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Continuous Closure of Sheaves

János Kollár

Definition 1. Let I = (f1, . . . , fr) ⊂ C[z1, . . . , zn] be an ideal. Following [Br],
a polynomial g(z1, . . . , zn) is in the continuous closure of I if and only if there
are continuous functions φi such that g = φ1f1 + · · · + φrfr . These polynomials
form an ideal IC ⊃ I. For example,

z2
1z

2
2 = z̄1z

2
2

|z1|2 + |z2|2 z
3
1 + z̄2z

2
1

|z1|2 + |z2|2 z
3
2

shows that z2
1z

2
2 ∈ (z3

1, z3
2)
C \ (z3

1, z3
2).

Definition 1 is very natural, but it is not clear that it gives an algebraic notion (since
Aut(C/Q) does not map continuous functions to continuous functions) or that it
defines a sheaf in the Zariski topology (since a continuous function may grow
faster than any polynomial).

This paper has three aims.

• We give a purely algebraic construction of the continuous closure of any torsion-
free coherent sheaf (Definition 6). Although the construction makes sense for
any reduced scheme, even in positive and mixed characteristic, it is not clear
that it corresponds to a more intuitive version in general.

• In characteristic 0 we prove that one gets the same definition of IC using vari-
ous subclasses of continuous functions (Corollary 19).

• We show that taking continuous closure commutes with flat morphisms whose
fibers are seminormal (Corollary 21), at least in characteristic 0. In particu-
lar, the continuous closure of a coherent ideal sheaf is again a coherent ideal
sheaf (both in the Zariski and in the étale topologies) and it commutes with field
extensions.

It should be noted that, although our definition of the continuous closure is
purely algebraic and without any reference to continuity, the proof of these base
change properties uses continuous functions in an essential way.

Instead of working with C or other algebraically closed fields, one can also de-
fine the continuous closure over any topological field. The most interesting is the
real case, considered in [FK]. The answer turns out to be quite different; for in-
stance, over C the continuous closure of (x 2 + y2) is itself but over R it is the
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much larger ideal (x 2 + y2, x3, y3). The methods, however, are quite similar. The
main difference is that the base change properties are not considered in [FK] and
the key construction (Proposition 24) is more complicated over nonclosed fields.

The methods of this paper provide a way to compute the continuous closure in
principle, but it is unlikely to be practical in its current form.

Descent Problems

Instead of working with ideals, I work with maps of locally free sheavesf : E → F.

Thus an ideal sheaf I = (f1, . . . , fr) ⊂ OX corresponds to the map (f1, . . . , fr):
O r
X → OX. For inductive purposes we need the case when E and F live on dif-

ferent schemes.

Definition 2. Fix a base scheme S. A descent problem over S is a compound
object

D = (p : Y → X, f : p∗E → F ) (2.1)

consisting of a proper morphism p : Y → X of reduced S-schemes of finite type,
a locally free sheaf E on X, a locally free sheaf F on Y, and a map of sheaves
f : p∗E → F.

The original setting corresponds to the cases

(p : X ∼= X, f : O r
X → OX) with S = Spec C. (2.2)

When X is normal or seminormal, the continuous closure is

H 0(Y,F ) ∩ im[C 0(X(C),E) → C 0(Y(C),F )], (2.3)

where C 0 denotes the space of continuous sections.
Our claim is that the primary task should be to understand to continuous aspects

of the problem, that is, the image of

f � p∗ : C 0(X(C),E) → C 0(Y(C),F ). (2.4)

Once that is done, the answers to the algebraic questions should follow.
A descent problem over C is called finitely determined if for every φY ∈

C 0(Y(C),F ) the following are equivalent.

(2.5a) There is a φX ∈C 0(X(C),E) such that φY = f � p∗(φX).
(2.5b) For every finite subset Z ⊂ Y(C) there is a φX,Z ∈C 0(X(C),E) such that

φY (z) = f � p∗(φX,Z)(z) for every z∈Z.
For finitely determined descent problems it is quite easy to pass between the con-
tinuous and the algebraic sides.

The original descent problems (2.2) are finitely determined only in the trivial
case I = OX. A better example is given by the following construction. Given I =
(f1, . . . , fr), letY := BIX denote the blow-up of I with projectionp : Y → X. The
inverse image ideal sheaf f −1I · OY ⊂ OY is locally free; denote it by OY (−E),
where E is an exceptional divisor. We get a descent problem

(p : Y → X, f : p∗O r
X → OY (−E)), (2.6)
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which is equivalent to the original one. The concept of finite determinacy for (2.6)
is my variant of the axis closure condition of [Br]. The latter looks at morphisms

φ : Spec k[[x1, . . . , xn]]/(xi xj : i �= j) → X.

These maps do not lift to the blow-up, but, if φ does not map any generic point to
V(I ), then φ lifts to a morphism of the normalization

φ̄ :
∐

i Spec k[[xi]] → BIX.

The image of the closed points is n points in E, and the primary obstruction to the
axis closure condition is given by the possible failure of (2.5b). If (2.6) is finitely
determined then the axis closure of I equals the continuous closure but the con-
verse probably fails.

It turns out that (2.6) is finitely determined in many cases but not always. Such
examples were discovered by [EH]; an especially nice one is I = (x 2, y2, xyz2).

The definition of a descent problem and the proof grew out of first reducing
(2.2) to (2.6) and then studying the latter by restriction to E and induction.

