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Coniveau and the Grothendieck Group of Varieties

Donu Arapura & Su-Jeong Kang

There are two natural filtrations on the singular cohomology of a complex smooth
projective variety: the coniveau filtration, which is defined geometrically; and the
level filtration, which is defined Hodge theoretically. We will say that the gener-
alized Hodge conjecture (GHC) holds for a variety X if these filtrations coincide
on its cohomology. There are a number of intermediate forms of this condition,
including the statement that the ordinary Hodge conjecture holds for X. We show
that if the GHC (or an intermediate version of it) holds for X then it holds for any
variety Y that defines the same class in a completion of a Grothendieck group of
varieties. In particular, by using motivic integration we can see that this is the case
if X and Y are birationally equivalent Calabi–Yau varieties or, more generally,
K-equivalent varieties. This refines a result obtained in [A] by a different method.

The key point is to show that the singular cohomology with its coniveau (resp.
level) filtration determines a homomorphism ν (resp. λ) from the Grothendieck
group of varieties K0(VarC) to the Grothendieck group of polarizable filtered
Hodge structures K0(FHS). This is done by showing that cohomology together
with these filtrations behaves appropriately under blowups. We then show that X

satisfies GHC if and only if its class [X] lies in the kernel of the difference ν − λ,
and the results just described follow from this.

The following conventions will be used throughout the paper. All our varieties
will be defined over C. We denote the singular cohomology of a smooth projec-
tive variety X with rational coefficients by H i(X). Our thanks to the referee for a
number of helpful suggestions.

1. Filtered Hodge Structures

Let X be a smooth projective variety. Its cohomology carries a natural Hodge
structure. The coniveau filtration on H i(X) is given by

NpH i(X) =
∑

codim S≥p

ker[H i(X) → H i(X − S)],

which is a descending filtration by sub-Hodge structures. The largest rational sub-
Hodge structure F pH i(X) contained in FpH i(X) gives a second filtration, which
we call the level filtration. We have NpH i(X) ⊆ F pH i(X). We will say that
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GHC(H i(X), p) holds if NpH i(X) = F pH i(X), and we will say that the gener-
alized Hodge conjecture holds for X if we have equality for all i and p. Note that
GHC(H 2p(X), p) is just the usual Hodge conjecture.

We recall that a Hodge structure is polarizable if it admits a polarization—that
is, a bilinear form satisfying the Hodge–Riemann bilinear relations. We note that
the Hodge structure on the cohomology of a smooth projective variety is polariz-
able: once an ample line bundle is chosen, a polarization is given by taking the
orthogonal direct sum of the polarizations, determined in the usual way, on prim-
itive cohomology [W, pp. 202, 207]. Let HS be the category of finite direct sums
of pure rational polarizable Hodge structures. The category HS is a semisimple
abelian category with tensor products [D, Sec. 4.2.3]. Any object H can be de-
composed into a sum

H =
⊕

i

H i,

where H i is the largest sub-Hodge structure of weight i. We define the category
FHS of objects that are polarizable Hodge structures with finite descending fil-
trations by sub-Hodge structures and whose morphisms preserve the filtration.
Note that this would be a filtration by polarizable sub-Hodge structures, since a
sub-Hodge structure of a polarizable Hodge structure is again polarizable.

Given an additive category C, we can define a Grothendieck group Ksplit
0 (C) by

generators and relations as follows. We have one generator [X] for each isomor-
phism class of objects X ∈ C, and we impose the relation [X3] = [X1] + [X2 ]
whenever X3

∼= X1 ⊕ X2. When the category C possesses exact sequences, we
can define a quotient K0(C) by imposing this relation when X3 is an extension of
X2 by X1. Although it is not strictly necessary for our purposes, we will show in
the Appendix that these constructions lead to the same groups when applied to HS

and FHS. Consequently, we will usually drop the label “split” in the sequel.
By definition, any additive invariant on HS or FHS factors through their Groth-

endieck groups. In particular, this remark applies to the Poincaré polynomial

PH (t) =
∑

i

dim H it i ∈Z[t, t−1]

and a filtered version of it,

FP(H,N)(t, u) =
∑
i,p

dim(Np ∩ H i)t iup ∈Z[t±1, u±1].

