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Introduction

In [L5, p. 747, (b)] there is a vanishing conjecture for an ideal I in a d-dimensional
regular local ring (R, m). (A stronger “CM” conjecture on that page was disproved
by Hyry [Hy, p. 389, Ex. 3.6].) Suppose there is a map f : X → Spec(R) that
factors as a finite sequence of blowups with smooth centers and is such that IOX
is invertible. Let E be the closed fiber f −1{m}. The conjecture is that

Hi
E(X, (IOX)−1) = 0 for all i �= d.

This statement implies, with �(I ) denoting the analytic spread of I and ˜ de-
noting “adjoint ideal of” (a.k.a. multiplier ideal with exponent 1), that

Ĩ n+1 = IĨ n for all n ≥ �(I )− 1,

which in turn implies a number of “Briançon-Skoda with coefficients” results; see
[L5, pp. 745–746]. The conjectured statement holds true when d = 2, and it was
proved by Cutkosky [Cu] for R essentially of finite type over a field of charac-
teristic 0 (in which case it is closely related to vanishing theorems in the theory
of multiplier ideals; see [La]). In these two situations, the assumed principaliza-
tion f is known to exist for any I �= (0).

In this paper we show that vanishing holds for those R-ideals that are finitely
supported—in other words, those for which there is a sequence of blowups (as
before) in which all the centers are closed points.

In addition, we deduce that the adjoint ideal of a finitely supported ideal I is
itself finitely supported, with point basis obtained by subtracting min(d − 1, rβ)
componentwise from the point basis (rβ) of I. (The terminology is explained in
Sec. 3.)

More consequences of vanishing are scattered throughout Sections 3–4. For
example, for finitely supported I, Proposition 3.4 generalizes the Ĩ n+1 = IĨ n rela-
tion; furthermore, if I is the integral closure J̄ of a d-generated ideal J—whence
JĨ d−1 = Ĩ d—then Proposition 4.2 gives that JĨ d−2 = Ĩ d−1 ∩ J �= Ĩ d−1 (unless
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I = R) and that J : I = J̃ d−1+ J = Ĩ d−1+ J. Moreover, for 1≤ t ≤ d we have
JJ̃ t−1 =J̃ t if and only if t > d(1− 1/ordα(J )).

1. Reformulation of Vanishing

Let K be a field. We denote by Greek letters α,β, γ, . . . regular local rings of di-
mension ≥ 2 and with fraction field K; we refer to such objects as “points”.

From now on α will be a d-dimensional point with maximal ideal mα , and
f : X → Spec(α) will be a proper birational map with X regular (i.e., the local
ring OX,x is regular for every x ∈X).

Let E1,E2, . . . ,Er be the (d −1)-dimensional reduced irreducible components
of the closed fiber E := f −1{mα}. The local ring on X of the generic point of Ei
is a discrete valuation ring Ri whose corresponding valuation we denote by vi.
Because the regular ring α is universally catenary [GD2, (5.6.4)], the residue field
of Ri has transcendence degree d −1 over α/mα. There is then a unique point βi
infinitely near to α such that vi is the order valuation ordβi associated with βi; see
[L2, Sec. 1, pp. 204, 208]. (The first neighborhood of α consists of all points of
the form OZ,z, where ϕ : Z → Spec(α) is the blowup of mα and z ∈ ϕ−1{mα};
a point β is infinitely near to α if there is a finite sequence of points beginning
with α, ending with β, and such that each member other than α is in the first neigh-
borhood of the preceding member.)

We say that a point β ′ is proximate to another point β ′′, and write β ′ � β ′′, when
β ′ is infinitely near to β ′′ and the valuation ring of ordβ ′′ is the localization of β ′
at a height-1 prime ideal. For each i, j such that βi � βj , let pij be the height-1
prime ideal in βi such that the localization (βi)pij is the valuation ring Rj of vj .
Using induction on the length of the blowup sequence from βj to βi, one checks
that vi(pij ) = 1.

Lemma 1.1. Let I be a nonzero α-ideal. Then, for each i = 1, 2, . . . , r,

vi(I ) ≥
∑

{j |βj≺βi}
vj(I ).

By convention, the sum of the empty family of integers is 0.

