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A Singular-Hyperbolic Closing Lemma

C. A. Morales

1. Introduction

The fundamental problem in the qualitative theory of dynamical systems is the
study of the asymptotic behavior of the orbits in a given system. This problem
gave rise to the concept of an attracting set, which (roughly speaking) is a place
where a large set of positive orbits of the system go. On the other hand, the dy-
namical classification of the attracting sets is an extremely difficult problem that
often requires extra structures. One such structure is Smale’s hyperbolicity, which
consists of a tangent bundle decomposition formed by a contracting and an ex-
panding subbundle together with the flow’s direction. There is now a rich theory
of hyperbolic attractors (i.e., hyperbolic transitive attracting sets) dealing with
the dynamical, geometric, ergodic, and topological properties of these objects.
Nevertheless, this theory does not include such important examples as the Henón
attractor [BeC], where there is a positive Lyapunov exponent at dense orbits; the
geometric Lorenz attractor [AfByS; GW], where there is a critical point accu-
mulated by periodic orbits; or even the singular horseshoe [LPa], which is not
attracting but has properties resembling the Lorenz attractor. For the Lorenz at-
tractor, R. Bowen,Y. Pesin, andY. Sinai observed early on that it displays interest-
ing properties (such as as robust transitivity and denseness of periodic orbits) that
are usually associated with hyperbolic attractors. The explanation of these prop-
erties goes back to end of the nineties, when [ST] introduced what they called a
wild attractor—that is, an example of an attractor in dimension 4 that simulta-
neously exhibits spiraling singularities and persistent homoclinic tangencies. The
wild attractor has nothing to do with the hyperbolic properties of the Lorenz at-
tractor, but it was noticed that the former displays a partially hyperbolic splitting
with volume-expanding central subbundle. This subtle property was then used
in [MPaP1] to define singular-hyperbolic set as a partially hyperbolic set with
hyperbolic singularities and volume-expanding central subbundle. With this def-
inition in hand, [MPaP1] proved that a C1 robust transitive set with singulari-
ties is a singular-hyperbolic attractor for either the flow or the reverse flow (see
also [MPaP3]). This result motivates the study of the dynamical properties of
singular-hyperbolic sets taking the hyperbolic dynamical systems as a model.
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For example, a singular-hyperbolic attractor is not necessarily robustly transi-
tive [MP], but the number of attractors arising from perturbing it is bounded by
the number of equilibria it contains [M1]. On the other hand, [Co1] proved the
uniform hyperbolicity of all C2 singular-hyperbolic attractors with dense periodic
orbits in dimension 3. Existence of Sinai–Ruelle–Bowen (SRB) measures for sin-
gular-hyperbolic attractors of class C2 was proved independently in [APaPV] and
[Co2]. It was also proved that a singular-hyperbolic attractor is expanding in the
sense that its topological dimension is the dimension of its volume-expanding sub-
bundle [M3]. Finally, [CaM] proved that there is a generic set of points in the basin
of attraction of a singular-hyperbolic attractor whose omega-limit set contains a
singularity. Therefore, a singular-hyperbolic attractor � with a single equilibrium
of a Cr vector field X in a compact 3-manifold, although possibly nonrobustly
transitive, persists as a chain transitive Lyapunov stable set. (Namely: For every
neighborhood U of � and every vector field Y that is Cr -close to X, there is a
chain transitive Lyapunov stable set AY of Y in U whose region of attraction is
residual in U.) For further results see [BDV, Chap. 9] or the more recent book
[APa] and references therein.

In this paper we further investigate the dynamics of the singular-hyperbolic sets.
Indeed, we try to find a singular-hyperbolic counterpart to the following standard
consequence of the classical Anosov closing lemma for flows [HaK]:

A recurrent point contained in a hyperbolic set either is a singularity or
is approximated by periodic points.

It is natural to ask if an analogous result holds for singular-hyperbolic sets and
not only hyperbolic sets. There is an example of a transitive isolated (but not at-
tracting) singular-hyperbolic set without periodic orbits [M2]. However, we have
observed that this set and the geometric Lorenz attractor [AfByS; GW] are singu-
lar-hyperbolic sets that satisfy the following alternative statement:

A recurrent point contained in a singular-hyperbolic set is approximated
by either periodic points or by points for which the omega-limit set is a
singularity.

We shall prove this alternative statement for every attracting singular-hyperbolic
set. (We emphasize that transitivity of the attracting set is not necessary for ob-
taining this result.) Moreover, we prove that such a result is sharp by exhibiting
an example of an attracting singular-hyperbolic set with a regular recurrent point
that cannot be approximated by periodic points. Let us present these results in a
precise way.

Let X be a C1 vector field defined in a compact connected boundaryless three-
dimensional manifold M. Let Xt (t ∈ R) be the flow generated by X in M. The
omega-limit set of p is the set ω(p) defined by

ω(p) =
{
x ∈M : x = lim

n→∞Xtn(p) for some sequence tn → ∞
}
.

We say that p is recurrent if p ∈ω(p). By a periodic point of X we mean a point
lying in a periodic orbit of X. Every periodic point is recurrent, but the converse
does not hold.
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A compact invariant set � is an attracting set if there is an open neighborhood
U of � such that

� =
⋂
t≥0

Xt(U).

An attractor is a transitive attracting set.

Definition1.1. A compact invariant setH ofX is hyperbolic if there are positive
constants K, λ and a continuous invariant tangent bundle decomposition THM =
Es
H ⊕ EX

H ⊕ Eu
X such that the following statements hold.

• Es
H is contracting; that is,

‖DXt(x)/E
s
x‖ ≤ Ke−λt ∀t > 0, ∀x ∈H.

• Eu
H is expanding; that is,

‖DX−t(x)/E
u
x ‖ ≤ Ke−λt ∀t > 0, ∀x ∈H.

• EX
H is tangent to the vector field X associated to Xt .

A hyperbolic set H is saddle-type if its contracting and expanding subbundles Es
H

and Eu
H never vanish; that is, Es

x �= 0 and Eu
x �= 0 for every x ∈H.

A closed orbit of X is hyperbolic if it is hyperbolic as a compact invariant set of
X. Denote by

m(A) = inf
v �=0

‖Av‖
‖v‖

the minimum norm of a linear operator A.

Definition 1.2. Let � be a compact invariant set of X. A continuous invariant
splitting T�M = E� ⊕F� over � is dominated if there are positive constants K, λ
such that ‖DXt(x)/Ex‖

m(DXt(x)/Fx)
≤ Ke−λt ∀t > 0, ∀x ∈�.

