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A New Characterization of Hyperellipticity

BERNARD MASKIT

1. Introduction

A (geodesic)necklaceon a closed Riemann surface of genus> 2 is a cycli-

cally ordered set of 2 + 2 simple nondividing closed geodesics (in the hyper-
bolic metric) Ly, ..., Ly,12, Where eachL; intersectsL;_; exactly once, inter-
sectsL; 1 exactly once, and is otherwise disjoint from every other geodesic in
the necklace. In this note we give a new characterization of hyperellipticity in
terms of geodesic necklaces; this characterization is distinct from that given by
Schmutz-Schaller [11]. We also give a geometric proof of Jgrgensen’s theorem
[5], which states that, on a hyperbolic orbifold of dimension 2, there are infi-
nitely many closed geodesics passing through every point of intersection of closed
geodesics.

We denote the hyperbolic plane B¥?; we will usually regard this as the up-
per half-plane. The group of all orientation preserving isometrigdotan be
canonically identified with PS2, R), the group of real Z 2 matrices with unit
determinant.

A discrete subgroup of P32, R) is elementarnyif it is a finite extension of
a cyclic group. For our purposes, a Fuchsian group is a finitely generated non-
elementary discrete subgroup of R3LR).

We will use the following notation throughout. Matrices in R3LR) are
denoted bya, b, ...; the corresponding hyperbolic isometries are denoted by
a, b, .... If the transformatioru is hyperbolic, its axis is denoted by,; fur-
ther, ifa is a hyperbolic element of the discrete gradpthen we denote by.,
the projection ofd,,, which is a geodesic 0H?/G.

Elliptic elements of order 2 are callédlf-turns. The fixed point of a half-turn
in HZ is its center(or verte®). In general, for any grougy and for any se#t, the
stabilizerof A in H is given by

Stal(A) = {h € H | h(A) = A}.
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2. The One-Holed Torus

Let a andb be hyperbolic transformations whose axes cross, wheee (a, b)
is discrete. (We usé, ...) to denote the group generated dy....) It is well
known thatH?/H is a torus with one hole if and only if the trace of the com-
mutator i, b] is less than—2. If S = H?/H is not a torus with a hole, thes
has finite area, anfl has one of the signaturé8, 3; vy, vo, v3), 2 < v; < o0;
(0,4,2,2,2,v),2 <v <o00;0r(1,1;v), 2 <v < oo (see [10]). Itis also well
known that ifS = H?/H is not a torus with a hole and i is a subgroup of the
discrete grougs, then H is of finite index inG, which also has one of the above
signatures.

It follows from the preceding remarks that, if the hyperbolic transformations
andb (with crossing axes) generate a purely hyperbolic Fuchsian gkbupen
H is free on these two generators ahe= H?/H is a torus with a hole. Then, us-
ing the fact that all pairs of generatorsifcan be obtained frorma andb by using
Nielsen transformations, it follows that,df andb’ are any generators @f, then
A, andA, also cross.

2.1. THE CANONICAL EXTENSION. In any case, let be the point of intersection
of A, andA,, and letj be the half-turn with center at Thenj(A,) = A, but
with reversed orientation, andA,) = A, but with reversed orientation. It fol-
lows thatjaj ' = a~%, and jbj ' = b~%. (Even thoughj* = j, we write jaj >
to emphasize the fact that this is a conjugation.) Sijfce= 1, this implies that
j« = ja~tandj, = jb~tare also half-turns. The center pflies onA, halfway
betweenz anda(z); call this pointz,. Likewise, the center of, is atz, € Ay,
halfway between andb(z).

In the case tha§ = H?/H is a torus with a hole, then the three points., z,
project to three distinct points ofn

2.2. BounparY AXEs AND HALF-PLANES.  In general, a hyperbolic elemant

G is aboundary elemerit its axis A, bounds a half-plane that is precisely invari-
ant under a hyperbolic cyclic subgroup Gf In this case, the axid, is called

a boundary axis.In the case thaH?/G is a torus with a hole, the commutator
[a, b] is a primitive boundary element, and every boundary eleme@tisfconju-
gate to some power of it. The projections of the boundary axes akmthedary
geodesics.