The key technical result (Theorem 17) shows that every descent problem is equiv-
alent to a finitely determined descent problem. To achieve this, we need various
ways of modifying descent problems. The following definition is chosen to con-
sist of simple and computable steps yet be broad enough for the proofs to work.
(It should become clear that several variants of the definition would also work; the
present one is meant to supersede the choice in [K2].)

Definition 3 (Scions of descent problems). Let D = (p : Y →X, f : p∗E → F )

and Di = (p : Y → X, fi : p∗E → Fi) be descent problems over S. The follow-
ing three operations create new descent problems.

(3.1) (Proper pull-back) For a proper morphism r : Y1 → Y set

r∗D := (p � r : Y1 → X, r∗f : (p � r)∗E → r∗F ).

(3.2) (Direct sum) Using the natural diagonal map
⊕m

i=1 fi, set
⊕m

i=1 Di := (
p : Y → X,

⊕m
i=1 fi : p∗E → ⊕m

i=1Fi
)
.

(3.3) (Sheaf change) Assume that f factors as p∗E
q−→ F ′ j

↪→ F, where F ′ is
a locally free sheaf and ranky j = ranky F ′ for all y in a dense open sub-
scheme Y 0 ⊂ Y. Then set

D′ := (p : Y → X, f ′ := q : p∗E → F ′).

Informally speaking, a scion of D is a descent problem

Ds = (ps : Ys → X, fs : p∗
sE → Fs)

that is obtained from D using the constructions (3.1)–(3.3) and remembers its fore-
bears. More precisely, a scion is a sequence of descent problems

{Di = (pi : Yi → X, fi : p∗
iE → Fi) : i = 0, . . . , s},
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where D0 = D and for each Di+1 we specify how it is constructed from the
D0, . . . , Di . The actual process of construction is important in several of the basic
definitions.

Each scion Ds = (ps : Ys → X, fs : p∗
sE → Fs) comes equipped with a mor-

phism rs : Ys → Y, called the structure map. The class of all scions of D is denoted
by Sci(D).

Simple examples of scions are given by restrictions. If Y1 ⊂ Y is a closed sub-
scheme, we set

D|Y1 := (p|Y1 : Y1 → X, f |Y1 : (p|Y1)
∗E → F |Y1).

If X1 ⊂ X is a subscheme and Y1 := redp−1(X1), we set D|X1 := D|Y1.

4 (Seminormalization). (For more details, see [K1, Sec. I.7.2].) A morphism
p : X ′ → X is a partial seminormalization if X ′ is reduced, p is a finite homeo-
morphism, and k(p−1(x)) = k(x) for every point x ∈X. Under mild conditions
(for instance, if X is excellent) there is a unique largest partial seminormalization
π : Xsn → X, called the seminormalization of X.

If p : Y → X is a proper surjection of reduced schemes, then composing by p
identifies OXsn with those sections of OY sn that are constant on the fibers of p.

Note that the seminormalization is dominated by the normalization; thus we can
think of the seminormalization as a partial normalization. In some respects, semi-
normalizations behave better than the normalization. For instance, any morphism
g : Y → X induces a morphism between the seminormalizations gsn : Y sn → Xsn.

(For normalization this can fail if g is not dominant.)
A flat morphism is called seminormal if its geometric fibers are seminormal. If

X and g : X ′ → X are both seminormal then so is X ′. For normal fibers this is
proved in [K1, I.7.2.6]. By localization, the general case is a consequence of the
following claim.

Claim 4.1. Let f : (y ∈ Y ) → (0 ∈X) be a flat morphism of finite type. Assume
that X, Y0 := f −1(0), and Y \ {y} are seminormal. Then Y is seminormal.

Proof. If dimY0 = 0 then f is smooth and we are done by [K1, I.7.2.6]. Let
h ∈ OY sn be a section. If dimY0 ≥ 1, we prove by induction on r that h ∈
OY + mr

0,XOY sn for every r. We can start with r = 0. In general, assume that
we have pr ∈ OY such that h − pr ∈ mr

0,XOY sn . By restricting to Y0 we see that
(h− pr)|Y0 is a section of

OY sn
0

⊗ (mr
0,X/m

r+1
0,X) = OY0 ⊗ (mr

0,X/m
r+1
0,X).

Thus there is a qr+1 ∈mr
0,XOY such that h− pr − qr+1 vanishes along Y0 to order

r +1. This shows that the completion of OY equals the completion of OY sn , hence
OY = OY sn .

IfF is a coherent sheaf onX, its pull-back toXsn is denoted byF sn. We frequently
view F sn as an OX-sheaf.
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If X is a variety over C, then OXsn consists of those rational functions that are
continuous. Thus it appears that the continuous closure is a concept that naturally
lives on seminormal schemes.

It would be possible to consider descent problems only for seminormal schemes.
This, however, would be inconvenient because various constructions do not yield
seminormal schemes, and we would have to take seminormalizations all the time.
Instead, next we build the seminormalizations into the definition of the global sec-
tions of Sci(D).

Definition 5. Let D = (p : Y → X, f : p∗E → F ) be a descent problem with
scions

Sci(D) = {(pi : Yi → X, fi : p∗
iE → Fi) : i ∈ I }.

An algebraic global section of F over Sci(D) is a collection of sections

" := {φi ∈H 0(Y sn
i ,F sn

i ) : i ∈ I }
such that the φi commute with pull-backs for the operations (3.1) with direct sums
for the operations (3.2) and with push-forwards for the operations (3.3). All sec-
tions form an OS-module

H 0(Sci(D),F ).