Proof. After reindexing, we may assume that β1,β2, . . . ,βs are all the βj such that
βj ≺ βi. Then use that for some βi-ideal Ii we have Iβi = p

v1(I )
i1 · · · pvs (I )is Ii .

Definition 1.2. A divisor
∑r

i=1 niEi is full if, for each i, it holds that ni ≥ 0
and that (with the preceding notation)

ni ≥
∑

{j |βj≺βi}
nj .

Examples 1.2.2. (a) For any nonzero α-ideal I, the divisor
∑r

i=1 vi(I )Ei is full.
(b) Any finite sum of full divisors is full.
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(c) If D = ∑
i niEi is full and 0 ≤ c ∈ R, then �cD� := ∑

i�cni�Ei is full.
(As usual, for any ρ ∈R, �ρ� denotes the greatest integer ≤ ρ.)
Conjecture 1.3. If D =∑r

i=1 niEi is a full divisor, then

Hi
E(X, OX(D)) = 0 for all i �= d.

This holds, obviously, when i ≤ 0 or i > d.
We assume henceforth that f is a composition

X = Xn→ Xn−1→ · · · → X0 = Spec(α), (1.3.1)

where eachXi+1→ Xi (i < n) is the blowup of a regular closed subscheme ofXi.

Example 1.3.2. For f as in (1.3.1), the conjecture holds when D = 0, in
which case it is usually referred to as (an instance of ) Grauert–Riemenschneider
vanishing.

Indeed, for this to hold, [L4, p.153, Lemma 4.2] shows it is enough that the natu-
ral derived-category map τ : α→ R"(X, OX) be an isomorphism; and a straight-
forward induction, using the natural isomorphism R"(X, OX) ∼= R"(Z, Rh∗OX)
associated to a suitable factorization of f as X h−→ Z

g−→ Y, reduces proving that
τ is an isomorphism to the case of a single blowup, where it follows from [GD1,
(2.1.14) and (4.2.1)] (since the fibers of τ are single points or projective spaces)
or from [L4, Thms. 4.1 and 5] (since regular local rings are pseudo-rational [LT,
Sec. 4]).

Set U := Spec(α) − {mα} and V := f −1U. From Example 1.3.2 one gets a nat-
ural isomorphism OU

∼−→Rf∗OV , whence Hi(V, OV ) ∼= Hi(U, OU) for all i. But
H0(U, OU) ∼= α, and for 0 < i < d−1we have Hi(U, OU) ∼= Hi+1

mα
(α) = 0. Hence,

forD :=∑r
i=1 niEi with ni ≥ 0 (so that OX(D)|V = OV andH 0(OX(D)) = α),

the natural exact sequences

Hi−1(X, OX(D)) −→ Hi−1(V, OV ) −→ Hi
E(X, OX(D))

ψi−→ Hi(X, OX(D))→ Hi(V, OV )

show that ψi is an isomorphism for 0 < i < d − 1 and that ψ d−1 is injective.
Furthermore, if mαOX is invertible and if we take the harmless liberty of identi-

fying the closed fiberE with the corresponding divisor, so that mαOX = OX(−E),
then by applying lim−→n to the exact row of the natural diagram

Extd−1(OnE , OX(D)) �� Extd−1(OX, OX(D)) ��

�
��

Extd−1(OX(−nE), OX(D))
�

��

Hd−1(X, OX(D)) Hd−1(X, OX(D + nE))
we deduce a natural exact sequence

0 −→ Hd−1
E (X, OX(D)) ψ−→ Hd−1(X, OX(D)) −→ lim−→

n

Hd−1(X, OX(D + nE)),

where, one verifies, ψ is the injective map ψ d−1 described previously.
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Thus for f as in (1.3.1) such that, further, mαOX = OX(−E) is invertible, Con-
jecture 1.3 may be written as follows.

Conjecture 1.4. If D =∑r
i=1 niEi is a full divisor then

Hi(X, OX(D)) = 0 for 0 < i < d − 1.

For all n > 0, the natural map is an injection

Hd−1(X, OX(D)) ↪→ Hd−1(X, OX(D + nE)).

2. A Special Case

We prove Conjectures 1.3 and 1.4 in a special case.

Theorem 2.1. With α as before, suppose the map f : X→ Spec(α) factors as

X = Xr −→ Xr−1 −→ · · · −→ X0 = Spec(α) (r > 0),

where for 0 ≤ i < r the map Xi+1 → Xi is the blowup of a closed point of Xi.
Then Conjecture 1.4—and thus Conjecture 1.3—holds true.

