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Reinhardt Domains and Toric Models

MENG-KIAT CHUAH

1. Introduction

This article is motivated by the construction of unitary representations of the torus,
based on Kahler structures on strictly pseudoconvex Reinhardt domairig.bleet
the compact-torus. In the language of geometric quantization [7], the “classical”
picture is aT-manifold X along with aT-invariant symplectic fornw, while the
“quantum” picture is a unitary-representatior{. The process of transforming
(X,w) to H = H, is calledgeometric quantizationlf H, contains every irre-
ducible T-representation exactly once, it is callednadel. This terminology is
due originally to I. M. Gelfand and A. Zelevinski [4], who construct models of the
classical groups. SincE is a torus, we also call it eoric model.A space where
T acts naturally is the Reinhardt domainc C”, since(zy, ..., z,) € X implies
that(e?zy, ..., e'7z,) € X. Consider the settingX, w), wherew is aT-invariant
Kahler form on the Reinhardt domak The central issue of this article ig/hen
does(X, w) provide a toric modeH,,?

We shall describe the Kahler structutesconstructd,,, and show that the con-
ditions for H,, to be a toric model are closely related to the convergence of the
integrals
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HereQ c R" is a strictly convex domaing € C*°(£2) a strictly convex function,
anddV the Lebesgue measure. This integral will be our major concern. We now
outline our projects in better detail.

We restrict our consideration to strictly pseudoconvex Reinhardt donins
with free T-action. Freel-action implies that if(zy, ..., z,) € X thenz; # 0 for
all i. By the exponential map and normalization 2 1, it follows thatT and X
have the following convenient descriptions:

T =RY/Z", X={x++v/-1ly:xeQ, yeT}, @1

whereQ c R" is a domain. Note thaX = Q + +/—1T. The T-action onX is
given by addition oty € R"/Z" in (1.1). Weshall see in Section 2 that strict pseudo-
convexity of X leads to nice convexity properties &f. From now on,X, T, Q
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shall always be as given ifi.1). Thepresent article deals with arbitrary strictly
convex domairf2, which extends the special caQe= R” studied in [3].

In Section 3 we study the Hamiltonigfrinvariant Kéhler formso on X as
well as their quantization (cf. [5; 7]). They have the expressios /—199F
(Theorem 3.1), wher#, 3 are the Dolbeault operators ¢h ThenF, being aT-
invariant function onX, is nothing other than a function da. We show thatF €
C>(Q) is strictly convex, meaning its Hessian matrix is always positive definite.
This allows us to apply the convex analysis developed in Section 2. The Kahler
form w can be associated to a (topologically trivial) line bundiever X, and
L is equipped with a connection whose curvature id~rom the connection, we
obtain the notion of holomorphic sectionslonThe line bundle also carries a nat-
ural Hermitian structuré, -). By (1.1), X has a natural measure obtained from the
Lebesgue measure ©f and the Haar measure 6f We letdV denote the natural
measure oX or 2. A holomorphic section of L is said to besquare-integrablé

/X(s,s)dV < 0. 1.2)

The Hilbert space of square-integrable holomorphic sections is denotéj, by
and these sections constitute a unit@rgepresentation.

We now set up miscellaneous notation and terminology needed to formulate the
main theorem of this article. fay is a subset of2 of the form

R={p+trw:t>0NQ 1.3)

for somep € Q2 andv € R". Herep is called thenitial point of R. Let (6, r) be the
polar coordinates centeredat Q, whered € S"~! andr measures the distance
from p. Then the Lebesgue measureQris

dv = r"tdr de.

So we shall be interested in the meastitet dr on a ray with initial pointp.
The epigraphof F € C*(Q) consists of the points above the graph rof
Namely,
epi(F)={(x,y)eQRxR:y> Fx)} cR"xR. 1.4

The gradient functior’: @ — R”" is injective whenF is strictly convex. LetA
be the image of". In fact,

, , oF
F':Q—> A, F'(x)= (E(x))

is a diffeomorphism, owing to the inverse function theorem. H&renay not
be convex. Boundary points of A that makeA nonconvex are calledoncave
points; namely,

qg=tr+@1—-1t)s forsomer,seA,0<t <Ll (1.5)

The rest of the boundary points are said to be nonconcave. Claaidy(geo-
metrically) convex if and only if its boundary consists entirely of nonconcave
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points. With this notation and terminology in hand, we present our main theorem
as follows.

MAIN THEOREM. Letw be aT-invariant Kahler form orX, so thatw = +/—139F
and F € C*(RQ) is strictly convex. The following conditions are equivalent
(A) H, is atoric mode]

(B) [pe FOT rrn=tdr < oo forallraysR Cc Qand allx € Z";

(C) if L ¢ R" x Ris anonvertical line, ther. N epi(F) is bounded

(D) F’ maps every unbounded subset®fo an unbounded subset Af

(E) if {g;} C A converges to a nonconcave point, tHeA’)%(g;)} is bounded.

Conditions (B), (C), (D), and (E) are studied in Section 4, 5, 6, and 7, respectively.
Condition (B) says that the study 6fe C*°(2) can be reduced to the restriction

of F to the rays, which are 1-dimensional objects. Condition (C) follows the same
spirit, since a nonvertical line is simply the graph of a 1-variable function. Condi-
tion (D) says that F’) ! sends bounded subsetsoto bounded subsets &f, so
obviously (D) implies (E). Therefore, the equivalence of (D) and (E) means that,
in the study of boundedness property(éf')~*(U), we can ignore the concave
limit points of U.