Let G be any Fuchsian group. The convex h@llG) is the smallest hyper-
bolically closed and convex set whose Euclidean closure contains the limit set,
A(G). If G is of the first kind, therC(G) = H2. If G is of the second kind, then
C(G) is bounded by a disjoint collection of boundary axes and hyperbolic lines
that (i) have limit points of5 at both ends and (ii) bound half-planes that are pre-
cisely invariant under the identity. ¢ is finitely generated, thefi(G) is bounded
only by boundary axes, and (moduld there are only finitely many of these. The
convex coref G is c(G) = C(G)/G.

ProrosiTiON 2.1. LetT be a torus with a hole. Then there is a unique conformal
involutionn: T — T. Furthermore,n has exactly three fixed points @h
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Proof. Let a andb generate the universal covering grodpof T; thena andb
are hyperbolic with crossing axes. Lsbe the point wherd , crossesA,,, and let
Jj be the half-turn about. Thenj normalizesH; hencej projects to a conformal
involutionn: T — T.

Let x, x4, x;, be the projections of, z,, z,,, respectively. Then, x,, andx,
are three distinct fixed points gfon T.

Now letn be any conformal involution of. It is well known thatT can be con-
formally embedded in a closed torlisso thaty has a conformal extension o
(see e.g. [7]). We call this conformal extension by the same namejth&n— 7
is also a conformal involution. Sinegpreserved, it also preserves its comple-
ment on7, which is topologically a disc. Henoghas at least one fixed point on
7. Every conformal homeomorphism of a closed torus has either four fixed points
or none, we conclude thathas four fixed points off. Moreover, becauseis a
conformal involution on the complement &fin 7' (which is a closed disc); has
exactly one fixed point there. We conclude thatas exactly three fixed points
inT.

Sincen is ahyperbolicisometry, it preserves the boundary geodedic bance,
it preserves (T), whose interioc(T) is also a torus with a hole. We next repro-
duce the foregoing argument, starting witl{7") rather tharif. We embead-%(T")
in 77, so thaty extends to a conformal involution &, and conclude (as before)
thatn has three fixed points ar?(7).

Let S be the double of%(T'), so thatS is a symmetric closed Riemann surface of
genus 2. The symmetry. S — S has one dividing geodesic of fixed points—this
is the boundary geodesic of(7T), andS/r = c(T). Sincen is continuous up to
the boundary of(T), it has a unique extension to a conformal homeomorphism
(which we call by the same name) acting §nNow, n: S — § is a conformal
involution with six fixed points; hence it is the hyperelliptic involution. Since the
conformal structure o8 is uniquely determined by the conformal structurefon
and the reflected conformal structure on its double, and since the hyperelliptic in-
volution on any surface is unique, it follows thats uniquely determined by the
conformal structure off. O

REMARK 2.1. One can prove Proposition 2.1 using the fact that a torus with a hole
has a unique representation as a closed torus with a Euclidean disc removed. It was
also remarked by Abikoff (personal communication) that one can prove this fact
using existence and uniqueness of the infinite Nielsen extension. However, there
does not appear to be a simple direct proof of the uniqueness of the involution.

It follows from the preceding that, if andb are any pair of generators of a purely
hyperbolic Fuchsian groupl representing a torus with a hole, andjifis the
half-turn with fixed point at the point of intersection &f andA,, then; projects
to the unique conformal involution on T = H?/H. Also, L, andL, each pass
through two of the three fixed points gf

ProrosiTiON 2.2. Let L be a simple closed nondividing geodesic on the torus
with a holeT. ThenL passes through two of the three fixed points of the unique
conformal involutiory: T — T.
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Proof. It is well known that, giverL, there is another simple closed geodeHic
crossingL exactly once. We choose directions on each of these geodesics, so that
they determine elementsandb in the fundamental group (i.eL, = L, andM =
Ly). Itis also well known that andb generater,(T).

We saw before thak, and L, each necessarily pass through two of the three
fixed points ofy. U

ProrosiTION 2.3. LetT be a torus with a hole, and lat be a fixed point of the
unique conformal involutiom: T — T. There are infinitely many simple closed
geodesics passing through

Proof. Leta andb be generators of the Fuchsian group represerfijrand let;
be the half-turn with center at the crossing paimtf A, andA,. ThenL, andL,
are simple geodesics dhcrossing exactly once. Call the point of intersectign
and letx, € L, andxz € L, be the other two fixed points af

Let ¢ be eithemd ora—b. ThenL. is a simple geodesic di crossing botlL,
andL, exactly once. Sincé. contains exactly two of the three fixed pointsiof
and sincel. crosses each df, andL, exactly oncel. passes through, andxs
but notx;.

