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On the Solid Hull of the
Hardy Space H”,0 < p < 1

MIROLJUB JEVTIC & MIROSLAV PavLovié

1. Introduction

Finding the solid hull S(H?) of the Hardy space H”—that is, finding the strong-
est growth condition the absolute value of the coefficients of H” functions must
satisfy—is an old and difficult problem. It follows from Littlewood’s theorem on
random power series [7, Thm. A.5, p. 228] that S(H?) = H? for2 < p < o0.
Much later, Kisliakov [12] identified the solid hull of the space H*. A deep re-
sult of Kisliakov shows that S(H ) is also H2. In this paper we identify S(HP)
inthecase 0 < p < 1.

The Hardy space H” (0 < p < oo) is the space of all functions f holomorphic
in the unit disc U (f € H(U)) for which

11y = lim M, (r, f) < oo,

where, as usual,

1 27 ) 1/p
MP(r’f):<_/ |f(relt)|pdt> , 0<p<oo,
2w 0
and ;
Moo (r, f) = sup |f(re™)|.
0<t<2m

Throughout this paper, we identify a holomorphic function f(z) =Y .- fmyz"
with its sequence of Taylor coefficients ( f (n));2,- Hardy and Littlewood proved
that if f belongs to H”, 0 < p < 1, then

Y+ D)) < 0o (L)
n=0
and .
lf)| =o((n+DP7Y, n— o (1.2)

(see [7] for information and references).
In [13] it was proved that if f € H?, 0 < p < 1, then

i 2*”“*”( sup |f(k)|>p < 0, (1.3)
n=l1

0<k=<2"
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which is equivalent to

0<k<n

Z(n +l)p_2( sup |f(k)|)p < 0.
n=0

It is easy to see that condition (1.3) is stronger than (1.1) and (1.2). We will show
that (1.3) is the strongest condition that the moduli of the coefficients of a function
f € H? (0 < p < 1) must satisfy. In the terminology of [2], this means that the
smallest solid space containing H? (0 < p < 1) is the vector space of sequences
satisfying (1.3).

Recall that a sequence space X is solid (cf. [2]) if (b,) € X whenever (a,) €
X and |b,| < |ay|. The solid hull of X is the smallest solid space containing X.
Explicitly,

S(X) = {(A,,) : there exists (a,) € X such that |A,| < |a,|}.
To state our first result in a more precise form, we need to introduce some more

notation. A complex sequence (a,) is of class /(p,q),0 < p,q < oo, if

(o]

q/p
M%mﬂﬁwmmm=2X§]mﬂ < 0,

n=0 “kel,

where Iy = {0}and I, = {ke N : 2" ! <k <2"}forn = 1,2,.... In the case
where p or g is infinite, replace the corresponding sum by a supremum. Note that
l(p5lﬂ =17

For ¢t € R we write D' for the sequence ((n + 1)"){°. If A = (A,,) is a sequence
and X a sequence space, we write A X = {(A,x,) : (x,) € X}; thus, for example,
(an) € D'I* if and only if |a,| = O(n").

Here is our main result.

THEOREM 1. If 0 < p < 1, then S(H?) = D'/~ 1](c0, p).

We also determine the solid hull of the Bergman space A” for0 < p < 1.
The Bergman space A” for 0 < p < oo consists of all holomorphic functions
f on U such that

1/p
”Nm=<AU@VWW9 <.

where dm(z) stands for the Lebesgue measure in the plane.
It is well known that if 0 < p < 1 then A? C D?/P=1]% and AP ¢ D3¥r-1p
(see [17]). We improve both these inclusions by showing the following theorem.

THEOREM 2. If 0 < p <1, then S(AP) = D?/P~1(c0, p).

Our results can be applied to various problems concerning multipliers. Thus they
easily imply the main result in [9], for instance. Details will be given in Section 4.

Given two vector spaces A, B of sequences, we denote by (A, B) the space of
multipliers from A to B. More precisely,

(A, B) = {A = (A,) : (Aya,) € B forevery (a,) € A}.
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The D-dual of a sequence space A, denoted by AP, is defined to be (A, D), the
multipliers from A to D. The Kéthe dual is obtained when D = [! and will be
denoted AX. As in [2], let A(1,1) be the space of all f € H(U) such that ' e Al

An easy consequence of Theorem 2 is the following statement.

CoRrROLLARY 3. S(A(1,1)) =I(oc0,1).