Concerning the sizes & and A, conditions (C) and (D) say that a smaller
Q or a biggerA increases the likelihood off,, to be a toric model. In partic-
ular, if Q is bounded then (C) says that, is always a toric model. Also, (D)
says that ifA = R" then H,, is always a toric model. The compromise where
both 2 and A have maximal size is reached in [3]: < = R”, thenH,, is a toric
model if and only ifA = R”. This can be recovered from (D), since a diffeo-
morphismR” — A maps every unbounded set to an unbounded set if and only if
A =R"

In Section 8, we provide several examples of strictly convex functions to demon-
strate the equivalent conditions of the main theorem. Finally, in Section 9, we dis-
cuss the Bergman kerngl(z, w) [8, Sec. 1] of the K&hler manifol@X, w), where
o = v/—130F. We eliminate the coefficienit and identifyH,, with the Bergman
spaceH of holomorphic functions oX that are square-integrable with respect to
the measure=" 4V (Proposition 9.1). In Theorem 9.2, we show thatf is a
toric model then the Bergman kernel#&fis

eMztw)

K(zow)y= ) (= (1.6)
xXe

reZn

2. Notions of Convexity

In this section, we recall some familiar notions of convexity for sets and functions
and also gather some properties to be used later. Recall that our strictly pseudocon-
vex Reinhardt domaiX = Q + /=17 is as given by (1.1). Theymbold shall
denote boundary (as well as partial derivative—there is no confusion), and the
“bar” sign shall denote closure. For exampgly,Q = 92 because is open. The
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boundaries o and<2 are related bpX = 9Q + /—1T. Pickz = x + /-1y €

9X, so thatx € 92 andy € T. The real tangent space patdX is of real dimen-
sion 27 — 1. It contains a codimension-1 linear subsp@‘gdX) c C", which is
stable under multiplication by/—1. This is the complex tangent spacezofand
dim¢ TC(GX) =n — 1 SinceX is strictly pseudoconvex there exists a defining
functiont for X (see e.g. [8]) such that the Levi for(@"—’(z)) is Hermitian

positive definite onTC(E)X) The real tangent spadéf(aQ) C R" of x € 92
has real dimension — 1. We say thaf2 is strictly convexf there eX|sts a def|n-
ing functionp for Q such that, for alk € 3Q2, the Hessian matrn@ax 5; (x))
positive definite o' R (3<2).

ProrosiTioN 2.1. The Reinhardt domaii is strictly pseudoconvex if and only
if the domain< is strictly convex.

Proof. Let p be a defining function fof2. Then it extends to a defining function
pfor X byp(z) =p(x)forallz =x + /—1y. Since;’; = 0, we obtain

%5 1 3%
—(2) =~
Bziazj 48xi8xj

(x). 2.1

Forz = x + /—1y € 89X, we have
TC0X) = TR(BQ) +V/=1TR Q). (2.2)

From (2.1) and (2.2), it foIIows the( (z)) is Hermitian positive definite on

T.(9X) if and only if (ax o (x)) is posmve deﬁnlte o R(3Q). The proposi-
tion follows. U

The classical notion of convexity (i.e., a line segment joining two points) is called
“geometric” convexity to distinguish it from the analytic notion of convexity used
above. A subseft C R” is said to be geometrically convexjf, ¢ € A implies
tp+@A—1t)geAforall0 <t <1 In particular, ifA satisfies

p.geA = tp+(A—1)geA\dA forall 0 <t <1, (2.3)

then we say thafl is geometrically strictly convex. For example, the unit disk
is geometrically strictly convex whereas the squarB%is merely geometrically
convex.

IfadomainQ is strictly convex thenitis geometrically strictly convex[8, Sec. 3].
Therefore, by Proposition 2.1, we obtain the following corollary.

CoOROLLARY 2.2, LetX = Q + 4/—1T be a strictly pseudoconvex Reinhardt do-
main. Ther2 is geometrically strictly convex.

We next consider the strictly convex functions. Kebe strictly convex. A smooth
function F: Q@ — R is said to be strictly convex if its Hessian matrix is positive
definite everywhere o2. Strictly convex functions have either 0 or 1 critical
point, and the critical point (if it exists) is a global minimum.
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ProposITION 2.3. If F € C®(Q) is strictly convex, the ~(—oo, m] is geo-
metrically convex.

Proof. Letr, s € F(—o0, m] € , and letg lie between ands. Let L be the line
joining r ands. Since the restricted functiofi|; nq is strictly convex and since
g.r,s € LN Q, it follows that F(q) < max{F(r), F(s)}. Sog € F Y(—o0, m),
whichimplies tha# ~Y(—oo, m]is geometrically convex. The proposition follows.
O

In Proposition 2.3,F ~(—oo, m] is in fact geometricallystrictly convex. With
strictness in the statement, the proof needs to be modified toslék in the clo-
sure of F ~Y(—o0, m] relative toR”. Nevertheless, for the purpose of applications
in later sections, we only nedd*(—oo, m] to be geometrically convex.

Another feature of the strictly convex functiafi is that its epigraph (1.4)
is geometrically strictly convex. The converse fails, and a counter-example is
F(x) = x*. Since epiF) C Q x R is geometrically strictly convex, it follows
that L N epi(F) is connected whenevdr ¢ R" x R is a line. As indicated in
condition (C) of the main theorem, the boundedness propertyroepi(F) de-
termines whethef,, is a toric model. We shall take up this topic in Section 5.

Given a strictly convex function, its restriction to a line is also strictly convex.
For this reason, it is helpful to study strictly convex functions of one variable. Let
—00 < a < b < oco. We say thatF': [a, b) — R is strictly convex if it extends
to a smooth function ofu — ¢, b) and if F”(x) > 0 for all x > a. The following
results will be useful later.

LemMma 2.4. Let F: [a,b) — R be a strictly convex function, and lat €
{0,1, 2, ...}. The following conditions are equivalent

(i) fab e F®xn dx diverges
(i) b= oo andF is strictly decreasing.

Proof. Suppose that condition (ii) holds. Thenx" is strictly increasing fox >
0, soits integral diverges.

Conversely, suppose that condition (ii) fails. Then eithet oo or F'(¢) > 0
for somec € [a, b). If b < oo thenF (being strictly convex) does not tend-tao
nearb. That is,F is bounded below orif ») and hence—fx" is bounded above
on [a, b). Hence the integral o —Fx" converges. Ib = oo but F'(c) > O for
somec, thenF’(x) > O for all x > ¢ because '’ is increasing. In particular, &
m < F'(d) for somem andd. Thus, for allx > d,

Fld)+m(x—d) < F(x).
Since 0< m, we have

oo o0
/ e FOxm dx < / e FD=m=d)yn gy — o0,
d d
Once again (i) fails. This proves the lemma. O

We write L.u.bF’ to denote the least upper boundsf In the event thaF’ is not
bounded above, l.u.B! = oo. The lemma leads to the following corollary.



78 MENG-KI1AT CHUAH

CoroLLARY 2.5. Leta € R, let F: [a, c0) — R be strictly convex, and let e
{0,1,2,...}. Then[™ e~ FWtexxn dx < oo if and only ifc < Lu.b.F’.