We can define two functors between the categories HS and FHS:

� : HS −→ FHS; H 
−→ (H, F •),

� : FHS −→ HS; (H, N •) 
−→ H,

where F • is the level filtration on H (i.e., F pH is the largest sub-Hodge structure
of FpH ). These functors are clearly additive. Thus we obtain well-defined group
homomorphisms γ and φ, respectively:

γ : K0(HS) −→ K0(FHS); [H ] 
−→ [(H, F •)],

φ : K0(FHS) −→ K0(HS); [(H, N •)] 
−→ [H ].
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Let K0(VarC) denote the Grothendieck group of the category of varieties over
C [DeL1]. A more convenient description for our purposes is provided by [Bi,
Thm. 3.1]:

K0(VarC) ∼= Kbl
0 (VarC),

where Kbl
0 (VarC) is the free abelian group generated by isomorphism classes [X]

of smooth projective varieties subject to the relation [BlZ X] − [E ] = [X] − [Z]
for every blowup BlZ X of X along a smooth closed subvariety Z ⊂ X with ex-
ceptional divisor E.

Let X be a smooth projective variety. Set

[X]HS :=
∑

i

(−1)i[H i(X)]∈K0(HS),

[X]FHS :=
∑

i

(−1)i[(H i(X), N •)]∈K0(FHS),

where N • is the coniveau filtration. In the next section we will show that these
classes depend only on [X]∈Kbl

0 (VarC).

2. Coniveau of a Blowup

We use the following notation throughout this section. Let X be a smooth pro-
jective variety and let σ : X̃ = BlZ X → X be the blowup of X along a smooth
closed subvariety Z of X of codimension ≥ 2. The exceptional divisor E can be
identified with P(NZ/X), where NZ/X is the normal bundle. Therefore, it has a tau-
tological line bundle OE(1). Let r = codim(Z, X) − 1 = dim E − dim Z and let
h = c1(OE(1)). Then we have

E ↪
j

��

σ

��

X̃

σ

��

X̃ − E↩
j1��

σ

��

Z ↪
i �� X X − Z ,↩

i1��

where i, i1 and j, j1 are inclusions.

Lemma 2.1.

NpH i(E) = σ ∗(NpH i(Z)) ⊕ (h ∪ σ ∗(Np−1H i−2(Z))) ⊕ · · ·
⊕ (hr ∪ σ ∗(Np−rH i−2r(Z))).

Proof. Since h∈N1H 2(E), it follows that hk ∈N kH 2k(E) for each k ≥ 1. Hence,
for any αk ∈ σ ∗(Np−kH i−2k(Z)) ⊆ Np−kH i−2k(E),

hk ∪ αk ∈N kH 2k(E) ∪ Np−kH i−2k(E) ⊆ NpH i(E)

by [AK, Cor. 1.2] for 1 ≤ k ≤ r. Hence this and σ ∗(NpH i(Z)) ⊆ NpH i(E) yield

NpH i(E) ⊇ σ ∗(NpH i(Z)) ⊕ (h ∪ σ ∗(Np−1H i−2(Z))) ⊕ · · ·
⊕ (hr ∪ σ ∗(Np−rH i−2r(Z))).
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To show the converse, first note that

H i(E) = σ ∗(H i(Z)) ⊕
( r⊕

k=1

(hk ∪ σ ∗(H i−2k(Z)))

)

by [Le, Prop. 8.23]. As a consequence, for any α ∈NpH i(E) we can decompose

α = σ ∗(α0) + (h ∪ σ ∗(α1)) + (h2 ∪ σ ∗(α2)) + · · · + (hr ∪ σ ∗(αr)),

where αk∈H i−2k(Z) for each k = 0, . . . , r. We will show that αk∈Np−kH i−2k(Z)

for each k = 0, . . . , r by using descending induction on k.

First note that

σ∗(hi) =
{

0 if i < r,

1 if i = r.

Therefore, by the projection formula and [AK, Thm. 1.1(1)],

αr = σ∗(hr ∪ σ ∗(αr)) = σ∗(α)∈Np−rH i−2r(Z).

This shows the claim when k = r. Now suppose that αl ∈ Np−lH i−2 l(Z) for
k + 1 ≤ l ≤ r. We must show that αk ∈ Np−kH i−2k(Z). By assumption, for
k + 1 ≤ l ≤ r we have

hl ∪ σ ∗(αl)∈N lH 2 l(E) ∪ Np−lH i−2 l(E) ⊆ NpH i(E).