We shall assume hereafter that E and F never vanish. A compact invariant set �
is partially hyperbolic if it exhibits a dominated splitting T�M = Es

� ⊕ Ec
� such

that Es
� is contracting; that is,

‖DXt(x)/E
s
x‖ ≤ Ke−λt ∀t > 0, ∀x ∈�.

Now we state the definition of singular-hyperbolic set [BDV; MPaP3].

Definition 1.3. A singular-hyperbolic set � of X is a partially hyperbolic set
with hyperbolic singularities and volume-expanding central subbundle Ec

�; that is,

|det(DXt(x)/E
c
x )| ≥ K−1eλt ∀t > 0, ∀x ∈�.

A singular-hyperbolic set is a hyperbolic set of saddle type if and only if it has no
singularities. The most representative example of a singular-hyperbolic set with
singularities is the geometric Lorenz attractor. Our main result is the following
theorem.
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Theorem A. Every recurrent point contained in an attracting singular-hyper-
bolic set of X is approximated either by periodic points or by points for which the
omega-limit set is a singularity.

An application of this result is as follows.

Corollary 1.4. Every point of a singular-hyperbolic attractor can be approxi-
mated by points for which the omega-limit set is a singularity.

Proof. Let � be a singular-hyperbolic attractor of X. Since � is transitive it fol-
lows that the unstable manifold of every periodic orbit in � intersects the stable
manifold of a singularity [BaM3; MPa1]. Hence the conclusion of the corollary
holds for every periodic point contained in �. Now choose q ∈� such that � =
ω(q) and fix x ∈�. It follows that q is recurrent and so, by Theorem A, q is ap-
proximated either by periodic points or by points for which the omega-limit set
is a singularity. If q is approximated by points for which the omega-limit set is a
singularity, then x ∈ � = ω(q) does also and we are done. If q is approximated
by periodic points, then the point x is also approximated by points for which the
omega-limit set is a singularity. Then x ∈ � = ω(q) is approximated by points
for which the omega-limit set is a singularity, and we are done.

Our second result is the following. Note that a point is called regular if it is not
a singularity.

Theorem B. On every compact 3-manifold there exists a C∞ vector field that
exhibits an attracting singular-hyperbolic set with a regular recurrent point that
cannot be approximated by periodic points.

This theorem—together with the following examples—shows that the conclusion
of Theorem A is sharp.

Example 1.5. Attracting singular-hyperbolic sets exist for which none of its
points can be accumulated by points for which the omega-limit set is a singularity.
(Take, for instance, an attracting hyperbolic set of saddle-type.)

Example 1.6. Every attracting singular-hyperbolic set contains a recurrent point
that is approximated by periodic points. This follows because periodic orbits exist
on every attracting singular-hyperbolic set [BaM1].

Example1.7. Every point of the geometric Lorenz attractor can be approximated
both by periodic points and by points for which the omega-limit set is a singularity.

Theorem A is a direct consequence of Theorem 2.1 (see Section 2). Theorem 2.1,
in turn, states that if � is an attracting singular-hyperbolic set and if q ∈ � is a
nonwandering point such that ω(q) has a singularity, then there is a point in its
strong stable manifold Wss(q) that can be approximated either by periodic points
or by points for which the omega-limit set is a singularity.
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We now sketch the proof of Theorem 2.1. The proof is by contradiction; namely,
we assume that there is a nonwandering point q ∈� such that ω(q) has a singu-
larity but no point in Wss(q) can be approximated by periodic points or by points
for which the omega-limit set is a singularity. Since ω(q) contains a singularity,
we can assume that q belongs to a cross-section " that is close to a singularity.
Such a section, which is analogous to the cross-section of the geometric Lorenz
attractor, is equipped with a continuous foliation F s that is the trace of the stable
foliation of � on ". Now, because no point of Wss(q) can be approximated by
periodic points, it follows from Theorem 3.9 that the leaf F s

q of F s containing q

will be surrounded by some band Q ⊂ " nearby F s
q ; we call this the adapted ver-

tical band. Since Q is nearby F s
q we obtain that Q does not intersect any periodic

orbit. However, given Theorem 3.15 and that no point of Wss(q) can be approxi-
mated by points for which the omega-limit set is a singularity, we can prove that
any adapted vertical band nearby F s

q (like Q) does intersect a periodic orbit. This
contradiction will prove Theorem 2.1.

Our proof uses the attracting property of the singular-hyperbolic set simply to
guarantee that the positive orbit of a point close to the set stays close to it (see
Remarks 3.5 and 3.13). Because of this, it seems that both Theorem A and The-
orem 2.1 are valid if we replace “attracting set” by “Lyapunov stable set” in the
corresponding statements. We leave the details to the reader.

Our work is related to [ArP2], which proves a conjecture (stated in [M2, p. 618])
asserting that every singular-hyperbolic attractor is a homoclinic class. See also
[ArP1] (the early version of [ArP2]) or [M4]. It would follow from such a result
that the periodic orbits are dense on every transitive attracting singular-hyperbolic
set. Theorem A does not assume transitivity but does yield denseness of periodic
points or points for which the omega-limit set is a singularity instead of periodic
points only. Regardless, our conclusion is sharp in the general case.

The paper is organized as follows. In Section 2 we reduce Theorem A to The-
orem 2.1, and in Section 3 we prove Theorem 2.1. In Section 4 we prove The-
orem B.

2. Proof of Theorem A Using Theorem 2.1

Let X be a C1 vector field on a compact connected boundaryless 3-manifold M.

Denote by Per(X) and Sing(X) the set of periodic points and singularities, re-
spectively, of X.

A nonwandering point of X is a point q ∈ M such that, for every T > 0 and
every neighborhood W of q there is a t > T satisfying Xt(W )∩W �= ∅. Observe
that a recurrent point of X is a nonwandering point of X. Denote by $(X) the set
of nonwandering points of X.

Let � be a singular-hyperbolic set of X. It follows from the invariant manifold
theory [HPuSh] that each point q ∈ � is contained in an immersed submanifold
Wss(q) ⊂ M with tangent space Es

q at q. It is known that the positive orbit of z∈
Wss(q) is asymptotic to that of q:
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lim
t→∞ d(Xt(q),Xt(z)) = 0.

Consequently, ω(z) = ω(q) for all z∈Wss(q). Denote by Cl(A) the closure ofA.

