 4.2(iii) while usingW − f −1(S ′′) �W − f̄ −1(S ′′) and the
injectivity of the canonical map

R1π∗Z/l n ⊗ R1π ′∗Z/l n −→ j∗j ∗(R1π∗Z/l n ⊗ R1π ′∗Z/l n)

(cf. the proof of Lemma 4.4).
(v) This follows from parts (ii) and (iii).
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6.2. Proposition. The sheaf Gl n is a constructible sheaf of Z/l n-modules that
is locally constant on U := X − (S ∪ S ′). Under the equivalence of categories
(Lemma 2.4), Gl n corresponds to (M, {Ms ,φs}s∈S∪S ′) ∈ Ob(M), where M =
T ⊗ T ′ and

Ms ,φs =




0, 0 if s ∈ Sa ∪ S ′a ,
Ts ⊗ T ′,ϕs ⊗ Id if s ∈ Sm − S ′′,
T ⊗ T ′

s , Id⊗ ϕ ′s if s ∈ S ′m − S ′′,
(T ⊗ ϕ ′s(T ′

s )+ ϕs(Ts)⊗ T ′) ∩ (T ⊗ T ′)Is,φs if s ∈ S ′′.
In the last line, φs is the standard inclusion.

Proof. The only point that is not apparent from Proposition 6.1(iv) and the proof
of Lemma 4.4 is the identification of Ms and φs for s ∈ S ′′. For this, see [S2,
7.6(iv)].

6.3. Corollary. With notation as in Definition 0.2, H 0(X, Gl n ) � �ln(W ).
Proof. Apply Lemma 2.4(ii).

6.4. Corollary. If Sa ∪ S ′a �= ∅, then H 0(X, Gl n ) = 0.

Proof. By Assumption 0.1, (Sa ∪ S ′a) ∩ S ′′ = ∅. For s ∈ Sa (resp. S ′a), the
stalk R1π∗Z/l n|s (resp. R1π ′∗Z/l n|s) is zero. Now apply Proposition 6.2 and
Lemma 2.4(ii).

6.5. Proposition. H 0(X, Gl n ) is a cyclic group. If S ∩ S ′ = ∅ then this group
is zero.

Proof. We may and will assume that n = 1.We first prove the assertions in the spe-
cial case when there is an n′ ≥ 1 such that l n

′
> 2 andE[l n

′
] andE ′[l n′ ] are trivial

G-modules. This implies that the elliptic surfaces Y and Y ′ are relatively minimal
models of pullbacks of the universal generalized elliptic curve with level l n

′
struc-

ture over the modular curve X(l n
′
). Assume first that S ∩ S ′ = ∅. By Lemma 3.3

and Proposition 3.4,
⋂
s∈S ϕs(Ts) = 0. By Proposition 6.2,

⋂
s∈S φs(Ms) = 0

and so H 0(X, Gl) � ⋂
s∈S∪S ′ φs(Ms) = 0.

If S∩S ′ �= ∅, then the hypotheses imply the existence of three distinct s1, s2, s3 ∈
S ∪ S ′ such that ϕs1(Ts1),ϕs2(Ts2 ) ⊂ T � (Z/l)2 are distinct one-dimensional
subspaces and the same holds for ϕ ′s1(T

′
s1
),ϕ ′s3

(T ′
s3
) ⊂ T ′. The most delicate case

to consider is when {s1, s2, s3} ⊂ S ∩ S ′. Set

Hi := ϕsi(Tsi )⊗ T ′ + T ⊗ ϕ ′si(T ′
si
) ⊂ T ⊗ T ′.

Now H 0(X, Gl) � ⋂
s∈S∪S ′ φs(Ms) ⊂ H1 ∩H2 ∩H3. We claim

dim(H1 ∩H2 ∩H3) ≤ 1.

If not, the intersection P(H1)∩ P(H2)∩ P(H3) in the projective space of lines in
T ⊗ T ′, P(T ⊗ T ′), has positive dimension. Equivalently, in the dual projective
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space the points pi corresponding to the P(Hi) are colinear. The nondegenerate
bilinear form,

(T ⊗T ′)⊗ (T ⊗T ′) −→ D2T ⊗D2T ′, (t1⊗ t ′1)⊗ (t2⊗ t ′2)→−t1∧ t2⊗ t ′1∧ t ′2
identifies T ⊗ T ′ with its dual and thus P(T ⊗ T ′) with the dual projective space.
Furthermore, under this identification, pi = P(ϕsi(Tsi ) ⊗ ϕ ′si(T

′
si
)). The three

points p1,p2,p3 lie on the Segre quadric of pure tensors. By Bezout’s theorem,
any line through these three points is necessarily contained in this quadric. But the
only lines in the quadric of pure tensors have the form P(T0 ⊗ T ′) or P(T ⊗ T ′

0 ),
where T0 ⊂ T and T ′

0 ⊂ T ′ are one-dimensional subspaces. Clearly not all of
p1,p2,p3 are contained in a line of this form. The claim follows.

If s2 /∈ S ′ or s3 /∈ S then
⋂3
i=1 φsi(Msi ) is contained in an intersection of hyper-

surfaces of the form just described and thus has dimension at most 1.
It remains only to reduce the general case of the proposition to the special case

just proved. This is done in Lemma 6.6.

Let ρ : X̂ → X be a finite morphism of smooth irreducible curves over k. Let
π̂ : Ŷ → X̂ and π̂ ′ : Ŷ ′ → X̂ be the relatively minimal models of the pullbacks of
π and π ′. Write Ŵ for the blowup of Ŷ ×X̂ Ŷ ′ at the reduced singular locus. Write
Ĝl n for the direct summand of R2f̂∗Z/l n defined in analogy with Gl n .
6.6. Lemma. There is an injective sheaf homomorphism ρ∗Gl n → Ĝl n that in-
duces an injection H 0(X, Gl n )→ H 0(X̂, Ĝl n ).
Proof. Since the stalks of Gl n over points s ∈ Sa ∪S ′a are zero, we may restrict our
attention to Gl n |X−(Sa∪S ′a). On ρ−1(X − (Sa ∪ S ′a)), by Lemma 3.5 we have

ρ∗R1π∗Z/l n � R1π̂∗Z/l n, ρ∗R1π ′∗Z/l n � R1π̂ ′∗Z/l n.

For s ∈ Sm, the description of the subgroup ϕs(Ts) ⊂ T is compatible with base
change and passage to the relatively minimal model. It follows from Proposi-
tion 6.2 that there is a canonical injection ρ∗Gl n → Ĝl n that is an isomorphism
away from ρ−1(Sa ∪ S ′a).

7. Proofs of the Main Theorems

7.1. Proposition. (i) IfE andE ′ are isogenous elliptic curves overK = k(X),
then H 0(X, Gl n ) � Z/l n.

(ii) If E and E ′ are not isogenous over K, then |H 0(X, Gl n )| is bounded as n
varies.

Proof. (i) If E and E ′ are isogenous, then there is an isogeny whose kernel is a
cyclic group. Write E ⊂W for the closure of the graph of this isogeny. Consider
the composition

H 2(W,µln)
αn−→ H 0(X,R2f∗µln)
βn−→ H 0(X, Gl n(1)) −→ H1(EK̄ , Z/l n)⊗H1(E ′

K̄
,µln),
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in which the final map is the restriction of a global section of Gl n(1) to the stalk
at the geometric generic point. Then the image of the cohomology class [E]
under this composition may be identified via the Weil pairing with the element of
Hom(E[l n],E ′[l n]) induced by the isogeny. Since the kernel of the isogeny is
cyclic, this element has order l n. BecauseH 0(X, Gl n ) is a cyclic group (by Propo-
sition 6.5) with at most l n elements, (i) follows.