Proof. We proceed by induction on r. We often write Hi(–) for Hi(X, –).
Suppose r = 1, so that (with our preceding notation) E = E1 and D = n1E,

n1 ≥ 0. For any q ≥ 0 there is a standard exact sequence with OE(mE) :=
OE ⊗OX(mE):

0 −→ OX(qE) −→ OX((q + 1)E) −→ OE((q + 1)E) −→ 0.

Here E ∼= P d−1, the (d − 1)-dimensional projective space over the field α/mα ,
and OE(E) ∼= OP d−1(−1); hence Hi(OE((q +1)E)) = 0 for i < d −1. Thus, for
0 < i < d − 1, there are natural isomorphisms

Hi(OX(qE)) ∼−→Hi(OX((q + 1)E)),

and since (by Example 1.3.2) Hi(OX) = 0 it follows that Hi(OX(n1E)) = 0.
Moreover, for every q the natural map

Hd−1(OX(qE)) −→ Hd−1(OX((q + 1)E)) = Hd−1(OX(qE + E))
is injective, whence so is Hd−1(OX(n1E)) −→ Hd−1(OX(n1E + nE)).

Next, when r > 1, let g : Y → Spec(α) be the composition of r−1 closed-point
blowups and let h : X → Y be the blowup of a closed point y ∈ Y. Make the in-
dexing such that E1 is the closed fiber of h. With vi as in Section 1 and 2 ≤ i ≤ r,
let E ′i be the center of vi on Y. Arrange further that E ′2, . . . ,E ′s are all of the E ′i
that pass through y. Fullness of D =∑r

i=1 niEi entails n1 ≥ n2 + · · · + ns.
Let D ′ := n2E

′
2 + · · · + nrE ′r and let h−1D ′ be the divisor

h−1D ′ := (n2 + · · · + ns)E1+ n2E2 + · · · + nrEr ,
so that OX(h−1D ′) = h∗OY (D

′). Fullness of D ′ follows from that of D because,
for i >1, βi is not proximate to β1. By induction, then, Conjecture1.4 holds forD ′,
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and it follows that Conjecture 1.4 holds also for h−1D ′. Indeed, since Rh∗OX =
OY (cf. Example 1.3.2), the standard projection isomorphism gives

R"(X, OX(h−1D ′)) = R"
(
Y, Rh∗(OX ⊗ h∗OY (D

′))
)

∼= R"(Y, Rh∗(OX)⊗OY (D
′)) = R"(Y, OY (D

′)),

and similarly for the full divisor D ′ + nE ′, where E ′ is the full divisor such that
OY (−E ′) = mαOY (see Example 1.2.2(a)), so h−1(D ′ + nE ′) = h−1(D ′)+ nE.
As a result,

Hi(X, OX(h−1D ′)) ∼= Hi(Y, OY (D
′)) = 0 (0 < i < d − 1),

and the natural map

Hd−1(X, OX(h−1D ′)) −→ Hd−1(X, OX(h−1D ′ + nE))
is isomorphic to the natural injection

Hd−1(Y, OY (D
′)) ↪→ Hd−1(Y, OY (D

′ + nE ′)).
It will therefore be enough to show the following lemma.

Lemma 2.2. If Conjecture 1.4 holds for a divisorDν := νE1+n2E2+· · ·+nrEr ,
where ν ≥ n2 + · · · + ns , then it holds also for Dν+1.

Proof. Denote the residue field of y by κ(y), so that E1
∼= P

d−1
κ(y). For any n ≥ 0,

there is the usual exact sequence

0 −→ OX(Dν + nE) −→ OX(Dν+1+ nE) −→ OE1⊗OX(Dν+1+ nE) −→ 0.

Moreover, with N := n2 + · · · + ns − ν − 1,

OE1⊗OX(Dν+1+ nE) ∼= OE1(N ).