Observe that if � has no singularities then it is a hyperbolic set, and so, by
the shadowing lemma for flows [HaK], every nonwandering point in � can be
approximated by closed orbits (i.e., singularities or periodic orbits). As a result,
every singular-hyperbolic set without singularities � satisfies the inequality

Wss(q) ∩ Cl(Per(X) ∪ Sing(X)) �= ∅ ∀q ∈� ∩ $(X).

One might expect this inequality to hold for all singular-hyperbolic sets (includ-
ing the singular ones), but it does not [M2]. However, the counterexample in [M2]
satisfies the alternative inequality

Wss(q) ∩ Cl(W s(Sing(X))) �= ∅ ∀q ∈� ∩ $(X),

where
Ws(σ) = {x ∈M : ω(x) = σ}

and
Ws(Sing(X)) =

⋃
σ∈Sing(X)

W s(σ).

It follows that both the hyperbolic sets and [M2] satisfy the following alternative
inequality:

Wss(q) ∩ Cl(Per(X) ∪ Ws(Sing(X))) �= ∅ ∀q ∈� ∩ $(X).

Our next result proves this alternative inequality for all attracting singular-hyper-
bolic sets � and all q ∈� ∩ $(X) whose omega-limit set contains a singularity.

Theorem 2.1. Let � be an attracting singular-hyperbolic set of X. If q ∈
� ∩ $(X) and ω(q) ∩ Sing(X) �= ∅, then

Wss(q) ∩ Cl(Per(X) ∪ Ws(Sing(X))) �= ∅.
Proof of Theorem A using Theorem 2.1. Let� be an attracting singular-hyperbolic
set of a C1 vector field X on a compact 3-manifold. To prove the theorem we must
prove

q ∈ Cl(Per(X) ∪ Ws(Sing(X))) (1)

for all recurrent points q ∈ �. For this we consider two cases according as ω(q)
does or does not contain a singularity. If ω(q) has no singularities then ω(q) is a
hyperbolic set [MPaP2]. In this case (1) holds by the shadowing lemma. Now as-
sume that ω(q) contains a singularity. Note that q ∈$(X) because q is recurrent.
Hence q ∈ � ∩ $(X) and so q satisfies the hypotheses of Theorem 2.1. Then,
there exists a z ∈ Wss(q) ∩ Cl(Per(X) ∪ Ws(Sing(X))) by Theorem 2.1. Since
z∈Wss(q) we have ω(z) = ω(q). But

ω(z) ⊂ Cl(Per(X) ∪ Ws(Sing(X)))

since z∈ Cl(Per(X) ∪ Ws(Sing(X))), which is compact invariant. Therefore,
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ω(q) ⊂ Cl(Per(X) ∪ Ws(Sing(X)))

and then (1) holds because q ∈ω(q). This proves the result.

3. Proof of Theorem 2.1

Hereafter we fix a C1 vector field X defined in a compact connected boundary-
less 3-manifold M. Let � be an attracting singular-hyperbolic set of X and let
T�M = Es

� ⊕Ec
� be the corresponding partially hyperbolic splitting. Since Es

� is
contracting, we can extend it to a continuous positively invariant contracting sub-
bundleEs

U(�) defined in a full neighborhoodU(�) of�. By the invariant manifold
theory [HPuSh] it follows thatEs

U(�) is integrable—that is, tangent to a continuous
contracting foliation in U(�) whose leaf at q ∈� is the aforementioned submani-
fold Wss(q). For this reason we still denote this foliation by Wss and use Wss(q)

to denote the leaf of Wss through q ∈U(�).

Hereafter we fix such a neighborhood U(�). The proof of Theorem 2.1 will be
presented in five segments as follows.

3.1. Adapted Cross-Sections

Given a submanifold W of M, we denote by ∂W and Int(W ) the boundary and
the interior, respectively, of W. A transverse section of X is a codimension-1 sub-
manifold W for which there is a codimension-1 submanifold Ŵ of M such that
W ⊂ Int(Ŵ ) and X(x) /∈ TxŴ for every x ∈ Int(Ŵ ). A cross-section of X is D =
Int(W )∪ l, where W is a transverse section of X and l is a finite disjoint union of
intervals in ∂W. In this case we define Int(D) = Int(W ) and ∂D = ∂W.

If D is a cross-section of X, we define the return map

*D : Dom(*D) ⊂ D → D

associated to D by setting

Dom(*D) = {x ∈D : there is a t > 0 such that Xt(x)∈D}
(this is the domain of *D) and defining

*D(x) = XtD(x)(x),

where tD : Dom(*D) → R
+ is the return time defined by

tD(x) = inf{t > 0 : Xt(x)∈D}.
Usually*D is not continuous owing to the possible intersection between ∂D and

a positive trajectory with initial point inD. This motivates the following definition.

Definition 3.1. A cross-section D of X is adapted if, for every x ∈ Dom(*D),
the positive orbit of X in between x and *D(x) does not intersect ∂D. In other
words,

Xt(x) /∈ ∂D ∀(x, t)∈ Dom(*D) × (0, tD(x)].
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Figure 1 Adapted cross-section

Every boundaryless cross-section is adapted. A second example is the standard
rectangular section of the geometric Lorenz attractor. Figure 1 shows a third ex-
ample with Dom(*D) = D.

The elementary lemma to follow gives the main properties of the adapted cross-
sections.

Lemma 3.2. If D is an adapted cross-section of a Cr vector field X, r ≥ 1, then
Dom(*D) is open in D and *D is Cr.

Proof. This is a direct consequence of the definition of adapted cross-section and
the classical tubular flow box theorem [PalMe].