Anderson and Shields [2, p. 263] showed that the second Kothe dual of A(1,1) is
1(00,1) (ie., A(1,1)*K = [(c0,1)) and that S(A(1,1)) C A{,1)XX. They conjec-
tured that the inclusion is strict. Corollary 3 disproves this conjecture.
Analogously, we have S(A') = (A")XX = D'I(c0,1). (See Theorem 4.2.)
Our method of determining the solid hulls can be applied more generally to the
mixed norm spaces H”%*. The space H”%* (0 < p < 00,0 < g, < 00) con-
sists of all f € H(U) for which

! 1/q
1 £l = ( /0 (1 ="My f)"dr) < oo,

In particular, we have Bergman spaces A? = HP'?'/P for 0 < p < oo.

The space H”'%* can also be defined when ¢ = oo, in which case it is some-
times known as the weighted Hardy space H”* = H?°>“ and consists of all f €
H(U) for which

I fllp,a = 1 fllp,00,« = sup (L —=r)*My(r, ) < oco.
O<r<l1

Instead of Theorem 2 we prove the following result.
THEOREM 4. If 0 < p < 1, then S(HP%%) = D**V/P=1] (00, q).

Observe that S(H?%%) = H>9% = D%l(2,q) for 2 < p < oo (see [1; 3; 14]).
Hence the problem of determining S(H?) for1 < p < 2 and S(H?%%) for 1 <
p < 2 remains open.

2. Solid Hull of the Hardy Space H?,0 < p <1

If f(z2) =) 1o f(k)z* and g(z) = 302 5 8(k)zk are holomorphic functions in
U, then the holomorphic function f « g is defined by

o0

(f*)(2) =) fk)ak)z~.

k=0
The main tool for proving our results are the polynomials W, (n > 0) constructed
in [9]. Here we recall their construction and some of their properties.

Letw: R — R be a nonincreasing function of class C* such that w(¢) = 1 for

t <land w(t) = 0 fort > 2. We define the polynomials W, = W,” (n > 0) as
follows:
2’l+l

k k
Z @ 1 )2 for n > 1,

k=271

Wo(2) =) ok, W)=
k=0

where ¢(1) = w(t/2) — w(t), t € R.
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The coefficients Wn(k) of these polynomials have the following properties:

supp(W,) C [2"~1,2" 1], Q.1
0< W,(k) <1 forallk, (2.2)
o0
Z W,(k) =1 forall k, (2.3)
n=0
W, (k) + Wopi (k) =1 for 2" <k <2 n > 0. (2.4)

Property (2.3) implies that

f@) =) Wy )2, feHQU),

n=0

and the series is uniformly convergent on compact subsets of U.
Since 0 < W, (k) <1forn,k =0,1,2,..., we have

Wu(2)| <2"*, zeU n=012,.... (2.5)
Choose an integer N so that Np > 1. Note that ¢(k/2"~") = 0 if k is an integer

such that k < 2" ! or 2"*! < k. Hence,

o0

(1 _elt)NWn(elI) — Z w(ﬁ)(l _elt)Nelkt

k=—00

0 N
Z w(%) Z(Z)(_l)mei(erk)t

k=— m=0
N o)
N k .
— m - i(k+m)t
=2 (0) 2 o5
m=0 k=—00

T m N = k—m ikt
2;(—1) <m)kzzoo¢<_2n_l )ek
00 N
-y (Z(—l)’"(g><p<k2:—_'f)>e"“. (2.6)

k=—00 *m=0

By the Lagrange theorem for symmetric differences, for each k there exists a
&k, nv such that

N N k—m
> (—1)’“< o )w( e ) =207 M(gy v). @.7)
m=0
It follows from (2.6) and (2.7) that
W, (e™)| < Cr—N2mI=N), (2.8)

Using (2.5) and (2.8) now yields
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1 27 )
[Walll = E/ |Wa(e™)|Pdt < C27"07P), (2.9)
0

Observe that here we needed Np > 1.

In this paper we follow the custom of using the letter C to stand for a positive
constant that changes its value from one appearance to another while remaining
independent of the important variables.

Proof of Theorem 1. Let f € H?, 0 < p < 1. Then, by [7, Thm. 5.11],
1
/(1 —r)PM(r, f)P dr < 0.
0

Since supk61n|f(k)|rk < M(r, f) forn > 0, it follows that

1 oo
00 > /(l—r)*le(r, f)Pdr > Z/
0 =1 Y1

1o A »
(1— r)*P( sup f(k)rk> dr
_2l-n kel,
ad p
=cy 2‘”“‘”( sup| f(k)|> .
=1 kel,

Thus, H? ¢ D71l (00, p).

To show that D'/7~1](c0, p) is the solid hull of HP, it is enough to prove that if

(a,) € DVP~1 (o0, p) then there exists a (b,) € H” such that |b,| > |a,| for all n.
Toward this end, let (a,) € D'/7~I (00, p). Define

g() =Y Bi(W;(2) + Wii(2)) = Y _ ek,

j=0 k=0

where B; = sup,j.zi+lag|. The function g belongs to H” because

o0
MP(r,g) <) BIIMP(L,W)) + MJ(1,Wj1))]
j=0

o0
<CY B <o,
Jj=0
Here we have used (2.9).
To prove that |cx| > |ax| for k = 1,2, ..., choose n so that 2" < k < 2ntl 1t
follows from (2.2) and (2.4) that

oo
ck =y Bi(W;(k) + Wi (k) = Bu(W(k) + Wop (k)
j=0
=B, = sup |a;| > |al.