We have shown that, if andb are generators of;(T) (where the correspond-
ing geodesicd., andL, cross atv;) and if L, also passes through andL, also
passes throughg, then the elementary Nielsen transformati¢nsb) — (a, ab)
and(a, b) — (a, a~b) both yield two new generators whose (simple) geodesics
cross atxy; also, the elementary Nielsen transformati¢msb) — (ab, b) and
(a, b) — (a'b, b) both yield two new generators whose (simple) geodesics cross
at x3. Since the (outer) automorphism group of a free group is an infinite group
generated by Nielsen transformations, we can now easily construct a sequence of
distinct pairs of generators crossing at any one of the three paints, x3. O

3. Jargensen’s Theorem

We next prove Jgrgensen’s theorem [5] (see also [6]) on crossing points of geo-
desics.

ProrosiTion 3.1. Let L and M be closed geodesics crossing at the pairtn
the hyperbolic orbifoldS. Then there are infinitely many distinct closed geodesics
passing through.

Proof. Let G be the Fuchsian group representifiget A, and A, be the axes of
the elements andb (respectively), wherd , projects tol. = L, andA, projects
to M = L,. We can assume without loss of generality thaandb have been
chosen so that, and A, cross at;, which projects tox.

The four fixed points of the hyperbolic elementandb are distinct, so there
is a sufficiently high-power such thatd = (a”, b") is the uniformizing group
of a torus with a hole. We know from Proposition 2.3 that there are infinitely
many closed geodesics dn passing through the projection of Hence, there



A New Characterization of Hyperellipticity 7

are infinitely many axes of hyperbolic transformationsGbpassing through.
Since the stabilizer of in G is finite and since each closed geodesiS@an pass
throughx only finitely often, these infinitely many axes project to infinitely many
distinct closed geodesics ¢h O

4. Precisely Embedded Subgroups

From here on, we assume that all Fuchsian groups are purely hyperbolic.

Let H be a subgroup of the Fuchsian groGp If H is non-elementary, then
its convex hullC(H) has non-empty interior; it is a hyperbolic cyclic group,
thenC(H) consists of a single hyperbolic line, the axiskf if H is trivial, then
C(H) = . Inany case(C(H) is H-invariant.

Assume thaHf is non-elementary. We defi®’(H ) to be the interior o (H).
We say thatH is precisely embeddeid G if g(C°(H))NCYH) =¢forallge
G — H; thatis,CO(H) is precisely invariant undei in G.

SinceH C G, there is a natural covering mag; : H?/H — H?/G. One eas-
ily sees that the statement thitis precisely embedded i@ is equivalent to the
statement thapy is injective onc®(H). Also, sinceG is torsion-freepy is a local
homeomorphism. It follows that iff is precisely embedded i@ then we can re-
gardc®(H) as a subsurface of(G), which in turn is a subsurface 6f= H?/G.

4.1. Tae ELEMENTARY Case. If H is hyperbolic cyclic, therC(H) is a single
hyperbolic lineL. In this case, we say thaf is precisely embeddeifl L projects
to a simple closed geodesic 6rand if H = Stal(L).

If H is a hyperbolic cyclic precisely embedded subgroug othen we choose
some sufficiently smakt > 0 and defineC°(H) to be the set of all points at dis-
tance less thanfrom L. The collar lemma (see e.g. [1] or [2, p. 94]) asserts that
there is are > 0 depending only on the length &f/H such thatC%(H) is pre-
cisely invariant undeH in G; that is,C°(H) projects to an embedded topological
annulus (collar) ors.

The trivial subgroup is precisely embedded in every group.

ProrosiTioN 4.1. If H is precisely embedded in the finitely generated Fuchsian
group G, then H is finitely generated.

Proof. There is nothing to prove iff is elementary, so we assume tliais non-
elementary.

It is well known that a non-elementary Fuchsian gra@ujs finitely generated
if and only if c%(G) has finite area. Sina@ is finitely generated;°(G) has finite
area. Sincéd C G, C%(H) c C°%G). Then, sincepy is injective onc®(H ) and
pu(c®(H)) c ¢%G), it follows thatc®(H ) has finite area. O

ProposITION 4.2, LetG be a Fuchsian group, and 16 be a subsurface of =
HZ/G; LetSo C H? be a connected component of the preimag&pénd letH =
StalSp). ThenH is precisely embedded .
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Proof. There is nothing to prove iff is trivial, so we assume thaf is nontrivial.