3.2. Singular Cross-Sections and Adapted Vertical Bands

A singularity σ of X is called Lorenz-like if its eigenvalues are real and satisfy

λ2 < λ3 < 0 < −λ3 < λ1

up to some orderλ1, λ2, λ3. In particular, σ is hyperbolic, so the stable and unstable
manifolds Ws

X(σ) and Wu
X(σ) of σ exist and are tangent at σ to the eigenspace as-

sociated to the set of eigenvalues {λ2, λ3} and {λ1}, respectively [HPuSh]. There is
also an invariant manifold Wss

X (σ) that is tangent at σ to the eigenspace associated
to {λ2}. Note that dim(W s

X(σ)) = 2, dim(W u
X(σ)) = 1, and dim(W ss

X (σ)) = 1.
Take a linearizing coordinate system (x1, x2, x3) in a neighborhood of σ as de-

picted in Figure 2. Note that Wss
X (σ) separates Ws

X(σ) into two connected compo-
nents, the top and the bottom. In the top component we consider a cross-section S t

σ

of X together with a curve l tσ as in Figure 2. Similarly, we consider a cross-section
S b
σ and a curve l bσ in the bottom component. We take the section S ∗

σ to be diffeo-
morphic to [−1,1] × [−1,1] and the curve l∗σ to be contained in Ws

X(σ) \Wss
X (σ)

for ∗ = t, b. The positive flow lines of X at S t
σ ∪ S b

σ \ (l tσ ∪ l bσ ) exit a small neigh-
borhood of σ passing through the cusp region in Figure 2. The positive orbits at
l tσ ∪ l bσ go directly to σ. We note that the boundary of S ∗

σ is formed by four curves,
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Figure 2 Singular cross-section

two of them transverse to l∗σ and two of them parallel to l∗σ . The unions of these
curves are denoted by ∂vS ∗

σ and ∂hS ∗
σ , respectively.

Definition 3.3. A singular cross-section associated to σ is a cross-section "

that is equal to S t (or S b) as just described. The curve l tσ (or l bσ , resp.) is called
the singular curve of ".

Hereafter we fix a singular cross-section " of σ together with its singular curve l.
Moreover, we assume that σ ∈� and that " ⊂ U(�).

Since " ⊂ U(�), it follows that, for all x ∈ ", the leaf Wss(x) of Wss con-
taining x is well-defined. Projecting Wss(x) into " through the flow of X yields
a one-dimensional C 0 foliation F s in " formed by compact intervals. Denote
by F s

x the leaf of F s containing x ∈ ". It turns out that ∂" can be chosen to be
formed by four curves: two leaves of F s and two curves transverse to l. We denote
by ∂v" and ∂h", respectively, the union of these curves. The leaf space "/F s of
F s is a compact interval. Therefore, we can give a natural order “<” on it. A leaf
L will denote also the corresponding element of the leaf space.

A vertical band in " is a subset V ⊂ " that is F s-invariant; namely, it is the
union of leaves of F s. It follows that ∂V is formed by two leaves of F s,V − andV +,
and two curves transverse to F s contained in ∂h". The union of these curves will
be denoted by ∂vV and ∂hV, respectively. Note thatV − < V + in the natural order.
If L < L′ are leaves of F s, we denote by [L,L′ ] (resp. (L,L′)) the unique closed
(resp. open) vertical band with ∂v[L,L′ ] = L ∪ L′ (resp. ∂v(L,L′) = L ∪ L′).

A vertical band V will be an open or closed vertical band depending on whether
V − ∪ V + ⊂ V or (V − ∪ V +) ∩ V = ∅. In particular, a vertical band V satisfies
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V = [V −,V + ] or (V −,V +) depending on whether V is closed or open. For any
vertical band V we define the open vertical band

Intv(V ) = (V −,V +).

By a vertical band around a leaf L we mean a vertical band V such that L ⊂
Intv(V ).

Observe that every vertical band is a cross-section of X. We can thus associate a
return map *V with the domain Dom(*V) defined in Section 3.1. The following
lemma gives some basic properties of these return maps.

Lemma 3.4. If " is close to its singular curve then, for every vertical band
V ⊂ " and every leaf L of F s intersecting Dom(*V), L ⊂ Dom(*V) and, for
all x ∈L, the positive trajectory in between *V (x) does not intersect ∂hV. In par-
ticular, *V preserves F s. Moreover, the modulus of the derivative of *V in the
direction transverse to F s is greater than 4.

Proof. Note that the return time tV (x) for x ∈ Dom(*V) is uniformly large for
all vertical bands V ⊂ " provided that " is close to its singular curve. From
this we obtain the invariance of F s because Es

U(�) is invariant contracting and
�∩Wss(σ) = {σ} (see [BaM1] for details). The last part of the lemma follows at
once from the singular-hyperbolicity of � (see [MPa2]).

Remark 3.5. The proof of Lemma 3.4 uses that � is an attracting set. For in-
stance, if � is not an attracting set then F s may not be invariant, because Es

U(�)

is only semi-invariant in this case.

Definition 3.6. An adapted vertical band is an open vertical band in " that is
also an adapted cross-section of X in the sense of Definition 3.1.

Remark 3.7. Hereafter we fix a singular cross-section " close to its singular
curve l. In particular, " satisfies the conclusion of Lemma 3.4.

3.3. Existence of Adapted Vertical Bands

First we give a sufficient condition for an open vertical band in " to be adapted.

Lemma 3.8. If Q ⊂ " is an open vertical band whose closure Q̄ = [Q−,Q+ ]
satisfies

∂vQ̄ ∩ *−1
Q̄
(Int(Q̄)) = ∅, (2)

then Q is an adapted vertical band.

Proof. Assume by way of contradiction that Q is not adapted. Then there is x ∈
Dom(*Q) such that Xt(x)∈ ∂Q for some t ∈ (0, tQ(x)]. By Lemma 3.4, Xt(x)∈
∂vQ and so the number

tm = max{t ∈ (0, tQ(x)] : Xt(x)∈ ∂vQ}
is well-defined. Observe that
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tm < tQ(x),

since Q is an open vertical band and Xtm(x)∈ ∂vQ.

Define
z = Xtm(x).

Since ∂vQ = ∂vQ̄, we have
z∈ ∂vQ̄.

Since Q ⊂ Q̄ and tm < tQ(x),

z∈ Dom(*Q̄).

But the definition of tQ(x) and tm implies that

Xs(x) /∈ Q̄ ∀s ∈ (tm, tQ(x)).

Therefore,
tQ̄(z) = tQ(x) − tm.

Then
*Q̄(z) = *Q(x)∈Q = Int(Q̄)

and so
z∈*−1

Q̄
(Int(Q̄)).

It follows that
z∈ ∂vQ̄ ∩ *−1

Q̄
(Int(Q̄)),

whence
∂vQ̄ ∩ *−1

Q̄
(Int(Q̄)) �= ∅;

this contradicts (2). The proof follows.

Now we give a sufficient condition for the existence of adapted vertical bands in".

Theorem 3.9. If L0 is a leaf of F s that does not intersect the closure of the
periodic orbits of X, then there is an adapted vertical band Q ⊂ " around L0

that is arbitrarily close to L0.

