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On the Solid Hull of the
Hardy Space Hp, 0 < p < 1

Miroljub Jevti ć & Miroslav Pavlovi ć

1. Introduction

Finding the solid hull S(Hp) of the Hardy space Hp—that is, finding the strong-
est growth condition the absolute value of the coefficients of Hp functions must
satisfy—is an old and difficult problem. It follows from Littlewood’s theorem on
random power series [7, Thm. A.5, p. 228] that S(Hp) = H 2 for 2 < p < ∞.

Much later, Kisliakov [12] identified the solid hull of the space H∞. A deep re-
sult of Kisliakov shows that S(H∞) is also H 2. In this paper we identify S(Hp)

in the case 0 < p < 1.
The Hardy space Hp (0 < p ≤ ∞) is the space of all functions f holomorphic

in the unit disc U (f ∈H(U)) for which

‖f ‖p = lim
r→1

Mp(r, f ) < ∞,

where, as usual,

Mp(r, f ) =
(

1

2π

∫ 2π

0
|f(re it )|p dt

)1/p

, 0 < p < ∞,

and
M∞(r, f ) = sup

0≤t<2π
|f(re it )|.

Throughout this paper, we identify a holomorphic function f(z)= ∑∞
n=0 f̂ (n)z

n

with its sequence of Taylor coefficients (f̂ (n))∞n=0. Hardy and Littlewood proved
that if f belongs to Hp, 0 < p < 1, then

∞∑
n=0

(n + 1)p−2|f̂ (n)|p < ∞ (1.1)

and
|f̂ (n)| = o((n + 1)1/p−1), n → ∞ (1.2)

(see [7] for information and references).
In [13] it was proved that if f ∈Hp, 0 < p < 1, then

∞∑
n=1

2−n(1−p)
(

sup
0≤k≤2n

|f̂ (k)|
)p

< ∞, (1.3)
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440 Miroljub Jevti ć & Miroslav Pavlovi ć

which is equivalent to
∞∑
n=0

(n + 1)p−2
(

sup
0≤k≤n

|f̂ (k)|
)p

< ∞.

It is easy to see that condition (1.3) is stronger than (1.1) and (1.2). We will show
that (1.3) is the strongest condition that the moduli of the coefficients of a function
f ∈ Hp (0 < p < 1) must satisfy. In the terminology of [2], this means that the
smallest solid space containing Hp (0 < p < 1) is the vector space of sequences
satisfying (1.3).

Recall that a sequence space X is solid (cf. [2]) if (bn) ∈ X whenever (an) ∈
X and |bn| ≤ |an|. The solid hull of X is the smallest solid space containing X.

Explicitly,

S(X) = {(λn) : there exists (an)∈X such that |λn| ≤ |an|}.
To state our first result in a more precise form, we need to introduce some more

notation. A complex sequence (an) is of class l(p, q), 0 < p, q ≤ ∞, if

‖(an)‖qp,q = ‖(an)‖ql(p,q) =
∞∑
n=0

( ∑
k∈In

|ak|p
)q/p

< ∞,

where I0 = {0} and In = {k ∈ N : 2n−1 ≤ k < 2n} for n = 1, 2, . . . . In the case
where p or q is infinite, replace the corresponding sum by a supremum. Note that
l(p,p) = lp.

For t ∈R we write Dt for the sequence ((n + 1)t )∞0 . If λ = (λn) is a sequence
and X a sequence space, we write λX = {(λnxn) : (xn) ∈X}; thus, for example,
(an)∈Dtl∞ if and only if |an| = O(nt ).

Here is our main result.

Theorem 1. If 0 < p < 1, then S(Hp) = D1/p−1l(∞,p).

We also determine the solid hull of the Bergman space Ap for 0 < p ≤ 1.
The Bergman space Ap for 0 < p < ∞ consists of all holomorphic functions

f on U such that

‖f ‖Ap =
(∫

U

|f(z)|p dm(z)

)1/p

< ∞,

where dm(z) stands for the Lebesgue measure in the plane.
It is well known that if 0 < p ≤ 1 then Ap ⊂ D2/p−1l∞ and Ap ⊂ D3/p−1lp

(see [17]). We improve both these inclusions by showing the following theorem.

Theorem 2. If 0 < p ≤ 1, then S(Ap) = D2/p−1l(∞,p).

Our results can be applied to various problems concerning multipliers. Thus they
easily imply the main result in [9], for instance. Details will be given in Section 4.