We call φi the restriction of " to Yi, denoted by "|Yi . The most important of
these restrictions is "|Y . Note that "|Y uniquely determines ". Indeed, the con-
structions (3.1) and (3.2) automatically carry along φ and in (3.3) the natural map
H 0(Y sn,F ′) → H 0(Y sn,F ) is an injection.

We usually think ofH 0(Sci(D),F ) as an OS-submodule ofH 0(Y sn,F sn). Note
also that every φX ∈H 0(X,E) defines a global section of F over Sci(D) by set-
ting φi := fi(p

∗
i φX). Thus we have natural maps

H 0(X,E) → H 0(Sci(D),F ) ↪→ H 0(Y sn,F sn). (5.1)

We can now define a notion of continuous closure of sheaves. A justification of
the definition will be given in Corollary 19.

Definition 6 (Continuous closure of sheaves). LetX be a reduced, affine scheme
over a field of characteristic 0 and let J be a torsion-free coherent sheaf onX. One
can realize J as the image of a map between locally free sheaves f : E → F. Let
DJ = (p : Y ∼= X, f : E → F ) be the corresponding descent problem. Define
the continuous closure of J as

JC := H 0(Sci(DJ),F ) ⊂ H 0(Xsn,F sn).

We shall see in Proposition 23 that JC does not depend on the choice off : E → F.

Definition 6 is purely algebraic, but it does not connect with continuity in any ob-
vious way. Actually, for base fields that are not naturally subfields of C, it is not
even clear what continuity should mean. This is the question we consider next.
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Although the basic definitions make sense in general, all the examples that I
know are in characteristic 0. Thus from now on we assume that we work over a
fixed base field k of characteristic 0.

Classes of Continuous Functions

Here we describe various classes of functions where our proof works.

Assumption 7. Let k be a field and K ⊃ k an algebraically closed field. For a
reduced k-scheme Z of finite type, let CK(Z) denote the K-algebra of all func-
tions Z(K) → K. One can naturally view %(Z, OZ) as a k-subalgebra of CK(Z).

We consider K-subalgebras C∗(Z) ⊂ CK(Z) that satisfy the following prop-
erties.

(7.1) (Sheaf ) Z �→ C∗(Z) is a sheaf in the Zariski topology. That is, if Z =⋃
i Ui is an open cover of Z then φ ∈C∗(Z) iff φ|Ui ∈C∗(Ui) for every i.

(7.2) (Contains OZ) %(Z, OZ) ⊂ C∗(Z).
(7.3) (Pull-back) For every k-morphism g : Z1 → Z2, composing with g maps

C∗(Z2) to C∗(Z1).

(7.4) (Zariski dense is dense) Let φ ∈C∗(Z) and let h be a rational function on Z
such that φ equals h on a dense Zariski open subset. Then φ = h everywhere
and h is a regular function on Z sn. This implies that the Zariski closure of
the support of every φ ∈C∗(Z) is a union of irreducible components of Z.

(7.5) (Descent property) Let g : Z1 → Z2 be a proper, dominant k-morphism, let
φ ∈ CK(Z2), and assume that φ � g ∈ C∗(Z1). Then φ ∈ C∗(Z2). In par-
ticular, assume that Z is a union of its closed subvarieties Zi and we have
φi ∈C∗(Zi) such that φi |Zi∩Zj = φj |Zi∩Zj for every i, j. The descent prop-
erty for

∐
i Zi → Z shows that there is a φ ∈ C∗(Z) such that φ|Zi = φi

for every i.
(7.6) (Extension property) Let Z1 ⊂ Z2 be a closed subscheme. Then the restric-

tion map C∗(Z2) → C∗(Z1) is surjective.
(7.7) (Cartan–Serre A and B) Every locally free sheaf is generated by finitely

many C∗-sections and every surjection of locally free sheaves has a C∗-
valued splitting. (For more details, see Section 9.)

We can unite (7.5) and (7.6) as follows.

(7.8) (Strong descent property) Let g : Z1 → Z2 be a proper k-morphism and let
ψ ∈ C∗(Z2). Then ψ = φ � g for some φ ∈ C∗(Z2) iff ψ is constant on
every fiber of g.

Example 8. Here are some natural examples satisfying the assumptions (7.1)–
(7.7). Let us start with the cases when k ⊂ K = C.

(8.1) Let C 0(Z) denote all continuous functions on Z(C).
(8.2) Let Ch(Z) denote all locally Hölder continuous functions on Z(C).
(8.3) Let S 0(Z) be the sheaf of C-valued continuous semialgebraic functions on

Z(C), viewed as a real algebraic variety. (If Z ⊂ Cm, we identify Cm with
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R2m and view Z(C) as a real variety. A function on R2m is semialgebraic iff
its graph is semialgebraic, that is, a finite union of sets defined by polynomial
inequalities of the form f ≥ 0.) See [BCR, Chap. 2] for details and proofs
of the properties (7.1)–(7.7). (Let me just note that (7.4) is more interest-
ing than it sounds. For instance, on the Whitney umbrella (x 2 = y2z) ⊂
R3 not every Zariski dense open set is Euclidean dense.)

I do not know how to generalize the first two of these in case k is not embedded
into C, but the third variant can be extended to any characteristic-0 field.

(8.4) Let R be a real closed field, let C := R
(√−1

)
, and assume that k ⊂ C.

Let S 0
R(Z) be the sheaf of C-valued continuous semialgebraic functions on

Z(C), viewed as an R-variety. (See [BCR, Chap. 2] for details.)