To see this, note (with λ : E1 ↪→ X the inclusion) that λ∗OX(E1) ∼= OE1(−1); that,
since E ′j is a regular subscheme of Y passing through y, if 2 ≤ j ≤ s then

λ∗OX(Ej ) ∼= λ∗(h∗OY (E
′
j )⊗OX(−E1)) ∼= λ∗(OX(−E1)) ∼= OE1(1);

that if j > s then λ∗OX(Ej ) = OE1; and that, since OY (E
′)|U ∼= OU for some

open U containing y (with E ′ as before), λ∗OX(E) ∼= λ∗h∗OY (E
′) ∼= OE1.

Since N < 0, it follows in case n = 0 that

Hi(OX(Dν)) ∼= Hi(OX(Dν+1)) (0 ≤ i < d − 1),

so that Hi(OX(Dν)) = 0 implies Hi(OX(Dν+1)) = 0. Furthermore, for any n ≥ 0
there is a natural injection Hd−1(OX(Dν + nE)) ↪→ Hd−1(OX(Dν+1+ nE)). We
then have a commutative diagram with exact rows:

0 �� Hd−1(OX(Dν)) ��

ψν
��

Hd−1(OX(Dν+1))
��

ψν+1
��

Hd−1(OE1(N ))

0 �� Hd−1(OX(Dν + nE)) �� Hd−1(OX(Dν+1+ nE)) �� Hd−1(OE1(N )).
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Hence, if ψν is injective then so is ψν+1. This completes the proof of Lemma 2.2
and thus of Theorem 2.1.

Remark 2.3. With f as in Theorem 2.1 and with Ei,βi as before, set

E∗i :=
∑

{j |βj⊃βi}
ordβj (mβi )Ej .

So if p is the r × r proximity matrix with pii = 1 and with pji = −1 if βj ≺ βi
and pji = 0 otherwise, then by [L3, p. 301, (4.6)] (whose proof is valid in any
dimension) we have

(E∗1 , . . . ,E∗r )
t = p−1(E1, . . . ,Er)

t, (2.3.1)

where “t” means “transpose”. Then, for any n1, . . . , nr ∈ Z , premultiplying both
sides of (2.3.1) by (n1, . . . , nr)p yields

r∑
i=1

(
ni −

∑
{j |βj≺βi}

nj

)
E∗i =

r∑
i=1

niEi.

Hence, the monoid of full divisors is freely generated by E∗1 , . . . ,E∗r.
For example, the relative canonical divisorKf := (d−1)(E∗1 +· · ·+E∗r ) is full.

Note that Jf := OX(−Kf) is the relative Jacobian ideal of f by [LS, pp. 201–202]
and thatωf := J −1

f = OX(Kf) is a canonical dualizing sheaf for f by [LS, p. 206,
(2.3)]. (In fact, since f is a local complete intersection map, ωf ∼= f !OSpec(α).)

Corollary 2.4. Under the hypotheses of Theorem 2.1, the following statements
hold for any full divisor D on X.

(i) Hi(X, OX(Kf −D)) = 0 for all i �= 0.
(ii) Hi

E(X, OX(Kf −D)) = 0 for all i �= 1, d.
(iii) H1

E(X, OX(Kf −D)) ∼= α/H0(X, OX(Kf −D)).
(iv) Hd

E(X, OX(Kf −D)) is an injective hull of α/mα.

Proof. For any invertible OX-module L, the α-module Hi(X,L⊗ ωf) is Matlis-
dual to Hd−i

E (X,L−1) [L1, p. 188, Thm.]; so (i) and (ii) follow from Theorem 2.1
by duality (via Conjectures 1.3 and 1.4, respectively). Similarly, (iv) is dual to the
obvious statement that H0(X, OX(D)) = α. Assertion (iii) results from the natu-
ral exact sequence

0 = H0
E(X, OX(Kf −D))→ H0(X, OX(Kf −D))→ α = H0(V, OV )

→ H1
E(X, OX(Kf −D))

→ H1(X, OX(Kf −D)) (i)= 0.

3. Finitely Supported Ideals

Recall that an α-ideal I is finitely supported if there is a map f : X → Spec(α)
that factors as in Theorem 2.1 and such that the OX-module IOX is invertible. In



A Vanishing Theorem for Finitely Supported Ideals 579

this situation IOX = OX(−D), where (as in Example 1.2.2(a))D is a full divisor.
(For more on finitely supported ideals, see [CGL; C; Ga; To].

Also, H0(X, IOX) = Ī, the integral closure of I. With ωf = OX(Kf) as in
Remark 2.3, H0(X, OX(Kf − D)) = H0(X, Iωf) is the adjoint ideal Ĩ ; see [L5,
p. 742, (1.3.1)].