Given two vector spaces A,B of sequences, we denote by (A,B) the space of
multipliers from A to B. More precisely,

(A,B) = {λ = (λn) : (λnan)∈B for every (an)∈A}.
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The D-dual of a sequence space A, denoted by AD, is defined to be (A,D), the
multipliers from A to D. The Köthe dual is obtained when D = l1 and will be
denoted AK. As in [2], let A(1,1) be the space of all f ∈H(U) such that f ′ ∈A1.

An easy consequence of Theorem 2 is the following statement.

Corollary 3. S(A(1,1)) = l(∞,1).

Anderson and Shields [2, p. 263] showed that the second Köthe dual of A(1,1) is
l(∞,1) (i.e., A(1,1)KK = l(∞,1)) and that S(A(1,1)) ⊂ A(1,1)KK. They conjec-
tured that the inclusion is strict. Corollary 3 disproves this conjecture.

Analogously, we have S(A1) = (A1)KK = D1l(∞,1). (See Theorem 4.2.)
Our method of determining the solid hulls can be applied more generally to the

mixed norm spaces Hp,q,α. The space Hp,q,α (0 < p ≤ ∞, 0 < q,α < ∞) con-
sists of all f ∈H(U) for which

‖f ‖p,q,α =
(∫ 1

0
(1 − r)qα−1Mp(r, f )

q dr

)1/q

< ∞.

In particular, we have Bergman spaces Ap = Hp,p,1/p for 0 < p < ∞.

The space Hp,q,α can also be defined when q = ∞, in which case it is some-
times known as the weighted Hardy space Hp,α = Hp,∞,α, and consists of all f ∈
H(U) for which

‖f ‖p,α := ‖f ‖p,∞,α = sup
0<r<1

(1 − r)αMp(r, f ) < ∞.

Instead of Theorem 2 we prove the following result.

Theorem 4. If 0 < p ≤ 1, then S(Hp,q,α) = Dα+1/p−1l(∞, q).

Observe that S(Hp,q,α) = H 2,q,α = Dαl(2, q) for 2 ≤ p ≤ ∞ (see [1; 3; 14]).
Hence the problem of determining S(Hp) for 1 ≤ p < 2 and S(Hp,q,α) for 1 <

p < 2 remains open.

2. Solid Hull of the Hardy Space Hp, 0 <p < 1

If f(z) = ∑∞
k=0 f̂ (k)z

k and g(z) = ∑∞
k=0 ĝ(k)z

k are holomorphic functions in
U, then the holomorphic function f ( g is defined by

(f ( g)(z) =
∞∑
k=0

f̂ (k)ĝ(k)zk.

The main tool for proving our results are the polynomials Wn (n ≥ 0) constructed
in [9]. Here we recall their construction and some of their properties.

Let ω : R → R be a nonincreasing function of class C∞ such that ω(t) = 1 for
t ≤ 1 and ω(t) = 0 for t ≥ 2. We define the polynomials Wn = W

ω
n (n ≥ 0) as

follows:

W0(z) =
∞∑
k=0

ω(k)zk, Wn(z) =
2n+1∑

k=2n−1

ϕ

(
k

2n−1

)
zk for n ≥ 1,

where ϕ(t) = ω(t/2) − ω(t), t ∈R.
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The coefficients Ŵn(k) of these polynomials have the following properties:

supp(Ŵn) ⊂ [2n−1, 2n+1], (2.1)

0 ≤ Ŵn(k) ≤ 1 for all k, (2.2)
∞∑
n=0

Ŵn(k) = 1 for all k, (2.3)

Ŵn(k) + Ŵn+1(k) = 1 for 2n ≤ k ≤ 2n+1, n ≥ 0. (2.4)

Property (2.3) implies that

f(z) =
∞∑
n=0

(Wn ( f )(z), f ∈H(U),

and the series is uniformly convergent on compact subsets of U.
Since 0 ≤ Ŵn(k) ≤ 1 for n, k = 0,1, 2, . . . , we have

|Wn(z)| ≤ 2n+1, z∈U, n = 0,1, 2, . . . . (2.5)

Choose an integer N so that Np > 1. Note that ϕ(k/2n−1) = 0 if k is an integer
such that k ≤ 2n−1 or 2n+1 ≤ k. Hence,