9 (C∗-valued sections). Let F be a locally free sheaf on Z, and let Z = ⋃
i Ui

be an open cover with trivializations ti : F |Ui ∼= O r
Ui

for every i. Let C∗(Z,F )
denote the set of those sections such that ti(φ|Ui )∈C∗(Ui)r for every i. If C∗ sat-
isfies properties (7.1) and (7.2), this is independent of the trivializations and the
choice of the covering.

Assume next that (7.7) holds. We claim that ifC∗ satisfies properties (7.1)–(7.6)
then their natural analogues also hold forC∗(Z,F ). This is clear for the properties
(7.2)–(7.5).

In order to check the extension property (7.6), let Z1 ⊂ Z2 be a closed subvari-
ety and F a locally free sheaf on Z2. Write it as a quotient of a trivial bundle ON

Z2
.

Every section φ1 ∈C∗(Z1,F |Z1) lifts to a section inC∗(Z1, ON
Z1
), which in turn ex-

tends to a section in C∗(Z2, ON
Z2
) by (7.6). The image of this lift in C∗(Z2,F |Z2)

gives the required lifting of φ1.

Let D be a descent problem with scions Sci(D). If φ ∈ C∗(Y,F ) then r∗φ ∈
C∗(Y1, r∗F ) and

⊕m
i=1 r

∗
i φ ∈ C∗(Yw,

⊕m
i=1 r

∗
i F

)
are well-defined. In (3.3),

j : C∗(Y,F ′) → C∗(Y,F ) is an injection; hence there is at most oneφ ′ ∈C∗(Y,F ′)
such that j(φ ′) = φ. Iterating these, for any scion Ds of D we get a partially de-
fined map, called the restriction,

rest : C∗(Y,F ) ��� C∗(Ys ,Fs) denoted by φ �→ φ|Ys or φ �→ φ|Ds
.

The restriction map sits in a commutative square:

C∗(Y,F )
rest ����� C∗(Ys ,Fs)

C∗(X,E)

��

C∗(X,E).

��

If the structure map rs : Ys → Y is surjective then the restriction map rest:
C∗(Y,F ) ��� C∗(Ys ,Fs) is injective (on its domain). In this case, understand-
ing the image of f � p∗ : C∗(X,E) → C∗(Y,F ) is pretty much equivalent to
understanding the image of fs � p∗

s : C∗(X,E) → C∗(Ys ,Fs).
As long as C∗ satisfies properties (7.1)–(7.3), we can follow Definition 5 to

obtain
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C∗(Sci(D),F ), (9.1)

the space of C∗-valued global sections of F over Sci(D). We have natural maps

C∗(X,E) −→ C∗(Sci(D),F ) ↪→ C∗(Y sn,F sn) (= C∗(Y,F )). (9.2)

Note further that

H 0(Sci(D),F ) = C∗(Sci(D),F ) ∩H 0(Y sn,F sn). (9.3)

To see this we need to show that if " ∈ C∗(Sci(D),F ) and "|Y is algebraic then
every other restriction of " is also algebraic. This is clear for the steps (3.1) and
(3.2). For scions as in (3.3), let φ be an algebraic section of F. We assume that φ
is a C∗-valued section of F ′. It is also a rational section over a Zariski dense open
set; thus, by (7.4), φ is also an algebraic section of F ′.

The restriction map on C∗(Y,F ) gives a restriction map on global sections of
scions that also sits in a commutative diagram:

C∗(Sci(D),F ) rest �� C∗(Sci(Ds),Fs)

C∗(X,E)

��

C∗(X,E).

��

(9.4)

Note that the restriction map on global sections of scions is everywhere defined.
In essence, we defined C∗(Sci(D),F ) to ensure this.

Finitely Determined Descent Problems

The notion of a finitely determined descent problem (2.5) admits an obvious gener-
alization to the C∗-valued case. We also need the following more general version.

Definition 10. Let D = (p : Y → X, f : p∗E → F ) be a descent problem and
Z ⊂ X a closed algebraic subvariety. Then D is called finitely determined rela-
tive to Z if, for every φY ∈ C∗(Y,F ) that vanishes on p−1(Z), the following are
equivalent.

(10.1) There is a φX ∈C∗(X,E) such that φY = f � p∗(φX).
(10.2) For every finite subset {y1, . . . , ym} ⊂Y(K) there is aφX,y1,...,ym ∈C∗(X,E)

such that φY (yi) = f � p∗(φX,y1,...,ym)(yi) for i = 1, . . . ,m.

We show in Lemma 11 that these are also equivalent to the following precise form.

(10.3) Condition (10.2) holds for all m ≤ rankE + 1.

Although condition (10.2) asks about all possible finite sets of points in Y(K), the
conditions imposed by points in different fibers of p are independent. Thus the
only interesting case is when all the yi are in the same fiber. Working in a fiber,
we have the following general abstract test.
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Lemma 11 (Wronskian test). Let Y be a set and let φ, f1, . . . , fr be functions on
Y with values in a field K. Assume that the fi are linearly independent. Then the
following are equivalent.

(11.1) φ is a K-linear combination of the fi.
(11.2) For every r + 1 points y1, . . . , yr+1 there are c1, . . . , cr ∈ K ( possibly de-

pending on the yi) such that φ(yi) = ∑
j cjfj(yi) for i = 1, . . . , r + 1.

(11.3) The determinant
∣∣∣∣∣∣∣∣∣∣

f1(y1) · · · f1(yr) f1(yr+1)

...
...

