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1. Introduction

A useful feature of the Euclidean n-space, n ≥ 2, is that every pair of points x and
y can be joined not only by the line segment [x, y] but also by a large family of
curves whose length is comparable to the distance between the points. Once one
has found such a “thick” family of curves, the deduction of important Sobolev and
Poincaré inequalities is an abstract procedure in which the Euclidean structure no
longer plays a role.

The classical Poincaré inequality allows one to obtain integral bounds on the
oscillation of a function using integral bounds on its derivatives. In this type of
inequality, the derivative itself is not needed and only the size of the function’s
gradient is used; a nice discussion of this can be found in [17]. This is the idea be-
hind generalizations of Poincaré inequalities in spaces where we may not have a
linear structure. Heinonen and Koskela [8; 9] introduced a notion of “upper gradi-
ents”, which serve the role of derivatives in a metric space X. A nonnegative Borel
function g on X is said to be an upper gradient for an extended real-valued func-
tion u on X if |u(γ (a))−u(γ (b))| ≤ ∫

γ
g for every rectifiable curve γ : [a, b] →

X. The following Poincaré inequality is now standard in literature on analysis in
metric measure spaces.

Definition 1.1. Let 1 ≤ p < ∞. We shall say that (X, d,µ) supports a weak p-
Poincaré inequality if there exist constants Cp > 0 and λ ≥ 1 such that, for every
Borel measurable function u : X → R ∪ {∞} and every upper gradient g : X →
[0, ∞] of u, the pair (u, g) satisfies the inequality

∫
B(x,r)

|u− uB(x,r)| dµ ≤ Cpr

(∫
B(x,λr)

gp dµ

)1/p
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for each ball B(x, r) ⊂ X. The modifier weak refers to the possibility that λ may
be strictly greater than 1.

Here B(x, r) is an open ball with center at x and radius r > 0. For arbitrary
A ⊂ X with 0 < µ(A) < ∞, we write

uA =
∫
A

u = 1

µ(A)

∫
A

u dµ.

There is a long list of metric spaces supporting a Poincaré inequality, includ-
ing some standard examples such as R

n, Riemannian manifolds with nonnegative
Ricci curvature, and Carnot groups (in particular, the Heisenberg group) as well
as other, non-Riemannian metric measure spaces of fractional Hausdorff dimen-
sion (see e.g. [7; 14] and the references therein). Metric spaces equipped with
a p-Poincaré inequality support a nontrivial potential theory and geometric the-
ory even without a priori smoothness structure of the metric space. Metric spaces
with doubling measure and p-Poincaré inequality admit a first-order differential
calculus theory akin to that in Euclidean spaces. One surprising fact is that some
geometric consequences of this condition seem to be independent of the parame-
ter p, and the picture is not yet clear.

It follows from Hölder’s inequality that, if a space admits a p-Poincaré inequal-
ity, then it admits a q-Poincaré inequality for each q ≥ p. Keith and Zhong [11]
proved a self-improving property for Poincaré inequalities—namely, ifX is a com-
plete metric space equipped with a doubling measure satisfying a p-Poincaré in-
equality for some 1 < p < ∞, then there exists an ε > 0 such that X supports
a q-Poincaré inequality for all q > p − ε. The strongest of all these inequalities
would be a 1-Poincaré inequality, and it is well known that the 1-Poincaré inequal-
ity is equivalent to the relative isoperimetric property [1; 16]. On the other hand,
even for p > 1 the p-Poincaré inequality has strong links with the geometry of
the underlying metric measure space. For instance, the Poincaré inequality im-
plies that any pair of points in the space can be connected by curves that are not
too long; this property is called quasiconvexity. Hence a natural question is: What
is the weakest version of p-Poincaré inequality that still gives reasonable infor-
mation on the geometry of the metric space? One of the goals of this paper is to
answer that question by studying the following version of ∞-Poincaré inequality.

Definition 1.2. We say that (X, d,µ) supports a weak ∞-Poincaré inequality
if there exist constants C > 0 and λ ≥ 1 such that, for every Borel measurable
function u : X → R ∪ {∞} and every upper gradient g : X → [0, ∞] of u, the
pair (u, g) satisfies the inequality∫

B(x,r)

|u− uB(x,r)| dµ ≤ Cr‖g‖L∞(B(x,λr))

for each ball B(x, r) ⊂ X.

The main result of this paper is a characterization of spaces supporting an ∞-
Poincaré inequality; this is given in Theorem 4.7. A metric measure space is said
to be thick quasiconvex if, loosely speaking, every pair of sets of positive measure
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that are a positive distance apart can be connected by a “thick” family of quasi-
convex curves in the sense that the ∞-modulus of this family of curves is pos-
itive. The first aim of this paper is to show that a connected complete doubling
metric measure space supports a weak ∞-Poincaré inequality if and only if it is
thick quasiconvex, which is a purely geometric condition. We will also prove
that this condition is equivalent to the purely analytic condition that LIP∞(X) =
N1,∞(X), with comparable energy seminorms, in the sense described before Ex-
ample 4.5.

The paper is organized as follows. In Section 2 we recall some standard nota-
tion and relevant notions regarding metric spaces supporting a doubling measure,
∞-modulus of curves, and Newtonian–Sobolev spaces N1,∞(X). In Section 3 we
introduce ∞-Poincaré inequality and present an example (Example 3.3) of a non-
doubling metric space that supports an ∞-Poincaré inequality but does not support
any p-Poincaré inequality for p < ∞. We do not know whether there is a metric
space with a doubling measure that supports an ∞-Poincaré inequality but does
not support any p-Poincaré inequality for p < ∞. Furthermore, we give some
geometric implications of the ∞-Poincaré inequality—in particular, that the space
is quasiconvex. However, as one can appreciate in Corollary 4.15, quasiconvexity
is not a sufficient condition for a space to support an ∞-Poincaré inequality. In
Section 4 we introduce the stronger notion of thick quasiconvexity (Definition 4.1),
which leads us in Theorem 4.7 to obtain the desired analytic and geometric char-
acterization of ∞-Poincaré inequality.

Unless otherwise stated, the letter C denotes various positive constants whose
exact values are not important, and the value might change even from line to line.

2. Notation and Preliminaries

We assume throughout the paper that (X, d,µ) is a metric measure space, that is,
a metric space equipped with a metric d and a Borel measure µ such that 0 <

µ(B) < ∞ for each open ball B ⊂ X.

A measure µ is doubling if there is a constant Cµ > 0 such that, for all x ∈X

and r > 0,
µ(B(x, 2r)) ≤ Cµµ(B(x, r)).

Here B(x, r) := {y ∈ X : d(x, y) < r}. Also B̄(x, r) := {y ∈ X : d(x, y) ≤ r}
and λB(x, r) := {y ∈ X : d(x, y) < λr}. We point out here that, in the abstract
metric setting, B̄(x, r) contains the closure of B(x, r) yet might be larger.

An iteration of the preceding inequality shows that µ is also s1-homogeneous
for some s1 > 0. In other words, there are constants C and s depending only on
Cµ such that—whenever B is a ball in X, x ∈B, and r > 0 with B(x, r) ⊂ B—we
have

µ(B(x, r))

µ(B)
≥ 1

C

(
r

rad(B)

)s1

. (1)

If in addition X is connected and has at least two points, then the doubling prop-
erty also implies the existence of a constant s2 > 0 such that, for all balls B ⊂ X

and B(x, r) ⊂ B,
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µ(B(x, r))

µ(B)
≤ 1

C

(
r

rad(B)

)s2

. (2)

By this inequality, letting r → 0 we see that for all x ∈ X we have µ({x}) = 0;
that is, µ has no atoms.