Set

βk+1 = α −
r∑

l=k+1

(hl ∪ σ ∗(αl)).

Then

βk+1 = σ ∗(α0) + (h ∪ σ ∗(α1)) + · · · + (hk ∪ σ ∗(αk))∈NpH i(E).

Taking now a cup product with hr−k ∈N r−kH 2(r−k)(E) yields

hr−k ∪βk+1 = (hr−k ∪ σ ∗(α0))+ (hr−k+1∪ σ ∗(α1))+ · · · + (hr−k+k ∪ σ ∗(αk))

∈ Np+(r−k)H i+2(r−k)(E).

Then
σ∗(hr−k ∪ βk+1) = σ∗(hr ∪ σ ∗(αk)) = αk ∈Np−kH i−2k(Z)

as we claimed. Therefore,

NpH i(E) ⊆ σ ∗(NpH i(Z)) ⊕ (h ∪ σ ∗(Np−1H i−2(Z))) ⊕ · · ·
⊕ (hr ∪ σ ∗(Np−rH i−2r(Z))).

Corollary 2.2. If α ∈NpH i(E) then we can write

α = σ ∗(α0) + (h ∪ β),

where α0 ∈NpH i(Z) and β ∈Np−1H i−2(E).

The following is a well-known result, but we include the proof here for lack of a
suitable reference.
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Lemma 2.3. There is a short exact sequence of pure Hodge structures of weight i:

0 �� H i(X)
σ ∗+i∗

�� H i(X̃) ⊕ H i(Z)
−j∗+σ ∗

�� H i(E) �� 0. (1)

Proof. We have a commutative diagram with exact rows,

· · · �� H i
c (X−Z)

∼=
��

�� H i(X)
�

σ ∗

��

i∗ �� H i(Z)

σ ∗

��

∂ �� H i+1
c (X−Z)

∼=
��

�� H i+1(X)
�

σ ∗

��

�� · · ·

· · · �� H i
c (X̃−E) �� H i(X̃)

j∗
�� H i(E)

∂̃ �� H i+1
c (X̃−E) �� H i+1(X̃) �� · · · ,

where some of the arrows are injections or isomorphisms as indicated. The lemma
now follows from a straightforward diagram chase.

Lemma 2.4. The sequence of Lemma 2.3 is exact in FHS; that is,

0 �� NpH i(X) �� NpH i(X̃) ⊕ NpH i(Z) �� NpH i(E) �� 0

is an exact sequence for all p.

Proof. Consider the short exact sequence (1) and note that

(σ ∗ + i∗)(NpH i(X)) ⊆ NpH i(X̃) ⊕ NpH i(Z),

(−j ∗ + σ ∗)(NpH i(X̃) ⊕ NpH i(Z)) ⊆ NpH i(E),

since all maps preserve the coniveau.
We will check exactness in the middle. It suffices to show that

im(σ ∗ + i∗)|NpH i(X) ⊇ ker(−j ∗ + σ ∗)|NpH i(X̃)⊕NpH i(Z),

since the reverse inclusion follows from (1). Let (β, γ ) ∈NpH i(X̃) ⊕ NpH i(Z)

such that (β, γ )∈ ker(−j ∗ +σ ∗). Then, by the exact sequence (1), there exists an
α ∈H i(X) such that (σ ∗ + i∗)(α) = (β, γ ). In particular,

σ ∗(α) = β ∈NpH i(X̃).

Because σ : X̃ → X is a birational map, we have

α = (σ∗ � σ ∗)(α) = σ∗(β)∈ σ∗(NpH i(X̃)) ⊆ NpH i(X).

Hence (β, γ ) = (σ ∗ + i∗)(α)∈ (σ ∗ + i∗)(NpH i(X)).

We shall now check the surjectivity of (−j ∗ + σ ∗)|NpH i(X̃)⊕NpH i(Z). Let α ∈
NpH i(E). Then, by Corollary 2.2, we can decompose

α = σ ∗(α0) + (h ∪ β),

where α0 ∈NpH i(Z) and β ∈Np−1H i−2(E). Note the composition

H i−2(E)
j∗ �� H i(X̃)

j∗
�� H i(E)
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is the same as cupping with [E ]|E. Since O(E)|E = OE(−1) and h = c1(OE(1)),
it follows that

(j ∗ � j∗)(β) = [E ]|E ∪ β = −h ∪ β.