Proof. By Lemma 3.8, it suffices to find an open vertical band Q around and arbi-
trarily close to L0 whose closure Q̄ satisfies (2). For this we proceed as follows.
Since L0 does not intersect the closure of the periodic orbits of X, we can choose
a closed vertical band V, around and arbitrarily close to L0, that does not intersect
any periodic orbit of X. We can choose V such that

the leaves V − and V + are equidistant to L0 in the leaf space. (∗)
Now we state a short claim whose proof follows from the techniques in [BaM1].

Claim 3.10. There is a leaf L− �= L0 in V such that

L− ∩ Dom(*V ) = ∅. (3)

Proof. If L− does not exist then every leaf L �= L0 belongs to Dom(*V ). Then
Lemma 3.4 would imply that the map
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F = *V/V \ L0 : V \ L0 → V

is a λ-hyperbolic triangular map with λ > 4 and domainV \L0 [BaM1, Sec. 2.3,
p. 271]. Moreover, by the proof of [BaM1, Prop. 2, p. 287], such a map satisfies
hypotheses (H1) and (H2) (see [BaM1, Def. 9, p. 270]). Then, by [BaM1, Thm. 2,
p. 273], such a map has a periodic point. It would follow that V intersects a peri-
odic orbit, which is absurd. This contradiction proves the claim.

Let us continue with the proof of Theorem 3.9. Fix the leafL− found in Claim 3.10.
We can assume without loss of generality that L− < L0 and then

L− < L0 < V +. (4)

To define the desired vertical band Q, we first define the leaves Q− < Q+ ⊂
V and then

Q = (Q−,Q+).
To define Q−, we simply set

Q− = L−.

To define Q+, we first define the closed vertical band

W = [Q−,V + ].

Next we proceed according to the following cases.

Case 1: V + ∩ Dom(*W) = ∅. In this case we define

Q+ = V +,

so Q̄ = W. Therefore, ∂vQ̄ ∩ Dom(*Q̄) = ∅ and then Q satisfies (2). It follows
that Q is adapted. By (4) we have that Q is around L0 and then we are done.

Case 2: V + ∩ Dom(*W) �= ∅. Then V + ⊂ Dom(*W) by the invariance in
Lemma 3.4. Obviously *W(V +) ⊂ L− ∪ V + ∪ Intv(W ) and so we have three
possibilities:

*W(V +) ⊂ L− or *W(V +) ⊂ V + or *W(V +) ⊂ Intv(W ).

In the first possibility we define

Q+ = V +.

Let us prove that Q so defined satisfies (2). Indeed, since *W(V +) ⊂ L−, it fol-
lows that

(Q− ∪ V +) ∩ *−1
W (Int(W )) = ∅.

But
∂vQ̄ = ∂vW = Q− ∪ V +,

Q̄ = W, and Int(Q̄) = Int(W ). Replacement then yields

∂vQ̄ ∩ *−1
Q̄
(Int(Q̄)) = ∅,

which is precisely (2). It follows that Q is adapted. By (4) we have that Q is
around L0 and then we are done.
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In the second possibility, V + is an invariant leaf and so there should exist a
periodic orbit passing through V + ⊂ V. This contradicts the fact that V does not
intersect such orbits. Hence, this possibility cannot occur.

We thus arrive at the third possibility,

*W(V +) ⊂ Intv(W ).

It follows that there is an intermediary leaf

L− ≤ Ṽ + < V +

such that the vertical band W̃ defined by

W̃ = (Ṽ +,V + ]

satisfies
W̃ ⊂ Dom(*W) and *W(W̃ ) ⊂ Intv(W ).

In particular, *W/W̃ is continuous (actually C1). Take the intermediary leaf Ṽ +
so that W̃ is maximal with these properties.

We know from Lemma 3.4 that the derivative of *W along the direction trans-
verse to F s is greater than 4. Hence, the diameter of *W(W̃ ) in the direction
transverse to F s is at least twice that of W̃. Then (∗) implies

L0 < Ṽ +. (5)

If Ṽ + ∩ Dom(*W) = ∅ then we define

Q+ = Ṽ +.

We can prove as before that the resulting band Q satisfies (2). It follows that Q is
adapted. By (4) and (5) we have that Q is around L0 and then we are done.

If Ṽ + ∩ Dom(*W) �= ∅ then Ṽ + ⊂ Dom(*W) by invariance. Again we have

*W(Ṽ +) ⊂ L− ∪ V + ∪ Intv(W )

and so we have three situations:

*W(Ṽ +) ⊂ L− or *W(Ṽ +) ⊂ V + or *W(Ṽ +) ⊂ Intv(W ).

In the first situation we define
Q+ = Ṽ +,

and the resulting band Q satisfies (2); hence it is adapted. By (4) and (5) we have
that Q is around L0 and then we are done.

To finish we prove that the remaining situations cannot occur. For the third
possibility we simply observe that, if it did occur, we could then contradict the
maximality of W̃ using the tubular flow box theorem. For the second possibility,

*W(Ṽ +) ⊂ V +, (6)

we proceed as follows. By Lemma 3.4 there exists a one-dimensional map

f : Dom(f ) ⊂ W → W

induced by *W in the leaf space (considering W as a subinterval in the leaf
space). The inclusion (6) would imply that f/(Ṽ +,V + ] is orientation reversing
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with f(Ṽ +) = V +. Hence f/(Ṽ +,V + ] has a fixed point, which represents an
invariant leaf of *W. Consequently, (Ṽ +,V + ] intersects a periodic orbit. Since
(Ṽ +,V + ] ⊂ V, we arrive at a contradiction because V does not intersect such or-
bits. This contradiction proves that (6) cannot occur, and Theorem 3.9 follows.

3.4. Property (P)V , Stable Manifolds of the Singularities,
and Periodic Orbits

Recall that " is a singular cross-section close to its singular curve and therefore
satisfies the conclusion of Lemma 3.4. The following is a minor modification of
the Property (P) defined in [MPa1].

Definition 3.11. Let a ∈ " and let V be a closed vertical band in ". We say
that a ∈ " satisfies Property (P)V if there is an open interval I ⊂ " transversal
to F s such that the following properties hold:

(i) a ∈ ∂I ;
(ii) Cl(O+

X(a)) ∩ V = ∅;
(iii) O+

X(x) ∩ V �= ∅ for every x ∈ I.

Property (P)V gives a sufficient condition for a point a to be in the stable manifold
of a singularity. More precisely, we have the following theorem (which corre-
sponds to [BaM3, Thm. C]). Here we give only an outline of the proof, since
the details will appear in [BaM3]. A strong version of this theorem can be found
in [BaM2].