In a complete metric space X, the existence of a doubling measure that is finite
on balls and not trivial implies that X is separable and proper. The latter means
that closed bounded subsets ofX are compact. In particular, X is locally compact.

Some of the classical theorems in analysis in the Euclidean setting can be ex-
tended to doubling metric measure spaces. The Lebesgue differentiation theo-
rem is such an example: if u is a locally integrable function on a doubling metric
space X, then

u(x) = lim
r→0

∫
B(x,r)

u dµ

for µ-a.e. point in X. In other words, almost every point in X is a Lebesgue point
for u (see e.g. [7]).

Remark 2.1. The hypothesis of completeness is not so restrictive. The comple-
tion (X̂, d̂ ) of a metric space (X, d) is unique up to isometry. Note that (X, d) is a
subspace of (X̂, d̂ ) and that X is dense in X̂. For our purposes, the crucial obser-
vation is that the essential features of X are inherited by X̂. Indeed, if X is locally
complete and there is a doubling Borel measure µ that is nontrivial and finite on
balls, we may extend this measure to X̂ so that X̂ \ X has zero measure and the
extended measure has the same properties as the original one. Also, if X supports
a weak p-Poincaré inequality for some 1 ≤ p ≤ ∞, then so does X̂. See also [10]
for further discussions on this topic.

By a curve γ we mean a continuous mapping γ : [a, b] → X. Recall that the
length of a continuous curve γ : [a, b] → X in a metric space (X, d) is defined as

�(γ ) = sup

{ n−1∑
i=0

d(γ (ti), γ (ti+1))

}
,

where the supremum is taken over all finite partitions a = t0 < t1 < · · · < tn =
b of the interval [a, b]. We will say that a curve γ is rectifiable if �(γ ) < ∞. The
integral of a Borel function g over a rectifiable path γ is usually defined via the
path-length parameterization γ0 of γ in the following way:∫

γ

ρ ds =
∫ �(γ )

0
g � γ0(t) dt.

Recall that every rectifiable curve γ admits a parameterization by the arc length;
that is, with γ0 : [0, �(γ )] → X, for all t1, t2 with t1 ≤ t2 we have �(γ0|[t1,t2 ]) =
t2 − t1. Hence, we consider only curves that are arc-length parameterized.

We denote by LIP∞(X) the space of bounded Lipschitz functions on X. In
what follows, ‖·‖L∞ denotes the essential supremum norm (provided we have a
measure on X). In addition, LIP(·) will denote the Lipschitz constant:
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LIP(u) := sup
x,y∈X
x �=y

|u(y)− u(x)|
d(y, x)

.

The norm on LIP∞(X) is given by

‖u‖LIP∞(X) := sup
x∈X

|u(x)| + LIP(u).

We recall the definition of ∞-modulus: an outer measure on the collection of all
paths in X. Let ϒ ≡ ϒ(X) denote the family of all nonconstant rectifiable curves
in X. It may be that ϒ is empty, but we are mainly interested in finding out when
metric spaces have large enough ϒ.

Definition 2.2. For " ⊂ ϒ , let F(") be the family of all Borel measurable
functions ρ : X → [0, ∞] such that∫

γ

ρ ≥ 1 for all γ ∈".

We define the ∞-modulus of " by

Mod∞(") = inf
ρ∈F(")

{‖ρ‖L∞}.
If some property holds for all curves γ /∈ " for some " ⊂ ϒ that satisfies
Mod∞" = 0, then we say that the property holds for ∞-a.e. curve.

It can be easily checked that Mod∞ is an outer measure as it is for 1 ≤ p < ∞;
see for example [5, Thm. 5.2].

Remark 2.3. Note that if we have two measures µ and λ defined on X with the
same zero measure sets, then the ∞-modulus of " is the same regardless of the
measure we use to compute it.

Definition 2.4. Let E ⊂ X. Then "+
E is the family of curves γ such that

L 1(γ−1(γ ∩ E)) > 0, where L 1 denotes the 1-dimensional Lebesgue measure.

Recall that we consider only curves that are arc-length parameterized.

Lemma 2.5. Let E ⊂ X. If µ(E) = 0, then Mod∞("+
E ) = 0.

Proof. Since µ is a Borel measure, by enlarging E if necessary we may assume
thatE is a Borel set. Let g = ∞·χE. For γ ∈"+

E , we have that L 1(γ−1(γ ∩E)) >

0 and so ∫
γ

g ds =
∫
γ∩E

g ds = ∞.

Hence, by the definition of modulus,

Mod∞("+
E ) ≤ ‖g‖L∞(X) = 0.

A related generalization of Sobolev spaces to general metric spaces are the so-
called Newtonian spaces N1,p introduced in [18; 19]. Its definition is based on the
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notion of upper gradients of Heinonen and Koskela. In this paper, we will focus
on the case p = ∞ studied in [3].

Definition 2.6. A nonnegative Borel function g on X is an ∞-weak upper gra-
dient of an extended real-valued function u on X if, for ∞-a.e. curve γ ∈ϒ ,

|u(γ (a))− u(γ (b))| ≤
∫
γ

g

when both u(γ (a)) and u(γ (b)) are finite and
∫
γ
g = ∞ otherwise. If the family

of curves for which this requirement is not satisfied is an empty family, then we
say that g is an upper gradient of u.

Let Ñ1,∞(X, d,µ) = Ñ1,∞(X) be the class of all Borel functions u∈L∞(X) for
which there exists an ∞-weak upper gradient g inL∞(X). For u∈ Ñ1,∞(X, d,µ)
we set

‖u‖Ñ1,∞ = ‖u‖L∞ + inf
g

‖g‖L∞ ,

where the infimum is taken over all ∞-weak upper gradients g of u.

Definition 2.7. We define an equivalence relation in Ñ1,∞(X) by u ∼ v if and
only if ‖u− v‖Ñ1,∞ = 0. The space N1,∞(X, d,µ) = N1,∞(X) denotes the quo-
tient Ñ1,∞(X, d,µ)/∼ and is equipped with the norm

‖u‖N1,∞ = ‖u‖Ñ1,∞ .

It was shown in [3] thatN1,∞(X) is a Banach space. Note that if u∈ Ñ1,∞(X) and
v = u µ-a.e., then it is not necessarily true that v ∈ Ñ1,∞. Nevertheless, the fol-
lowing lemma shows that if u, v ∈ Ñ1,∞ and v = u µ-a.e., then ‖u− v‖Ñ1,∞ = 0.

Lemma 2.8 [3, 5.13]. Let u1, u2 ∈ Ñ1,∞(X, d,µ) be such that u1 = u2 µ-a.e.
Then u1 ∼ u2; in other words, both functions define exactly the same element in
N1,∞(X, d,µ).

If g is an ∞-weak upper gradient of f , then one can find a sequence {gj}∞j=1 of
upper gradients of f such that gj −→ g in L∞(X). It follows from the Lebesgue
differentiation theorem that, if µ is doubling, then µ-a.e. x ∈ X is a Lebesgue
point of N1,∞(X, d,µ). Observe also that if u∈ LIP∞(X) then the Lipschitz con-
stant LIP(u) is an upper gradient for u. Therefore, ‖·‖N1,∞ ≤ ‖·‖LIP∞ for every
u∈ LIP∞(X).

3. ∞-Poincaré Inequality in Metric Measure Spaces

We recall here the definition of ∞-Poincaré inequality referred to in Section 1.