As a result,
α = σ ∗(α0) − j ∗(j∗(β))

and we have j∗(β)∈ j∗(Np−1H i−2(E)) ⊆ NpH i(X̃), and this shows that the map
(−j ∗ + σ ∗)|NpH i(X̃)⊕NpH i(Z) is surjective.

Let f : X → Y be a morphism of smooth projective varieties. Then f ∗ preserves
the coniveau and induces maps f̄ ∗ : Grp

N H i(Y ) → Grp

N H i(X).

Corollary 2.5. The following sequence is exact:

0 �� Grp

N H i(X) �� Grp

N H i(X̃) ⊕ Grp

N H i(Z) �� Grp

N H i(E) �� 0.

Proof. This follows from Lemma A.1.

We want to construct well-defined morphisms from Kbl
0 (VarC) to K0(HS) and

from Kbl
0 (VarC) to K0(FHS). First we need the following lemmas.

Lemma 2.6. The relation

[BlZ X]HS − [E ]HS = [X]HS − [Z]HS

holds. Hence we have a well-defined group homomorphism,

Kbl
0 (VarC) −→ K0(HS); [X] 
−→ [X]HS.

Proof. By Lemma 2.3, we have the following short exact sequence of pure Hodge
structures:

0 �� H i(X) �� H i(X̃) ⊕ H i(Z) �� H i(E) �� 0.

Then, by the definition of K0(HS),

[H i(X)] + [H i(E)] = [H i(X̃) ⊕ H i(Z)] = [H i(X̃)] + [H i(Z)],

and the result follows immediately if we take alternating sums.

We define
λ : Kbl

0 (VarC) −→ K0(FHS)

as the composition of the map constructed in Lemma 2.6 with γ.

Lemma 2.7. The relation

[BlZ X]FHS − [E ]FHS = [X]FHS − [Z]FHS

holds. Hence we have a well-defined group homomorphism,

ν : Kbl
0 (VarC) −→ K0(FHS); ν([X]) = [X]FHS.
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Proof. We showed in Lemma 2.4 that

0 −→ [(H i(X), N •)] −→ [(H i(X̃)⊕H i(Z), N •)] −→ [(H i(E), N •)] −→ 0 (2)

is exact in FHS, where Np(H i(X̃)⊕H i(Z)) = NpH i(X̃)⊕NpH i(Z). The rest
of the argument is exactly the same as before.

Remark 2.8. The proof of Lemma 2.4 shows that the sequence (2) is split
exact. Therefore, as the referee pointed out, we can in particular construct the
homomorphism

ν : Kbl
0 (VarC) −→ Ksplit

0 (FHS)

directly—that is, without appealing to the results of the Appendix.

3. Main Theorem

Theorem 3.1. Let X be a smooth projective variety. Then the following state-
ments are equivalent.

1. The GHC holds for X.

2. [X]∈ ker(ν − λ).

3. The equality FP [X]FHS
(t, u) = FPγ ([X]HS)(t, u) of filtered Poincaré polynomials

holds.

Proof. Clearly, the GHC for X implies that [X]FHS = γ ([X]HS) or (equiva-
lently) that [X]∈ ker(ν − λ).

Suppose [X]∈ ker(ν − λ). Then

[X]FHS = γ ([X]HS),

that is, ∑
i

(−1)i[(H i(X), N •)] =
∑

i

(−1)i[(H i(X), F •)].

Taking the filtered Poincaré polynomial FP(t, u) of both sides yields the third
statement.

Assume the equality in Theorem 3.1.3. The coefficient of t i on the left is

(−1)i
∑

p

dim NpH i(X)up

and on the right is

(−1)i
∑

p

dim F pH i(X)up.

The equality of these expressions forces NpH i(X) = F pH i(X) in this case.

Remark 3.2. The coefficient of t iup in FP [X]FHS
(t, u) is (−1)i dim NpH i(X),

and the coefficient of t iup in FPγ ([X]HS)(t, u) is (−1)i dim F pH i(X). Therefore,
GHC(H i(X), p) holds precisely when these coefficients coincide.
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Let L′ = [A1
C]∈K0(VarC) denote the Lefschetz object. Under the isomorphism

K0(VarC) ∼= Kbl
0 (VarC),

L′ maps to L = [P1] − [∞]. Let

K = [(Q(−1), N •)],

where N • is the filtration determined by N1/N 2 = Q(−1). Then

λ(L) = ν(L) = K.