Theorem 3.12. If a ∈ " satisfies Property (P)V for some closed vertical band
V ⊂ ", then a is contained in the stable manifold of a singularity.

Proof. We divide the proof into two steps.

Step 1: ω(a) contains a singularity. Suppose by contradiction that ω(a) has no
singularities. Then, ω(a) is a hyperbolic set. Using (P)V , one can prove that ω(a)
has topological dimension 1, too. Then the classical hyperbolic theory applies to
prove that ω(a) has a Markov partition R of arbitrarily small size. Given this par-
tition, one can follow the proof of [MPa1, Thm. 5.2] in order to prove that ω(a) is
a periodic orbit.

Indeed, consider the return map * associated to this partition. Since R is a
Markov partition of ω(a), we can assume without loss of generality that a ∈ R
and that the interval I in Definition 3.11 belongs to R. Define an = *n(a) and
In = *n(I ) for all n∈ N large. Because I is transverse to the stable subbundle Es

�

of � that dominates the central subbundle Ec
�, the positive orbit of I is nearly tan-

gent to Ec
�. We can therefore assume that I is tangent to Ec

�. It then follows from
the volume expansion of Ec

� that the length of the intervals In is bounded away
from 0. Now assume by contradiction that ω(a) is not a periodic orbit; then the
sequence an has an accumulation point b ∈ R. Take a subsequence ank → b. By
considering the relative position of the strong stable manifolds of ank close to b

and using the aforementioned bound, we can prove that there are positive integers
n0,m0 such that In0 intersects the strong stable manifold of am0 . This would yield
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a z ∈ I whose positive orbit stays close to ω(a). In particular, such an orbit does
not intersect V—a contradiction. This contradiction proves that ω(a) is a periodic
orbit. On the other hand, ω(a) cannot be a periodic orbit because of the argument
involving the inclination lemma [PalMe] in the third paragraph of [MPa1, p. 367].

Step 2: ω(a) is a singularity. The proof here consists of improving the afore-
mentioned argument in [MPa1] to include the case when ω(a) contains a singular-
ity. Indeed, we first notice that every singularity inω(a) is Lorenz-like by [BaM1].
Since a satisfies (P)V for some V closed and since ω(a) contains a singularity, it
follows that ω(a) has a singular partition—in other words, a finite disjoint collec-
tion R of cross-sections with ω(a)∩∂R = ∅ (for all R ∈ R) such that R intersects
every regular orbit in ω(a). Such a partition (which plays the role of the Markov
partition in [MPa1]) is obtained by choosing suitable singular cross-sections at the
singularities of ω(a) and then taking a classical Markov partition outside the sin-
gularities. If now ω(a) were not a singularity, then the argument in [MPa1] would
imply that ω(a) is a singularity, which is absurd.

Remark 3.13. The proof of Theorem 3.12 uses that � is an attracting set. For
example, if � were not attracting, then ω(a) would be far from � and so we could
not guarantee that the length of the intervals In in Step 1 is bounded away from 0.

Lemma 3.14. Let V be an adapted vertical band in " that does not intersect the
stable manifold of the singularities. Then, for every closed vertical band V̄ ⊂
Intv(V ) and every x ∈ Dom(*V) with *V (x) ⊂ Intv(V̄ ), there is a closed verti-
cal band

B = Bx ⊂ V

(see Figure 3) around F s
x such that :

(i) B ⊂ Dom(*V) and *V/B is continuous;
(ii) *V (B) ⊂ V̄ ;

(iii) *V (∂
vB) ⊂ ∂vV̄.

V

x

Π(x)
V

V

ΠV

Bx

Figure 3 The band Bx
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Proof. Denote by B the set of open vertical bands B ⊂ V around F s
x that satisfy

(i) and (ii) of the lemma.
Because V is adapted, *V is continuous and Dom(*V) is open (Lemma 3.2).

Therefore, B �= ∅ by the tubular flow box theorem [PalMe] since *V (x) ∈ V̄ ⊂
Intv(V ).

Endow B with the inclusion order. Then, by Zorn’s lemma, there exists a max-
imal element (B−

x ,B+
x ) of B. Define

Bx = [B−
x ,B+

x ].

We shall prove that Bx satisfies the conclusions of the lemma.
It follows from the definition of B that (B−

x ,B+
x ) is around F s

x . Hence Bx is
around F s

x , too.
Now we claim that

Bx ⊂ V.

To prove this we need only check that

∂vBx ⊂ V,

since
Intv(Bx) = (B−

x ,B+
x ) ⊂ V

by the definition of B. Suppose by contradiction that

∂vBx �⊂ V.

Because (B−
x ,B+

x ) ⊂ V, we have either

B−
x �⊂ V or B+

x �⊂ V.

First we assume B−
x �⊂ V ; then B−

x = V −. Choose a ∈V − and let I ⊂ (B−
x ,B+

x )

be an open interval transverse to F s such that a ∈ ∂I.

Observe that
Cl(O+

X(a)) ∩ V̄ = ∅,

for otherwise (since V̄ ⊂ V ) we would have a ∈ Dom(*V) and then could enlarge
Bx , contradicting its maximality. On the other hand, I ⊂ (B−

x ,B+
x )∈ B and so

O+
X(x) ∩ V̄ �= ∅ ∀x ∈ I.

It follows that a satisfies (P)V̄ . Then, by Theorem 3.12, a is contained in the stable
manifold of a singularity. This contradicts the hypothesis (since a ∈ [V −,V + ]),
a contradiction that proves B−

x ⊂ V. We prove B+
x ⊂ V analogously. Therefore,

∂vBx ⊂ V and the claim follows.
Replacing V ∗ by B∗

x (for ∗ = +, −) in the preceding argument, we obtain the
inclusion

∂vBx ⊂ Dom(*V).

But (B−
x ,B+

x ) ⊂ Dom(*V) by the definition of B, since (B−
x ,B+

x )∈ B. Hence
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Bx ⊂ Dom(*V).

Because V is adapted, we have that *V/Bx is continuous since *V is (by Lem-
ma 3.2). Then Bx satisfies (i).

Now we check that Bx satisfies (ii) and (iii). Note that (ii) is true in Intv(Bx)

by the definition of B, since Intv(Bx) = (B−
x ,B+

x )∈ B. Then (ii) follows because
*V/Bx is continuous and V̄ is a closed band. Since (B−

x ,B+
x ) is maximal, we ob-

tain (iii). Lemma 3.14 follows.