Definition 3.1. We say that (X, d,µ) supports a weak ∞-Poincaré inequality
if there exist constants C > 0 and λ ≥ 1 such that, for every Borel measurable
function u : X → R ∪ {∞} and every ∞-weak upper gradient g : X → [0, ∞] of
u, the pair (u, g) satisfies the inequality
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∫
B(x,r)

|u− uB(x,r)| dµ ≤ Cr‖g‖L∞(B(x,λr))

for each ball B(x, r) ⊂ X.

Remark 3.2. Observe that∫
B

|u(x)− uB | dµ(x) =
∫
B

∣∣∣∣
∫
B

(u(x)− u(y)) dµ(y)

∣∣∣∣ dµ(x)
≤

∫
B

∫
B

|u(x)− u(y)| dµ(y) dµ(x)
and so, when we want to check whether (X, d,µ) supports a weak ∞-Poincaré
inequality, it is enough to prove that each pair (u, g) satisfies∫

B

∫
B

|u(x)− u(y)| dµ(y) dµ(x) ≤ Cr‖g‖L∞(λB) (3)

for each ball B ⊂ X with radius r. On the other hand, inequality (3) is necessary
to verify ∞-Poincaré inequality also. To see this, note that∫
B

∫
B

|u(x)− u(y)| dµ(y) dµ(x) =
∫
B

∫
B

|u(x)− uB + uB − u(y)| dµ(y) dµ(x)

≤ 2
∫
B

|u(x)− uB | dµ(x).

The following example shows that there exist spaces with a weak ∞-Poincaré in-
equality that do not admit a weak p-Poincaré inequality for any finite p.

Example 3.3. Let T be a nondegenerate triangular region in R
2, and let T ′ be an

identical copy of T. Let X be the metric space obtained by identifying a vertex V
of T with a vertex V ′ of T ′ (V = V ′ = {0}) and the metric defined by

d(x, y) =
{ |x − y| if x, y ∈ T or x, y ∈ T ′,

|x − V | + |V ′ − y| if x ∈ T and y ∈ T ′.
This space X is equipped with the weighted measure µ given by dµ(x) =
ω(x) dL 2(x), where ω(x) = exp(−1/|x|2). Note that µ and the Lebesgue mea-
sure L 2 have the same zero measure sets. It is already known that this space
equipped with the Lebesgue measure L 2 admits ap-Poincaré inequality forp > 2
(see e.g. [18]). We now show that (X, d,µ) does not admit a weak p-Poincaré in-
equality for any finite p but does admit a weak ∞-Poincaré inequality.

First observe that, given a measurable function u in X,∫
B

|u− uB | dµ ≤ 2 inf
c∈R

∫
B

|u− c| dµ, (4)

where uB = ∫
B
u dµ. Indeed, let c ∈ R and suppose c ≥ uB (the case c < uB is

analogous). Then∫
B

|c − uB | dµ = c − uB =
∫
B

c −
∫
B

u =
∫
B

(c − u) ≤
∫
B

|c − u| dµ.
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Since |u(x)− uB | ≤ |u(x)− c| + |c − uB | for each x ∈X, we have that∫
B

|u− uB | dµ ≤
∫
B

|u− c| dµ+
∫
B

|c − uB | dµ ≤ 2
∫
B

|u− c| dµ.
If we take the infimum over c on the right-hand of this inequality, the result is in-
equality (4). Now let us consider an upper gradient g of u. We obtain the following
chain of inequalities by using Hölder’s inequality for 2 < p < q:∫

B

|u− uB | dµ (4)≤ 2 inf
c∈R

∫
B

|u− c| dµ ≤ 2
∫
B

|u− uB,L 2 | dµ
≤ 2‖u− uB,L 2‖L∞(µ) = 2‖u− uB,L 2‖L∞(L 2)

≤ Cpr

(∫
5λB

gp dL 2

)1/p

≤ Cpr

(∫
5λB

gq dL 2

)1/q

,

where uB,L 2 = ∫
B
u dL 2. In the third line of this chain of inequalities we have

applied [6, Thm. 5.1]. Letting q tend to infinity yields∫
B

|u− uB | dµ ≤ Cpr‖g‖L∞(L 2,5λB) = Cpr‖g‖L∞(µ,5λB),

whence (X, d,µ) admits a weak ∞-Poincaré inequality.
Next we show that (X, d,µ) does not admit a p-Poincaré inequality for any fi-

nite p. Indeed, consider the function u = 1 in T, u = 0 in T ′ and in the vertex. It
is not difficult to check that the function gα(x) = α/|x| is an upper gradient for
u for each α > 0. Taking the ball B = X, we have that uX > 0 and therefore∫
X
|u−uX| dµ > 0. Nevertheless,

∫
X
g
p
α dµ tends to zero when α tends to zero for

1 < p < ∞, so X does not admit a weak p-Poincaré inequality for any finite p.

Observe that the measure µ in the previous example is not doubling.
One of the most useful geometric implications of the p-Poincaré inequality for

finite p is that, if a complete doubling metric measure space supports a p-Poincaré
inequality, then there exists a constant such that each pair of points can be con-
nected with a curve whose length is at most the constant times the distance between
the points (see [6; 17]); that is, the space is quasiconvex. IfX is known only to sup-
port an ∞-Poincaré inequality then the same conclusion holds, as demonstrated
by the following proposition.

Proposition 3.4. Suppose that (X, d,µ) is a complete metric measure space
with µ a doubling measure. If X supports a weak ∞-Poincaré inequality, then
X is quasiconvex with a constant depending only on the constants of the Poincaré
inequality and the doubling constant.

Proof. Let ε > 0. We say that x, z ∈X lie in the same ε-component of X if there
exists an ε-chain joining x with z—that is, there exists a finite chain z0, z1, . . . , zn
such that z0 = x, zn = z, and d(zi, zi+1) ≤ ε for all i = 0, . . . , n − 1. If x and
y lie in different ε-components, then it is obvious that there exists no rectifiable
curve joining x and y. Thus, the function g ≡ 0 is an upper gradient for the char-
acteristic function of any of the components. Note that, for every x in one of
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the components, the ball B(x, ε/2) is a subset of that component; in other words,
each component is open and hence is a measurable set. By applying the weak
∞-Poincaré inequality to the characteristic function of any component, it follows
that all the points of X lie in the same ε-component.

Now let us fix x, y ∈ X and prove that there exists a curve γ joining x and y

such that �(γ ) ≤ C d(x, y), where C is a constant that depends only on the dou-
bling constant and the constants involved in the Poincaré inequality. We define the
ε-distance from x to z as

ρx,ε(z) := inf
N−1∑
i=0

d(zi, zi+1),

where the infimum is taken over all finite ε-chains {zi}. Observe that ρx,ε(z) <
∞ for all z ∈X. In addition, if d(z,w) ≤ ε then |ρx,ε(z) − ρx,ε(w)| ≤ d(z,w).
Hence ρx,ε is a locally1-Lipschitz function; in particular, every point is a Lebesgue
point of ρx,ε and, moreover, for all ε > 0 the function g ≡ 1 is an upper gradi-
ent of ρx,ε. For each i ∈ Z , define Bi = B(x, 21−i d(x, y)) if i ≥ 0 and Bi =
B(y, 21+i d(x, y)) if i ≤ −1. Then a telescopic argument together with weak ∞-
Poincaré inequality yields the following chain of expressions:

|ρx,ε(y)| = |ρx,ε(x)− ρx,ε(y)|
≤

∑
i∈Z

∣∣∣∣
∫
Bi

ρx,ε dµ−
∫
Bi+1

ρx,ε dµ

∣∣∣∣
≤ C

∑
i∈Z

1

µ(Bi)

∫
Bi

∣∣∣∣ρx,ε −
∫
Bi+1

ρx,ε dµ

∣∣∣∣ dµ
≤ CC d(x, y)

∑
i∈Z

2−|i|‖g‖L∞(λBi )

≤ C d(x, y); (5)

here C is a constant that depends only on X.