We have a product on the category FHS that is just the tensor product filtered by

Np(H1 ⊗ H2) =
⊕

r+s=p

N rH1 ⊗ N sH2.

This gives a commutative ring structure on K0(FHS). The group Kbl
0 (VarC) also

has a commutative ring structure induced by the product of varieties. It is not
clear whether λ or ν are ring homomorphisms; however, we do have the following
result.

Lemma 3.3. For any η ∈Kbl
0 (VarC),

λ(L · η) = K · λ(η),

ν(L · η) = K · ν(η).

Proof. Under the Künneth isomorphism, we have

NpH i(P1 × X) ∼= Np−1H i−2(X)(−1) ⊕ NpH i({∞} × X);
a similar statement holds for F p. The lemma is an immediate consequence.

The element K is invertible, and the foregoing identities guarantee that λ or ν fac-
tors through the localization M = Kbl

0 (VarC)[L−1].
Recall [DeL1] that there is a decreasing filtration F •M on M, where F mM

is the subgroup of M generated by {[X] · L−j | dim X − j ≤ −m}. Let M̂
be the completion of the ring M with respect to the filtration F •M. A simi-
lar filtration (cf. [Lo]) can be defined on K0(FHS) via replacement of dimen-
sion by weights. More precisely, let LmK0(FHS) be the subgroup generated by
{[(H, N •)] | max{i | H i  = 0} ≤ −m}. We denote the completion of K0(FHS)

with respect to L• by N̂. Weights of the Hodge structure on the cohomology of a
smooth projective variety of dimension ≤ d are bounded by 2d. Therefore, the in-
duced filtrations λ(F •) and ν(F •) are cofinal with a subfiltration of L•. It follows
that we have a commutative diagram

Kbl
0 (VarC)

f
��

α

��

M̂

��

K0(FHS)
τ �� N̂ ,

where α denotes either λ or ν and where f and τ are the canonical maps.
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Lemma 3.4. The homomorphism K0(FHS) → Z[t±1, u±1] given by the filtered
Poincaré polynomial factors through the image of τ.

Proof. Let η ∈⋂
m Lm. Then, for each m ∈ Z , it follows that η can be expressed

as a linear combination of classes of filtered Hodge structures of weight at most
−m. Thus the degree of FPη(t, u) in t is bounded above by −m for all m∈Z. But
this is impossible unless FPη(t, u) = 0.

Corollary 3.5 (to theorem). Let X, Y be smooth projective varieties such that
X, Y define the same classes in M̂. Then the GHC holds for X if and only if the
GHC holds for Y.

Proof. If the images of [X] and [Y ] coincide in M̂, then they coincide in N̂. Hence
their filtered Poincaré polynomials coincide. The conclusion is now an immedi-
ate consequence of Theorem 3.1.

Remark 3.2 now yields the following statement.

Corollary 3.6. Let X, Y be smooth projective varieties such that X, Y define
the same classes in M̂. Then, for each i and p, GHC(H i(X), p) holds if and only
if GHC(H i(Y ), p) holds.

The proof of the next corollary depends on the motivic integration theory of Kont-
sevich, Denef, and Loeser. See [DeL1; DeL2; Lo] for an introduction to these
ideas.

Corollary 3.7. Let X and Y be K-equivalent smooth projective varieties. That
is, there exist a smooth projective variety Z as well as birational maps π1: Z → X

and π2 : Z → Y such that π∗
1KX = π∗

2KY , where KX (resp. KY ) is the canonical
divisor on X (resp.Y ). Then GHC(H i(X), p) holds if and only if GHC(H i(Y ), p)

holds.

Proof. It is enough to show that X and Y define the same class in M̂. This fol-
lows from the K-equivalence assumption by a standard application of motivic in-
tegration theory; see [L] or [V]. For the reader’s convenience we reproduce the
argument here. By the change-of-variables formula [DeL1, Lemma 3.3], we have

f([X]) =
∫

L(X)

dµX =
∫

L(Z)

L−ord t π∗
1 ωX dµZ

=
∫

L(Z)

L−ord t π∗
2 ωY dµZ =

∫
L(Y )

dµY = f([Y ]),

where f : Kbl
0 (VarC) → M̂ is the canonical map, L(X), L(Y ) are the arc spaces,

ωX, ωY are the canonical sheaves, and dµX, dµY are the motivic measures. Hence
the corollary follows from Corollary 3.5.