(ii) If H 0(X, Gl n ) is unbounded as n varies then lim← n H
0(X, Gl n ) �= 0, which

implies

lim←−
n

H 0(X, j∗j ∗(R1π∗Z/l n ⊗ R1π ′∗Z/l n))

� lim←−
n

H 0(X, j∗j ∗(Hom(R1π∗Z/l n,R1π ′∗Z/l n)) �= 0.

Thus there is a nontrivial Galois invariant homomorphism of l-adic Tate modules,
Tl(E)→ Tl(E

′). This implies that E is isogenous to E ′; when char(K) = 0, use
[D, 4.4.13] or [L, Thm. 8]. In general one may reduce to the classical isogeny the-
orem over a finitely generated base field using [Z, 3.4 and proof of 1.4(i)].

7.2. Corollary. IfE is not isogenous toE ′, thenH 0(X, Gl n ) � H 3(W, Zl)[l n]
for all n.

Proof. By Propositions 6.1 and 6.5, H 0(X,R2f∗Z/l n)∗ = 0 if H 0(X, Gl n ) �
Z/l n and is isomorphic to H 0(X, Gl n ) otherwise. By Proposition 7.1(ii),

H 0(X,R2f∗Z/l n)∗ � H 0(X, Gl n )
for large n. By Corollary 5.6, the assertion follows for large n. Since there is a
natural map for all n, the assertion holds for all n.

Proof of Theorem 0.3. (i) This is proved in Proposition 5.1(ii).
(ii) By Proposition 7.1(i),H 0(X, Gl n )∗ = 0 for all n. By Proposition 6.1(v) and

Corollary 5.6, H 3(W, Zl)tors = 0. The assertion now follows from part (i) and
Proposition 2.3(i).

(iii) The assertion follows from Corollaries 7.2 and 6.3.

Proof of Theorem 0.4. (i) IfH 3(W, Zl)tors �= 0, thenH 0(X, Gl n ) � H 3(W, Zl)[l n]
for all n. This is a cyclic group by Proposition 6.5.

(ii) If Sa ∪ S ′a �= ∅, then Assumption 0.1 implies that E and E ′ do not have the
same places of bad reduction and thus are not isogenous. Now Corollaries 6.4 and
7.2 imply that H 3(W, Zl)tors = 0.

(iii) The hypothesis J(E) /∈ k implies that S �= ∅. Since S �= S ′,E is not isoge-
nous toE ′. The assertion then follows from Proposition 6.5 and Corollary 7.2.

8. A First Example

Define Ẑ′ := ∏
l �=char(k) Zl .We begin this section with an easily constructed desin-

gularized fiber productW for which H 3(W, Ẑ′)tors �= 0.
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Suppose that char(k) �= 2 and that the genus of X is at least 1. Suppose that
π : Y → X is semi-stable. Letπ ′ : Y ′ → X be obtained fromπ by a quadratic twist
with respect to a nontrivial unramified degree-2 cover ρ : X̂ → X. Let σ : W →
W = Y ×X Y ′ be the blowup alongWsing.

8.1. Proposition. H 3(W, Ẑ′)tors � Z/2.

Proof. First we show thatE andE ′ are not isogenous. The Galois representations
E[l] and E ′[l] are related by tensoring with χ Id, where χ : G → {±1} is the
character of the degree-2 cover ofX. For all except finitely many odd primes l, the
image of the Galois representation G → Aut(E[l]) is isomorphic to SL2(Z/l).
Indeed, if this were not the case then X would admit morphisms to an infinite
tower of modular curves of various level l structures of unbounded genus, which
is impossible. For odd primes l, a surjective representation κ : G→ SL2(Z/l) is
not isomorphic to χ Id⊗κ because the kernels are not equal. It follows thatE and
E ′ are not isogenous.

Since quadratic twisting does not effect the 2-torsion, we may identify the Galois
modulesE[2] andE ′[2]. The Weil pairing composed with the isomorphism µ2 �
Z/2 gives a bilinear form

E[2]⊗ E[2] −→ Z/2, a ⊗ b �→ a · b.
Define an isomorphism of Galois modules,

E[2]⊗ E[2] −→ Hom(E[2],E[2]), a ⊗ b �→ [c �→ (a · c)b].

Write θ for the element of the left-hand side that maps to Id. For any place of bad
reduction, s ∈ S = S ∩ S ′ = S ′, let e ∈ E[2]0s be a basis. Extend to a basis e, f
of E[2] such that e · f = 1. Then

θ = e ⊗ f − f ⊗ e ∈E[2]0s ⊗ E[2]+ E[2]⊗ E[2]0s .

Because Id (and hence θ) isG-invariant, H 3(W, Z2)[2] �= 0 by Theorem 0.3(iii).
By Theorem 0.4(i), H 3(W, Z2)[2] � Z/2.

Define Ŵ :=W ×X X̂. Write υ : Ŵ →W for the projection. Since the generic
elliptic curvesE andE ′ become isogenous over k(X̂), by Theorem 0.3(ii) we have
H 3(Ŵ, Ẑ′)tors = 0. The proposition follows from the projection formula applied
to any ϑ ∈H 3(W, Ẑ′)tors:

2ϑ = υ∗(1) · ϑ = υ∗(1 · υ∗(ϑ)) = υ∗(υ∗(1) · υ∗(ϑ))
= 1 · υ∗υ∗(ϑ) = υ∗υ∗(ϑ) = 0.

8.2. Remark. The preceding example is exceptional in two respects. First, the
torsion disappears after base change (H 3(W, Ẑ′)tors � Z/2 but H 3(Ŵ, Ẑ′)tors =
0), which by Lemma 6.6 and Corollary 7.2 can occur only whenE becomes isoge-
nous to E ′ after base change. Second, if one admits the additional hypothesis that
all singular fibers of π have type I1, then one can show H 4(W, Z2)[2] � Z/2 di-
rectly from the spectral sequence of Lemma 4.3. The idea is to showh4(W, Z/2) =
h4(W, Z/l)+1 for odd primes l �= char(k) and then to apply Lemma 2.2(iii) and
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Proposition 4.1. To verify the equality, consider each term E
pq
∞(f̄ ) with p + q =

4. Since all singular fibers are of type I1, E 23
2 (f̄ ) = 0 for all l, which implies

that E 04
2 (f̄ ) = E 04∞ (f̄ ). By Lemma 4.2(v), rank(E 04

2 (f̄ )) is independent of l. By
Lemmas 4.2(iv) and 3.2 and Proposition 3.4, E 03

2 (f̄ ) = 0 for all l. Hence the dif-
ferential d 03

2 is zero and E 22
2 (f̄ ) = E 22∞ (f̄ ) for all l. But E 22

2 � (Z/l)2 for odd l.
When l = 2, we have E 22

2 � R2 ⊕ (Z/2)2 for R2 � Z/2. Finally,

E13
2 = h1(X,R3f̄∗Z/l) = h1(X,R1π∗Z/l)+ h1(X,R1π ′∗Z/l)

= −e(R1π∗Z/l)− e(R1π ′∗Z/l)

is independent of l by Lemma 3.3 and [Mi, V.2.12].