Proof. The proof is a simple computation:

o0
f e FOrexyn gy - 00
a

<= F(x) — cx isincreasing for some (by Lemma 2.4)
&= F’'(x) —c > 0 for somex
& c¢ < lL.ubF"

This proves the corollary. O

Let @ ¢ R" be strictly convex, and fiy € Q. Let (6, r) be the polar coordinates
centered ap, whered € S"~! andr measures the distance from Recall from
(1.3) that the rays with initial poinp are of the form{p + tv : ¢t > 0} N Q. By
the polar coordinates, we can parameterize these rag<#/' %, denoted byR,
accordingly. Letd(0) = |Ry| € (0, co] denote the length of the ral,. Namely,
d(0) is the distance betwegnand the boundar§<2 in thed-direction. Intuitively
we expect to vary continuously with the angte and this is made precise in the
next proposition. We say tha& c S"~!is a compact neighborhood gfe §"*

if K is compact ana@ lies in the interior ofK.

PrOPOSITION 2.6. Let 2 c R” be strictly convex, and fix € Q. For 6 € §"%,
let d(0) = |Ry| € (0, 0] be as given previously. H(¢) < oo, theng has a
compact neighborhoo& c §"~* such thatd(9) < oo for all # € K andd is
continuous ork.

Proof. Letc = |R,| < oo. Suppose that there exists a sequeieeC S"~*con-
verging tog and thatf R, | = oo. Using the polar coordinate8, r) centered ap,
we have thatg;, r) e Q forall r > 0. Then(¢;, r) — (¢,r) e Qforallr > 0.
In particular,(¢, ¢), (¢, c + 2) € Q. SinceQ is strictly convex, by (2.3) it follows
that(¢, c + 1) € Q. This contradicts: = |R4|, SO|Ry| < oo for all 0 sufficiently
near¢. There exists an open sBtC S containinge such thaiR,| < oo for
allo € U. Let K be a compact set satisfyirig C U, and lete lie in the interior of
K. Thend () < oo for all 6 € K.

It remains to show thaf is continuous orK. Pickt € K. Let {t;} C K be a
sequence that convergesttoNrite d(t;) = ¢; < oo andd(t) = ¢ < co. To com-
plete the proof, we need to show that— c. Suppose otherwise. Then, taking
a subsequence ¢f;} if necessary, eithar; < ¢ — ¢ for somees > 0 and alli, or
c+¢ < ¢; forsomes > 0 and all:. We show that both cases lead to contradiction.

Case 1li¢; < ¢ —¢ forsomes > Oand alli. Since O< ¢; < ¢ — ¢, there exists
a subsequence, still denotedfoy}, such that; — b for someb. Then(z;, ¢;) —
(t,b). But (z;, ¢;) € 92 andaQ is closed, sdr, b) € 0Q2. Sinceb < c, this con-
tradicts|R,| = c.
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Case 2:c + ¢ < ¢; for somes >0 and alli. Forallx < ¢ + ¢, we have
(t;, x) € Qand so(t;, x) — (7, x) € Q. In particular(z, ¢), (r, c + €) € Q. Since
Q is strictly convex, by (2.3) this implies thgt, c + §) € Q. This contradicts
|R:| =c.

By contradictions in both cases, we conclude that- ¢. Sod(t;) — d(t); that
is, d is continuous at. Because € K is arbitrary, the proposition follows. O

3. Geometric Quantization

In this section, we study-invariant K&hler formso on the Reinhardt domaik
and construct the corresponding unitdkyepresentationfl,,.

An interesting class ab consists of those for which tH&action is Hamiltonian
[6, Sec. 26]. In this case has moment mag: X — R", whereR” is regarded
as the Lie algebra of as well as its dual space. The next theorem shows that
this condition is equivalent te = v/—133F for someF. We shall always use the
coordinateg = x + +/—1y on X as introduced irf1.1).

THEOREM 3.1. Letw be aT-invariant Kahler form onX. The following condi-
tions are equivalent
() w = dp for some reall-form g;
(i) w = +/—199F for some real-valued functioR;
(iii) theT-action preservingy is Hamiltonian.

Proof. We first show that (i) implies (ii), so suppose that dB. Sinceg is real,
we can write = a +a, wherex is a(0, 1)-formonX. Thenw = df = da +da.
But sincew is of type(1, 1), do = da = 0. Hence

= da + da. (3.1)

We claim that B
a=0f (3.2)

for some complex-valued functiof Write o = ), h;dz;, whereh;(z) = h;(x)
by T-invariance. Then

- oh; 1 oh; _ -

0=0a= —dz;AdZ; = —dz; NdZ;.

’ 127:85/' oo ZIZj:axj R

Hence% = % foralli # j. Equivalently,y =23, h;(x)dx; is aclosed 1-form

on Q. Since is strictly convex, its de Rham cohomology satisfie¥ Q) = 0.

Soy = df for somef, namely &, = % Extendf to X by T-invariance, and let
hi = %j—i = % It follows thatdf = >, %d%i =Y, h:dZ; = a. This proves

(3.2) as claimed.

By the way, (3.2) says that tffeinvariant Dolbeault cohnomology of vanishes
at degre€0, 1). The argument would have been simpler in the special £ase
R", since thenX = R" x (R"/Z") is equivalent to the complex groug*>)",
which is a Stein manifold and thus has trivial Dolbeault cohomology.
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Let F be the real-valued functiof = «/—1(—f + f). Then
V—=100F = 0of — d0f
=da +da (by(3.2)
=w (by (3.2)).

We have proved that (i) implies (ii).

To show that (ii) implies (i), suppose = /—139F for some real-valued
function F. Let B be the real part of th€0, 1)-form /—13F, namely g =
(v/=1/2)(dF — 3F ). ThendB = (v/—1/2)d(dF — 9F ) = ~/—139F. This proves
that (ii) implies (i).

We next show that (i) implies (iii), so suppoge= dg. SinceT is compact,
we can takes to be T-invariant. By [1, Thm. 4.2.10], th&-action is Hamilton-
ian. In fact, a moment mag is given by(®(z), £) = — (B8, £%)(z), wherez € X,
£ e R", and&* is the infinitesimal vector field oi. Hence (i) implies (iii).