271§j<2n+1

Now the function i(z) = ZZ’;O b, z", where by = ay and where b,, = ¢, forn >
1, belongs to H?, and |b,| > |a,| for all n > 0. O
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REMARK. Note that the proof of Theorem 1 shows that the solid hull of H?, 0 <
p < 1, may also be described as the set

[o¢]
{(a,,) : 22’"(1’” sup |ax| < oo}

n=0 O<k=2"

3. The Solid Hull of the Mixed Norm Space H”%*, 0 < p <1

Proof of Theorem 4. Let f € HP%%, In order to prove that f € D**/P=1](00, q),
we use the familiar inequality

My(r, ) = CA ="M f), 0<p=<1.
(see [7, Thm. 5.9]) to obtain

1
00 > /(1 — ) My (r, )9 dr
0

1
= [ a= eyt ar
0

& 1-27"

q
(1= =07 suplay|r*)” dr
kel,

o0
q
>C 2’”4(“+1/”’1)< suplak|> .
; kel,
Thus, f € D*H/P=1(00, ).
Similarly, if ¢ = oo then
0o > sup (1 — r)*M,(r, ) > C sup (1 — r)*P=My(r, f)

O<r<l1 O<r<l

> C sup sup sup(l —r)* TP~ gy |rk
O<r<l n kel,

> Csup27"@ P~ qup|ay;
n kel,

that is, f € D*TP~1](oc0, 00).
Now let (a,) € D*t/P=1(c0, q) for 0 < g < 0. As before, define

h(z) =) Ci(Wi(2) + Wipi(2) = ) _ de2¥,

j=0 k=0
where Cj = sup;.; |ak|.
The function % belongs to H”%* (0 < p <1, 0 < g,a < 00) because

1
/0(1 — 1M, (r, ) dr

1 s alp
< / (1— r)""‘_l<z CPIMP(r, W) + MJ(r, Wj+1)]) dr. (3.1
o .

Jj=0
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Using [9, Lemma 2.1] together with (2.1) and (2.9) yields
MPG W) < P2 P WiE < er? T =12, (32)
It follows from (3.1) and (3.2) that

1 1 o0 ) O\
f(l — )1 M, (r, )T dr < C/ (1— r)q“1< Y P ”) dr
0 0 :
j

oo
<C Y o o
j

Here we have used [14, Prop. 4.1].
As before, we have |dy| > |ax|,k =1,2,.... The function ¥(z) = Z/ﬁo biz%,

where by = a( and where b, = d; fork = 1,2, ..., belongs to H”%, and |b;| >
|ay| for all k > 0.
The case ¢ = oo may be treated similarly. O

4. Applications to Multipliers

The next lemma is due to Kellog. He states it for exponents no smaller than 1,
but it then follows for all exponents because (A,,) € ({(a, b),l(c,d)) if and only if
(') € (Iat, bt), I (ct,dp)).

Lemma 4.1 [11]. If 0 <a,b,c,d < oo, then
(I(a,b),l(c,d)) =1l(a©c,bOd),

wherea ©c =00 ifa <c,bod=00ifb <d,and

1 1 1
=-—— for0O<c<a,
aoc c a
1 1 1
—— =——— for 0<d <b.
bod d b

In [2] it is proved that if X is any solid space and A any vector space of sequences
then (A, X) = (S(A4), X).

Since /(u,v) are solid spaces, we have (H?,l(u,v)) = (S(H?),l(u,v)) and
(HP 2% [(u,v)) = (S(HP9%),1(u, v)). Together with Lemma 4.1 and Theorems
1 and 4, this yields our last two results.

THEOREM 4.2. Let 0 < p < 1. Then
(HP,l(u,v)) = D'""Pl(u, p O v).

THEOREM 4.3. If 0 < p <1, then
(HP "% 1(u,v)) = D'"P=(u,q © v).
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In particular, if ¥ = v then (H?,1*) = D'=YP[(u, p © u). This was proved in [9]
by a different method. Similarly, from Theorem 4.3 we deduce that (H?%%,[") =
Dl’l/p’“l(u,q ou) for0 < p <1 (see[10]).

ReEMARK. The referee pointed out to us that Theorem 4.3 was already known;
see Theorem 5.2 in [6] and remark (2) following that result. By the same result of
[6], the answer when 1 < p < 2 cannot be of the form D'l(a, b).
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