Corollary 3.8. If X and Y are birational Calabi–Yau varieties, then it follows
that GHC(H i(X), p) holds if and only if GHC(H i(Y ), p) holds.

Proof. Since KX = KY = 0, this is a consequence of Corollary 3.7.
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Appendix. Grothendieck Groups of Filtered Categories

We recall that an exact category consists of an additive category C together with a
distinguished class of diagrams

0 −→ A −→ B −→ C −→ 0,

which are called exact sequences and satisfy appropriate conditions [Q]. For ex-
ample, any additive category C can be made exact by taking the class of exact
sequences to be isomorphic to the class of split sequences:

0 −→ A −→ A ⊕ C −→ C −→ 0.

An abelian category gives another example of an exact category, where exact se-
quences have the usual meaning. If the category is also semisimple, then this exact
structure coincides with the split structure described previously. This remark ap-
plies also to HS.

Let C be an abelian category, and let FC (resp. GC) denote the category of fil-
tered (resp. graded) objects in C. The category GC is abelian, but FC is generally
not. However, FC has a natural exact structure [BBD, Sec. 1.1.4] that may be given
as follows. We have a functor

(H, N •) 
−→
⊕

p

NpH

from FC to GC. We declare a sequence

0 −→ (H1, N •) −→ (H2 , N •) −→ (H3, N •) −→ 0

in FC to be exact if and only if its image in GC is exact. For the record we note
the following alternative formulation, which is perhaps more common.

Lemma A.1. The sequence

0 −→ (H1, N •) −→ (H2 , N •) −→ (H3, N •) −→ 0

is exact if and only if the following sequence is exact in GC:

0 −→
⊕

p

NpH1/N
p+1H1 −→

⊕
p

NpH2/Np+1H2

−→
⊕

p

NpH3/N
p+1H3 −→ 0.

Proof. This is a straightforward application of the Snake lemma and induction.

Lemma A.2. Given the notion of exact sequence just defined, the category FC is
an exact category.

The Grothendieck group K0(C) of an exact category C is given by generators [M ],
where M ∈ C and we have the relations [M2 ] = [M1] + [M3] for every exact se-
quence 0 → M1 → M2 → M3 → 0. Let us denote the Grothendieck group for
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C with its split exact structure by Ksplit
0 (C). We see immediately that Ksplit

0 (C) ∼=
K0(C) if C is abelian and semisimple. This is, in particular, the case for HS. We
have a homomorphism Ksplit

0 (FHS) → K0(FHS), which is also an isomorphism
by the following lemma.

Lemma A.3. If C is semisimple abelian, then any exact sequence in FC is split
exact.

Proof. It is enough to check that, given the exact sequence

0 −→ (H1, N •) −→ (H2 , N •)
f−→ (H3, N •) −→ 0 (3)

in FC, there is a splitting s : (H3, N •) → (H2 , N •) for f. First observe that, by
the semisimplicity of C, we have the noncanonical decomposition

NpHi
∼= Np+1Hi ⊕ Grp

N Hi,

where Grp

N Hi = NpHi/N
p+1Hi for i = 2, 3. We define sp = s|NpH3 by descend-

ing induction on p. Note that the exact sequence (3) induces the following exact
sequences in C:

0 −−→ Np+1H1 −−→ Np+1H2
fp+1−−→ Np+1H3 −−→ 0,

0 −−→ Grp

N H1 −−→ Grp

N H2
f̄p−−→ Grp

N H3 −−→ 0,

where fp+1 = f |Np+1H2 and where f̄p is the induced map. By induction and
the semisimplicity of C, there exist splittings sp+1 : (Np+1H3, N • ∩ Np+1H3) →
(Np+1H2N

• ∩ Np+1H2) and tp : Grp

N H3 → Grp

N H2 for fp+1 and f̄p, respec-
tively. Set

sp = sp+1 + tp : NpH3 −→ NpH2.

Then sp gives a well-defined splitting for fp and hence we have a splitting s = s0

for f. This completes the proof of the lemma.

Corollary A.4. Ksplit
0 (FHS) ∼= K0(FHS).
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