9. Desingularized Fiber Products with Prescribed Torsion

The purpose of this section is to construct, for any given m ∈ N not divisible by
char(k), a desingularized fiber product W with H 3(W, Ẑ′)tors � Z/m. The case
m = 1 follows from Theorem 0.3(ii) or from Theorem 0.4(ii) or (iii); the case
m = 2 follows from Proposition 8.1. Further examples with m = 2 (and 3) may
be found in [SSha, Sec. 7]. These examples have the interesting properties that Y
and Y ′ are rational elliptic surfaces and S �= S ∩ S ′ �= S ′.

Assume henceforth that m > 2 and that the Galois representations E[m] and
E ′[m] are both trivial. This assumption is not particularly restrictive because
Lemma 6.6 and Corollary 7.2 indicate that torsion is seldom annihilated by base-
changing to a finite cover, X̂ → X. It allows us to make use of the theory of
moduli of generalized elliptic curves with full level m structure, which we now
briefly review (referring to [DR] for details).

A full level m structure on a generalized elliptic curve consists of a basis of the
m-torsion sections. There is a fine moduli space for generalized elliptic curves
with full level m structure. This is a smooth projective curve over k. The group
GL2(Z/m), which operates on the level m structures, operates on this moduli
space. The quotient is the J -line, X(1). The subgroup SL2(Z/m) is the stabilizer
of each connected component. Theφ(m) connected components are distinguished
by the value of the Weil pairing on the chosen basis. The cusps parameterize iso-
morphism classes of full level m structures on an m-gon of rational curves.

Consider now a smooth, irreducible, projective curveX and two elliptic curvesE
andE ′ over the generic point, Spec(K) ⊂ X, such that the Galois actions onE[m]
and E ′[m] are trivial. Fixing bases of these Z/m-modules amounts to defining
morphisms from Spec(K) (or, equivalently, from X) to the moduli space of gen-
eralized elliptic curves with full level m structure. Write

H := (h,h′) : X→ X(m)×X(m)′,
whereX(m) (resp.X(m)′) denotes the connected component of the moduli scheme
that contains the image ofh (resp.h′). The universal elliptic curves over the generic
points are denoted Em and E ′

m, so that Em pulls back via h to E and E ′
m via h′ to

E ′. The levelm structures give bases e, f ∈Em[m] � E[m] and e ′, f ′ ∈E ′
m[m] �

E ′[m].
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Suppose that an element of order m, θ ∈ Em[m] ⊗ Em[m]′, has been fixed. In
order to construct a desingularized fiber product W with H 3(W, Ẑ′)tors of order
divisible bym, we chooseX, h, and h′ such that E and E ′ are not isogenous and θ
satisfies all the conditions of Definition 0.2. How this is done depends on whether
or not θ is a pure tensor. In this section we assume θ = e ⊗ e ′.

Write I ⊂ X(m) and I′ ⊂ X(m)′ for the cusps. Fix one cusp ξ ∈ I (resp.
ξ ′ ⊂ I′) such that e ∈Em[m]0ξ (resp. e ′ ∈E ′

m[m]0,ξ ′). The subgroupEm[m]0ξ ⊂
Em[m] is independent of the choice of inertia group involved in its definition be-
cause the Galois action is trivial (cf. Section 1.3 and Remark 2.6). Define the
following divisors on X(m)×X(m)′:

Dξ,ξ ′ := ξ ×X(m)′ +X(m)× ξ ′,
D ′
ξ,ξ ′ := (I− ξ)×X(m)′ +X(m)× (I′ − ξ ′).

Write X̄ ⊂ X(m)×X(m)′ for the image of H.

9.1. Proposition. Suppose that

(i) X̄ ∩ ({ξ} ×X(m)′) �⊂ {ξ} ×I′,
(ii) X̄ ∩ (X(m)× {ξ ′ }) �⊂ I× {ξ ′ }, and

(iii) X̄ ∩D ′
ξ,ξ ′ ⊂ Dξ,ξ ′ ∩D ′

ξ,ξ ′ .

Then H 3(W, Ẑ′)tors contains a subgroup isomorphic to Z/m.

Proof. By (i) we have S �⊂ S ′, and it follows that E and E ′ are not isogenous.
Hypothesis (iii) implies

S = h−1(I) = h−1(ξ) ∪ ((h′)−1(ξ ′) ∩ S ′′) and

S ′ = (h′)−1(I′) = (h′)−1(ξ ′) ∪ (h−1(ξ) ∩ S ′′).
This implies that θ = e⊗e ′ satisfies the conditions of Definition 0.2 for each l n|m.

The conditions imposed by Proposition 9.1 on the curve X̄ ⊂ X(m)× X(m)′ are
extremely restrictive. The following variant of Bertini’s theorem will be helpful
in meeting these constraints.

9.2. Lemma. Let L be an ample invertible sheaf on a smooth projective sur-
face Z. Let L ⊂ H 0(Z, L) be a linear subspace. For i ∈ {0,1, 2}, let Zi be the set
of closed points z∈Z for which the kernel of the restriction map

L→ L⊗OZ,z/m
2
Z,z

has codimension i. If dim(Z̄i) ≤ i − 1 (dim(∅) = −1 by convention), then the
Zariski open subset of nonsingular irreducible curves in the linear system P(L) is
nonempty.

Proof. Consider the incidence correspondence,

I = {(z,H )∈Z × P(L) : z is a singular point of H },
and the two projections p : I → Z and q : I → P(L). For z∈Zi,
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codimP(L)(p
−1(z)) = i.

Thus

dim(I ) = max{dim(P(L))− i + dim(Z̄i) : i ∈ {0,1, 2}} ≤ dim(P(L))− 1

and q(I ) ⊂ P(L) is a proper closed subset. Any point in P(L) − q(I ) gives a
nonsingular curve, which is irreducible because it is ample [H, III.7.9.1].

9.3. Proposition. There exist smooth irreducible curves X̄ ⊂ X(m) × X(m)′
that satisfy the hypotheses of Proposition 9.1.

Proof. Choose integers a, b ≥ |I| = |I′| such that the divisor

d := a(ξ ×X(m)′)+ b(X(m)× ξ ′)+Dξ,ξ ′ −D ′
ξ,ξ ′

is very ample. Define

Dξ,ξ ′ := (a + 1)(ξ ×X(m)′)+ (b + 1)(X(m)× ξ ′),
and let L ⊂ H 0(X(m)× X(m)′, O(Dξ,ξ ′)) denote the subspace corresponding to
the linear system P(L) generated by Dξ,ξ ′ and D ′

ξ,ξ ′ + d′ as d′ varies in |d|. Let
P(L)◦ denote the Zariski open subset of divisors in P(L) that correspond to re-
duced, irreducible, nonsingular curves.