Since Sy is a subsurface aof, Sp is precisely invariant under its stabilizéf
in G. Also, sinceSy is connected, for every primitive hyperbolic element H
there is ami-invariant pathV, c So: since it isa-invariant, the endpoints df, lie
at the endpoints of\,.

Leta andb be not necessarily distinct (hyperbolic) elementglofand letg be
some element of, g ¢ H. SinceS, is precisely invariant undefl, we have that
g(V,) NV, = . Looking at the endpoints of these curves on the circle at infinity,
we see thag(A,) N A, = 0.

It then follows that, ifH = (a) is cyclic, then no translate of, crossesA,,.
Hence, in this casd is precisely embedded. From here on, we assumeHlhiat
non-elementary.

The complement af (H ) consists of atif -invariant set of boundary half-planes,
where each boundary half-plane is either a boundary axis or is bounded by a line
whose stabilizer is the identity, where both of its endpoints are limit poinis;of
this latter possibility occurs only iff is infinitely generated.

We first take up the case théat is finitely generated, in which cas&(H) is
bounded only by boundary axes. lidie a boundary element &f. Then, since no
axis of A(gHg 1) crossesA,, the entire limit set ogHg ™ lies on one side ofi ;.
Either there is a particular boundary axis separating\(H ) from A(gHg ™) or
not. If not, thenC(gHg™1) c C(H), from which it follows that there is ame H,
so thatA,,,-» C C(H). Then, since the fixed points of hyperbolic elements are
dense inA(H) x A(H), there is someé € H with A;, crossingA,,,1 = g(A.),
which cannot be.

For the infinitely generated case, we note that the hyperbolic lines on the bound-
ary of C(H) are either boundary axes (in which case the previous argument ap-
plies) or they are lines that are precisely invariant under the identity, iwhere
both endpoints are limit points @f. In this latter case, we can approximate the
line on the boundary of (H) with axes ofH. As before,A(gHg™) lies entirely
on one side of each of these axes, so either there is a line on the bound&#y of
separatingC%(gHg ™) from C°(H) or g(C(H)) = C(gHg™) C C(H). Again,
since the axes of hyperbolic elements are dengg i) x A(H), this latter pos-
sibility cannot occur. O

5. Conjugation Invariant Subgroups

Let j be a half-turn. A subgrouff C G is conjugation invariant undey (or sim-
ply conjugation invariantif there is no danger of confusion) ji7j 1 = H. One
sees at once that, H is conjugation invariant, thep)(C(H)) = C(H).

ProrosiTION 5.1. Let G be afinitely generated Fuchsian grguet j be a half-
turn, and letH; and H, be nontrivial, conjugation invariant, precisely embedded
subgroups ofi. Then there is a conjugation invariant precisely embedded sub-
groupH C G with H D (Hy U H>).

Proof. Let z be the fixed point o, and letx be the projection of to § = H%/G.
Fori = 1, 2, sinceH; is precisely embedded i@, S; = ¢°(H;) is embedded in
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¢%G) c S; hence we can considéi and S, as subsurfaces of. Also, since
CO(H,;) is connecteds; is connected.

If H; is cyclic, thenS; consists of a metric tubular neighborhood of a simple
closed geodesic; in this case, the fixed peinecessarily lies on that geodesic and
sois aninterior point of;. If H; is non-elementary then, by Proposition 4,is
finitely generated. Thes; is bounded by a finite number of simple disjoint closed
geodesics; here again, one easily seesiimegcessarily lies in the interior ¢f.

SinceH; is conjugation invariantj projects to a conformal involution; of S;
with fixed pointx. Sincen; andn, are both projections of, there is a neigh-
borhoodU c $1N S, of x for whichn:|U = n,|U. By the identity theorem, there
is a single involutiom; acting onS; U S», Wheren|S,- = ;.

Let § ¢ H? be the connected component of the preimags;af S, contain-
ing z, and letH = Stal(S). SincesS; U S, is p-invariant andv is an interior point
of $1N So, it follows that S is j-invariant. We conclude thai = Stal(S) is
conjugation invariant. Also, sincg& andS, are both connected arfy N S, has
non-empty interiorS; U S, is connected.

Since $; U S, is connected,S contains liftings of bothS; and S; that is,
CO%H;) c § (i =1 2). It follows that H = Stal{S) contains the stabilizers of
bothC°(H;) andC°(H,). HenceH contains bothH; and Hs.