(1 − eit )NWn(e
it ) =

∞∑
k=−∞

ϕ

(
k

2n−1

)
(1 − eit )Ne ikt

=
∞∑

k=−∞
ϕ

(
k

2n−1

) N∑
m=0

(
N

m

)
(−1)mei(m+k)t

=
N∑

m=0

(−1)m
(
N

m

) ∞∑
k=−∞

ϕ

(
k

2n−1

)
ei(k+m)t

=
N∑

m=0

(−1)m
(
N

m

) ∞∑
k=−∞

ϕ

(
k − m

2n−1

)
eikt

=
∞∑

k=−∞

( N∑
m=0

(−1)m
(
N

m

)
ϕ

(
k − m

2n−1

))
eikt. (2.6)

By the Lagrange theorem for symmetric differences, for each k there exists a
ξk,N such that

N∑
m=0

(−1)m
(
N

m

)
ϕ

(
k − m

2n−1

)
= 2(1−n)Nϕ(N )(ξk,N). (2.7)

It follows from (2.6) and (2.7) that

|Wn(e
it )| ≤ Ct−N2n(1−N). (2.8)

Using (2.5) and (2.8) now yields
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‖Wn‖pp = 1

2π

∫ 2π

0
|Wn(e

it )|p dt ≤ C2−n(1−p). (2.9)

Observe that here we needed Np > 1.
In this paper we follow the custom of using the letter C to stand for a positive

constant that changes its value from one appearance to another while remaining
independent of the important variables.

Proof of Theorem 1. Let f ∈Hp, 0 < p < 1. Then, by [7, Thm. 5.11],∫ 1

0
(1 − r)−pM1(r, f )

p dr < ∞.

Since supk∈In|f̂ (k)|r k ≤ M1(r, f ) for n ≥ 0, it follows that

∞ >

∫ 1

0
(1 − r)−pM1(r, f )

p dr ≥
∞∑
n=1

∫ 1−2−n

1−21−n

(1 − r)−p
(

sup
k∈In

f̂ (k)r k
)p

dr

≥ C

∞∑
n=1

2−n(1−p)
(

sup
k∈In

|f̂ (k)|
)p

.

Thus, Hp ⊂ D1/p−1l(∞,p).
To show that D1/p−1l(∞,p) is the solid hull of Hp, it is enough to prove that if

(an)∈D1/p−1l(∞,p) then there exists a (bn)∈Hp such that |bn| ≥ |an| for all n.
Toward this end, let (an)∈D1/p−1l(∞,p). Define

g(z) =
∞∑
j=0

Bj(Wj(z) + Wj+1(z)) =
∞∑
k=0

ck z
k,

where Bj = sup2j≤k<2j+1|ak|. The function g belongs to Hp because

Mp
p (r, g) ≤

∞∑
j=0

B
p

j [Mp
p (1,Wj) + Mp

p (1,Wj+1)]

≤ C

∞∑
j=0

B
p

j 2−j(1−p) < ∞.

Here we have used (2.9).
To prove that |ck| ≥ |ak| for k = 1, 2, . . . , choose n so that 2n ≤ k < 2n+1. It

follows from (2.2) and (2.4) that

ck =
∞∑
j=0

Bj(Ŵj(k) + Ŵj+1(k)) ≥ Bn(Ŵn(k) + Ŵn+1(k))

= Bn = sup
2n≤j<2n+1

|aj | ≥ |ak|.

Now the function h(z) = ∑∞
n=0 bnz

n, where b0 = a0 and where bn = cn for n ≥
1, belongs to Hp, and |bn| ≥ |an| for all n ≥ 0.
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Remark. Note that the proof of Theorem 1 shows that the solid hull of Hp, 0 <

p < 1, may also be described as the set{
(an) :

∞∑
n=0

2−n(1−p) sup
0≤k≤2n

|ak| < ∞
}
.

3. The Solid Hull of the Mixed Norm Space Hp,q,α, 0 <p ≤ 1

Proof of Theorem 4. Let f ∈Hp,q,α. In order to prove that f ∈Dα+1/p−1l(∞, q),
we use the familiar inequality

Mp(r, f ) ≥ C(1 − r)1/p−1M1(r
2, f ), 0 < p ≤ 1.