Now we state the main result of Section 3.4.

Theorem 3.15. Let V be an adapted vertical band in " such that [V +,V − ] does
not intersect the stable manifold of the singularities. If V contains a nonwander-
ing point, then V contains a periodic point.

Proof. Assume that V contains a nonwandering point p. Then Dom(*V) �= ∅, so
there is a q ∈V such that *V (q) is defined.

Choose a sequence of closed vertical bands V̄n ⊂ V satisfying the following
properties for all n large:

(a) q,*V (q)∈ Intv(V̄n);
(b) V̄n ⊂ Intv(V̄n+1);
(c) the vertical boundary of V̄n is (1/n)-close to the vertical boundary of V.

By hypothesis, [V −,V + ] does not intersect the stable manifolds of the singu-
larities. We can thus apply Lemma 3.14 to the bands V, V̄n and the point x = q in
order to obtain a sequence Bq,n ⊂ V of closed vertical bands satisfying (i)–(iii)
in that lemma. From (b) it follows that Bq,n ⊂ Intv(Bq,n+1) for all n, so the union

B∞ =
⋃
n

Bq,n

is an open vertical band in V contained in Dom(*V). In addition, *V/B∞ is con-
tinuous by Lemma 3.14(i).

On the other hand, *V preserves F s and so, considering V as a subinterval of
the leaf space I, we have the induced one-dimensional map

f : Dom(f ) ⊂ V → V.

It turns out that f is continuous at the continuity points of *V because F s is a
continuous foliation.

The property (c), Lemma 3.14(iii), and the fact that *V preserves F s together
imply that the lateral limits

lim
L→(B−∞)+

f(L) and lim
L→(B+∞)−

f(L)

exist and belong to different elements of {V +,V −}. If [B−∞,B+∞] ⊂ V then, by
these limits and since *V/B∞ is continuous, we have that f has a fixed point in
V. This fixed point corresponds to a leaf whose image under *V falls into itself.
Consequently, *V has a fixed point that corresponds to a periodic orbit intersect-
ing V, so the result then follows in this case.
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(q)q

8 8 8

’
B B B

x

V

(a) (b)

f

Figure 4 Graphs of f/B∞ and f/B∞ ∪ B ′
∞

We can therefore now assume that

[B−
∞,B+

∞] �⊂ V.

Since (B−∞,B+∞) ⊂ V, we conclude that B−∞ = V − or B+∞ = V +. We shall assume
that B−∞ = V −; the proof in the other case is similar.

Given B−∞ = V −, we have B+∞ ⊂ V because otherwise B∞ = V and then f

has a fixed point, since it has a nonwandering point (say, p). In this case we are
done. We can further assume that f/B∞ is orientation preserving, for otherwise
f/B∞ would have a fixed point and again we are done. It follows that the graph
of f/B∞ in V is like that in Figure 4(a). But p is a nonwandering point and so
Intv(V \B∞)∩ Dom(fV) �= ∅; hence we can choose x∈ Intv(V \B∞)∩ Dom(fV).

Replacing q by x in the previous argument, we obtain an open vertical band
B ′∞ containing x such that the graph of f/B∞ ∪B ′∞ is like that in Figure 4(b) (ob-
serve that q does not need to be nonwandering). The result then follows because
a map like that in Figure 4(b) has infinitely many periodic points. This completes
the proof of Theorem 3.15.

3.5. Proof of Theorem 2.1

Let � be an attracting singular-hyperbolic set of a C1 vector field X on a closed
3-manifold. Let q ∈ � ∩ $(X) be such that ω(q) contains a singularity σ. We
must prove that Wss(q) ∩ Cl(Per(X) ∪ Ws(Sing(X))) �= ∅. We can assume that
q is not contained in the stable manifolds of the singularities, for otherwise q ∈
Ws(Sing(X)) and then the result is obvious. In particular, q is a regular point and
q /∈Ws(σ). Because σ ∈ω(q), we conclude that σ is Lorenz-like [BaM1]. From
this we can assume that q ∈" for some singular cross-section " associated to σ

that is arbitraritly close to its singular curve. It follows that " satisfies the conclu-
sion of Lemma 3.4 and so the results of Sections 3.1–3.4 can be applied.
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Now, to prove Wss(q) ∩ Cl(Per(X) ∪ Ws(Sing(X))) �= ∅ we shall assume by
contradiction that

Wss(q) ∩ Cl(Per(X) ∪ Ws(Sing(X))) = ∅.
Then

F s
q ∩ Cl(Per(X) ∪ Ws(Sing(X))) = ∅. (7)

In particular, F s
q does not intersect the closure of the periodic orbits of X. By The-

orem 3.9 applied to L0 = F s
q , we can thus choose an adapted vertical band Q

around and arbitrarily close to F s
q . Observe that Q does not intersect the periodic

orbits of X.

On the other hand, since Q is close to F s
q , we can use (7) to choose Q such

that [Q−,Q+ ] does not intersect the stable manifold of the singularities of X in
�. But Q contains q, which is nonwandering. Hence, by Theorem 3.15 applied to
V = Q, we would have that Q does intersect a periodic orbit. This contradiction
proves that F s

q ∩ Cl(Per(X)∪Ws(Sing(X))) �= ∅ and so Wss(q)∩ Cl(Per(X)∪
Ws(Sing(X))) �= ∅. Theorem 2.1 follows.

4. Regular Recurrent Points Far from Periodic Orbits
on Attracting Singular-Hyperbolic Sets

The objective of this section is to prove Theorem B—that is, to construct on any
compact 3-manifold an example of attracting singular-hyperbolic sets exhibiting
a regular recurrent point that cannot be approximated by periodic orbits. This re-
sult is related to the example in [M2] of a transitive isolated singular-hyperbolic
set without periodic orbits. It suffices to construct the example in R

3, which we
do in four steps.

4.1. Cherry Flows

Here we follow [Bo; PalMe]. Let N 0 be the two-dimensional torus. Let X 0 be a
C∞ vector field in N 0 that satisfies the following properties.

(A) X 0 has two singularities, a hyperbolic saddle S and a hyperbolic sink P.

(B) X 0 is transverse to a meridian circle " in N 0.

(C) One of the two orbits in Wu(S) \ {S} belongs to Ws(P ) and so does not in-
tersect "; the remaining orbit, denoted by O, intersects " in a first point c.