9.4. Lemma. (i) The reduced base locus of P(L) is Dξ,ξ ′ ∩D ′
ξ,ξ ′ = (I− ξ)×

{ξ ′ } ∪ {ξ} × (I′ − ξ ′).
(ii) The locus Z2 defined in Lemma 9.2 is contained in D ′

ξ,ξ ′ .
(iii) The locus Z0 defined in Lemma 9.2 is empty.
(iv) The locus Z1 defined in Lemma 9.2 is contained in I×I′.
(v) For each υ ∈I− {ξ}, υ ′ ∈I′ − {ξ ′ }, and C ∈ P(L)◦, we have

C · ({υ} ×X(m)′) = (b + 1)(υ, ξ ′) and C · (X(m)× {υ ′ }) = (a + 1)(ξ, υ ′).
(vi) There exists an X̄ ∈ P(L)◦ such that X̄ ∩ (X(m) × {ξ ′ }) �⊂ I × {ξ ′ } and

X̄ ∩ ({ξ} ×X(m)′) �⊂ {ξ} ×I′.

Proof. (i) Since |d| is base point free, the reduced base locus is Dξ,ξ ′ ∩ D ′
ξ,ξ ′ =

Dξ,ξ ′ ∩D ′
ξ,ξ ′ .

(ii) The condition that a divisor in |d| must contain a given point z ∈ X(m) ×
X(m)′ and be singular there is a codimension-3 condition, since d is very ample.
Thus z /∈D ′

ξ,ξ ′ implies z /∈Z2.

(iii) For each point z in the base locus, there is a divisor of the form D ′
ξ,ξ ′ + d′

that is nonsingular at z.
(iv) Through a nonsingular point z∈D ′

ξ,ξ ′ there is a divisor of the formD ′
ξ,ξ ′ + d′

that is nonsingular at z, so z /∈Z1.

(v) Since C is irreducible, it is not in the linear subsystemD ′
ξ,ξ ′ + |d|. Thus the

Cartier divisors C and Dξ,ξ ′ have equal restrictions to the curve {υ}×X(m)′ (resp.
X(m) × {υ ′ })—namely, the point (υ, ξ ′) (resp. (ξ, υ ′)) with multiplicity b + 1
(resp. a + 1).

(vi) For a general d′ ⊂ |d|, the divisorD ′
ξ,ξ ′ +d′ meetsX(m)×{ξ ′ } transversely

at a + 1> |I| distinct points and meets {ξ} ×X(m)′ transversely at b+ 1> |I′|
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distinct points. Since these conditions are open in P(L) and hence also in P(L)◦,
the assertion follows.

We may now complete the proof of Proposition 9.3. By Lemmas 9.4(ii)–(iv), the
linear subspace L satisfies the hypotheses of Lemma 9.2. Thus the Zariski open
subset P(L)◦ ⊂ P(L) is not empty. By Lemma 9.4(v), a general X̄ ∈ P(L)◦ satis-
fies Proposition 9.1(iii); by Lemma 9.4(vi), it satisfies Propositions 9.1(i) and (ii).

9.5. Theorem. Given m not divisible by char(k), there exists a desingularized
fiber product W with H 3(W, Ẑ′)tors � Z/m. Furthermore, we may arrange S �=
S ∩ S ′ �= S ′.

Proof. For the casem = 2, see [SSha, Sec. 7]. Assumem > 2. Choose a and b as
in the proof of Proposition 9.3 and satisfying the additional condition thatm, a+1,
and b + 1 are pairwise coprime. Let X̄ be as in Proposition 9.3. By the proof of
Lemma 9.4(vi), we may assume that X̄ meets {ξ} ×X(m) and X(m)× {ξ} trans-
versely. LetH : X→ X̄ be an isomorphism, and letW be the desingularized fiber
product constructed from H at the beginning of this section. By Proposition 9.1,
H 3(W, Ẑ′)tors contains a subgroup isomorphic to Z/m.

Fix a prime l �= char(k). Let n ≥ 0 be maximal so that l n|m. It suffices to
show that H 3(W, Zl)[l n+1] ⊂ H 3(W, Zl)[l n]. This is the case if the Galois rep-
resentation on E[l n+1]/E[l n] is irreducible. Indeed, if H 3(W, Zl)[l n+1] contains
an element of order l n+1, then HomG(E[l n+1],E ′[l n+1]) contains an element of
order l n+1 by Theorem 0.3(iii) and so HomG(E[l n+1]/E[l n],E ′[l n+1]/E ′[l n]) �=
0. Because the first representation is irreducible, the second is also and the two are
isomorphic. This contradicts the fact that, at points of s ∈ S− S ′′, the l n+1-torsion
in Y ′ is unramified (since Y ′ has good reduction) but the l n+1-torsion in Y is rami-
fied (since Y has type-Im reduction and l n+1 � m).

It remains to rule out the possibility that both Galois representations E[l n+1]/
E[l n] andE ′[l n+1]/E ′[l n] are reducible. If they were, thenE[l n+1] andE ′[l n+1]
would admit G-stable cyclic subgroups of order l n+1 because G acts trivially on
the l n-torsion. The theory of coarse moduli schemes would then give factoriza-
tions of the J -maps for π and π ′, J, J ′ : X → X(1) � P1, through the modu-
lar curve X0(l

n+1). Since the canonical map X0(l
n+1) → X(1) has ramification

index l n+1 at certain cusps, the tame contribution to the ramification index of J
at some cusp would be divisible by l n+1 and the same would also hold for J ′. To
see that both conditions cannot hold simultaneously, note that the J -map associ-
ated to the universal elliptic curve Em is (tamely) ramified with index m at each
cusp. By the transversality hypothesis, the ramification index of J at any point
in X̄ ∩ {ξ} × X(m) (resp., of J ′ at any point in X̄ ∩ (X(m)× {ξ})) is also m. At
any point in X̄ ∩ ({I− ξ} × X(m)) (resp., in X̄ ∩ (X(m)× {I− ξ})), the tame
contribution to the ramification index of J divides (b + 1)m (resp., of J ′ divides
(a + 1)m) according to Lemma 9.4(v). Since l n exactly divides m and since m,
a + 1, and b + 1 are pairwise coprime, it follows that either l n+1 does not divide
the tame contribution to the ramification index of J over any cusp or that it does
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not divide the tame contribution to the ramification index of J ′ over any cusp—a
contradiction.

9.6. Remark. It is not possible to use the methods of this section to construct
desingularized fiber products W with |H 3(W )tors| that are increasing without
bound while the genus of the base curve remains bounded. Indeed, the assump-
tion θ = e⊗ e ′ implies that E and E ′ have cyclic order-m subgroups defined over
K. This implies genus(X) ≥ genus(X0(m)) ≥ am+ b for some a > 0 and b ∈R
[DiSh, 3.9].

10. A Second Class of Examples with Large Torsion

The goal of this section is to prove the following statement.

10.1. Theorem. Given m ∈ N such that char(k) � m, there exists a desingular-
ized fiber product W such that H 3(W, Ẑ′)[m] � Z/m and S = S ′.
The case m = 1 (resp. m = 2) was treated in Theorem 0.3(ii) (resp. Proposi-
tion 8.1), so we assume m > 2. As in Section 9, we fix an irreducible compo-
nent X(m) of the moduli of generalized elliptic curves with full levelm structure;
we write Em for the generic fiber of the universal generalized elliptic curve and
I ⊂ X(m) for the cusps. Let

θ ∈Em[m]⊗ Em[m] ∼−→Hom(Em[m],Em[m])

map to the identity element. This choice is, in a sense, the opposite of that made in
the previous section. Indeed, whenm is prime there are two types of nonzero ele-
ments up to change of bases: pure tensors (rank-1 homomorphisms) and nonpure
tensors (invertible homomorphisms).