(see [7, Thm. 5.9]) to obtain

∞ >

∫ 1

0
(1 − r)qα−1Mp(r, f )

q dr

≥ C

∫ 1

0
(1 − r)q(α+1/p−1)M1(r, f )

q dr

≥ C

∞∑
n=1

∫ 1−2−n

1−21−n

(1 − r)q(α+1/p−1)−1
(

sup
k∈In

|ak|r k
)q

dr

≥ C

∞∑
n=1

2−nq(α+1/p−1)
(

sup
k∈In

|ak|
)q

.

Thus, f ∈Dα+1/p−1l(∞, q).
Similarly, if q = ∞ then

∞ > sup
0<r<1

(1 − r)αMp(r, f ) ≥ C sup
0<r<1

(1 − r)α+1/p−1M1(r, f )

≥ C sup
0<r<1

sup
n

sup
k∈In

(1 − r)α+1/p−1|ak|r k

≥ C sup
n

2−n(α+1/p−1) sup
k∈In

|ak|;
that is, f ∈Dα+1/p−1l(∞, ∞).

Now let (an)∈Dα+1/p−1l(∞, q) for 0 < q < ∞. As before, define

h(z) =
∞∑
j=0

Cj(Wj(z) + Wj+1(z)) =
∞∑
k=0

dk z
k,

where Cj = supk∈Ij |ak|.
The function h belongs to Hp,q,α (0 < p ≤ 1, 0 < q,α < ∞) because∫ 1

0
(1 − r)qα−1Mp(r,h)

q dr

≤
∫ 1

0
(1 − r)qα−1

( ∞∑
j=0

C
p

j [Mp
p (r,Wj) + Mp

p (r,Wj+1)]

)q/p

dr. (3.1)
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Using [9, Lemma 2.1] together with (2.1) and (2.9) yields

Mp
p (r,Wj) ≤ r 2j−1p‖Wj‖pp ≤ Cr 2j−1p2−j(1−p), j = 1, 2, . . . . (3.2)

It follows from (3.1) and (3.2) that
∫ 1

0
(1 − r)qα−1Mp(r,h)

q dr ≤ C

∫ 1

0
(1 − r)qα−1

( ∞∑
j

C
p

j 2−j(1−p)r 2j−1p

)q/p

dr

≤ C

∞∑
j

C
q

j 2−jq(α+1/p−1) < ∞.

Here we have used [14, Prop. 4.1].
As before, we have |dk| ≥ |ak|, k = 1, 2, . . . . The function ψ(z) = ∑∞

k=0 bk z
k,

where b0 = a0 and where bk = dk for k = 1, 2, . . . , belongs to Hp,q,α, and |bk| ≥
|ak| for all k ≥ 0.

The case q = ∞ may be treated similarly.

4. Applications to Multipliers

The next lemma is due to Kellog. He states it for exponents no smaller than 1,
but it then follows for all exponents because (λn)∈ (l(a, b), l(c, d)) if and only if
(λ

1/t
n )∈ (l(at, bt), l(ct, dt)).

Lemma 4.1 [11]. If 0 < a, b, c, d ≤ ∞, then

(l(a, b), l(c, d)) = l(a � c, b � d),

where a � c = ∞ if a ≤ c, b � d = ∞ if b ≤ d, and

1

a � c
= 1

c
− 1

a
for 0 < c < a,

1

b � d
= 1

d
− 1

b
for 0 < d < b.

In [2] it is proved that if X is any solid space and A any vector space of sequences
then (A,X) = (S(A),X).

Since l(u, v) are solid spaces, we have (Hp, l(u, v)) = (S(Hp), l(u, v)) and
(Hp,q,α, l(u, v)) = (S(Hp,q,α), l(u, v)). Together with Lemma 4.1 and Theorems
1 and 4, this yields our last two results.

Theorem 4.2. Let 0 < p < 1. Then

(Hp, l(u, v)) = D1−1/pl(u,p � v).

Theorem 4.3. If 0 < p ≤ 1, then

(Hp,q,α, l(u, v)) = D1−1/p−αl(u, q � v).
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In particular, if u = v then (Hp, lu) = D1−1/pl(u,p � u). This was proved in [9]
by a different method. Similarly, from Theorem 4.3 we deduce that (Hp,q,α, lu) =
D1−1/p−αl(u, q � u) for 0 < p ≤ 1 (see [10]).

Remark. The referee pointed out to us that Theorem 4.3 was already known;
see Theorem 5.2 in [6] and remark (2) following that result. By the same result of
[6], the answer when 1 < p < 2 cannot be of the form Dtl(a, b).

References
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