To complete the proof of the theorem, it remains to show that (iii) implies (i).
If &,...,&, is the standard basis of the Lie algel®aof T, then their infinites-
imal vector fields ornX are— dv . Suppose (iii) holds; that is, suppose the
T-action preserving is Ham|Iton|an Then, for eachwe have thal( )a) isan
exact 1-form. Hence there exigise C*(X) such thatlp; = z(a )o. Therefore
o has the expression

w= Z dy; Adgi + Y awdxi Adx;. (3.3)
kl

SinceT is abellan = is T-invariant and so id¢;. By compactness df, we may
takeg; to beT—lnvanant too. Thug;(z) = ¢;(x), and so (3.3) becomes

—Z —dx, Ady; + Zakldxk Adxy. (3.4)
ki

Sincew is of type(l, 1) and (3.4) has no term involvingy, A dy;, it follows that
Zkl aydxi N dx; = 0. We get

= —Z %dxj Ady; = d<—z ¢’id)’i>7
ij J i

and (i) follows. This proves the theorem. O

This theorem provides the correction for [3, THi], which mistakenly assumes
that these equivalent conditions are always valid. We illustrate Theorem 3.1 by the
following examples withh = 2:
w1 =~—1Y"2dz; A dZ;
= 2dx1 Ady1+ 2dx2 A dy;
wy = w1+ 3(dz1 AdZ2 +dZ1 Adz2)
= 2dx1 Ady1+ 2dxz ANdys 4+ dxi A dxo + dyr Adys.
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Computations show that; andw, are Kéhler. Herevo; satisfies the equivalent
conditions of Theorem 3.%1 = d( 3.7 2x; dy;) = +/—198(2 Y% x?). Also, an
infinitesimal vector fielt of T on X is a linear combination oﬁ— SoL(&)wy is

a linear combination oflx;; it is exact and so the action is Hamiltonian. On the
other handgw, does not satisfy the conditions of Theorem 3.1: the téymn dy,

is not exact. Similarly(%)a)g = —2dx1 + dy, is not exact owing taly,, so the
action is not Hamiltonian.

It is convenient to work with the class of Kahler forms given by Theorem 3.1,
so from now on we shall always assume thabelongs to this class. Thus =
/—183F and byT-invariance F is a function or2; namely,F(z) = F(x). Then
3323‘; = %afz—ij and positivity ofw implies that the Hessian matr(%)[j is
positive definite, sd is strictly convex. This allows us to apply the convex analy-
sis developed in Section 2 @

We next describe the construction of a unitdkyepresentatiorH,, out of w.
This is the scheme outlined in [5] and [7]. There exists a holomorphic line bun-
dleL over X whose Chern class is the integral de Rham cohomology class of
Because is exact, fo] = 0 and sd_ is a trivial line bundle. Furthet, is equipped
with a connectiorv (whose curvature i®) and with an invariant Hermitian struc-
ture (-, -). A smooth section of L is said to be holomorphic i¥/,s = 0 for all
antiholomorphic vector fields. The arguments in [3, Sec. 3] extend to the fol-
lowing proposition.

ProrosiTION 3.2. There exists a unique nonvanishifignvariant holomorphic
sectionsg of L that satisfieqsg, sg) = ¢ F.

The uniqueness ofy in the statement is up to multiplication by complex num-
bers of absolute value 1. Frofhl), X has a natural™-invariant measure obtained
from the product of the Lebesgue measur&pand the Haar measure @h We

write dV for the canonical measure dhor 2. If a sections of L satisfies (1.2),

we say that it is square-integrable. The square-integrable holomorphic sections
are denoted byH,,. Since(-,-) anddV are T-invariant, H,, becomes a unitary
T-representation. Sincg is abelian, the irreducible subrepresentation&gfare
1-dimensional. In view of Proposition 3.2, they are characterized by " via
{ce**so : ¢ € C}. Here and in what follows, it € C" then we writeAz € C

to denote)_, A;z;. Fors = e*?so, the condition (1.2) on the square-integrability

becomes
v/.(e“so,e“s(ﬁ dv = / e FW gy,
X Q

Therefore,H,, is a toric model if and only if
/ e FW gy < 0o forall AeZ”. (3.5)
Q

For the rest of this article, we utilize condition (3.5) to study the conditions for
H, to be a toric model. Namely, for a strictly convex functine C*(R2), we
consider the necessary and sufficient conditions for (3.5).
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4. Rays

In this section we show that conditions (A) and (B) of the main theorem are equiv-
alent. LetQ c R" be a strictly convex domain. Recall from (1.3) that a ragin

is a subset of the formip + rv : r > 0} N Q2. We say that it is bounded or un-
bounded depending on whether- rv gets out of2 for larger. For example, if

Q c R? consists of all the points above the graphyof= x2, then a ray is un-
bounded if and only if it is parallel to the vect@, 1). If F € C*(R) is a strictly
convex function, then so is its restrictidf|  to a rayR. In this caseF|; resem-

bles a functionf': [a, ) — R, whereb can be a number aro, depending on
whether the ray is bounded or unbounded. For this reason, Lemma 2.4 and Corol-
lary 2.5 can be rephrased in terms of raySinWe say that is decreasing along
theray{p +tv:t >0 NQIif F(p+ tw) > F(p + tav) Whenever; < t,.

Observe that, in both Lemma 2.4 and Corollary 2.5, one side of the equivalent
conditions is independent af This means that if the corresponding condition
holds for one: then it holds for every other. The expression” reflects the effect
of the Lebesgue measwi® of Q. Namely, if (9, r) € S"1 x R* are the polar
coordinates centered at sope& 2, then

dv = r"Ydr de,

whered@ is the measure of" ' that is invariant under the orthogonal groQpn).

So if R C Qs a ray with initial pointp, we shall be interested in the measure
r"~Ydr on R, wherer is the distance fronp. For our purpose, it is actually irrele-
vant whether we usér orr"~1dr when we integrate over a ra. This is because
we shall often consider functions of the type” over R, whereF is strictly con-
vex. Then Lemma 2.4 says thAte " dr and [, e “r"~1dr either converge or
diverge simultaneously. Lemma 2.4 can be rewritten as follows.

LemMma 4.1. Let F € C*(R) be strictly convex, and leR c Q be aray. The
following conditions are equivalent

(i) [.e Fr"dr diverges

(if) R is unbounded and strictly decreases along.

If F is restricted taR then the corresponding directional derivative is denoted by
(F|g). In other words(F|g): R — Ris given by(F|g)'(r) = (u - F')(r) for

all r € R, whereu is the unit vector parallel t&®. Corollary 2.5 also takes on the
following format.