...

fr(y1) · · · fr(yr) fr(yr+1)

φ(y1) · · · φ(yr) φ(yr+1)

∣∣∣∣∣∣∣∣∣∣

is identically zero as a function on Y r+1.

Proof. It is clear that (1) ⇒ (2) ⇒ (3). We prove (3) ⇒ (1) by induction on r.
Since the fi are linearly independent, there are y1, . . . , yr ∈ Y such that the up-
per left r × r subdeterminant is nonzero. Fix these y1, . . . , yr and solve the linear
system

φ(yi) =
∑

j

λjfj(yi) for i = 1, . . . , r.

Replace φ by ψ := φ − ∑
i λifi and let yr+1 vary. Then our determinant is

∣∣∣∣∣∣∣∣∣∣

f1(y1) · · · f1(yr) f1(yr+1)

...
...

...

fr(y1) · · · fr(yr) fr(yr+1)

0 · · · 0 ψ(yr+1)

∣∣∣∣∣∣∣∣∣∣

.

The whole determinant vanishes iff ψ(yr+1) is identically zero—that is, when
φ ≡ ∑

j λjfj .

If a descent problem is not finitely determined, we can still study the conditions
imposed by (10.2). This leads to the following definition.

Definition 12. Given a descent problem D = (p : Y → X, f : p∗E → F ),
let Sci0(D) ⊂ Sci(D) denote all 0-dimensional scions and D itself. We can now
define

H 0(Sci0(D),F ) and C∗(Sci0(D),F )

as (respectively) the collection of sections {φi∈H 0(Y sn
i ,F sn

i )} and {φi∈C∗(Yi,Fi)}
that satisfy the compatibility conditions as in Definition 5, where now Yi runs
through only the scions in Sci0(D).

Thus D is finitely determined iff

im[C∗(X,E) → C∗(Y,F )] = C∗(Sci0(D),F ).

An advantage of H 0(Sci0(D),F ) is that it can be easily computed algebraically.



484 János Kollár

13 (Computation of H 0(Sci0(D),F )). Let X be an affine scheme of finite type
over a field and let D = (p : Y → X, f : p∗E → F ) be a descent problem. We
inductively construct descent problems Di = (pi : Yi → Xi, fi : p∗

iEi → Fi) as
follows. Set D0 := D and assume that Di is already constructed.

By cohomology and base change [Ha, III.12.11] there is a largest open dense
subset X 0

i ⊂ Xi over which the following hold:

(13.1) psn
i : Y sn

i → Xi is flat,
(13.2) the Rj(psn

i )∗F
sn
i are locally free and commute with base change; and

(13.3) Ei → (psn
i )∗F

sn
i has locally constant rank.

Set Xi+1 := Xi \X 0
i and let Di+1 be the restriction of Di to Xi+1.

Set Q0
i := coker[Ei → (psn

i )∗F
sn
i ] and let Qi be the push-forward of Q0

i by
the locally closed embeddingX 0

i ↪→ X. TheQi are quasi-coherent sheaves onX.
We get natural sheaf maps qi : E → Ei → Qi.

By construction, if x ∈X 0
i and φ ∈H 0(Y sn,F sn) then φ satisfies (10.2) for all

subsets of p−1(x) iff qi(φ) ∈ H 0(X,Qi) vanishes at x. Since X = ⋃
i X

0
i , this

implies that

H 0(Sci0(D),F ) = ker
[
H 0(Y sn,F sn) → ⊕

i H
0(X,Qi)

]
. (13.4)

This implies important functoriality properties of H 0(Sci0(D),F ), but first we
need a definition.

Definition 14 (Pulling back descent problems). Let D = (p : Y → X,
f : p∗E → F ) be a descent problem over a base field k. We consider two ways
of obtaining new descent problems by base change.

First, every field extension k ′ ⊃ k gives a descent problem over k ′:

Dk ′ := (pk ′ : Yk ′ → Xk ′ , fk ′ : p∗
k ′Ek ′ → Fk ′).

Second, let b : X ′ → X be a flat, finite-type morphism with reduced fibers. Let Y
be a reduced scheme and p : Y → X a morphism. Then bY : Y ′ := X ′ ×X Y → Y

is flat with reduced fibers, hence Y ′ is also reduced. Thus

b∗D := (p ′ : Y ′ → X ′, f ′ : (p ′)∗E → b∗
YF )

is also a descent problem. All the constructions in Definition 3 commute with
pull-back by flat morphisms with reduced fibers. Thus we get a pull-back map
b∗ : Sci(D) → Sci(b∗D).

Note that it is not obvious that there is a pull-back map b∗ : H 0(Sci(D),F ) →
H 0(Sci(b∗D), b∗

YF ). (Indeed, b∗D may have scions that are not pulled back from
Sci(D), and these could pose additional restrictions on sections.) Corollary 20 (to
follow) shows that such problems do not arise.

Proposition 15. Let X be an affine scheme of finite type over a field, and let
D = (p : Y → X, f : p∗E → F ) be a descent problem. Then the formation of
H 0(Sci0(D),F ) commutes with flat, seminormal base changes and with base field
extensions.
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Proof. Note that in Section 13 the formation of the Xi andQi commutes with flat,
seminormal base changes and with base field extensions. Using (13.4), this im-
plies that H 0(Sci0(D),F ) also commutes with flat, seminormal base changes and
with base field extensions.

The Main Theorem and Its Consequences

Definition 16 (Universal properties). Let P be a property of descent problems.
Let D be a descent problem over a field k. We say that D is universally P if b∗Dk ′
satisfies P for every base field extension k ′ ⊃ k followed by any flat, finite-type,
seminormal base change b : X ′

k ′ → Xk ′ .