Because X is complete, the existence of a nontrivial doubling measure implies
that closed balls are compact. Using a standard limiting argument that involves
Arzela–Ascoli’s theorem and inequality (5), we can construct a 1-Lipschitz recti-
fiable curve connecting x and y with length at most C d(x, y). Since x and y were
arbitrary, this completes the proof. For further details about the construction of
the curve, see [13, Thm. 3.1].

The following technical lemma will be useful in the sequel.

Lemma 3.5. LetX be a complete separable metric space equipped with a σ -finite
Borel measure µ, and let g : X −→ [0, ∞] be a Borel function. Then, for each
x0 ∈X, the function

u(z) = inf
γ connects z to B(x0,r)

∫
γ

g ds
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is µ-measurable. Moreover, if k ∈ R then the function g is an upper gradient for
v = min{u, k}.
Proof. Following the lines of [10, Cor.1.10], one can prove that u isµ-measurable.

To see that g is an upper gradient of v on X, we argue as follows. Fix z1, z2 ∈X

and let β be a rectifiable curve in X connecting z1 to z2. There are three possible
cases:

1. v(z1) = u(z1) and v(z2) = u(z2);
2. v(z1) = u(z1) and v(z2) = k;
3. v(z1) = k = v(z2).

In the first case, both u(z1) and u(z2) are finite. Fix ε > 0. Then we can find a
rectifiable curve connecting z1 to B(x, ε) such that u(z1) ≥ ∫

γ
g ds − ε; hence

u(z2)− u(z1) ≤
∫
γ∪β

g ds −
∫
γ

g ds + ε =
∫
β

g ds + ε,

where we can cancel
∫
γ
g ds because it is a finite value. A similar argument gives

u(z1)− u(z2) ≤
∫
β

g ds + ε.

Combining the previous two inequalities and letting ε → 0 now yields

|v(z1)− v(z2)| = |u(z1)− u(z2)| ≤
∫
β

g ds.

In the second case, u(z1) = v(z1) ≤ v(z2) ≤ u(z2). In this case again, u(z1)

is finite. For ε > 0 we can find a rectifiable curve γ connecting z1 to B(x, ε) such
that u(z1) ≥ ∫

γ
g ds − ε, so

|v(z1)− v(z2)| = v(z2)− v(z1) ≤ u(z2)− u(z1) ≤
∫
γ∪β

g ds −
∫
γ

g ds + ε

=
∫
β

g ds + ε;

once again, we cancel the term
∫
γ
g ds ≤ u(z1) + ε because it is finite. Letting

ε → 0, we again obtain

|v(z1)− v(z2)| ≤
∫
β

g ds.

In the third case we easily obtain the preceding inequality because, in this case,
v(z1)− v(z2) = 0.

The next example shows one of the difficulties in working with p = ∞ as opposed
to finite values of p.

Example 3.6. Let X be a complete metric space that supports a doubling Borel
measure µ that is nontrivial and finite on balls, and suppose that X supports a
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weak ∞-Poincaré inequality. Denote by "x0,r,R the family of curves that connect
B(x0, r) to the complement of the ballB(x0,R)with 0 < r < R/2 < diam(X)/4.

We will prove that there is a constant C > 0, independent of R, r, and x0,
such that

Mod∞("x0,r,R) ≥ C

R
.

To see this, let g be a nonnegative Borel measurable function on X such that, for
all γ ∈ "x0,r,R , the integral

∫
γ
g ds ≥ 1. Notice here that X is quasiconvex by

Proposition 3.4. We then set

ũ(z) = inf
γ connects z to B(x0,r)

∫
γ

g ds

and consider u = min{ũ, 2}. It then follows that u = 0 on B(x0, r) and, by the
choice of g, that u ≥ 1 on X \ B(x0,R). By [10, Cor. 1.10], u is measurable; by
Lemma 3.5, g is an upper gradient of u. In short, u∈N1,∞(X).

Given x ∈B(x0, r) and y ∈B(x0,R+ r) \B(x0,R), for each i ∈ Z define Bi =
B(x, 21−i d(x, y)) if i ≥ 0 and Bi = B(y, 21+i d(x, y)) if i ≤ −1. By the weak
∞-Poincaré inequality and the doubling property ofµ, we get for Lebesgue points
x ∈B(x0, r) and y ∈X \ B(x0,R) that

1 ≤ |u(x)− u(y)| ≤
∑
i∈Z

∣∣∣∣
∫
Bi

u dµ−
∫
Bi+1

u dµ

∣∣∣∣
≤ C

∑
i∈Z

∫
Bi

∣∣∣∣u−
∫
Bi

u dµ

∣∣∣∣ dµ
≤ CC d(x, y)

∑
i∈Z

2−|i|‖g‖L∞(λBi )

≤ C d(x, y)‖g‖L∞(X).

Therefore,

‖g‖L∞(X) ≥ 1

C d(x, y)
≥ 1

C(R + r)
≥ 1

2CR
.

Taking the infimum over all such g yields the desired inequality for the ∞-
modulus. An analogous statement holds for Modp("x0,r,R) ifX supports a weakp-
Poincaré inequality for sufficiently large finite p (i.e., with p larger than the lower
mass bound exponent s1 obtained from the doubling property of the measure µ).
For such finite p, we can approximate test functions g from above in Lp(X) by
lower semicontinuous functions (as follows from the Vitali–Caratheodory theo-
rem [4, pp. 209–213]), so we could show (as in [8]) that the p-modulus of the
collection of all curves that connect x0 itself to X \B(x0,R) is positive. Unfortu-
nately, such an approximation by lower semicontinuous functions in the L∞-norm
is not valid in general, so we cannot conclude from the foregoing computation that
the ∞-modulus of the collection of all curves connecting x0 to X \ B(x0,R) is
positive if X is known only to support a weak ∞-Poincaré inequality.
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The previous example highlights the difficulties when working with theL∞-norm.
Namely, theL∞-norm is insensitive to local changes, and the Vitali–Caratheodory
theorem does not apply.

4. Geometric Characterization of
Weak ∞-Poincaré Inequality

The connection between isoperimetric and Sobolev-type inequalities in the Eu-
clidean setting is well understood (see [1; 16]). In the context of metric spaces
supporting a doubling measure, Miranda proved in [16] that a 1-weak Poincaré
inequality implies a relative isoperimetric inequality for sets of finite perimeter.
More recently, Kinnunen and Korte [12] gave further characterizations of Poincaré-
type inequalities (in the context of Newtonian spaces) in terms of isoperimetric
and isocapacitary inequalities.

In what follows we shall prove that ∞-Poincaré inequality also has a geometric
characterization—namely, it is equivalent to thick quasiconvexity.

Definition 4.1. (X, d,µ) is a thick quasiconvex space if there exists a C ≥ 1
such that—for all x, y ∈ X, 0 < ε < d(x, y)/4, and all measurable sets E ⊂
B(x, ε) and F ⊂ B(y, ε) satisfying µ(E)µ(F ) > 0—we have

Mod∞("(E,F,C)) > 0,

where "(E,F,C) denotes the set of curves γp,q connecting p ∈E and q ∈F with
�(γp,q) ≤ C d(p, q). Here we do not require quantitative control on the modulus
of the curve family.