SincesS; U S, is a subsurface of, S is precisely invariant under its stabilizer
H. It then follows from Proposition 4.2 tha@ is precisely embedded i. [

ProrosiTiON 5.2, Let G be a finitely generated Fuchsian group, and jdte a
half-turn. Then there is a unique maximal, conjugation invariant, precisely em-
bedded subgroupl c G.

Proof. For any (finitely generated) Fuchsian grakiplet Area(K') denote the hy-
perbolic area of(K). We have already observed thatHf is a precisely embed-
ded subgroup of; thenc®(H) is embedded ia°(G), from which it follows that
Area(H) < Area(G).

Further, ifH is precisely embedded & andH # G then, since we are dealing
only with purely hyperbolic groups, there is a hyperbolic elemeatG whose
axis lies outside”(G). It follows that, in this case;°(H) is properly contained
in ¢%G), from which we conclude that Ar¢& ) < Area(G).

Next observe that, iff is precisely embedded i@, then it is precisely embed-
ded in every intermediate subgro#pC H' C G. Hence, ifH' > H, H # H,
and H' is also precisely embedded and conjugation invariant, then(Afga>
Area(H ). Our result now follows from Proposition 5.1, together with the fact that
the set of areas of (unramified) hyperbolic surfaces is discréke in O

6. The Index of a Half-Turn

Let j be a half-turn; leG be a finitely generated Fuchsian group; andddte the
maximal, precisely embedded, conjugation invariant subgroup of

We first take up the case thatis of the first kind; that is, its limit set is the en-
tire circle at infinity. ThenC%H) = H?. SinceH is precisely embedded i&,
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H = G. ThenS = H?/G is a closed surface of some genuswe set the rank of
H (relative toj) to be 2p.

If H is of the second kind then, sin¢gis finitely generated and purely hyper-
bolic, H is either trivial or free on a finite numberof generators. I is trivial,
then we define the rank df (relative toj) to be 0. If H is nontrivial, then the
rank of H (relative toj) is the rank of the free groufd. In any case, ifH = G
thenjGj~ = G, soj projects to a conformal involution acting onS = H?/G.

The involution; has a unique fixed pointe H?; we also think of the rank of
H as being the rank of or of its projectionx € § = H?/G.

7. Geodesic Necklaces

LetL = Ly, ..., Ly,+2beageodesic necklaa the closed surfackof genugp >

2. Thatis,Ly, ..., Ly, are distinct, unoriented, simple nondividing geodesics,
called thelinks of £; regarding these links as being circularly ordered, each
crossed.; i at exactly one point, crossés,; at exactly one point, and crosses
no other link of£. The 2p 4 2 crossing points of the links are called tiesof L.
Alink in £ is evenly spaced the two arcs between the two ties lying on it have
equal length itself is evenly spaced every link is evenly spaced.

A closed Riemann surface of genpiss hyperelliptic if it admits an orientation
preserving conformal involution, called the hyperelliptic involution, with exactly
2p + 2 fixed points. Equivalentlys is hyperelliptic if it is conformally equiva-
lent to a two-sheeted covering of the Riemann sphere (necessarily branched over
2p + 2 points). It is well known that there is at most one hyperelliptic involution
on any Riemann surface. It is also well known that, on a hyperelliptic surface,
the Weierstrass points are exactly the fixed points of the hyperelliptic involution.
Proofs of these facts can be found for example in [3].

REMARK 7.1. Theconstruction of a geodesic necklace on a hyperelliptic surface,
where every link is invariant under the hyperelliptic involution and the ties occur
exactly at the Weierstrass points, appears in [9]; for the convenience of the reader,
we outline the construction here.

ProrosiTioN 7.1. If S is hyperelliptic then there is an evenly spaced geodesic
necklacel on S, where the individual links ofC are invariant under the hyper-
elliptic involutionn and the ties ofL are at the fixed points of.