The main technical result of this paper is the following.

Theorem 17. Let D = (p : Y → X, f : p∗E → F ) be a descent problem over a
field of characteristic 0. Then it has a universally finitely determined scion Ds =
(ps : Ys → X, fs : p∗

sE → Fs) whose structure map rs : Ys → Y is surjective.

Before giving a proof, let us consider some consequences. First we have the fol-
lowing property, which was the very reason for our definition of scions.

Corollary 18. Let D = (p : Y → X, f : p∗E → F ) be a descent problem.
Assume that C∗ satisfies properties (7.1)–(7.7). Then

C∗(Sci(D),F ) = im[C∗(X,E) → C∗(Y,F )].

Proof. Note that, by (9.2), the containment

C∗(Sci(D),F ) ⊃ im[C∗(X,E) → C∗(Y,F )]

always holds. To see the converse, let Ds = (ps : Ys → X, fs : p∗
sE → Fs) be a

finitely determined scion of D whose structure map rs : Ys → Y is surjective. We
have the obvious inclusions

C∗(Sci(D),F ) ⊂ C∗(Sci(Ds),Fs) ⊂ C∗(Sci0(Ds),Fs)
and

C∗(Sci0(Ds),Fs) = im[C∗(X,E) → C∗(Ys ,Fs)],

since Ds is finitely determined. Note further that C∗(X,E) → C∗(Ys ,Fs) fac-
tors through C∗(Y,F ) and through C∗(Sci(D),F ). Because the structure map
rs : Ys → Y is surjective, C∗(Y,F ) → C∗(Ys ,Fs) is injective. These statements
show that

C∗(Sci(D),F ) ⊂ im[C∗(X,E) → C∗(Y,F )].

We can now see that the two definitions of the continuous closure—namely, Defi-
nition 6 and the obvious generalization of Definition 1—agree with each other.

Corollary 19. Let X be a reduced affine scheme and f : E → F a map be-
tween locally free sheaves. Set J = im(f ) as a subsheaf of F and let JC be as in
Definition 6. Then

JC = im[C∗(X,E) → C∗(X,F )] ∩ F sn.
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Proof. By definition JC = H 0(Sci(D),F ), and by (9.3)

H 0(Sci(D),F ) = C∗(Sci(D),F ) ∩H 0(Xsn,F sn).

By Corollary 18, C∗(Sci(D),F ) = im[C∗(X,E) → C∗(X,F )].

As another consequence, we obtain that global sections of scions are unchanged
by surjective structure maps.

Corollary 20. Let D be a descent problem with a scion Ds whose structure
map rs : Ys → Y is surjective. Then the restriction maps

C∗(Sci(D),F ) → C∗(Sci(Ds),Fs) and H 0(Sci(D),F ) → H 0(Sci(Ds),Fs)

are isomorphisms.

Proof. Since rs is surjective, the restriction maps are injective. By Corollary 18,
C∗(X,E) → C∗(Sci(Ds),Fs) is surjective and it factors through C∗(Sci(D),F ).
Thus the restriction map is surjective with C∗-coefficients.

The algebraic case also follows once we prove that, if φ ∈ C∗(Sci(D),F ) and
its restriction to Ys is algebraic, then φ itself is algebraic. This is a local question
on Y ; hence we need to show that if φ ∈C∗(Y ) and r∗

s φ is a regular function then
φ is a regular function on Y sn. We can view φ as a morphism to A1

Y ; let Y ′ be its
image. Since Ys → Y is proper, Y ′ → Y is proper and Y ′

K → YK is a homeomor-
phism. Thus Y ′ is dominated by the seminormalization.

The next result is an important invariance property of global sections of descent
problems.

Corollary 21. Let X be an affine scheme of finite type over k and let D =
(p : Y → X, f : p∗E → F ) be a descent problem. Then taking algebraic global
sections commutes with base field extensions and with flat, finite-type, seminormal
base changes.

In particular, taking the continuous closure commutes with base field extensions
and with flat, finite-type, seminormal base changes.

Proof. By Theorem 17, D has a universally finitely determined scion Ds =
(ps : Ys → X, fs : p∗

sE → Fs) whose structure map rs : Ys → Y is surjective.
By Corollary 20,

H 0(Sci(D),F ) = H 0(Sci(Ds),Fs)

and the equality continues to hold after every base change. Thus it is sufficient to
prove Corollary 21 in case D is universally finitely determined. For such descent
problems,

H 0(Sci(D),F ) = H 0(Sci0(D),F ),

and we saw in Proposition 15 that H 0(Sci0(D),F ) commutes with base field ex-
tensions and with flat, finite-type, seminormal base changes.
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Since open embeddings are flat with seminormal fibers, we can sheafify the notion
of continuous closure.

Definition 22. Let D = (p : Y → X, f : p∗E → F ) be a descent problem.
By Corollary 21, as {U : U ↪→ X} runs through all affine open subsets, the rule

U �→ H 0(Sci(D|U),F |U)
defines a coherent sheaf in the Zariski topology, denoted by

R0p∗(Sci(D),F ) (22.1)

and called the push-forward of Sci(D).
As in (5.1), there are natural maps

E → R0p∗(Sci(D),F ) ↪→ p∗F sn. (22.2)

Finally, let us show that Definition 6 is independent of the auxiliary choices.

Proposition 23. The continuous closure is independent of the choice of
f : E → F.