To prove the theorem, it suffices to establish the existence of a smooth, irre-
ducible, projective curve X and a morphism H = (h,h′) : X → X(m) × X(m)
such that the pullbackE ofEm via h is not isogenous to the pullbackE ′ ofEm via
h′ and such that

θ ∈Em[m]⊗ Em[m] ∼−→E[m]⊗ E ′[m]

satisfies the conditions of Definition 0.2. Indeed, Definitions 0.2(i) and (ii) and
the assumption that θ corresponds to an invertible homomorphism together imply
S = S ′.

If X̄ = H(X) is a Hecke correspondence then E and E ′ are isogenous, which
implies that the conditions of Definition 0.2 are satisfied (cf. Proposition 7.1(i)).
The idea of the proof is to realize X̄ by deforming (a multiple of ) a Hecke corre-
spondence while keeping the cusps fixed. Thus the isogeny is destroyed while the
conditions of Definition 0.2 are preserved.

To prepare for the proof of Theorem 10.1, we recall general facts about Hecke
correspondences. Let n ∈ N be prime to char(k). The modular curve X0(n) is a
coarse moduli space for pairs of elliptic curves related by a cyclic degree-n isogeny.
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Although there is no pair of universal elliptic curves, there is nonetheless a corre-
sponding pair of J -invariants:

(Jn, J
′
n) : X0(n)→ X(1)×X(1) � P1 × P1.

Write Tn for the image of this map.
Form > 2 and n ≡ 1 modulem and prime to char(k)we construct a Hecke cor-

respondence, Tn ⊂ X(m) × X(m), as follows. Begin with the normalization Xn
of X(m)×X(1) X0(n). Away from the cusps, Xn is a fine moduli space for elliptic
curves with a cyclic subgroup of order n and a full levelm structure for which the
Weil pairing is a prescribed mth root of unity. If A is such an elliptic curve, then
taking the quotient by the distinguished cyclic subgroup gives an elliptic curve A′
that inherits a levelm structure fromA. Since n ≡ 1 modm, the Weil pairing gives
the same mth root of unity [Si1, III.8.2]. Now associating to A the pair (A,A′)
gives a morphism, Xn → X(m) × X(m), whose image is the Hecke correspon-
dence Tn.

Define the divisor

D = I×X(m)+X(m)×I ⊂ X(m)×X(m),
and set In = Tn ∩D.
10.2. Proposition. Suppose n ≡ 1 modm and char(k) � n. Then:

(i) Xn is irreducible;
(ii) Tn is invariant under the involution of X(m) × X(m) that interchanges the

factors; and
(iii) In ⊂ I×I.
Assume henceforth that n is prime.

(iv) If x ∈X(m), then Tn · (x ×X(m)) = n+ 1= Tn · (X(m)× x).
(v) Each eigenvalue α of the endomorphism of H1(X(m), Q l) induced by the

correspondence Tn is an algebraic integer that satisfies |α| ≤ 2
√
n under

any complex embedding.

Sketch of the proof. (i) The ring k(Xn) of rational functions is a field because the
extensions k(X0(n)) and k(X(m)) of k(X(1)) are linearly disjoint.

(ii) Suppose that the cyclic degree-n isogeny, φ : A → A′, represents a point
(A,A′) ∈ Tn. Thus the level m structure on A′ comes from the level m structure
on A. Now the dual isogeny, φ̂ : A′ → A, maps the level m structure on A′ to the
original level m structure on A because φ̂ � φ = n Id and n ≡ 1 modulo m. Thus
(A′,A)∈ Tn.

(iii) Tn ∩X(m)×I ⊂ I×I, since the quotient of an elliptic curve by a finite
subgroup is again an elliptic curve. Now apply (ii).

(iv) When n is prime there are n+1 distinct order-n subgroups ofA[n]. Gener-
ally the quotient curves are pairwise nonisomorphic.

(v) This follows from Weil’s theorem on the zeta function of a curve over a finite
field and the Eichler–Shimura congruence relation. The latter is a consequence of
the degeneration of X0(n) into two components at the prime n, one of which may
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be viewed as the graph of Frobenius and the other as the graph of Verschiebung
[DR, V; DiSh, 9.5.1].

Let X be a smooth, irreducible, projective curve and let H = (h,h′) : X →
X(m) × X(m) be a morphism. Define the sheaf Gm := ∏ Gl n on X, where the
product is taken over the maximal prime powers that divide m.

10.3. Lemma. Let n ≡ 1 modm be prime to char(k). Suppose that the image of
H, X̄ ⊂ X(m)×X(m), is a curve satisfying:

(i) X̄ ∩D ⊂ In; and
(ii) the pullback E of Em via h is not isogenous to the pullback E ′ of Em via h′.
Then the desingularized fiber product W constructed from E and E ′ satisfies

(a) S = S ′ and
(b) H 3(W, Ẑ′)[m] � Z/m.

Proof. (a) S = h−1(I) = (h′)−1(I) = S ′ because X̄ ∩D ⊂ I×I.
(b) The identifications Em[m] � E[m] and Em[m] � E ′[m] induced by h and

h′ give, for s ∈ S ′′, the identifications Em[m]0h(s) � E[m]0s and Em[m]0h′(s) �
E ′[m]0s . Since S = S ′ = S ′′, it follows (from Theorem 0.3, Lemma 2.4(ii), and
Corollary 6.3) that there is an isomorphism

H 3(W, Ẑ′)[m] � ϑ :=
⋂
s∈S ′′

Em[m]0h(s) ⊗ Em[m]+ Em[m]⊗ Em[m]0h′(s).

By (i), this group contains the subgroup

� :=
⋂

(ξ,ξ ′ )∈In
Em[m]0ξ ⊗ Em[m]+ Em[m]⊗ Em[m]0ξ ′ ⊂ Em[m]⊗ Em[m],

which is isomorphic to H 0(Xn, G̃m). Here G̃m is constructed from the product of
the pair of universal elliptic curves over the generic point of Xn exactly as Gm is
constructed from the E × E ′. By Proposition 7.1(i), � � Z/m. Since ϑ is cyclic
by Theorem 0.4(i), we have � = ϑ.
The next result is a tool for constructing curves X̄ ⊂ X(m) × X(m) that satisfy
the hypotheses of Lemma 10.3.

10.4. Lemma. Let B,C ⊂ Z be reduced curves on a smooth, irreducible, pro-
jective surface. Assume that B and C intersect properly. If C · C > 0 then, for
all sufficiently large j, the subset of divisors d∈ |jC| that satisfy d ∩ B ⊂ C ∩ B
has positive dimension.

Proof. Write ν : B̃ → B for the normalization and consider the restriction map

r : H 0(Z, OZ(jC)) −→ H 0(B, OZ(jC)|B) −→ H 0(B̃, ν∗(OZ(jC)|B)).
By the Riemann–Roch theorem, the dimension of the term on the right grows
linearly with j while the dimension of the term on the left grows quadratically.
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Let sj ∈ H 0(Z, OZ(jC)) have divisor jC and define Lj := Span{r−1(r(sj ))} ⊂
H 0(Z, OZ(jC)). The subset |Lj |◦ ⊂ |Lj | of divisors that do not contain a compo-
nent ofB is open. Since sj ∈ |Lj |◦ this subset is nonempty. For large j, dim(Lj ) > 1
and so dim(|Lj |◦) > 0. For d∈ |Lj |◦, d ∩ B = C ∩ B.
In order to apply Lemma 10.4 when C = Tn for certain n, we prove the following
result.