COROLLARY 4.2. LetR C € be an unbounded ray. Thefy e~ r"~1dr <
oo ifand only ifc < L.u.b(F|g).

Two raysR, S C Q are said to be parallel if there exist ¢ € 2 andv € R” such
thatR={p+tv:t>0NQandS={g+twv:t>0NQ.

ProrosiTiON 4.3. Let R and S be parallel rays inf2, and letF € C*(Q2) be
strictly convex. Then the two equivalent conditions of Lemma 4.1 hoRlifand
only if they hold forS. When this happensu.b.(F|g) = Lu.b(F|s) < oc.
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Proof. Suppose thaR is unbounded and thdt is strictly decreasing along. We
want to show thas is unbounded and is strictly decreasing alon§j.

Let p, g denote (respectively) the initial points &f S. SinceR is unbounded,
there existe € R" such thatp + tv e R for all t > 0. DefineS; C R" by

Si={g+tv:t>0}, S$NQ=S. (4.1)

We claim thatS = S;. Let C be the convex hull oRR U {¢}. SinceS2 is convex,
C C Q. SinceR is unbounded,

S1c CcCQ. (4.2)

Pickb € S1. It lies in the line segment joining sonae ¢ € Sy. By (4.2),a, c € Q.
By Corollary 2.2,Q2 is geometrically strictly convex, doe Q2. This implies that
b e S. HenceS = §; as claimed. We conclude théitis unbounded.

We also want to show thaf decreases alon§. Recall from Proposition 2.3
that F ~1(—oo, m] is geometrically convex. Lets = max{F(p), F(q)}. Let C
again be the convex hull @t U {¢}. Then

{p’ q} C F_l(_oov Wl]
= RU{q} C FY(—o0,m] (sinceF decreases along)

= C C FY(—o0,m] (since F ~1(—o0, m] is geometrically convex)
= C C FY(—o0, m] (since F ~Y(—oo, m] is closed)
— S C FY(~o00,m] (by (4.1) and (4.2)).

This means thaf’ does not tend t@o along S. SinceS is unbounded and"
is strictly convex, this can happen onlyff is strictly decreasing alon§. This
proves the first part of the proposition.

For the rest of the proof, suppose that the equivalent conditions of Lemma 4.1
hold for R andS. SinceF is decreasing along, it follows that(F|z)" < 0 every-
where onR. Hence l.U.l(F|g) < oo. Similarly, .Lu.b(F|s) < oco. It remains to
show that the least upper bounds are equal. GiveR, we have

¢ < Lub(F|g)
— [pe FOTrldr < 0o (by Corollary 4.2)
— [je FOrer=ldr < 0o (by the first part of this proposition)
< c < Lub(F|g) (by Corollary 4.2).
We conclude that L.u.bF|z) = L.u.b.(F|s)’, and the proposition follows. [

Fix p € Q, and let(9, r) be the polar coordinates centeregpatrord € "1, let
Ry C Q be the ray with initial pointp in the 8-direction. GivenU ¢ S"7%, let
C(U) denote the cone

cW)=|JRo={0.neQ:0eU}. (4.3)
feU
PROPOSITION 4.4. Suppose thaff, e “r"tdr < oo for some rayR with ini-

tial point p. Then there exists an open détc S"~! such thatR c C(U) and
Jew e Tdv < oo.
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Proof. Write R = R,, for ¢ € S"~% and suppose thafg% e Fr=tdr < co. By
Lemma 4.1, eitheR, is bounded orF eventually increases along,. We dis-
cuss these two cases separately. Recall that a compact neighbdéftaiatlis a
compact seK such thatp lies in the interior ofK.

Case 1:R, is bounded.By Proposition 2.6¢ has a compact neighborhood
K c §"tsuchthaiRy| < oo forall § € K. Letc > 0 be small enough so that
the ballB.(p) = {x e R" : |x — p| < ¢} is contained ir2. Let S.(p) = 3B.(p)
be its boundary. By compactness®f p), we can define

—00 <m= min{(F|R9)’(c) = 2—1:(9, c).0e S"_l}. (4.4)

By compactness aB..( p), there exists a sufficiently largesuch that
mr —b < F@,r), (0,r)€ B.(p). (4.5)

DefineG (6, r) = mr — b. Itis continuous and is smooth everywhere except at
p. By (4.4) and (4.5)G0,r) < F(@,r) for all (0, r) € 2, becauseF is strictly
convex along each raiy. Then

/ e fdv < / e YdV < eb/ e " dV. (4.6)
C(K) C(K) C(K)

SinceK is compact and — |Ry| is continuous orK (Proposition 2.6), we can
defineM = maxX{|R;| : 0 € K} < oo. The last integral of (4.6) becomes

M
eb/ e v < et / d@f e ldr < oo.
C(K) K 0

Let U be the interior ofK, and the proposition is proved for Case 1.

Case 2:F eventually increases alonf,. There exists a& > 0 such that
%(qﬁ, c) > 0. Let K c "' be a compact neighborhood ¢fsuch that®, c) €
Q and%(@, ¢) > 0 forall§ € K. By compactness ok, we can define

. | oF
O<m=m|n{3—(9,c):eel(}. 4.7)
r
We repeat the arguments of (4.5) through (4.6). Namely, by compactness of the
set{(6,r) e : 0 €K, r <c}, there exists & such thainr — b < F(6, r) when-

everd € K andr < c. This, together with (4.7) and strict convexity Bfalong
eachRy, implies thatmr — b < F(0, r) for all (6, r) € C(K). Then

/ e Fav < eb/ e "M dv

C(K) C(K)

eb/ e " dv
S"’1><R+

=eb/ d@/ e~ tar. (4.8)
gn—1 0

The last expression converges because. Let U be the interior ofK, and the
proposition is proved for Case 2. O

IA
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Propositions 4.3 and 4.4 lead to the following corollary. It implies that conditions
(A) and (B) of the main theorem are equivalent.

CorROLLARY 4.5. [, e " dV < ooifandonlyif [, e=Fr"~dr < oo forall rays
R C Q.