The vanishing conjecture and various consequences hold for finitely supported
ideals (but see Remark 4.1).

Corollary 3.1. If f : X→ Spec(α) is as in Theorem 2.1 and if I is an α-ideal
such that I := IOX is invertible, then the following statements hold.

(i) Hi
E(X, I −1) = Hi

E(X, I −1ωf) = 0 for all i �= d.
(i′) Hi

E(X, I ) = Hi
E(X, Iωf) = 0 for all i �= 1, d.

(ii) Hi(X, Iωf) = Hi(X, I ) = 0 for all i �= 0.
(ii′) Hi(X, I −1ωf) = Hi(X, I −1) = 0 for all i �= d − 1, 0.
(iii) Hd−1(X, I −1ωf) is Matlis-dual to H1

E(X, I ) ∼= α/Ī.
(iv) Hd−1(X, I −1) is Matlis-dual to H1

E(X, Iωf) ∼= α/Ĩ.
(v) H0(X, I −1ωf) = H0(X, I −1) ∼= α.

(vi) Hd
E(X, I ) = Hd

E(X, Iωf) is an injective hull of α/mα.

Proof. Since the divisors D and Kf + D are both full, (i) and (ii′) follow from
Theorem 2.1via Conjectures1.3 and1.4, respectively. Given the duality mentioned
in the proof of Corollary 2.4, (iii) and (iv) both result from Corollary 2.4(iii). State-
ment (v) is obviously true. Finally, (ii), (i′), and (vi) result from their respective
dual versions (i), (ii′), and (v).

Remark 3.2. For the vanishing of H1
E(X, I−1) and hence of its dual Hd−1(X, Iωf),

it suffices that f factor as in (1.3.1). Indeed, there exists an exact and locally split
sequence

0 −→ C −→ On
X −→ I −→ 0.

As a result, with (–)∗ := HomOX(–, OX), we have the exact sequence

0 −→ I −1 = I ∗ −→ On
X −→ C∗ −→ 0; (3.2.1)

this gives another exact sequence,

0 = H0
E(X,C∗) −→ H1

E(X, I )−1 −→ H1
E(X, On

X) = 0,

where the first term vanishes because C∗ is locally free and the third vanishes by
Example 1.3.2.

Tensoring (3.2.1) with ωf (a dualizing sheaf, inverse to the relative Jacobian
ideal) and noting that Hd−1(X, OX) and hence its dual H1

E(X,ωf) vanish (Exam-
ple 1.3.2), one shows similarly that H1

E(I −1ωf) and its dual Hd−1(X, I ) both
vanish.

The point basis B(I ) of a nonzero α-ideal I is the family of nonnegative integers
(ordβ(I β)) indexed by the set of all points β infinitely near to α, with Iβ the trans-
form of I in β (i.e., Iβ := t−1Iβ, where t is the gcd of the elements in Iβ).
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Two nonzero α-ideals have the same point basis iff (if and only if ) their inte-
gral closures are the same; see [L2, p. 209, Prop. (1.10)]. The proof in [L2] shows,
moreover, that if I and J are α-ideals such that ordβ(I β) ≤ ordβ(Jβ) for all β,
then Ī ⊃ J̄ (here the overbar denotes integral closure).

The ideal I is finitely supported iff I has finitely many base points—that is, β
such that ordβ(I β) �= 0 (see [L2, p. 213, (1.20), p. 215, Remark]). Thus the prod-
uct of two finitely supported ideals is still finitely supported.

(
It can be shown, for

any α-ideal I and any d-dimensional infinitely–near β, that if Iβ is mβ-primary
then β is dominated by a Rees valuation of I. Hence I is finitely supported iff
every base point of I is d-dimensional. More constructively, I is finitely supported
iff IOX is invertible, whereX→ Spec(α) is obtained by successively blowing up
all the finitely many d-dimensional infinitely–near β such that β is dominated by
a Rees valuation of I—in which case, with the notation of Remark 2.3, IOX =
OX

(−∑
i ordβi(I

βi )E∗i
)
.
)

Here is the main result in this section (proved for d = 2 in [L5, p. 749, (3.1.2)]).