10.5. Lemma. For sufficiently large primes n, Tn · Tn > 0.

Proof. The Lefschetz fixed point formula [K, 1.3.6(c)] applied to a correspon-
dence C ⊂ X(m)×X(m) gives

CT · C =
∑
i≥0

(−1)i Tr((C � C)|H i ),

where CT is the image of C under switching factors in X(m)×X(m). Take C =
Tn. By Proposition 10.2(ii), T Tn = Tn. According to Proposition 10.2(iv), Tn acts
on H 0 and on H 2 via multiplication by n+ 1. Thus

Tn · Tn = 2(n+ 1)2 − Tr((Tn � Tn)|H1).

By Proposition 10.2(v), |Tr((Tn �Tn)|H1)| ≤ 4nh1(X(m), Q l). By Dirichlet’s the-
orem on primes in arithmetic progression, there are infinitely many primes n with
n ≡ 1 modm. The lemma follows.

10.6. Lemma. There are only finitely many irreducible curvesC ⊂X(m)×X(m)
of bounded degree with respect to the product polarization such that the pullbacks
of Em to the generic point of C via the two projections are isogenous.

Proof. Suppose that the two pullbacks are isogenous over the generic point of
C. Write m′n′ for the minimal degree of an isogeny with cyclic kernel, where
m′|m and gcd(m, n′) = 1. Now the pullback of Em to C acquires a cyclic sub-
group of order n′ defined over C. But the image of the Galois representation
Gal(K̄m/Km)→ Aut(Em[n′ ])/Aut(Em), where Spec(Km)∈X(m) is the generic
point, is isomorphic to SL2(Z/n′)/(±Id). Thus the degree of C over X(m) via
the first projection is at least as large as the index of the stabilizer of a subgroup
Z/n′ ⊂ (Z/n′)2. Since there are only finitely many n′ for which this index is below
a fixed value, the lemma follows.

Proof of Theorem 10.1. Recall that we may assume m > 2. Choose a sufficiently
large prime n such that n ≡ 1 modm, n �= char(k), and Tn · Tn > 0. Apply
Lemma10.4 withB = D,C = Tn, and j sufficiently large such that dim(|Lj |) > 0.
Since the base field is algebraically closed, |Lj |◦ is an infinite set. For each d ∈
|Lj |◦ we have d ∩D ⊂ Tn ∩D = In. Choose d so that it contains an irreducible
component X̄ that satisfies Lemma 10.3(ii); this is possible by Lemma 10.6. Thus
X̄ satisfies the hypotheses of Lemma 10.3, so Theorem 10.1 follows.
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11. A Cycle Class Map to the Torsion Subgroup
of Cohomology

The purpose of this section is to show that degree-4 torsion cohomology classes
on desingularized fiber products are cohomology classes of algebraic cycles. To-
ward this end we introduce the following notation pertaining to a closed point
x ∈X − (S ∪ S ′):

Yx := π−1(x), Y ′x := (π ′)−1(x),

Wx := f −1(x) � Yx × Y ′x , ιx : Wx →W.

Write ex ∈ Yx and e ′x ∈ Y ′x for the identity elements in the elliptic curves. Let
Z2(W ) denote the group of codimension-2 algebraic cycles onW. Define

Div(Wx)0 := {zx ∈Div(Wx) : zx · (Yx × e ′x) = 0 = zx · (ex × Y ′x )},

Z2(W )0 := Image

[ ⊕
x∈X−(S∪S ′ )

Div(Wx)0

⊕
x ιx∗−−−−→ Z2(W )

]
.

By Theorem 0.4(ii), we may (and will) assume that bothY and Y ′ are semi-stable.

11.1. Theorem. Assume that E is not isogenous to E ′. Then the image of the
cycle class map cl : Z2(W )0 → H 4(W, Ẑ′(2)) is H 4(W, Ẑ′(2))tors.

Proof. It suffices to show for each prime l �= char(k) that the image of the cycle
class map cl : Z2(W )0 → H 4(W, Zl(2)) is H 4(W, Zl(2))tors.

The image of the cohomology class of zx ∈Div(Wx)0 under the composition.

Div(Wx)0 −→ H 2(Wx , Zl(1))
pr−→ H1(Yx , Zl)⊗H1(Y ′x , Zl)(1)

� H 2
x (X, j∗j ∗(R1π∗Zl ⊗ R1π ′∗Zl)(2))

−→ H 2(X, j∗j ∗(R1π∗Zl ⊗ R1π ′∗Zl)(2))
b−→ H 4(W, Zl(2)) (11.2)

is torsion, because the second-to-last group in the sequence is torsion. Indeed,
Poincaré duality [Mi, V.2.2c] gives

H 2(X, j∗j ∗(R1π∗Q l ⊗ R1π ′∗Q l(2)) � H 0(X, j∗j ∗(R1π∗Q l ⊗ R1π ′∗Q l(1))
∨,

and the vector space on the right is zero by the isogeny theorem argument in the
proof of Proposition 7.1(ii).

Consider the cup product pairing

H 2(W, Z/l(1))⊗H 4(W, Zl(2))tors
∪−→ H 6(W, Z/l(3)) � Z/l. (11.3)

The left-hand factor may be replaced by H 0(X, Gl)(1), since this is isomorphic
to the quotient of H 2(W, Z/l(1)) by the subgroup H 2(W, Zl(1))⊗ Z/l, which is
the annihilator of H 4(W, Zl(2))tors (cf. Lemma 2.2(i) and Corollary 7.2). Fix a
generator τ ∈H 0(X, Gl)(1).
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11.4. Lemma. The image of zx inH 4(W, Zl(2))tors under the map (11.2) is a gen-
erator if τ ∪ [zx] �= 0.

Proof. Since H 4(W, Zl(2))tors is cyclic, it suffices to show that zx is not divisible
by l.

For computational purposes it is convenient to replace (11.3) with

H 0(X, Gl)(1)⊗H 2(X, j∗j ∗(R1π∗Zl ⊗ R1π ′∗Zl)(2))
∪−→ H 2(X,R4f∗Z/l(3)) � Z/l.

With the help of the commutative diagram

H 0(X, Gl (1))
��

⊗ H 2
x (X, j∗j ∗(R1π∗Zl ⊗ R1π ′∗Zl )(2))

!
��

�� H 2
x (X,R4f∗Z/l(3))

!
��

H1(Yx , Z/l)⊗H1(Y ′
x , Z/l)(1) ⊗ H1(Yx , Zl )⊗H1(Y ′

x , Zl )(1) �� H 4(f −1(x), Z/l(2))

τx ⊗ [zx] �� τx ∪ [zx] ,

in which τx denotes the stalk of the section τ at x, the computation is reduced to
an ordinary cup product in the cohomology of the fiber at x.

Observe that if the elliptic curves Yx and Y ′x are not isogenous then the cycle
class map composed with projection on the middle Künneth component,

Div(Yx ×Y ′x ) −→ H 2(Yx ×Y ′x , Zl(1))
pr−→ H1(Yx , Zl)⊗H1(Y ′x , Zl)(1), (11.5)

is zero. If the two curves are isogenous, then there is an isogeny with cyclic ker-
nel of some order n. This situation may be expressed in terms of the J -invariants
of the elliptic curves E and E ′: J, J ′ : X → X(1) � P1. Identify A1 with the
complement of the cusp in X(1). Recall that the nth modular polynomial defines
a curve Ṫn ⊂ A1 × A1 that contains the point (j, j ′) precisely when there is a
cyclic degree-n isogeny between an elliptic curve with J -invariant j and one with
J -invariant j ′ [L, Sec. 5.2]. Thus the map (11.5) has nonzero image exactly when
(J(x), J ′(x))∈ Ṫn for some n.