Remark 4.2. Note that every complete thick quasiconvex space X supporting a
doubling measure is quasiconvex. Indeed, let x, y ∈X and choose a sequence εj
that tends to zero. Since X is thick quasiconvex, there is a constant C ≥ 1 such
that, for every εj , there exist xj ∈ B(x, εj ), yj ∈ B(y, εj ), and a curve γj connect-
ing xj to yj with �(γj ) ≤ C d(xj , yj ). Thus we obtain a sequence {γj} of curves
such that

�(γj ) ≤ C d(xj , yj ) ≤ 2C d(x, y),

that is, a sequence of curves with uniformly bounded length. Because X is a com-
plete doubling metric space and therefore proper, we may use the Arzela–Ascoli
theorem to obtain a subsequence, also denoted {γj}, that converges uniformly to a
curve γ connecting x and y with

�(γ ) = lim
j→∞ �(γj ) ≤ C lim

j→∞ d(xj , yj ) = C d(x, y).

However, the converse is not true. In Example 4.14 we will describe a quasiconvex
space endowed with a doubling measure that is not thick quasiconvex.

In what follows, we assume that X is a connected complete metric space support-
ing a doubling Borel measure µ that is nontrivial and finite on balls.
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We have already proved in Proposition 3.4 that weak ∞-Poincaré inequality for
Lipschitz functions implies quasiconvexity. However, in the following proposi-
tion we prove that weak ∞-Poincaré inequality for Newtonian functions implies
the stronger property of thick quasiconvexity.

Proposition 4.3. If X supports a weak ∞-Poincaré inequality for functions in
N1,∞(X) with upper gradients in L∞(X), then X is thick quasiconvex.

We remark that N1,∞(X) consists precisely of the functions in L∞(X) that have
an upper gradient in L∞(X).

Proof of Proposition 4.3. Let x, y ∈ X be such that x �= y, and let 0 < ε <

d(x, y)/4. Fix n ∈ N and let "n = "(B(x, ε),B(y, ε), n) be the collection of
all rectifiable curves connecting B(x, ε) to B(y, ε) such that �(γ ) ≤ n d(x, y).
Observe that, by our choice of ε, if p, q are the endpoints of γ then d(p, q)/4 ≤
d(x, y) ≤ 4 d(p, q).

Suppose that Mod∞("n) = 0. By [3, Lemma 5.7] there exists a nonnegative
Borel measurable function g ∈L∞(X) such that ‖g‖L∞(X) = 0 and, for all γ ∈"n,
the path integral

∫
γ
g ds = ∞. In this case we define

u(z) = inf
γ connects z to B(x,ε)

∫
γ

(1 + g) ds.

Observe that ‖1 + g‖L∞(X) = 1 and u = 0 on B(x, ε). If z ∈ B(y, ε) and γ is
a rectifiable curve connecting z to B(x, ε), then either (i) γ ∈ "n, in which case∫
γ
(1 + g) ds ≥ ∫

γ
g ds = ∞, or (ii) γ /∈"n, in which case �(γ ) > n d(x, y) and

so
∫
γ
(1+g) ds ≥ ∫

γ
1ds > n d(x, y); therefore, u(z) ≥ n d(x, y). It follows that

the function v = min{u, 2n d(x, y)} has the properties that

1. v = 0 on B(x, ε),
2. v ≥ n d(x, y) on B(y, ε),
3. v ∈N1,∞(X), and
4. 1 + g is an upper gradient of v on X (see Lemma 3.5) with ‖g‖L∞(X) = 0.

Let y0 ∈ B(y, ε/2) be a Lebesgue point of v. Then, by using the weak ∞-
Poincaré inequality and the chain of balls Bi = B(x, 21−i d(x, y)) if i ≥ 0 and
Bi = B(y0, 21+i d(x, y)) if i ≤ −1, we obtain

n d(x, y) ≤ v(y0) = |v(x)− v(y0)| ≤
∑
i∈Z

|vBi
− vBi+1|

≤ C
∑
i∈Z

∫
2Bi

|v − vBi
| dµ

≤ C
∑
i∈Z

2−|i| d(x, y)‖1 + g‖L∞(λBi )

= C d(x, y)
∑
i∈Z

2−|i| ≤ C d(x, y).
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Observe that x is a Lebesgue point of v since v = 0 on B(x, ε). We must
therefore have n ≤ C, where C depends only on the doubling constant and the
constant of the Poincaré inequality. Hence if n > C then the curve family "n =
"(B(x, ε),B(y, ε), n) must have positive ∞-modulus, completing the proof in the
simple case where E = B(x, ε) and F = B(y, ε). The proof for more general
E,F is similar; we modify the definition of u by looking at curves that connect
z to E and then observing that almost every point in E and almost every point in
F are Lebesgue points for the modified function v, where v = 0 on E and v ≥
n d(x, y) on F. This completes the proof of the proposition.

The following result describes one advantage of a thick quasiconvex space.

Lemma 4.4. Let X be a thick quasiconvex space. If u is a measurable function
( finite µ-a.e.) on X, if g is an upper gradient of u, and if B is a ball in X such
that ‖g‖L∞(2CB) < ∞, then there is a set F ⊂ B with µ(F ) = 0 such that u is
C‖g‖L∞(2CB)-Lipschitz continuous on B \ F. Here C is the constant appearing in
the definition of thick quasiconvexity.

Proof. Since u is measurable (and finite µ-a.e.), by Lusin’s theorem [4, p. 61] for
every n∈ N there is a measurable set En ⊂ X such that µ(En) < 1/n and u|B\En

is continuous. Moreover, for each n ≥ 1 we can choose Gn be an open set such
that En ⊂ Gn, µ(Gn) < 1/n (see [15, Thm. 1.10]), and u|X\Gn

is continuous. Now
Vn = G1 ∩G2 ∩ · · · ∩Gn is an open set with µ(Vn) < 1/n. Observe that B \Vn =
(B \G1) ∪ · · · ∪ (B \Gn) and that u|B\Vn is continuous.

We will show that u is C‖g‖L∞(2CB)-Lipschitz continuous on B \Vn. Let P =
{x ∈ 2CB : g(x) > ‖g‖L∞(2CB)}; then, by assumption,µ(P ) = 0 and so it follows
from Lemma 2.5 that Mod∞("+

P ) = 0. To prove that u is C‖g‖L∞(2CB)-Lipschitz
continuous on B \Vn, we fix x, y ∈B \Vn as points of density for B \Vn. Let 0 <

δ < d(x, y)/4. By thick quasiconvexity applied to the sets Eδ := B(x, δ) \Vn and
Fδ := B(y, δ) \Vn, there is a curve γ connecting the points xδ ∈ Eδ and yδ ∈ Fδ

with �(γ ) ≤ C d(xδ , yδ) and L 1(γ−1(γ ∩P)) = 0. Notice that, since x is a point
of density for B \Vn, we have

lim
ρ→0

µ(B(x, ρ) ∩ (B \Vn)
µ(B(x, ρ))

= 1

and so µ(Eδ) > 0. Analogously we obtain that, since y is a point of density for
B \Vn, we have µ(Fδ) > 0. Hence we can apply the thick quasiconvexity property
to Eδ and Fδ. Therefore,

|u(xδ)− u(yδ)| ≤
∫
γ

g ds ≤ ‖g‖L∞(2CB)�(γ ) ≤ C‖g‖L∞(2CB) d(xδ , yδ). (6)

Since u is continuous on B \Vn, we can let δ → 0 in (6) to show that

|u(x)− u(y)| ≤ C‖g‖L∞(2CB) d(x, y)

as desired.
Next we put F = ⋂

nVn. Note that, since {Vn}n is a decreasing sequence of
sets, µ(F ) = limn→∞ µ(Vn) = 0. To conclude, let x, y ∈ B \ F. Since B \Vn is



The ∞-Poincaré Inequality in Metric Measure Spaces 77

an increasing sequence of sets, there exists an n∈ N such that x, y ∈B \Vn; hence
u|B\F is C‖g‖L∞(2CB)-Lipschitz.