Theorem 3.3. Let α be a d-dimensional regular local ring (d ≥ 2) and I a
finitely supported α-ideal with point basis B(I ) = (rβ). Then:

(1) ordα(Ĩ ) = max(ordα(I )+ 1− d, 0); and
(2) for any β infinitely near to α, Ĩ β = (Ĩ )β.
Hence the adjoint ideal Ĩ is the unique integrally closed ideal with point basis
(max(rβ + 1− d, 0)). In particular, Ĩ is finitely supported.

Remark 3.3.1. Apropos of (2), Iβ = Ī β ⊃ Ī β (see [L2, p. 207, Prop. (1.5)(vi)]);
but equality doesn’t always hold (see [To, Ex. 1.2]).

Corollary 3.3.2. For any finitely supported α-ideal I, Ĩ = α if and only if
ordα(I ) < d.

We also have the following weak subadditivity consequence.

Corollary 3.3.3. For finitely supported α-ideals I and J,

ĨJ̃ ⊃ ĨJ .
Proof. One may check that, for any nonnegative integers r and s,

max(r + 1− d, 0)+max(s + 1− d, 0) ≤ max(r + s + 1− d, 0).

Because “transform” respects products, ordβ((ĨJ̃ )β) ≤ ordβ((ĨJ )β) for all β.
Hence the conclusion follows.

Our next corollary (and also Proposition 3.4) lies in the opposite direction.

Corollary 3.3.4. For finitely supported α-ideals I and J,

ĨJ ⊃ IJ̃ ,

where equality holds if and only if ordβ(Jβ) ≥ d − 1 at every base point β of I.
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Proof. The inclusion is a consequence of ĨJ : I = J̃ [L5, p. 741, (b) and (d)].
The point basis B(IJ̃ ) =: (rβ) satisfies

rβ = ordβ(I
β)+max(ordβ(J

β)− d + 1, 0)

[L2, p. 212, (1.15)], from which it follows that

rβ = max
(
ordβ((IJ )

β)− d + 1, 0
)

⇐⇒ either ordβ(I
β) = 0 or [ordβ(I

β) > 0 and ordβ(J
β) ≥ d − 1].

Proof of Theorem 3.3. We begin by proving Corollary 3.3.2.
Any β with Iβ �= β is d-dimensional [L2, p. 214, (1.22)] and so, because α is

regular, the residue field of β is finite over that of α; see [GD2, (5.6.4)]. Hence,
by [Hi, p. 217, Lemma 8],

(∗) if ordα(I ) < d then ordβ(I β) < d for any infinitely near β.

With this in mind, recall from Remark 2.3 that, with f : X→ Spec(α) as at the
beginning of this section and with Kf =:

∑
i ciEi, we have

Ĩ = H0(X, Iωf) = H0

(
X, OX

( ∑
i

(ci − ordβi(I ))Ei

))
and

ci =
∑
βj⊂βi

ordβi(m
d−1
j ) ≥

∑
βj⊂βi

ordβj (I
βj ) ordβi(mj ) = ordβi(I ),

the last equality by [L2, pp. 209–210, Lemma (1.11)]. The “if” part of Corol-
lary 3.3.2 results.

Furthermore, if (say) E1 corresponds to the valuation ring of ordα , then

ordα(Ĩ ) ≥ ordα(I )− c1 = ordα(I )− (d − 1).

In particular, if Ĩ = α then ordα(I ) ≤ d − 1. This gives the “only if” part of
Corollary 3.3.2.

Now Corollary 3.3.2 and (∗) show that Theorem 3.3 holds if ordα(I ) < d. For
the rest, we need the following key fact.

Proposition 3.4. Let I and J be finitely supported α-ideals such that, for each
β infinitely near to α, ordβ(Jβ) ≥ (d − 1) ordβ(I β). Then

ĨJ = IJ̃ .
Proof. In the proof of Lemma 1.1 applied to the present situation, Ii = Iβi ; hence
the condition “ordβ(Jβ) ≥ (d − 1) ordβ(I β) for each β” may be written as(
vi(J )−

∑
{j |βj≺βi}

vj(J )

)
≥ (d−1)

(
vi(I )−

∑
{j |βj≺βi}

vj(I )

)
(1≤ i ≤ r). (3.4.1)

This implies that if f : X→ Spec(α) is a composite of closed-point blowups such
that IOX and JOX are both invertible (such an f exists because IJ is finitely sup-
ported) then, for 0 ≤ k ≤ d − 1, we have I k(JOX)−1 = OX(Dk) with Dk a full
divisor on X.
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Hence, by Corollary 2.4(i),

Hd−i(X, (IOX)−kJωf) = Hd−i(X, OX(Kf −Dk)) = 0 (0 ≤ i, k ≤ d − 1).