Proof. Pick f : E → F such that J ∼= im f. Composing a surjection E ′ → E

and an injection F ↪→ F ′, we get another map f ′ : E ′ → F ′ such that J ∼= im f ′.
We get two descent problems, D and D′. We claim that

C∗(Sci(D),F ) = C∗(Sci(D′),F ′).

This follows from Corollary 18 and the obvious maps

C∗(X,E ′) →→ C∗(X,E) → C∗(X,F ) ↪→ C∗(X,F ′).

Proof of Theorem 17

In order to get an idea of the proof, assume first that X,Y are normal and let Y →
W → X denote the Stein factorization. We first study which sections over Y de-
scend toW and then try to descend them to X.

If we look over a single pointw ∈W, then the question is answered by Lemma11.
Working in our family, this means passing from Y →W to the (n+ 1)-fold fiber
product Y ×W × · · · ×W Y. The fiber product can be rather singular in general, so
this will work only over a dense open subset of W.

Going fromW to X is easy if we work locally analytically. In this caseW →X

is a local isomorphism over an open subset of W ; thus every question overW can
be rewritten as a question over X. This will not work well algebraically, but there
are no problems if W → X is Galois.

The point of Proposition 24 is to show that, by passing to a suitable scion, the
foregoing considerations apply—at least over a dense open subset of X. We shall
then finish by a straightforward dimension induction (Section 26).

Proposition 24. Let D = (p : Y → X, f : p∗E → F ) be a descent problem.
Then there is a closed algebraic subvariety Z ⊂ X with dimZ < dimX and a
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scion D̃ = (p̃ : Ỹ → X, f̃ : p̃∗E → F̃ ) with surjective structure map r̃ : Ỹ → Y

and with the following properties.
Let X = ⋃

i∈I Xi be the irreducible components. For every i ∈ I let Ỹi ⊂ Ỹ be
the closure of p̃−1(Xi \Z) and let D̃i be the restriction of D̃ to Ỹi . Then, for every
i ∈ I :

(24.1) a finite group Gi acts on D̃i;
(24.2) there is a Gi-equivariant factorization p̃i : Ỹi

q̃i−→ W̃i

w̃i−→Xi;
(24.3) over Xi \ Z, the map w̃i : W̃i → Xi is finite and Galois with group Gi;
(24.4) there is a Gi-equivariant quotient bundle w̃∗

iE → Ẽi such that f̃i factors
as p̃∗

iE →→ q̃∗
i Ẽi

∼= F̃i .

Proof. We may harmlessly assume that p(Y ) is Zariski dense in X.
After we construct D̃, the plan is to make sure thatZ contains all of its “singular”

points. In the original setting, Z is the set where the map (f1, . . . , fr) : O r
X → OX

has rank 0. In the general case, we need to include points over which f̃ drops rank
and also points over which p̃ drops rank. During the proof we gradually add more
and more irreducible components to Z as needed.

Step 0. To start with, we add toZ the locus whereX is not normal and the p(Yj )
for which Yj ⊂ Y is an irreducible component that does not dominate any of the
irreducible components of X. In the conclusions, the different D̃i have no effect
on each other; hence we can work with them one at a time. We construct each D̃i

separately and then let D̃ be the disjoint union of D|Z and the D̃i for i ∈ I.
For simplicity of notation, we drop the index i. We thus assume that X is ir-

reducible and that every irreducible component of Y dominates X. We may as-
sume that Y is normal, take the Stein factorization p : Y

q−→W
s−→ X, and setm =

deg(W/X). In several steps we construct the following diagram:

(q̃(m))∗Ē(m) ∼= F̃ (m)

��

F̄ (m)

��

F (m)

��

F

��

(t
(m)
W � s(m)W )∗E →→ Ē(m)

�������������
Ỹ
(m)
X

q̃(m)

��

Ȳ
(m)
X

t
(m)

Y ��

q̄(m)

��

Y
(m)
X

π
(m)

i ��

q(m)

��

Y

p

��

W̃ (m) W̄ (m)
t
(m)

W �� W(m)
s(m) �� X.

Step 1: ConstructingW(m) and its column. Let s : W → X be a finite morphism
of (possibly reducible) varieties.

Consider the m-fold fiber product Wm
X := W ×X · · · ×X W with coordinate

projections πi : Wm
X → W. For every i �= j, let 3ij ⊂ Wm

X be the preimage of
the diagonal 3 ⊂ W ×X W under the map (πi,πj ). Let W(m)

X ⊂ Wm
X be the

union of the dominant components in the closure of Wm
X \ ⋃

i �=j 3ij with projec-

tion s(m) : W(m)
X → X. The symmetric group Sm acts on W(m)

X by permuting the
factors.
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Let X 0 ⊂ X be the largest Zariski open subset over which s is smooth. If
x ∈X 0 then (s(m))−1(x) consists of ordered m-element subsets of s−1(x), so Sm
acts transitively on (s(m))−1(x) if |s−1(x)| = m.

Let p : Y → X be as before but with Stein factorization p : Y
q−→W

s−→ X.

Let Y m
X denote the m-fold fiber product Y ×X · · · ×X Y with coordinate projec-

tions πi : Y m
X → Y. Let Y (m)

X ⊂ Y m
X denote the dominant parts of the preimage of

W
(m)
X under the natural map qm : Y m

X → Wm
X with projection p(m) : Y (m)

X → X.

Note that, for general x ∈ X, Sm acts transitively on the irreducible components
of (p(m))−1(x).