Proof. RegardS as a two-sheeted covering of the Riemann sphere branched over
the pointszy, ..., 22,12, Where these points have been ordered in some fashion.
Construct paths/j, ..., V;,.,, whereV/ connectsz; to z;+1 (V3,,, connects
z2p+2 10 z1) and where thesei2+ 2 paths are nonintersecting, except thas a
common pointof;_; andV;. LetV; be the corresponding geodesic on the sphere,
where the hyperbolic metric is defined by making these-2 points special points

of order 2. LetZ; be the preimage ofi of V;. Using the standard conformal struc-
ture near a special point of order 2 (that is, two directions at an angteabt;
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lift to two directions at an angle af/2 at the preimage of; on S), it is easy to
observe that each; is ann-invariant simple closed geodesic; thiatandL; 1 in-
tersect exactly at the preimagezf which is a fixed point ofy; and thatZ; and
L; intersectonly ifi =i &1 Hencel = L4, ..., Ly,42 is a geodesic necklace.
Since the conformal involution has its fixed points at the ties @f, every geo-
desic passing through a fixed point#®is necessarily;-invariant; hence, every
link of L is p-invariant.

Near each fixed point; interchanges the two arcs of each link passing through
that fixed point; hence interchanges the two arcs of each link cut out by the two
fixed points lying on that link. Sinceis a hyperbolicisometry, each link is evenly
spaced. Thereford; is evenly spaced. O

ProposiTION 7.2. If there is a geodesic necklacg= L, ..., Ly, 42 on S with
2p — 2 successive evenly spaced links, then

(i) S is hyperelliptic

(i) every link of £ is invariant under the hyperelliptic involution
(iii) the ties of L lie at the Weierstrass points afy and
(iv) Lis evenly spaced.

Proof. Suppose there is a geodesic neckldamn S with 2p — 2 successive evenly
spaced links; we label the links df, in order, so that the evenly spaced links are
Ly, ...,Ly,—q. Fori =1,...,2p +1 letx; be the tie betweed; andL, ;. We
orient each link in some manner and reparameterize it (if necessary) using arc-
length as the parameter, so thais the base point of both; andL, and so that,
fori =3,...,2p, x;_1is the base point of,;. LetLjr be the arc ofL; going in
the positive direction from;_; to x;. We choosex; as the base point fory(S).
Foreach =3, ...,2p, we choose the path = L --- L} ; fromx; tox; ;1. (We
usea - b to denote the path: first thens.) SetL| = L,, L), = L,, and, fori =
3....2p, L =v; - L; -vl._l.
Itis easy to see that, if one cufsalong the geodesidsy, ..., Ly,, then the re-
sulting compact 2-manifold is both connected and simply connected. Hence, any
loop onS that is based at; can be deformed so as to lie on the graph formed by
L1, ..., Lyy; further, any loop based a{ is homotopic to a product of the, and
their inverses. We conclude that, .. ., L’Zp generatery(S, x1).
We choose some poini € H? lying overx; and, fori = 2, ..., 2p, letz; be
the endpoint of the lifting of; starting atz;.
Let A; (resp.A2) be the hyperbolic line lying ovek; (resp.L,) and passing
throughz;. For eachi = 3 ..., 2p, let A; be the hyperbolic line lying ovet,;
and passing through_;. We can regardi; as being oriented with the orientation
lifted from L;. There is a unique primitive elemeat € G, where the (oriented)
axis ofa; is A;. We have constructeg so that, under the natural correspondence,
it is the element of5 corresponding td.;. HenceG = (ay, ..., azp).
Fori = 2,...,2p — 1, L; is evenly spaced. This means that, 4n z; lies
halfway between;_; anda;(z;_1). Fori = 2,...,2p — 1, let j; be the half-turn
with fixed point atz;. Then the fact that; lies halfway between; 1 anda;(z;_1)
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can be interpreted as saying that; o ai‘l =jifori=2,...,2p —1 Sincej;_1
is an involution, we obtain

jl',]_:j,'Oa[:a;le,‘, 122,,2p—1 (1)

Also, sincej; is the half-turn with fixed point af;, which is the point of intersec-
tion of L; with L, 1, we have that, forall =1, ...,2p — 1,

jicaiojit=a7t  jioaiiojit=a;l. (2
Let j = j; be the half-turn with fixed point at. We have already observed in
(2) that

joaloj_lzail and desz_lzagl.

Furthermore, using equations (1) and (2) yields
joagoj_lz jzoazoagoaglojgl
=a;"0 jaoazo j3 oaz
= az_loagloaz.

Thus we have shown thato az o j e G.
Continuing in this fashion, for every= 4, ..., 2p we have that

. .1 . .1
]OaiO] :Jloaiojl

:aglojzoaiojgloaz

=(1£1061§10"'061i__110jiOaioji_loai—lo"'oaz

-1 -1 -1
=a, o---0a;,0d; 0a;-10---04dy.