In what follows we say that LIP∞(X) = N1,∞(X) with comparable energy semi-
norms if there is a constant C > 0 such that, for all u ∈ N1,∞(X), there exists a
u0 ∈ LIP∞(X) with u = u0 µ-a.e. and

LIP(u0) ≤ C inf
g

‖g‖L∞ ,

where the infimum is taken over all ∞-weak upper gradients g of u.
Our next example shows that the requirement that LIP∞(X) = N1,∞(X) as

Banach spaces does not in itself imply that these two Banach spaces have compa-
rable energy seminorms. But if the two seminorms are comparable, then the two
Banach space norms are equivalent.

Example 4.5. Consider the set X = R
2 \ ⋃∞

n=1Rn, where Rn is the open rec-
tangle Rn = (2n, 2n + 1) × (0, n). We endow X with the Euclidean distance
and the 2-dimensional Lebesgue measure. It is clear that X is not quasiconvex.
Nevertheless, X is uniformly locally thick quasiconvex; in other words, for every
p ∈X, the ballB(p,1) inX with center p and radius 1/2 is thick quasiconvex with
quasiconvexity constant 2. Indeed, if the ball does not contain any corner of the
rectangles Rn, n∈ N, then it is thick quasiconvex with quasiconvexity constant 1;
if it contains a corner of one of the rectangles Rn then the ball is thick quasiconvex
with quasiconvexity constant 2. Now we will show that each u ∈N1,∞(X) coin-
cides a.e. with a function in LIP∞(X). The set E = {x ∈X : u(x) > ‖u‖L∞} has
measure 0. If x, y ∈X \E with d(x, y) ≥ 1/8, then |u(x)−u(y)| ≤ 2‖u‖L∞(X) ≤
16‖u‖L∞(X) d(x, y).

Fix an upper gradient g ∈L∞(X) of u. Let (pj ) be an enumeration of the points
in X having rational coordinates, and for each j consider the ball B(pj ,1/2). By
Lemma 4.4, for each j there is a set Fj of measure 0 such that u is 2‖g‖L∞(B(pj,1))-
Lipschitz on B(pj ,1/2) \ Fj and hence is 2‖g‖L∞(X)-Lipschitz continuous on
B(pj ,1/2) \ Fj . The set F = ⋃∞

j=1Fj ∪ E is of measure 0. If x, y ∈ X \ F

is such that d(x, y) < 1/8, then there is some j with x, y ∈ B(pj ,1/2) and so
|u(x)− u(y)| ≤ 2‖g‖L∞(X) d(x, y). Thus for all x, y ∈X \ F,

|u(x)− u(y)| ≤ 2[‖u‖L∞(X) + 8‖g‖L∞(X)] d(x, y).

Now the restriction u|X\F can be extended to a Lipschitz function on X (for ex-
ample, via McShane extension; see e.g. [7, Thm. 6.2]). In this way we obtain the
equality LIP∞(X) = N1,∞(X). Finally, because X is not quasiconvex, it follows
from Theorem 4.7 (to follow) that we do not have comparable energy seminorms
for this case.

Proposition 4.6. IfX is a thick quasiconvex space, then LIP∞(X) = N1,∞(X)

with comparable energy seminorms.

Proof. We know that, given a Lipschitz function u on X, the constant function
ρ(x) = LIP(u) is an upper gradient of u; hence we have a continuous embedding



78 Durand-Cartagena, Jaramillo, & Shanmugalingam

LIP∞(X) ⊂ N1,∞(X). It therefore suffices to check that we have a continuous
embedding N1,∞(X) ⊂ LIP∞(X). This follows from Lemma 4.4 once we ex-
haust X by balls of large radii and then modify f ∈N1,∞(X) on the exceptional
set of measure 0 via McShane extension (see e.g. [7, Thm. 6.2]).

We are now ready to state the main result of this paper.

Theorem 4.7. Suppose that X is a connected complete metric space supporting
a doubling Borel measure µ that is nontrivial and finite on balls. Then the follow-
ing conditions are equivalent.

(a) X supports a weak ∞-Poincaré inequality.
(b) X is thick quasiconvex.
(c) LIP∞(X) = N1,∞(X) with comparable energy seminorms.
(d) X supports a weak ∞-Poincaré inequality for functions in N1,∞(X).

The equivalence of condition (c) with the other three conditions requires the ad-
ditional assumption of connectedness of X, since the union of two disjoint planar
discs satisfies (c) but fails the other three conditions. Conditions (a), (b), and (d)
directly imply that X is connected.

The result (a) ⇒ (d) is immediate, so we split the proof of Theorem 4.7 into
three parts as follows:

• (d) ⇒ (b) has been proved as Proposition 4.3;
• (b) ⇒ (c) has been proved as Proposition 4.6;
• (c) ⇒ (a) will be proved in Proposition 4.11.

Remark 4.8. We point out that if X is complete, connected, and equipped with
a nontrivial doubling measure, then the following statements are equivalent.

(i) X is quasiconvex.
(ii) X supports an ∞-Poincaré inequality for locally Lipschitz continuous func-

tions with continuous upper gradients.
(iii) LIP∞(X) = D∞(X) with comparable energy seminorms.

Recall that D∞(X) is the class of all bounded functions u : X −→ R for which
the local Lipschitz constant function Lip u is uniformly bounded; see [3]. The
norm on D∞(X) is given by

‖u‖D∞(X) := sup
x∈X

|u(x)| + sup
x∈X

Lip u(x),

where

Lip u(x) := lim sup
y→x
y �=x

|u(x)− u(y)|
d(x, y)

.

So by LIP∞(X) = D∞(X) with comparable energy seminorms we mean that the
two sets coincide and there is a constant C > 0 such that, for all u∈ LIP∞(X),

LIP(u) ≤ C sup
x∈X

Lip u(x).
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It is well known that LIP∞(X) is a Banach space. However, D∞(X) is not, in
general, a Banach space (as shown in [3]). But LIP∞(X) ⊂ D∞(X) is an iso-
metric embedding because, if u is a Lipschitz function, then

Lip u(x) ≤ LIP(u) for every x ∈X.

When condition (iii) is satisfied, D∞(X) will also be a Banach space.
The implication (ii) ⇒ (i) is given by the proof of Proposition 3.4; we need

only apply the Poincaré inequality to the locally Lipschitz continuous function ρx,ε
and its continuous upper gradient 1. The implication (i) ⇒ (ii) follows from the
argument that, if g is a continuous upper gradient of a locally Lipschitz continu-
ous function u, then for x, y ∈X we can choose a quasiconvex path γ connecting
x to y and obtain

|u(x)− u(y)| ≤
∫
γ

g ds ≤ C d(x, y) sup
z∈B(x,C d(x,y))

g(z).

So if B is a ball in X and if x, y are points in B, then∫
B

∫
B

|u(x)− u(y)| dµ(x) dµ(y) ≤ C rad(B) sup
z∈CB

g(z) = C rad(B)‖g‖L∞(CB).