Proof. Suppose thaf,, e Fr"ldr < oo forallraysR c Q. Pick p € Q. Let
(8, r) be the polar coordinates centereghatind denote the rays with initial point
p by Ry, whered € S"~L. GivenU c S"1, we define the con€(U) as in (4.3).
SincefRH e Fr=ldr < oo, by Proposition 4.4 it follows that has an open neigh-
borhoodU, c S"such thath(UH) e FdV < co. SinceS"1is compact, there
existdy, ..., 6y such thalip, U--- U Uy, = S"%, and soC(Up,) U---UC(Up,) =
Q. Then |, e Fav < Zf:lfC(Ugi) e Fdv < oo.

Conversely, suppose thf e~Fr"=1dr diverges for arayk. By Lemma 4.1R
is unbounded and’ decreases alon§. By Proposition 4.3, the same situations
occur for all rays parallel t&. We write 2 as a union of the rays parallel hand
then find thate— is increasing along each of these unbounded rays. Therefore,
Jo e~ F dv diverges. This proves the corollary. O

Thus, for every strictly convex functioR € C*°(£2), the integrability ofe=* dV
over< is equivalent to the integrability af-“r"~1dr over every ray irR2. This
means that checking convergence of (3.5) for a toric model is equivalent to check-
ing condition (B) of the main theorem.

5. Epigraph

In this section, we consider the epigraph (1.4Fo&nd show that conditions (B)
and (C) of the main theorem are equivalent.

SinceF is strictly convex, ediF') is geometrically strictly convex; namely, it
satisfies (2.3). So for every line C R" x R, eitherL N epi(F) is empty or it is
connected. Howevel, N epi(F) may or may not be bounded. The next proposi-
tion shows that this boundedness property determines wh&thisra toric model.
The lineL is said to be nonvertical if it is not parallel to the axis® Cc R” x R.

ProrosiTioN 5.1. There exists a nonvertical liné C R"” x R such that
L N epi(F) is unbounded if and only if conditiaiB) of the main theorem fails.

Proof. Suppose that N epi(F) is unbounded for some link. SinceL is non-
vertical, it can be regarded as the graph of an affine function. Namely, there exists
an unbounded raR C 2 and an affine functios : 2 — R such that the graph

of the restricted functioi7 | ; is L. Letr be the distance from the initial point of

R. Then, for larger, G(r) corresponds to the unbounded portion.ofi epi(F).

That is, there exists ary such thatG(r) > F(r) for all r € (rg, 00). SinceG is

an affine function, there exist, ¢ such thatG(r) = mr + ¢ for all r € R. Thus

F(r) < mr+cforallr > ro. Equivalently, there existsiae Z" such thatF(r) <
Ar+cforallr > rgin R. Then
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/ e—F(fH—Arrn—ldr - /Ooe—F(r)+Arrn—ldr — e—c/ooe—F(r)-ﬁ-Ar-&-crn—ldr'

R ro ro

The final expression diverges becausé®+*7+¢ > 1 for all r > ro. Therefore,
condition (B) of the main theorem falils.

Conversely, suppose that condition (B) of the main theorem fails. Then there
exist arayR C R"” and a weight. € Z" such thatf, e " ** r"1dr = co. By
Lemma4.1R is unbounded and the functidf(r) — Ar is strictly decreasing along
R. For suitablen > 0 andc, we can construct an affine functi@h(z) = mr + ¢
on R such thatG (rg) = F(rg) for somerg. SinceG is increasing along, it fol-
lows thatG(r) > F(r) — Ar for all r > rg. Then the graph of; is a line whose
intersection with eiF’) is unbounded. This proves the proposition. O

By Proposition 5.1, it follows that conditions (B) and (C) of the main theorem are
equivalent.

6. Gradient Function

In this section we investigate condition (D) of the main theorem. Bec&use
C>°(Q) is strictly convex, the gradient functiafY is a diffeomorphism of2 onto

its imageA . Condition (D) is equivalent to saying théf’) ~* maps bounded sets

to bounded sets. We shall show thate "4 r"~1dr < oo for every rayR

and weight. if and only if (F’)~* maps every bounded sequence to a bounded se-
guence. This will then establish the equivalence of conditions (B) and (D). The
two directions of these equivalent conditions are given by Propositions 6.1 and 6.3.

ProposITION 6.1.  Suppose thaf, e~ " +*r"=1 4y diverges for some. € Z"
and ray R. Then there exists a bounded sequefige C A such that the corre-
sponding sequendéF’)~(s;)} is unbounded.

Proof. Suppose thaf, e~ r"~14r diverges for some weighit and rayR.
For simplicity, writeG (x) = F(x) —Ax. ClearlyG’ is also one-to-one, and its im-
age isA — 1. By Lemma 4.1R is unbounded and decreases along. We rotate
and shift the coordinates so thRtis the positivex!-axis; thus, for this proposi-
tion (only), we writex € R” asx = (x% x?) € R x R""L The rays parallel t&
are called horizontal rays.

By Proposition 4.3, all the horizontal ragsare unbounded and their directional
derivatives(G|s)’ have a common least upper bouride R. Hence there exists a
u? e R"1such that: = (1%, u?) e R" is a limit point of A — 1. Let{g;} C A — 1
be a sequence converginguolf we now writeg; = (¢, ¢?), then

lim g = u®. (6.1)
11— 00
Let p; = (p1, p?) € Q be the corresponding sequence satisfyGrigp;) = ¢;.
We claim that{p;} C Q is an unbounded sequence. Suppose otherwise; we

derive a contradiction from here. {{;} is bounded, then so afg?} and{p?}.
Hence there exists an € R such that

pi1 <m (6.2)
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for all i, and
A= {piz}i - Rt (6-3)

is bounded. Recall that, by Proposition 4.3, every horizontal ray is unbounded.
Therefore, the infinite horizontal cylindér = {(z, A) : r > m} is contained irf2.
By Corollary 2.2,82 is geometrically strictly convex and so

C={t A :t>m}cCQ.

Leta € A. SinceG is strictly convex, the function — %(t, a) is increasing.
By Proposition 4.3,;?1 (t,a) — ut ast — oco. SinceA is compact, there exists a
¢ > 0 such that

- oG
t<m,acA = —(t,a) <u'—c. (6.4)
ax1

Then (6.2)—(6.4) imply thaf<; (p;) < u' — ¢ for all i. In other words,

qil < ul —C
for all i. This contradicts (6.1). By this contradiction, we conclude thg} is an
unbounded sequence as claimed.

Recall thatg; e A — 1. Lets; = ¢; + A € A. ThenF'(p;) = G'(p;)) + » =
gi+X = s; € A. So{s;} is a convergent sequencednsuch thaf(F’)~X(s;) = p;}
is unbounded. This proves the proposition. O

To obtain the converse of Proposition 6.1, we need the following lemma.