This being so, we see that the case J = I n (n ≥ d−1) is treated in [L5, Sec. 2.3];
the proof for arbitrary J is essentially the same. (Here, a principalization of I is
given to begin with, so the fact—of which a special case is used in [L5]—that the˜ operation on α-ideals commutes with smooth base change follows from com-
mutativity with H 0 and with formation of ω.)

Corollary 3.4.2. If J is a finitely supported α-ideal with ordα(J ) ≥ d − 1,
then

m̃αJ = mαJ̃ .

Now we can prove Theorem 3.3 by induction on the least number of closed-point
blowups needed to principalize I. Set ordα(I ) := a. Since we have already dis-
posed of the case a < d, it will clearly be enough to show that:

(1) if a ≥ d − 1 then ordα(Ĩ ) = a + 1− d; and
(2) if g : X1 → Spec(α) is the blowup of m := mα and if β is the local ring of a

closed point on X1, then
Ĩ β = (Ĩ )β.

Let h : X = Xr → X1 be as in Theorem 2.1. For any OX-module L, the natu-
ral map is an isomorphism mh∗(L) ∼−→h∗(mL). (Since the assertion is local on
X1, one can assume that mOX1

∼= OX1. . . .) Furthermore, from Remark 2.3 one de-
duces that ωh = ωf (mOX)d−1. Hence, with I1 := I(mOX1)

−a, it follows that

(mOX1)
a−d+1Ĩ1 := (mOX1)

a−d+1h∗(I1ωh) = (mOX1)
a−d+1h∗(I1ωf (mOX)d−1)

= (mOX1)
a−d+1h∗(Iωf (mOX)−a+d−1) = h∗(Iωf).

Using induction on s > 0, from Corollary 3.4.2 we deduce that

msĨ = m̃sI := H0(X, msIωf) = H0(X1,h∗(msIωf)) = H0(X1, msh∗(Iωf)).

The invertible OX1-module mOX1 isg-ample andh∗(Iωf) is coherent, so msh∗(Iωf)
is generated by its global sections for all s � 0. In other words, we have shown that

msh∗(Iωf) = msĨOX1

and so
(mOX1)

a−d+1Ĩ1 = h∗(Iωf) = ĨOX1.

Since Ĩ1 �⊂ mOX1 , this implies statement (1). Then—since it is straightforward
to check for any z∈X1 that the stalk (Ĩ1)z is just (̃I1)z—localizing at β gives (2).
This completes the proof of Theorem 3.3.

4. Additional Observations

Let J = (ξ1, . . . , ξd) (d := dimα) be a finitely supported and hence mα-primaryα-
ideal. Proposition 4.2(ii) shows, as mentioned in the Introduction, that JJ̃ n−1= J̃ n
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for all n ≥ d but that JJ̃ s−1 �= J̃ s for 1 ≤ s < d. Proposition 4.2(i) shows (via
Corollary 3.3.2) that, for s > 0, JJ s−1 = J s if and only if s > d(1− 1/ordα(J )).
In particular, JJ d−1 = J d.
Remark 4.1. Bernd Ulrich informed me of an example of Huneke and Huckaba
[HH, p. 88] in which α can be taken to be the localization at (x, y, z) of the polyno-
mial ring C[x, y, z] (so d = 3), J = (x4, y(y3 + z3), z(y3 + z3)), and JJ 2 �= J 3.

This J cannot, then, be finitely supported. In fact, it has a curve of base points
in the blowup of mα.Moreover, analysis of the proof of Proposition 4.2(i) shows
that, if f : X → Spec(α) is a principalization of J by a sequence of smoothly
centered blowups, then H1(X, JOX) ⊃ J 3/JJ 2 �= 0. Thus, for instance, Corol-
lary 3.1(ii) does not hold for principalizations of arbitrary mα-primary ideals.