We have shown thatoa; o jte G foralli =1,...,2p. Therefore,j has rank
2p in G; that is,G is conjugation invariant.

It follows from equation (1) thaj = j4, ..., j2,—1 all project to the same con-
formal homeomorphism of S. Since each; is an involution, so ig;. Of course,
the points;, ..., z2,—1 project to the @ — 1 distinct tiesxy, ..., x2,-1 0f £; hence
n has at least 2 — 1 fixed points. It is an easy consequence of Hurwitz’s theo-
rem that the number of fixed points of a conformal involution on a closed surface
of genusp is either 0 or of the form 2 + 2 — 4k, 0 < k < [p/2]. Sincen has
2p — 1fixed points, it has 2 + 2 fixed points. ThusS is hyperelliptic andy is
the unique hyperelliptic involution. This concludes the proof of (i).

We have shown thathas fixed points at those tiesfthat lie between the given
2p — 2 evenly spaced link&,, ..., L,,_1. It follows thatn keeps each of these
links invariant. Also, we have definedas the projection of = j;, which keeps
invariant the axis ofi;; hencen(L,) = Ly. Similarly, j»,_1, which also projects
to n, keeps invariant the axes @,_1 anday,; it follows thatn(L,,) = L,. We
note thatl,,1 is the unique (unoriented) simple closed geodesic that is disjoint
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from Ly, ..., Ly,—1and crosses ,, exactly once. Sincg keepsLy, ..., Lo, in-
variant, it also keepg 1 invariant. Finally,L,, > is the unique simple closed
geodesic that is disjoint from,, ..., Ly, and crosses each @f andL,,,1 ex-
actly once. Sincey preserved., ..., Ly,1, it also preserved s, ». This con-
cludes the proof of (ii).

We already know that the linké,, ..., L,,_;1 are evenly spaced and that the
ties between these links are at fixed pointg diVe also know that the tie between
LiandL, is a fixed point ofy. Sincen(L1) = L1, n has a second fixed point on
L. Likewise, sincej(L2,-1) = L,—1, it follows thatn has a second fixed point
onLj, 1. Then, since)(Lz,) = La,, the second fixed af on L,,_; must lie on
the tie betweerd.,,_; andL,,. Next, n keepsL,, invariant and so has a second
fixed point onLy,; then, since; keepsL,,1 invariant, this second fixed point
must be the tie betweely, andL 1. Next,n has a fixed point o, 11 and so
has a second fixed point dip,.1; then, since; keepsL ., invariant, this sec-
ond fixed point is at the tie betwedr,,; andL,, .. Finally, once we have one
fixed point ofy on Ly, 2, there must be a second fixed point at the tie between
Ly,+2 andLy. This concludes the proof of (iii).

Each link of L is n-invariant, and the ties lie at the fixed pointsiefwhich acts
as an isometry in the hyperbolic metric. Conclusion (iv) now follows.

Combining the results of Propositions 7.1 and 7.2, we have proven the following.

THEOREM 7.1. A closed Riemann surfadeof genusp > 2is hyperelliptic if and
only if there is an evenly spaced geodesic necklace on it, which in turn occurs if
and only if there is a necklace on it wiftp — 2 successive evenly spaced links.

8. Special Case of Genus 2

ProrosiTioN 8.1.  On a closed Riemann surface of geRusvery geodesic neck-
lace is evenly spaced, with its ties lying at the fixed points of the hyperelliptic
involution.

Proof. Itwas shown by Haas and Susskind [4] that, in genus 2, every simple closed
geodesic is invariant under the hyperelliptic involution. Thus,ahdw are a pair

of simple closed nondividing geodesics meeting at one point, then this point of in-
tersection must be a Weierstrass point—that is, a fixed point of the hyperelliptic
involution. Hence every tie of every geodesic necklace is a Weierstrass point. It
follows that the hyperelliptic involution interchanges the two arcs of each link be-
tween the ties. Hence, as before, every geodesic necklace is evenly spaCéd.

REMARK 8.1. Even in genus 2, the relationships among the six lengths and an-
gles of a geodesic necklace can be quite complicated. A set of six real parameters
for the Teichmuiller space of surfaces of genus 2, using three of these lengths and
two of these angles together with the hyperbolic length of one other geodesic arc,
appears in [8].
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