ON THE REPRESENTATION OF A FUNCTION
BY A POISSON TRANSFORM

Charles Standish

Recently, Pollard [1] has obtained a real inversion formula for the convolution
transforms
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with q(y) of bounded variation on every finite interval, and

(2) £(x) =71r f g(y)dy
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with g(y) integrable on every finite interval. The integrals are interpreted in the

sense
0
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In this paper we shall obtain necessary and sufficient conditions for f(x) to be
representable in the form (1) with

(I) afy) of bounded variation on (-, ),

or (II) af(y) nondecreasing and bounded on (-c0, «);
and for f(x) to be representable in the form (2) with

(IIT) g(y) integrable on (-, «),
or (IV) g(y) bounded on (-, c),
or (V) gly) eL, on (-0, ), for some p > 1.

Our conditions will be phrased in terms of the operator T, defined by the formula
th(x) = (cos tD)(x) + D~1(sin tD)f(x),

where
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o0

fx) = -;1-7 J u-2[f(x + u) + f(x - u) - 2f(x)]du,
2 (-1)kt2k§(2K)(x)

(cos tD)(x) = k§0 KT

. © (_1)ki2k+l
D-(sin tD(x) = = (-1)kt

F(2k
Z e i 6.

This operator was employed in constructing the inversion theory of [1].

THEOREM 1. The following set of conditions is necessary and sufficier
f(x) to be the Poisson transform of a function of bounded variation:

@) £(x) and f(x) € C™ for all veal x;
® |t )| < Bk, |Hx)| < Bk + 1)1,
where B is independent of k and x;

00

@ [ |Teit)]ax<Bjor [t|<1.

-00

Proof. The necessity of (a) and (b) is demonstrated in [1, pp. 543-547].
also shown in [1, p. 548] that if f is of the form (1), then

© @1 -t)d
) Ty ) = [ oo'(1(- t)zl g:(}:)y)z'
Since |
@ Jlde®)| < B< =,

1 1-t)dx
fimselax <3 flaat)| [ Gl
<3 [laem] < B

(when limits of integration are omitted, the range is understood to be (-eo, «
establish the sufficiency we first note that (a) and (b) guarantee the existen
transform th(x) for ltl < 1. In the next three lemmas we suppose that f(
f(x) satisfy conditions (a), (b) and (c) of Theorem 1.

LEMMA 1.1,

(cos tD)(y)dy 1 1-t ' 1+t
® 1+ @-yp ’Wf{<1-t2+<x-§?+(1+t)zf(x-y)z}f(")dy
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Proof. The left member of (5) is equal to

f Ozo (_l)ktZk f(2k)(y)

B TR T A

The estimates furnished by (b) enable us to integrate by parts 2k times and to write

£(2k) v ) dy azk 1
I+ &-yR~ ff(y)dka(l * - y)Z)dy

= ff(y)dyf (iu)2keiu(x-y) g-lulgy

The rest of the proof parallels [1, p. 547].

LEMMA 1.2.

D-(sin tD)f(y)dy 1 1-t 1+t
f 1+ &k-y) _ﬂf{(l ~t2r ®-y)e (T+02+ (x- y)z}f(y)dy'

Proof. As in the lemma above,

f(Zk)(y)dy " a2k 1
fl + x-y)2" f(y)dka(l +(x - y)Z) dy.

Now let

(o]

fe x)= f u-ff(x + u) + f(x - u) - 2f(x)]du.

4

Since by (c) f(x) is in L, fe (x) is in L. and has a Fourier transform
oo . 2
F (x) j (s“‘—rx“) du,
g

where F(x) is the Fourier transform of f(x). Furthermore f ¢ () has a bound which
is independent of ¢, for

£, )| < (J.1 + J?o)u‘z|f(x+ u) + f(x - u) - 2f(x)|du.

The boundedness of f(x) implies that the second integral is less than 3B, and by
the mean-value theorem of the differential calculus, there exist values &,(x, u) and
£,(x,u) ®< & <X+ u,x-u<E <x) such that

u2|[f(x + u) - £&x)] - [f&) - £&x - w)]| = u ' (£,(x, ) - £'(£,, u))|
< urtfin(gg(x, w)) (4, - £,)| < 2B.

Thus the first integral is less than 2B, |fa (x)| < 5B, and by dominated converg-
ence
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2k 2k

2 d 1 2 d 1
£y) ( Z)dy lim (£, () ( )d
“dy2k\ 1 4 (x - y) e >0 a(ydka 1+ (x-y)2 Y

s, [ rove e ([ (#50 an) o

rf(y)dyfeiu(x‘y) (iu)?k |u|e- lul g,

the last step being justified by the fact that f(x) is in L. We may now trea
fashion analogous to (5) [1, p. 547] and obtain our result.