Choose a finite separable field extension K ⊂ K̂ such that Gal(K̄/K̂) acts triv-
ially on E[l] and E ′[l]. Corresponding to the field extension is a morphism of
smooth projective curves, ρ : X̂→ X. Fix full level l structures onE[l] andE ′[l]
for which the Weil pairing gives the same value, ζ ∈µl ⊂ k∗. The level structures
give nonconstant morphisms h,h′ : X̂→ X(l), whereX(l) is the irreducible com-
ponent of the moduli of elliptic curves with full level l structure for which the Weil
pairing takes the value ζ.WriteEl for the generic fiber of the universal generalized
elliptic curve over X(l). For primes n with n ≡ 1 modulo l and n �= char(k), we
have as in Section 10 the Hecke correspondence Tn ⊂ X(l)×X(l). The pullback
of El to the generic point Spec(Kn) ∈ Tn by projection on the first (resp. second)
factor will be denoted El Kn (resp. E ′

l Kn
). There is a canonical isogeny El Kn →

E ′
l Kn
. Because the isogeny has cyclic kernel, the middle Künneth component of

the cohomology class of its graph,
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[zn]∈H1(El K̄n , Z/l)⊗H1(E ′
l K̄n

, Z/l)(1) � Hom(El[l],E ′
l [l]),

is nonzero. By the triviality of the Galois action,El[l] (resp.E ′
l [l])may be thought

of as a constant sheaf overX(l)×X(l) pulled back from the projection to the first
(resp. second) factor. Via h (resp. h′), El[l] and E[l] (resp. E ′

l [l] and E ′[l]) are
identified. Thus τ ∈ H 0(X, Gl)(1) ⊂ H 0(X̂, Gl)(1) and [zn] may be viewed as
elements in the same group, E[l] ⊗ E ′[l]. The cup product in the preceding di-
agram corresponds to the nondegenerate bilinear form on E[l] ⊗ E ′[l] given by
the Weil pairing on each factor. Since n ≡ 1 mod l, the element [zn] is identified
with an isomorphism under the identification E[l]⊗ E ′[l] � Hom(E[l],E ′[l]).
Consequently, [zn]∈E[l]⊗E ′[l] is not a pure tensor. Thus the orthogonal com-
plement of the orbit,

{(1⊗ g)[zn] : g ∈ SL2(Z/l)} ⊂ E[l]⊗ E ′[l],

is zero. In particular, there exists a g ∈ SL2(Z/l) such that τ ∪ (1⊗ g)[zn] �= 0.
Write D ⊂ X(l)×X(l) for the locus where at least one coordinate is a cusp.

11.6. Proposition. Let C ⊂ X(l) × X(l) be an irreducible curve whose sup-
port is not contained inD. Then, for all sufficiently large primes n satisfying n ≡
1 mod l and for any g ∈ SL2(Z/l), the intersection C ∩ (1×g)Tn is not contained
in D.

Proof of Theorem 11.1 (assuming Proposition 11.6 ). Write X̄ ⊂ X(l)× X(l) for
the image of X̂ under H = (h,h′). Choose n prime (n ≡ 1 mod l, n �= char(k))
such that, for any g ∈ SL2(Z/l), there is some x̄ ∈ X̄ ∩ (1× g)Tn that is not con-
tained in D. Choose g so that τ ∪ (1 ⊗ g)[zn] �= 0. The universal isogeny over
Tn gives an isogeny on the fibers, Yx̄ → Y ′x̄ . We may identify the middle Künneth
component of the cycle class of this isogeny, [zx̄], with (1 ⊗ g)[zn]. It follows
that, for any x ∈ ρ(H −1(x̄)) ⊂ X, there is an element zx ∈Div0(Wx) such that

τx ∪ [zx] �= 0∈H 2
x (X,R4f∗Z/l(3)) � H 2(X,R4f∗Z/l(3)) � H 6(W, Z/l(3)).

By Lemma 11.4, [zx] generates the cyclic group H 4(W, Zl(2))tors.

To prove the proposition, we exploit fundamental properties of the Q-subalgebra
H ⊂ End(Jac(X(l))⊗Q generated by the action of the correspondences Tn for n
prime with n ≡ 1 mod l and n �= char(k).

11.7. Proposition.

(i) H is commutative.
(ii) H is semi-simple.

Proof. (i) [DiSh, Sec. 5.2].
(ii) This follows from Proposition 10.2(ii) and the positive definiteness of the

form

End(Jac(X(l))× End(Jac(X(l)) −→ Z , (T,U) �→ Tr(T � UT ),
where U → UT corresponds to the Rosati involution [DiSh, 5.5.4; Mu, Sec. 21].
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Write I ⊂ X(l) for the set of cusps, and define the sum of the local intersection
multiplicities at the cusps as

κn(g) :=
∑

(ξ,ξ ′ )∈I×I
(C · (1× g)Tn)(ξ,ξ ′ ).

11.8. Proposition. Let n be a prime number with n ≡ 1 mod l and n �= char(k).

(i) The sequence {κn(g)}n is bounded independently of g ∈ SL2(Z/l).
(ii) For large n, (C · (1× g)Tn) > n/2.

Observe that Proposition 11.6 follows from Proposition 11.8 because

(1× g)Tn ∩D ⊂ (1× g)Tn ∩I×I.
Thus, for large n, the local contribution to the global intersection number
(C · (1 × g)Tn) from points contained in D is constant; hence the two curves
must also meet outside of D.

Proof of Proposition11.8. (i) Locally near the cusp (∞,∞)∈ P1×P1, the curve Tn
consists of two smooth branches meeting transversely. One branch is tangent to
{∞}×P1 with multiplicity nwhile the other is tangent to P1×{∞}with multiplic-

ity n. This is because Tn is the image of the map X0(n)
(J, J �wn)−−−−−→ X(1) × X(1),

where wn is the Atkin–Lehner involution. At one cusp of X0(n), J is étale; at
the other cusp, J has ramification index n. The Atkin–Lehner involution inter-
changes these two cusps. Thus a local analytic equation for Tn at the cusp is
(t − un)(t n − u) = 0.

Locally at (ξ, ξ ′) ∈ I × I, the map X(l) × X(l) → P1 × P1 given by the
J -function on each factor is a quotient map for the action of Z/l×Z/l. This gives
the local analytic equation for the inverse image of Tn = ⋃

g∈SL2(Z/l)
(1× g)Tn,

(s l − vnl)(s ln − vl) =
l−1∏
i=0

(s − ζ il vn)(sn − ζ il v),

which consists of 2 l nonsingular branches. So at a cusp that lies on (1 × g)Tn,
the curve is either locally smooth and tangent to a component of D to order n or
it consists of two smooth components meeting transversely, one tangent to one
order-n component of D and the other tangent to the other order-n component
ofD. Therefore, to compute the local intersection multiplicity (C · (1×g)Tn)(ξ,ξ ′ )
for n sufficiently large, one need only compute the local intersection multiplici-
ties of C with the components of D at (ξ, ξ ′). This is independent of n and so the
result follows.