LeEmMA 6.2. Suppose thatthere exists an unbounded seqyenke 2 suchthat
F'(p;) — 0. Then there exists an unbounded Ry 2 such thatfR e Frn-ldr
diverges.

Proof. Let py, p2, ... be an unbounded sequenc&inand letF’(p;) — 0. Fix

p € 2, wherep # p,. We shall construct an unbounded ray with initial point

p. Since{ p;} is unbounded, we may assume (taking a subsequence if necessary)
that|p; — p| — oo. Let (0, r) be the polar coordinates centeregratso that we

can parameterize the rays with initial pojnby R,, 6 € S"~L Let R, be the ray

with initial point p and containing,. By compactness of”~1, a subsequence of

{¢:} € S"converges to somg e S”~1. We may assume that — ¢.

We claim thatR, is unbounded. For alt > 0, (¢,r) is a limit point of
U; Rg; C Q2 becauséR,,| — oo. Hence(e, r) € Q. SinceQ is geometrically
convey, it follows from(¢, r + ¢) € Q that (¢, r) € Q. So R, is unbounded as
claimed.

We also claim thaf’ decreases along,. Suppose otherwise. Then there exists
a sufficiently large such that%(q&, t) > 0. Let K C S"~! be a compact neigh-
borhood of¢ such that®, 1) € @ and%(@, t) > 0 for all @ € K. By compactness
of K, we can define

. [oF
O<m=m|n{8—(9,t):0€K}.
r

SinceF is strictly convex along eacRy, it follows that
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JoF
O<ms<——(@®r forall 0K, r=1. (6.5)
p

Write p; = (¢;, t;). Sincep; — ¢, it follows that¢; € K eventually. Alsoy; > ¢
eventually agp; — p| — oo. Then the conditionF’(p;) — 0 contradicts (6.5).
We conclude thaF decreases along, as claimed.

SinceR, is unbounded and’ decreases along, it follows by Lemma 4.1
that [, e~"r"~*dr diverges. O

This lemma leads to the converse of Proposition 6.1. /et — A be the dif-
feomorphism as before.

ProrosiTION 6.3. Suppose that there exists a bounded sequép¢ec A in
which {(F")Y(g;)} is unbounded. Then there exists a RyC Q and ai € Z"
such thatf, e~ "+ "1 4r diverges.

Proof. Let {g;} C A be a bounded sequence in whigh = (F')"(g,) is un-
bounded. Taking a subsequence if necessary, we may assumge thag € A.
Write G(x) = F(x) — gx, so thatG'(p;) — 0. Since{ p;} is unbounded, Lemma
6.2 says that there exists an unboundedRay €2 such that

f e FOFarpn=1 gy — / e O ldr = oco. (6.6)
R R

For suchR, we can replacg € R" with somex € Z" such thayr < Ar for all
r € R that are sufficiently far. Then (6.6) says thate"©**" =14y diverges.
The proposition follows. O

By Propositions 6.1 and 6.3, we have established the equivalence of conditions (B)
and (D) of the main theorem.

7. Concavity of Boundary

Recall that, sincé” € C*°(Q2) is strictly convex, its gradient’: Q@ — A is a dif-
feomorphism. Condition (D) is equivalent to saying that)~* sends bounded
sets to bounded sets, which clearly implies (E). The purpose of this section is to
show that, conversely, (E) also implies (D). Namelygiff is a sequence converg-
ing to g € dA then, in applying (D) and checking boundedness$(6f)~1(¢:)}.
we can ignore the case wherés concave. This will be proved in Proposition 7.3.
Note that forA we can only discuss geometric convexity in the sense of (1.5) or
(2.3); the analytic notion of convexity (as in Proposition 2.1) is not available be-
causeA may not have smooth boundary. For example; i€ C>(R?) is given
by F(x,y) = e* +¢”, thenA is the open first quadrant and so its boundary is not
smooth.
By the way, if2 = R" thenA has no concave boundary point.

ProrosiTION 7.1. If Q = R", thenA is geometrically convex.
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Proof. Let @ = R". We introduce the notatiof, € C*°(R") for ¢ € R", given
by F.(x) = F(x) —cx. ThenF, is strictly convex. Note thak, has a global min-
imum if and only ifc € A. Also, F,. has a global minimum if and only #.(x) —
oo whenevell x| — oo. This observation makes use@f= R".

Suppose that,s € A andg = r + (1 — 1)s for some O< ¢t < 1. We want
to show thayy € A. Sincer, s € A, the strictly convex functiong, and F, have
global minima. The same is true foF, and(1 — ¢) F;. Hence, forx e R”,

|x] > 00 = tF,(x), A—1)F;(x) > oo. (7.2)
Direct computation shows that
F,=tF, + 1 —-1)F;. (7.2)
Then (7.1) and (7.2)mply that, forx € R",
|x] > 00 = F,(x) — oc.
Therefore,F, has a global minimum. Equivalentlye A, which proves that\ is
geometrically convex. O

However, for general strictly convex domaifts the image sef may not be geo-
metrically convex. The following lemma will be needed for Proposition 7.3.

LEMMA 7.2. If g € A, then [, e "4 qV < oo,

Proof. Sinceqg € A, we write F'(p) = ¢ for somep € Q. Let (9, r) be the polar
coordinates centered at Let G(x) = F(x) — gx. ThenG € C*®(Q) is strictly
convex andG’(p) = 0. Thusp is the global minimum of5. Therefore,G in-
creases along every ra&ywith initial point p, namely(G|g)'(r) > 0. Pickc > 0
small enough so that the bal.(p) = {x e R" : |x — p| < ¢} is contained irt2.

Let S.(p) = dB.(p) be its boundary. The rest of the proof imitates the arguments
of (4.7) through (4.8) in Proposition 4.4. By compactnesS gp), we can define

0 <m < min{(G|g,)'(c) : @ € S"~1}. By compactness aB.(p), there exists &
such thainr — b < G(6, r) for all (6, r) € B.(p). By strict convexity ofG along
eachRy, it follows thatmr — b < G0, r) for all (6, r) € 2. Then

/e_GdV <eb/e_""dV
Q Q
< eb/ e ™M dv
§n-1xR+

o0
=’ do e "Ly
gn—1 0

The last expression converges because 0. This proves the lemma. O

The converse of Lemma 7.2 is not true. For examptd®*%* is always inte-
grable if2 is bounded. In the special case wh&e- R", the converse holds [3].