LEMMA 1.3.

1 (Tef(y)dy

w S T e

Proof. Adding (5) and (6), we find that the left member of (7) is equal t

lim
t>1

1 [ (1 - iy)dy
rJA-t2+ &-y)2’

and it is well known that this integral tends to f(x) [3, p. 31].

We now set

y
at(y)=f T, f(u)du.

0

By (c),

la,0)< [ ITi@lass,

hence by Helly’s selection theorem [2, p. 29] there exists a sequence
ft ¢ >1ask>w)
and a function a(x) of bounded variation on (-«, ©) such that

lim o, )= ai).
koo K

By virtue of Lemma 1.3 and the definition of a(x),

e 1 [T IOy 1 day, &)
k;mw; 1+ ix-y52~kf>m°°.7—r 1+ x-yp2

—1im1fa (y)i( 1 dy =
T koo T te ¥ dy 1+(X'Y)2) v =
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Since the atk(y) are uniformly bounded in y and k, we may take the limit under

the integral sign; this yields the relation

e L

Integrating by parts once more, we have

_ 1 da(y)
tx) = ;fmx—ir

THEOREM 2. The following set of conditions is necessary and sufficient for
f(x) to be representable in the form (2) with g(y) integrable:
(a) £(x) and f(x) € C* for all veal x;
() |f(k) x)| < Bk!, lf(k)(x)l < B(k + 1)!, wheve B is independent of k and x;
- - !

(c)f|th(x)|dx§B when |t|<1;

@) t_)11,113_“]lfrt.f(x) - T f(x)|dx = 0.

Proof. The demonstration of the necessity of conditions (a) to (c) involves only
trivial modification of the proofs in Theorem 1. To establish the necessity of (d), we
write

T 6) - 80) = ; [T pplE® - ew ds.

Let £ -y = w; when

fIth(y) - gly)|dy < ,%fdyle—_:l—t'):j;z lely + w) - gly)|dw

=7% n—_l—t'zth—w_zdwflg(yqx— w) - g(y)|dy.

Let ¢(w) = f |e + w) - g(y)|dy; then, since g(y) € L, we have lim ¢(w)= 0 and
w>»0

tim [ @ - Dow)dw

i1 (@ -t2+ w? =¢(0)=0.

Hence lim I|th(y)‘- g(y)|dy = 0, and this implies (d).
t>1

For the sufficiency we observe that conditions (a) to (c) guarantee a representa-
tion in the form (1), and that we may assume a(y) to be normalized [2, p. 16]. By
the inversion formula for (1) [1, p. 549],

X

lim T, f(u)du = a(x),

t>1
0
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and by (d), T, f(y) converges in the mean to a function g(y); hence

X

X
lim th(u)du = g(u)du.
t->1 o o

Since «a(x) is an integral, it has a derivative, almost everywhere, which is
g(x). Accordingly,

£(x) =7%f1 gy)dy

THEOREM 3. The following set of conditions is necessary and sufficie
f(x) to be vepresentable in the form (2) with |g(y)| < B:

(@) f(x) and f(x) € C* for all real x;

) |t Rx)] < Bk}, |f (B(x)| < B(k + 1), wheve B is independent of k a

(e) |T#x)| < B.

Proof. The necessity of (a)and (b) are shown in [1, pp. 543-547]. Since

_1{(1-telyldy
Ty £Gc) T .f(l -t + (x - y)2’

B f (1 -t)dy _
|th(X)| 5_7? _(1 - t)2+ (x - y)2 = B.
For the sufficiency we need two lemmas.

LEMMA 3.1. Let f(x) satisfy (a) and (b) and let {i,(x)} be a sequence
tions satisfying the condilions

t.x)| < B, |£,("&)|< B,
f,x) =0 (|x|>n),

lim f(x) = f(x);
-3 co

then f,(x) exists, |i,(x)| < B, and 1lim f,(x) = f(x).
— n >

Proof. We first observe that there exists a sequence {f,(x)} satisfying
hypotheses of the lemma. An example is furnished by the functions

fx) (|x|<n-1),
0 (x| > n),

f (x)= a,g+a,x-n+1)+ gnz(x -n+1)2+a sx-n+ 1)3+ a,x -
+a sx-n+1)> @-1<x<n),

boo+bpix+n-1)+b x+n-1)2+b s&x+n-1)3+b ,(x
+bsx+n-1)° (-n<x<-n+1),



REPRESENTATION OF A FUNCTION BY A POISSON TRANSFORM 101
where the a_;, are determined by the conditions