Let F be a locally free sheaf on Y. Then
⊕

i π
∗
i F is a locally free sheaf on Y m

X .

Its restriction to Y (m)
X is denoted by F (m).

The Sm-action onY (m)
X naturally lifts to an Sm-action on F (m). From f : p∗E →

F we get an Sm-invariant map of locally free sheaves f (m) : (p(m))∗E → F (m).

For each m we get a scion of D,

D(m) := (p(m) : Y (m)
X → X, f (m) : (p(m))∗E → F (m)).

Step 2: ConstructingW̄ (m) and its column. More generally, let D = (p : Y →W,
f : p∗E → F ) be a descent problem. (Note that the base is W instead of X.)
Assume thatW is irreducible. Consider the coherent sheaf E ′ := im[E → p∗F ].

Let Grass(d,E) → X be the universal Grassmann bundle of rank-d quotients of
E, where d is the rank ofE ′ at a general point. At a general point x ∈X,E(x) →→
E ′(x) is such a quotient. Thus E ′ gives a rational map X ��� Grass(d,E), which
is defined on a dense open subset. Let X̄ ⊂ Grass(d,E) denote the closure of its
image and τX : X̄ → X the projection. Then τX is a proper birational morphism
and we have a decomposition

τ ∗
Xq : τ ∗

XE
s→→ Ē

j
↪→ τ ∗

XE
′,

where Ē is a locally free sheaf of rank d on X̄, s is a rank-d surjection everywhere,
and j is a rank-d injection on a dense open subscheme.

Applying this to D(m), withW(m) playing the role of the base, we obtain D̄(m).

Step 3: ConstructingW̃ (m) and its column. More generally, let D = (p : Y →W,
f : p∗E → F ) be a descent problem. Assume that W and the generic fiber of p
are irreducible and that E → p∗F is an injection. We construct a scion

D̃ = (p̃ : Ỹ →W, f̃ : p̃∗E → F̃ )

with surjective structure map such that f̃ is an isomorphism.
Set n = rankE and let Y n+1

W be the union of the dominant components of
the (n + 1)-fold fiber product of Y → W with coordinate projections πi. Let
p̃ : Y n+1

W →W be the map given by any of the p � πi. Consider the diagonal map

f̃ : p̃∗E →
n+1∑

i=1

π∗
i F,
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which is an injection over a dense open set Y 0 ⊂ Y n+1
W by assumption. Using

(3.3), we can replace
∑n+1

i=1 π
∗
i F by p̃∗E.

Applying this to D̄(m), we obtain D̃(m).

Proposition 25. Let D̃ = (p̃ : Ỹ → X, f̃ : p̃∗E → F̃ ) be a descent problem,
and let Z ⊂ X be a closed algebraic subvariety. Let X = ⋃

i Xi be the irre-
ducible components and assume that Xi ∩Xj ⊂ Z for every i �= j. Let Ỹi ⊂ Y be
the closure of p̃−1(Xi \ Z) and let D̃i be the restriction of D̃ to Ỹi . Assume that
(24.1)–(24.4) hold for every i. Then D̃ is finitely determined relative to Z.

Proof. Let 6Y ∈ C∗(Y,F ) be a section that vanishes on p−1(Z) such that (10.2)
holds. We can uniquely write 6Y = ∑

6i, where Supp6i ⊂ Ỹi . It is thus enough
to write 6i = f �p∗(ψi,X) for each i. For a fixed i, we need to do this over Xi and
then extend ψi,X to X by setting it to zero on the complement. Thus it is sufficient
to work with one D̃i at a time.

Using the isomorphism q̃∗
i Ẽi

∼= F̃i, 6i can be identified with a section 6̃i of
q̃∗
i Ẽi . The conditions (10.2) now imply that 6̃i is constant on the fibers of Ỹi → W̃i

and is Gi-invariant. Thus 6̃i is the pull-back of a Gi-invariant section 6̃W,i of
Ẽi that vanishes on the preimage of Z. Using a Gi-invariant C∗-splitting of
w̃∗
iE →→ Ẽi, we can think of 6̃W,i as a Gi-invariant section of w̃∗

iE. Therefore,
6̃W,i descends to a section ψX,i ∈C∗(Xi,E) that vanishes on Z.

26 (Proof of Theorem 17). We use induction on the dimension ofX. If dimX =
0 then we are done by Lemma 11.

In general, constructZ and D̃ as in Proposition 24. Let D̃Z denote the restriction
of D̃ to Z. By induction, it has a finitely determined scion whose structure map is
surjective; we denote it (D̃Z)

∼. Let Ds be the disjoint union of D̃ and of (D̃Z)
∼.

Pick "s ∈ C∗(Ys ,Fs) and assume that it satisfies the conditions (10.2). Its re-
striction to (D̃Z)

∼ also satisfies the conditions (10.2); hence there is a section φZ ∈
C∗(Z,E|Z) whose pull-back to p−1

s (Z) equals the restriction of "s. (A priori this
holds only over (ỸZ)∼, but since the structure map (ỸZ)∼ → ỸZ is surjective, it
also holds over ỸZ.)

According to Section 9, we can lift φZ to a section φX ∈ C∗(X,E). Consider
next

6s := "s − fs(p
∗
s φX)∈C∗(Ys ,Fs).

By construction, it vanishes along p−1
s (Z). By Proposition 25, D̃ is finitely de-

termined relative to Z; hence we can write 6s = fs � p∗
s (ψX) for some ψX ∈

C∗(X,E). Thus "s = fs � p∗
s (φX + ψX).
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