That condition (i) implies condition (iii) is shown in [3, Lemma 2.3, Cor. 2.4].
Now suppose that condition (iii) holds. Then, as in the proof of Proposition 3.4,

for each x ∈X and ε > 0 we consider the function ρx,ε and, since X is connected,
we see that ρx,ε is finite valued everywhere and that |ρx,ε(z)−ρx,ε(w)| ≤ d(z,w)
when d(z,w) < ε. Thus, for all w ∈ X, we have Lip ρx,ε(w) ≤ 1 and hence
ρx,ε belongs to D∞(X). Because (iii) holds, there is a constant C > 0 such that
LIP(ρx,ε) ≤ C with C independent of x and ε. It follows that, for all y ∈X and
all ε > 0,

|ρx,ε(y)| = |ρx,ε(y)− ρx,ε(x)| ≤ LIP(ρx,ε) d(x, y) ≤ C d(x, y).

Consequently, as in the proof of Proposition 3.4, there is a curve γ connecting x to
y with length �(γ ) ≤ C d(x, y); that is, X is quasiconvex. These two arguments
prove that conditions (i) and (iii) are equivalent.

Now we continue with our proof of Theorem 4.7 as outlined before Remark 4.8.
The following two technical lemmas will be useful in the sequel.

Lemma 4.9. Suppose N1,∞(X) = LIP∞(X) with comparable energy semi-
norms. Then there exists a constant C ≥ 1 such that, for every E ⊂ X with
µ(E) = 0 and for every x ∈X and r > 0, there is a set F ⊂ X with µ(F ) = 0
such that, whenever y ∈ X \ (B(x, 2r) ∪ F ), there is a rectifiable curve γy con-
necting y to B̄(x, r) such that �(γy) ≤ C d(x, y) and L 1(γ−1

y (γy ∩ E)) = 0.

Proof. Let E ⊂ X be such that µ(E) = 0; since µ is a Borel measure, we may
assume (by enlarging E if necessary) that E is a Borel set. Then ρ = ∞ · χE ∈
L∞(X) is a nonnegative Borel measurable function. Let "+

E be the collection of
all rectifiable curves γ for which L 1(γ−1((γ ∩E))) > 0. Then for such curves γ
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we clearly have
∫
γ
ρ ds = ∞ and so Mod∞("+

E ) = 0. As before, we define (for
r > 0)

u(z) = inf
γ connects z to B(x,r)

∫
γ

(1 + ρ) ds,

where ‖1+ρ‖L∞(X) = 1. For positive integers k we set uk = min{k, u}. Then uk ∈
N1,∞(X) with 1+ ρ as an upper gradient (see Lemma 3.5) and u = 0 on B(x, r).
Let Fk be the exceptional set on which uk must be modified in order to be Lip-
schitz continuous; then µ(Fk) = 0. Observe that, since LIP∞(X) = N1,∞(X)

with comparable energy seminorms, we have

LIP(uk) ≤ C inf
g

‖g‖L∞ ≤ C‖1 + ρ‖L∞(X) = C;
here the infimum is taken over all ∞-weak upper gradients g of uk.

Let F = ⋃
k∈N

Fk. Then, for y ∈ X \ (F ∪ B(x, 2r)), there exists a positive
integer k such that d(x, y) < k/2C. In addition, we have that

|uk(y)| = |uk(y)− uk(x1)| ≤ C d(x1, y) ≤ C(d(x1, x)+ d(x, y)) ≤ 2C d(x, y)

for any x1 ∈B(x, r) \ Fk and that uk(y) = ũ(y) is finite. Thus, there exists a rec-
tifiable curve γy such that

�(γy)+
∫
γy

ρ ds =
∫
γy

(1 + ρ) ds ≤ C d(x, y).

Hence we have

�(γy) ≤ C d(x, y) and
∫
γy

ρ < +∞,

so L 1(γ−1
y (γy ∩ E)) = 0 as desired.

Lemma 4.10. Let u ∈ N1,∞(X) and let g ∈ L∞(X) be an upper gradient of u.
If v is a Lipschitz continuous function on X such that u = v µ-a.e., then g is an
∞-weak upper gradient of v and so there is a Borel measurable function 0 ≤ ρ ∈
L∞(X) with ρ = g µ-a.e. such that ρ is an upper gradient of v.

Proof. Let E = {x ∈X : u(x) �= v(x)}; then µ(E) = 0 and so Mod∞("+
E ) = 0.

If x, y ∈X \ E and if β is a rectifiable curve connecting x to y in X, then

|u(x)− u(y)| = |v(x)− v(y)| ≤
∫
β

g ds.

Let γ be a nonconstant rectifiable compact curve with endpoints x and y and such
that γ /∈"+

E . Then we can find two sequences of points {zi} and {wi} from the tra-
jectory of γ such that for i we have zi,wi ∈ γ \E as well as zi → x and wi → y

as i → ∞. Let γi be a subcurve of γ with endpoints zi and wi; then, by the fore-
going discussion,

|v(zi)− v(wi)| ≤
∫
γi

g ds ≤
∫
γ

g ds.
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Since v is Lipschitz continuous, we can let i → ∞ in this expression and obtain

|v(x)− v(y)| ≤
∫
γ

g ds.

It follows that g is an ∞-weak upper gradient of v. Since Mod∞("+
E ) = 0,

by [3, Lemma 5.7] there is a nonnegative Borel measurable function ρ0 such that
‖ρ0‖L∞(X) = 0 even though the integral

∫
γ
ρ0 ds = ∞ for all γ ∈ "+

E . It follows
that ρ = g + ρ0 is an upper gradient of v with the desired property.

Proposition 4.11. Suppose that X is connected and that N1,∞(X) = LIP∞(X)

with comparable energy seminorms. In this case, X supports a weak ∞-Poincaré
inequality.

Proof. Let u ∈ N1,∞(X), let g ∈ L∞(X) be an upper gradient of u, and fix a
ball B ⊂ X. By Lemma 4.10 and our assumption that N1,∞(X) = LIP∞(X),
we may assume that u is itself Lipschitz continuous on X. Let E = {w ∈ 2CB :
g(w) > ‖g‖L∞(2CB)}, where C is the constant from Lemma 4.9. Then µ(E) = 0.
Fix ε > 0.

Observe that, since µ is doubling and X is connected, we may deduce that
µ({x}) = 0 for all x ∈X (see inequality (2)). So for x ∈B we can choose r > 0
sufficiently small such that:

1. B(x, 2r) ⊂ B;
2. µ(B(x, 2r)) < µ(B)/2;
3. for all w ∈ B̄(x, r) we have |u(w) − u(x)| < ε (this is possible because u is

Lipschitz continuous); and
4.

∫
B̄(x,2r)|u− u(x)| dµ ≤ 1

2

∫
B
|u− u(x)| dµ.

Then ∫
B

|u− u(x)| dµ ≤ 2

µ(B)

∫
B\B(x,2r)

|u− u(x)| dµ

≤ 2
∫
B\B(x,2r)

|u(y)− u(x)| dµ(y).