f,n-1)=f-1),fm-1)=£@-1), ("0 -1)="@ - 1),
f,(n) = £} (n) = f(n) = 0
and the bpx are determined by replacing n-1 by 1 - n and n by -n in the argu-
ments of the functions above. Utilizing again the techniques which were employed in

demonstrating the boundedness of f (x) in the previous theorem, we can show that
If (x)| < 5B. By dominated convergence,

lim oou"“[fn(x +u) + £,(x - u) -2f, (u)]du = f(x),

o0
n-> o

since the integral is majorized by

2B 0<u<1),
F(u) =
3B/uz (1 <u<w).
LEMMA 3.2. Let f(x) satisfy (@) and (b) of Theovem 3; then

£ (k) .
%7:?_-)-9%)—2 = ff(y)deelu(x'Y) @w*[ule” ! dqu.

Proof. By successive integrations by parts, the left-hand side of the equation
becomes

D[16)3 (1+(x1 53) 9

But since fn(x) is bounded and fn(x) is integrable,
dk 1

nl_lf; fn(Y)dyk(l + (x - y)2)

= lim ffn(y)dyfeiu(X-Y) (wk|u| e~ dqu

n-» oo

= ff(v)dyfeiu(x'Y) (iw)k |u| e-lul du,
the last step being justified since |f(y)| < B and the function
' feiu(x'Y) G [u] e~ du
is in L [1, p. 546].

We may now establish, by arguments similar to those employed in Theorem 1,
that '
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\im T i )dy - ).
t—)l'” T+ -y

To complete the proof of the sufficiency, we observe that (e) guarantees the
of a sequence {ty} (t,>1 as k>) and a bounded function g(x) such that

lim 1 Ty f6)dy 1 gly)dy
K> o0 1+ x-yPF 71+ &E-y2°

Hence

1 g(y)dy
fl 1+ &x-y)2 =1{k).

THEOREM 4. The following set of conditions is necessary and sufficie
f(x) to be vepresentable in the form (1) with o(y) nondecreasing and bounde

(a) f(x) and f(x) € C™ for all real x;

(b) |f(k)(x)5 Bk, 1f(k)(x)|§ B(k + 1)!, where B is independent of k a

) f(x) € L (-o0, o);

) Tyfx)>0 (Jt]<1).

Proof. Since a bounded nondecreasing function is of bounded variation,
and (f) are necessary for the representation. Since

(- t)d )
T = 1 [ V)

with daly) > 0, (g) is necessary. For the sufficiency, we may employ the 1
used in Theorem 3 to obtain the relation

Tif(y)dy [ (1 - t)i(y)dy
1+ x-yP J@A-tP+ x-y)2°

We need now only establish that f T, f (y)dy < B, and the result will foll
Theorem 1; but

(8) thf(Y)dY = %thf@)deﬁ;T;ﬁ

- L fo (DY

1 1 - t)f@)dy
B ;r—fdx J(1-1t)2+&x-y)?

1 (1 - t)dx
;ff(y)dy f(l -2+ x-y)2

[16)dy < B, vy .
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THEOREM 5. The following set of conditions is necessary and sufficient for
f(x) to be representable in the form (2) with g(x) in Ly (e, o)
(@) 1) and f(x) e C* for all real x;

(b) If(k) (x)]s Bk!, lf(k)(x)ls Bk + 1)!, where B is independent of k and x;

0) [|Tt@)[Pay <B  (t|< D).

Proof. For the necessity, we need only establish (h), since the necessity of (a)
and (b) may be deduced from [1, pp. 543-547].

[ITtePay < | dy| [,

- 1/ _ 1/ _
< Jo| f oot tmar) " emotitr) el af

and by Hblder’s inequality the integral above is not greater than

P

’

.
’

I (1-t)|g(u)|Pdu)( (1 - t)du )P/q

1-tF+y-up 1-t)2+ (y - uP
but
(1 - t)du
A-tFs G uE =7
and hence

[ITs@lPay < [lewP au [ Uz 0 . <5,

For the sufficiency we may proceed as in Theorems 3 and 4 to establish

T, {(y)dy
(9) t1i>17r TE—_Y)——“)

By a selection theorem [4, p. 130], (h) guarantees the existence of a function
g(x) in L, and a sequence {t,} (t,>1) such that

im L [T S04y 1[ 80y .
k> oo )1+ x- y;i 1+ x-y)2°

but by (9) the expression above is equal to f(x).
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