(D) The eigenvalues of the saddle S are such that the following statements hold.
There is an open interval (a, b) ⊂ " such that the positive orbit of y ∈ (a, b)
goes directly to P without re-intersecting ". The positive orbits of a or b also
do not re-intersect " but go to S instead; in particular, a, b ∈Ws(S). Finally,
the positive orbit of y ∈" \ [a, b] re-intersects " in a first point f(y). This
yields a Poincaré map f : " \ [a, b] → ", which we require to be expand-
ing (i.e., there is a λ > 1 such that f ′(y) > λ). Moreover, f ′(y) → ∞ as
y → a− or y → b+.
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S

O

b

a

Σ Σ

c

ba

f(y)

y

(a) (b)

P
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Figure 5 Cherry flow

The map f in (D) can be extended to the whole " by setting f(y) = c for every
y ∈ [a, b]. The resulting map f : " → " is then a continuous endomorphism of
degree 1 in ". Therefore, f has a well-defined rotation number. The vector field
X 0 is called Cherry flow if its associated f has an irrational rotation number. Fig-
ures 5(a) and 5(b) describe X 0 and f , respectively.

The following lemma summarizes the main properties of the Cherry flow to be
used here; its proof can be found in [PalMe, p. 187]. We call a point x ∈" regular
for X 0 if X 0(x) �= 0.

Lemma 4.1. If X 0 is a Cherry flow, then

(i) X 0 has no periodic orbits, and
(ii) �0 = N 0 \Ws(P ) is a transitive set of X 0.

Consequently, X 0 has a regular recurrent point p ∈�0.

4.2. Connected Sum

Consider the vector field Y in the closed disk T described in Figure 6(b). Note
that Y has a hyperbolic repelling equilibrium at P ′. Choose another closed disk
D ′ ⊂ Int(T ) with interior Int(D ′) containing P ′ such that Y is transverse to l ′ =
∂D ′ pointing outward. Choose one more closed disk D ⊂ N 0 containing P in its
interior such that X 0 is transverse to the boundary l = ∂D of D pointing outward.
These disks are shown in Figures 6(b) and 5(a), respectively.

Remove Int(D) from N 0 to obtain the manifold with boundary N1 that is dif-
feomorphic to the punctured torus in Figure 6(a). Remove Int(D ′) from T and
then glue the resulting manifold to N1 by identifying l ′ and l. In this way we ob-
tain the manifold in Figure 7(a), which is diffeomorphic to a punctured torus. The
vector fields X1 and Y (which are transverse to l and l ′, respectively) induce a
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Figure 7 Connected sum

vector field X2 in N 2 whose flow is depicted in Figure 7(a). The point p in Fig-
ure 7(a) represents the regular recurrent point p in Lemma 4.1. We fix a compact
interval I as in Figure 7(b).

4.3. The Attracting Set

Now we define the attracting set � in Theorem B. Consider X2 as in Section 4.2.
Choose λ2 < 0 and consider the vector field F(x) = λ2 · x in [−1,1]. Define X3

as the vector field in N 3 = N 2 × [−1,1] whose flow is given by

X3
t (q, x) = (X2

t (q),Ft(x)) ∀(q, x)∈N 3.

The portrait face of X3 is depicted in Figure 7(b). Observe that X3 is transverse
both to the square Q = I × [−1,1] and to the cusp region R in the right-hand
branch of N 3 shown in Figure 7(b).
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Next we define a manifold U by flowing R back to N 3 as indicated in Figure 8.
Notice that the resulting U is equipped with a vector field X induced by X3, which
is now transverse to the square Q = I × [−1,1] in Figure 8. Moreover, U has a
fibration of the form {∗} × [−1,1].

U
X

X

Q

Figure 8 The attracting set

The construction is done in such a way that the positive orbits through Q go to a
geometric Lorenz attractor L contained in U. Note that L is a singular-hyperbolic
set with singular splitting

TLU = F s
L ⊕ F c

L ,

where the subbundle F s
L is tangent to the fibers {∗} × [−1,1] in U.

Finally, we define

� =
⋂
t≥0

Xt(U). (8)

Since Xt(U) ⊂ U for all t ≥ 0, it follows that � is an attracting set of X. We shall
prove next that � is the attracting set required in Theorem B.

4.4. Proof of Theorem B

Let� be the attracting set defined in (8). Letp be the recurrent point in Lemma 4.1,
and let p × 0 ∈ � be the corresponding regular recurrent point in �. Because p

is not accumulated by periodic orbits, the same holds for p × 0 ∈ �. Therefore,
in order to prove the result, it suffices to prove that � is a singular-hyperbolic set.
For this we proceed as follows.

Observe that N1 × 0 embeds into U and that

Xt(N
1 × 0) ⊂ N1 × 0, t ≤ 0. (9)
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Therefore, the set
S =

⋃
t≥0

Xt(N
1 × 0)

is a submanifold of U. Let TS be the tangent space of S. Define the splitting

TSU = Gs
S ⊕ Gc

S

over S by setting Gs
S as the line bundle tangent to the fibers {∗} × [−1,1] and

Gc
S = TS.

Now one can easily prove that

� = S ∪ L, (10)

where L is the geometric Lorenz attractor in Section 4.3. Recall that L has a
singular-hyperbolic splitting TLU = F s

L ⊕ F c
L , with F s

L tangent to the fibers
{∗} × [−1,1] in U. Then (10) allows us to define a splitting

T�M = Es
� ⊕ Ec

�

over � by setting

Ei
z =

{
F i
z if z∈L,

Gi
z if z∈ S

for i = s or c. This splitting is clearly invariant. Moreover, Es
� is contracting (and

dominates Ec
�) if we choose λ2 in Section 4.3 with modulus large enough.

We claim that Ec
� is volume expanding. Indeed, this volume expansiveness is

clear in L, so we need only prove it in S. Now Ec
S = TS by the definition of Gc

S.

Let �0 be the transitive set in Lemma 4.1. Then �0 × 0 ⊂ S and so we have the
decomposition

S = (�0 × 0) ∪ (S \ (�0 × 0)).

It follows from the expansivity of f in (D) of Section 4.1 that T�0×0S is volume
expanding. On the other hand, the points in S \ (�0 × 0) are precisely the points
in S whose positive orbits eventually fall into T × 0.

Since the circle l × 0 ≈ l ′ × 0 ⊂ N1 × 0 is transverse to the contracting sub-
bundle of L (i.e., to the fibers {∗} × [−1,1]), we have that TS\(�0×0)S is volume
expanding, too. From this it follows that Ec

� is volume expanding, which con-
cludes the proof.
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