ProrosiTION 7.3. Letq € dA be a concave boundary point. {f;} C A con-
verges tqy, then(F’)~%(g,) is bounded.
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Proof. Sinceg is concave, there exist v € A such thay lies in the line segment
joining u andv. Sinceu, v e A, Lemma 7.2 implies that

f e POt gy < oo, / e FOIT gy < 0.
Q Q
Then Corollary 4.5 says that, for all rays
/ e FOrurn=l g, — oo, / e FOFvrn=lyp 0. (7.3)
R R
We claim that, for any raR C @,
/ e FOrar =1, — 0. (7.4)
R

If R is bounded, then Lemma 4.1 immediately gives (7.4) and there is nothing to
prove. Suppose then th&tis unbounded. Since lies between: andv, either
qr < ur orgr < vr for r € R that are far away. Equivalently,

e FOtar o= FOFur gp o= FO+ar _ p=Fn+ur (7.5)

for all € R that are far away. By (7.3) and (7.5}, e "+ r"Ldr < co. This
proves (7.4) for all the rayR C Q.

Now let p; = (F")"X(g;) and writeG(x) = F(x) — gx. ThenG’(p;) — O.
Suppose thaltp;} is unbounded. Then, along with'(p;) — 0, Lemma 6.2 says
that there exists a raf such thatf, e~ “r"~*dr = oc. But this contradicts (7.4).
Therefore{ p;} must be bounded, and the proposition follows. O

By Proposition 7.3, we conclude that the boundedne§s6) —(¢;)} is automatic
if {g;} approaches a concave point. Thus, conditions (D) and (E) of the main the-
orem are equivalent.

8. Examples

We provide the following three examples of strictly convex functigh®n 1-
dimensional domaing. Thus,

F:Q— R, Q=(a,b)CR, —c0o<a<b<o.

These examples illustrate the spirits of conditions (B), (C), and (D) of the main
theorem. The imaga of the gradient function is 1-dimensional, so it has no con-
cave boundary point. Therefore, condition (E) is irrelevant here.

ExaMPLE 8.1 F(x) = x2. Whethera, b are numbers of-co is not important
here. Note thagfab e~**+%x dx converges for alk. Equivalently,L N epi(F) is
bounded whenevek c R? is a nonvertical line. Sinc&’(x) = 2x, clearly
F'(U) = 2U is bounded if and only i/ is bounded, andF’)* has the same
property. Hencéd,, is always a toric model.

EXAMPLE 8.2 F(x) = e”.
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Casely > —oo0. Herefa” exp(—e* +Ax) dx converges for all. Equivalently,
wheneverL c R? is a nonvertical lineL N epi(F) is always bounded. Further,
F’(U) = ¢V is bounded if and only it/ is bounded, so in this cagé, is a toric
model.

Case 2:a = —o0. Fori < 0, we have tha}‘[_ozo exp(—e* + Ax) dx blows up
near—oo. Equivalently, if L has negative slope, thdnn epi(G) is unbounded
towardx — —oo. The gradient functionF’(x) = ¢* sends an unbounded set
(—00, ¢) to a bounded s&D, ¢¢), so hereH,, is not a toric model.

ExampLE 8.3. LetQ = R and letF be a strictly convex function whose graph
lies above the diagonals = y} and{x = —y}, having them as asymptotes. In
this caseH,, fails to be a toric model because of obstructions at both ehds,
From the integral viewpoint/ . e="®*** dx blows up neamro if A > 1 and
blows up near-oco if A < 1. From the epigraph viewpoint, let be the slope of
L C R2 ThenL N epi(F) is unbounded toward — oo if m > 1 and is un-
bounded toward — —oo if m < 1. From the gradient viewpoint, observe that
F’ is a diffeomorphism fronRR onto (-1, 1). Therefore,F’ maps the unbounded
sets(—o0o, u) and(v, co) to some bounded sets-1, F'(u)) and(F'(v), 1).

The various obstructions at theoo end will be removed ifi > —oo; similarly,
the obstructions at theo end will be removed ib < oco.

9. Bergman Kernel

In this section we discuss the Bergman kernel associated to the Kahlewferm
/—183F on X and then show that it is given by (1.6).

To avoid coefficients i, we trivialize it by the nonvanishing holomorphic sec-
tion s¢ of Proposition 3.2. Consider the Bergman spacef holomorphic func-
tions onX that are square-integrable with respect to the measurdV, namely,

H = {h: X — C: h is holomorphic and/ h(2)h(z)e FPav < oo}. (9.1)
X

The inner product of the Hilbert spaggis given by the integral, and we Igt |»
denote the corresponding norm.

ProrosiTioN 9.1. The trivializationhsy <> h defines an isomorphism between
the T-invariant Hilbert spaced{,, and H.

Proof. By direct computation, we have
IIhSo||2=/|h(Z)|2<So, so)dV  (by (1.2))
X
=/|h(z)|2e‘F(Z>dV (by Proposition 3.2)
X

= |lhl3 (by (9.2)).
This proves the proposition. O
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We useH to compute the Bergman kerngl: X x X — C, which is defined by
K(z,w) =), ex()ex(w), wherefe; }, is an orthonormal basis 6{. The infinite
sum converges and is independent of the choice of orthonormal basis [8, Sec. 1].

TueoreMm 9.2. If H, is a toric model, then the Bergman kernel is
eMztw)

K(z, w) = - -
}LGXZ:H fer eZ)»x F(x) gy

Proof. Suppose thafd, is a toric model. Ther*sq € H, for all . € Z".
Equivalently, by Proposition 9.2}% € H for all » € Z". By the Peter—Weyl theo-
rem (see [2, Thm. 5.10])¢** : A € Z"} is an orthogonal basis ¢{. Since

||e“||§—/e eMe FA gy = / e e F qy,
X xeQ

the Bergman kernel is
Az A(z+w)
e e
K(z,w) = E —_ E .
’ A A 20ax—F
el ||e Yl A freqe?FO AV
The theorem follows. O

If H, is not a toric model, then som#< do not lie in?#, and the expression in
the theorem contains some denominatfrs, e**~ ) 4V that diverge. In this
case we need to disregard such summands in order to obtain the Bergman kernel.
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