It is well known that, for any ideal I ⊃ J, the dual of α/I (i.e., Homα(α/I, E ),
where E is an injective hull of α/mα) is (isomorphic to) (J : I )/J. Indeed, by
local duality the dual of α/I = H0

mα
(α/I ) is Extd(α/I,α), and since the sequence

(ξ1, . . . , ξd) is regular we have the standard isomorphisms

Extd(α/I,α) ∼= Homα(α/I,α/J ) ∼= (J : I )/J.

Proposition 4.2. For the preceding J, set J t := α for all t ≤ 0. Then, for all
s ∈Z ,

(i) J s/JJ s−1 is dual to α/(J̃ d−s + J ) and
(ii) J̃ s/JJ̃ s−1 is dual to α/(J d−s + J ).

Consequently, since a finite-length module and its dual have the same annihilator,
we have

(iii) JJ s−1 : J s = J̃ d−s + J and
(iv) JJ s−1 : J̃ s = J d−s + J.
A proof is given at the end of the paper.

Corollary 4.3. For any s ∈Z , the following conditions are equivalent.

(i) JJ̃ s−1 = J̃ s ∩ J.
(ii) JJ d−s−1 : J d−s = J : J d−s .

(iii) JJ d−s−1 = J d−s ∩ J.
(iv) JJ̃ s−1 : J̃ s = J : J̃ s .

Proof. Since, clearly, JJ̃ s−1⊂ J̃ s ∩ J, therefore Proposition 4.2(ii) makes condi-
tion (i) hold if and only if J̃ s/(J̃ s∩J ) is dual to α/(J d−s+J )—that is, isomorphic
to (J : J d−s)/J. All these modules have finite length, so the natural isomorphism

J̃ s/(J̃ s ∩ J ) ∼= (J̃ s + J )/J 4.2(iii)= (JJ d−s−1 : J d−s)/J

shows that (i)⇔ (ii).
The proof of (iii)⇔ (iv) is analogous: replace s by d − s and then interchange˜ and . The implications (i)⇒ (iv) and (iii)⇒ (ii) are obvious.
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Corollary 4.4. The following statements hold.

(i) JJ̃ d−2 = J̃ d−1 ∩ J.
(ii) JJ d−2 = J d−1 ∩ J.

(iii) JJ̃ d−3 = J̃ d−2 ∩ J.
Proof. For s ≥ d − 1, Corollary 4.3(ii) obviously holds and so Corollary 4.4(i)
does also. Similarly, (ii) is a consequence of Corollary 4.3(iv) entailing 4.3(iii)
with s = 1.

As pointed out by Bernd Ulrich, (iii) results similarly from the fact that Corol-
lary 4.3(iii) holds for s = d − 2, a special case of the main result in [It].

Proof of Proposition 4.2. Let f : X→ Spec(α) be a composition of closed-point
blowups such that L := JOX is invertible. Then, for all s ∈ Z , H0(X,Ls ) = J s
and H0(X,Lsωf) = J̃ s .

Corollary 3.1(ii) and (ii′) give, for all j ≥ 0,

Hi(X,Lj) = 0 (i �= 0),

Hi(X,L−j ) = 0 (0 < i < d − 1).

Arguing as in [LT, p. 112], one finds then that J s/JJ s−1 is isomorphic to the kernel
of the map

Hd−1(X,Ls−d)
ξ1⊕···⊕ξd−−−−−→ Hd−1(X,Ls+1−d)⊕ · · · ⊕ Hd−1(X,Ls+1−d)︸ ︷︷ ︸

d times

.

Hence J s/JJ s−1 is dual to the cokernel of the dual map

H1
E(X,Ld−s−1ωf)× · · · × H1

E(X,Ld−s−1ωf)︸ ︷︷ ︸
d times

(ξ1,...,ξd )−−−−−→ H1
E(X,Ld−sωf).

Corollary 3.1(i) and (iv) give H1
E(X,Ljωf) ∼= α/J̃ j for all j ∈Z. Accordingly,

one verifies that J s/JJ s−1 is dual to the cokernel of the map

αd
(ξ1, . . . , ξd )−−−−−−→ α/J̃ d−s ,

which proves part (i) of the proposition. The proof of (ii) is analogous, except that
one begins by tensoring the complex K(F, σ) in [LT, p. 112] with Lsωf instead of
with Ls.
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