(ii) To estimate the global intersection number, C · (1×g)Tn = (1×g)−1C ·Tn,
set C ′ = (1 × g)−1C; then use Proposition 10.2(ii) and the Lefschetz fixed point
formula [K, 1.3.6c] to obtain

C ′ · Tn =
2∑
i=0

(−1)i Tr(C ′ � Tn|H i(X(l))).
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By Proposition 10.2(iv), Tn acts on both H 0(X(l)) and H 2(X(l)) via multiplica-
tion by n+ 1. The correspondence C ′ acts on H 0(X(l)) via multiplication by the
scalarC ′ · (X(l)×x) and onH 2(X(l)) via multiplication byC ′ · (x×X(l)). Thus

C ′ · Tn ≥ n+ 1− Tr(C ′ � Tn|H1(X(l))).

Since H is a commutative semi-simple algebra, we may choose a basis for
H1(X(l)) that simultaneously diagonalizes the action of all Tn. By Proposition
10.2(v), the absolute value of each diagonal entry of Tn is bounded by 2

√
n. Thus

the trace is bounded by 2h1(X(l))c
√
n, where c is the maximal absolute value of a

diagonal element in the matrix representing the action of C ′. By Dirichlet’s theo-
rem, there are infinitely many primes nwith n ≡ 1 modulo l. Thus, for sufficiently
large n, C ′ · Tn ≥ n/2.

11.9. Remark. By Theorem 11.1, H 4(W, Ẑ′(2))tors is contained in the image of
the cycle class map. However, the images of the cycle class maps toH 4(W, Q l(2))
and H 2(W, Q l(1)) are not generally known because the Tate conjecture for ellip-
tic surfaces is an open problem.

12. Betti Numbers

In the process of computing the torsion in the cohomology ofW, much of the work
needed to compute the Betti numbers has been done. Since this information is
often useful (e.g., for investigating modularity of Galois representations; cf. [M,
Chap. 2]), the results are recorded here. Because of its relevance, the cohomology
of Y is given as well.

Let π : Y → X be an elliptic surface as in Section 3. Let αx denote the wild
conductor of R1π∗Z/l at x ∈X [Mi, V.2.9], which is independent of l �= char(k).
We say that π is tame if αx = 0 for all x ∈ |X|0. Let e denote the l-adic Euler
characteristic.

12.1. Proposition.

(i) H •(Y, Zl) is torsion free.
(ii) h0(Y, Q l) = 1= h4(Y, Q l) and h1(Y, Q l) = 2g = h3(Y, Q l).

(iii) e(Y ) = |Sa| +∑
s∈S ms +

∑
x∈X αx.

(iv) e(Y ) ≥ ∑
x∈X e(π−1(x)), with equality if and only if π is tame.

Proof. Part (i) was proved in the last paragraph of Section 3, and part (ii) follows
from Proposition 3.1. For (iii), recall that e(Y ) is independent of l by the Lef-
schetz fixed point theorem or Proposition 2.1(iv). Choose l such that E[l]G = 0.
NowH1(X,R1π∗Z/l n) is a free Z/l n-module by Propositions 3.1(i) and (iii). Its
rank is

h1(X,R1π∗Z/l) = −e(X,R1π∗Z/l) = 4g − 4+ |Sm| + 2|Sa| +
∑
x∈X

αx

by [Mi, V.2.9-12] and the known monodromy at a place of bad reduction [Si2,
10.2a]. Now use Proposition 3.1 to compute the last term in the equation
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e(Y, Q l) = e(Y, Z/l) =
2∑
i=0

(−1)ie(X,Riπ∗Z/l).

Finally, part (iv) follows from (iii) and the elementary computation of e(π−1(x)).

Let α ′x be the counterpart of αx for π ′. Set α = ∑
x∈X αx + α ′x. Define

ε =
{

1 if E and E ′ are isogenous over K,

0 otherwise,

12.2. Proposition. Let W be a desingularized fiber product as in Section 5.

(i) h0(W, Q l) = 1= h6(W, Q l) and h1(W, Q l) = 2g = h5(W, Q l).

(ii) h2(W ) = h4(W ) = ε−5+8g+|Sa|+|S ′a|+
∑

s∈S−S ′′ ms+
∑

s∈S ′−S ′′ m′
s+∑

s∈S ′′(2msm′
s + 1)+ α.

(iii) h3(W ) = 2
(
6g−4+|S ′′|+ε+|Sa∪S ′a|+α+∑

s∈S−S ′′ ms+
∑

s∈S ′−S ′′ m′
s

)
.

(iv) e(W ) = 4
∑

s∈S ′′ msm′
s =

∑
x∈X e(f −1(x)).

Proof. Part (i) follows from Lemma 5.4. For (ii), use Lemma 4.2(ii) and the proof
of Lemma 5.4(i) to get

H1(X,R1f∗Z/l n) � H1(X,R1π∗Z/l n)⊕H1(X,R1π ′∗Z/l n).

By the proof of Proposition 12.1, this is a free Z/l n-module of rank

8g − 8+ |Sm| + |S ′m| + 2|Sa| + 2|S ′a| + α

provided l is chosen such that Bln = 0 = B ′
l n in Lemma 5.4. The choice of l does

not affect the Betti number (see Proposition 2.1(iv)). By [S2, 7.3], the stalks of
the subsheaf of R2f∗Z/l n supported on S ′′ are free Z/l n-modules and the contri-
bution of this subsheaf, which is a direct summand, toH 0(X,R2f∗Z/l n) has rank∑

s∈S ′′(2msm′
s−1). The stalks of the subsheaf supported at S−S ′′ (resp. S ′−S ′′)

are also free Z/l n-modules, and the rank of the contribution toH 0(X,R2f∗Z/l n)
is

∑
s∈S−S ′′(ms − 1)

(
resp.

∑
s∈S ′−S ′′(m′

s − 1)
)

by Lemmas 3.2 and 4.2(iii) and
the proof of Proposition 6.1(ii). For large n, the contribution to the rank of the free
part of H 0(X,R2f∗Z/l n) from the subsheaf complementary to the subsheaf with
finite support is 2+ ε by Propositions 6.1(iii) and 7.1. There are no nontrivial dif-
ferentials in the spectral sequence of Lemma 5.4 that enter in the computation of
H 2(W, Z/l n). Taking the rank-1E 20

2 -term into account and passing to the inverse
limit gives the answer.

(iii) When both π and π ′ are semi-stable, this is [S1, 3.1]. That argument may
be modified to allow for additive reduction by subtracting from the right-hand side
of [S1, 3.6] the sum over closed points x ∈X of the wild conductors. By Assump-
tion 0.1, this sum is 2α. For each s ∈ Sa ∪ S ′a , the expression in square brackets
in [S1, 3.6] is 4 (again by Assumption 0.1). The remainder of the proof of [S1,
3.1] goes through unchanged. In particular: h2(X,R1f∗Q l) = 0; h0(X,R3f∗Q l)

is computed as in [S1, 3.5]; and (iii) follows.



114 Chad Schoen

(iv) This follows from (i)–(iii) and the easy computation of the Euler charac-
teristics of the fibers. In contrast to Proposition 12.1(iii), the wild conductor does
not appear in the formula.
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