Let F ⊂ X be the set given by Lemma 4.9 with respect to x and r, and for y ∈
B \ (F ∪B(x, 2r)) let γy be the corresponding curve connecting y to B(x, r). We
denote the other endpoint of γy as wy ∈ B̄(x, r). By the choice of r, we see that
|u(y)− u(x)| ≤ |u(y)− u(wy)| + |u(wy)− u(x)| < |u(y)− u(wy)| + ε. Hence
|u(y) − u(x)| ≤ ε + ∫

γy
g ds ≤ ε + C‖g‖L∞(2CB) d(x, y), where we have used

that L 1(γ−1
y (γy ∩ E)) = 0. Therefore,∫

B

|u− u(x)| dµ ≤ 2
∫
B\(F∪B(x,2r))

(ε + C‖g‖L∞(2CB) d(x, y)) dµ(y)

≤ 4
∫
B\(F∪B(x,2r))

(ε + C‖g‖L∞(2CB) rad(B)) dµ(y)

= 4(ε + C‖g‖L∞(2CB) rad(B)).
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Now integrating over x, we obtain∫
B

∫
B

|u(y)− u(x)| dµ(y) dµ(x) ≤ 4(ε + C‖g‖L∞(2CB) rad(B)).

Letting ε → 0 yields the inequality∫
B

∫
B

|u(y)− u(x)| dµ(y) dµ(x) ≤ 2C rad(B)‖g‖L∞(2CB),

which implies (by Remark 3.2) the weak ∞-Poincaré inequality for the pair (u, g).
Since the constants are independent of u, g,B, it follows that (X, d,µ) supports a
weak ∞-Poincaré inequality for Newtonian functions. Then, by Proposition 4.3,
X is thick quasiconvex.

To complete the proof, we have to check that (X, d,µ) admits a weak ∞-Poinca-
ré inequality for every Borel measurable function u : X → R and every upper gra-
dient. Let u be a measurable function and let g be a measurable upper gradient
for u. Fix B. If ‖g‖L∞(2CB) = ∞ then we are done, so assume that ‖g‖L∞(2CB) <

∞. We have shown that X is thick quasiconvex, so we can invoke Lemma 4.4 to
see that u is Lipschitz in B ⊂ X up to a set of measure 0. By Lemma 4.10, we
can assume that u is Lipschitz in all of B and that g is an upper gradient of u in
B. Hence we can repeat the foregoing proof for the pair u and g, completing the
proof of Proposition 4.11.

Example 4.12. The space (X, d,µ) considered in Example 3.3 with a measure
that rapidly decays to zero at the origin (the point where the two triangular regions
are glued) is thick quasiconvex. We can prove this with the aid of Theorem 4.7
even though µ is not doubling. Indeed, since (X, d, L 2) supports a p-Poincaré
inequality for p > 2 [18, 4.3.1], it also supports an ∞-Poincaré inequality. By
Theorem 4.7, it is also thick quasiconvex (we can apply this theorem because L 2

is a doubling measure). Using the idea described in Remark 2.3, we conclude that
(X, d,µ) is also thick quasiconvex.

The rest of this section is devoted to showing that, in Theorem 4.7, thick quasi-
convexity cannot be replaced with the weaker notion of quasiconvexity.

The next lemma is useful for verifying that a metric space does not support
any Poincaré inequality. Its proof is an adaptation of [2, Lemma 4.3] for the case
p = ∞.

Lemma 4.13. Let (X, d,µ) be a bounded doubling metric measure space that ad-
mits a weak ∞-Poincaré inequality, and let f : X −→ I be a surjective Lipschitz
function from X onto an interval I ⊂ R. Then L 1|I � f#µ, where f#µ denotes
the pushforward measure of µ under f.

Proof. Suppose the contrary, and denote L = LIP(f ). Then there exists a Borel
set N in I such that L 1(N ) > 0 and µ(f −1(N )) = f#µ(N ) = 0. On X we con-
sider the function

u(x) =
∫ f(x)

0
χN(t) dL

1(t).
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This function is L-Lipschitz because, for x, y ∈X, we have

|u(y)− u(x)| =
∣∣∣∣
∫ f(y)

f(x)

χN dL 1

∣∣∣∣
= L 1([f(x), f(y)] ∩N) ≤ |f(y)− f(x)| ≤ Ld(y, x).

Moreover, g = L(χN � f ) is an upper gradient of u. Indeed, for each rectifiable
curve γ : [a, b] −→ X one has (we assume w.l.o.g. that f(γ (a)) < f(γ (b)))

|u(γ (a))− u(γ (b))| =
∣∣∣∣
∫ f(γ (b))

f(γ (a))

χN(t) dL
1(t)

∣∣∣∣
= L 1([f(γ (a)), f(γ (b))] ∩N)

and ∫
γ

g =
∫ b

a

L · (χN � f(γ (t))) dL 1(t) = LL 1([a, b] ∩ (f � γ )−1(N )).

Because γ is arc-length parameterized, f � γ is L-Lipschitz. It follows that

L 1([a, b] ∩ (f � γ )−1(N )) ≥ L−1L 1([f(γ (a)), f(γ (b))] ∩N)

and so

|u(γ (a))− u(γ (b))| ≤
∫
γ

g dL 1(t)

for each rectifiable curve γ in X. However, µ{x ∈X : f(x) ∈N} = f#µ(N ) =
0 by hypothesis, so χN � f(x) = 0 µ-a.e. Therefore, by the weak ∞-Poincaré in-
equality,

∫
X
|u − uX| dµ = 0; this means that u is constant µ-a.e. on X. Because

u is Lipschitz continuous on X, it follows that u is constant on X—contradicting
the fact that u is nonconstant on the set f −1(N ) (this set is nonempty because f
is surjective, and u is not constant here because L 1(N ) > 0).

Example 4.14. Let Q = [0,1] × [0,1] ⊂ R
2 be the unit square. Divide Q into

nine equal squares of side length 1/3 and remove the central one. In this way, we
obtain a set Q1 that is the union of eight squares of side length 1/3. Repeating this
procedure on each square yields a sequence of sets Qj consisting of 8j squares
of side length 1/3j. We define the Sierpinski carpet to be S = ⋂

Qj. If d is the
distance in R

2 given by

d((x1, y1), (x2, y2)) = |x1 − x2| + |y1 − y2|,
then (S, d) is a complete geodesic metric space. Let µ be the Hausdorff measure
on (S, d) of dimension s, where s is given by the formula 3s = 8. It can be checked
thatµ is a doubling measure and that the metric d just defined is bi-Lipschitz equiv-
alent to the restriction of the Euclidean metric.

The Sierpinski carpet (S, d,µ) is clearly quasiconvex. Hence the following corol-
lary demonstrates that the quasiconvexity property is not sufficient to guarantee
∞-Poincaré inequality.
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Corollary 4.15. The Sierpinski carpet (S, d,µ) does not admit an ∞-Poincaré
inequality.

Proof. Let f be the projection on the horizontal axis. It can be shown that
f#µ ⊥ L 1 (see [2, 4.5]). Indeed, as shown in [2], if given a point 0 < x < 1
we can see, by way of the ternary expansion of x, that the interval In centered at
x and of radius 3−n has Lebesgue measure L 1(In) ≈ 3−n. However, f#µ(In) ≈
e−ψ(x,n) for an appropriately chosen function ψ with the property that

lim
n→∞

f#µ(In)

L 1(In)
≈ lim sup

n→∞
e−ψ(x,n)

3−n
,

which for L 1-a.e. x is either 0 or ∞. In conjunction with the Radon–Nikodym the-
orem, this implies that f#µ is singular with respect to the Lebesgue measure L 1.

The result now follows from Lemma 4.13.

Added in proof. After this paper was accepted for publication, the first and third
authors, together with Alex Williams, constructed a metric space equipped with a
doubling measure that supports an ∞-Poincaré inequality but no p-Poincaré in-
equality for each finite p; see E. Durand-Cartagena, N. Shanmugalingam, and
A. Williams, p-Poincaré inequality vs. ∞-Poincaré inequality; some counter-
examples, Math. Z. (to appear).
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