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A New Characterization of Hyperellipticity
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1. Introduction

A (geodesic)necklaceon a closed Riemann surface of genusp ≥ 2 is a cycli-
cally ordered set of 2p + 2 simple nondividing closed geodesics (in the hyper-
bolic metric)L1, . . . , L2p+2, where eachLi intersectsLi−1 exactly once, inter-
sectsLi+1 exactly once, and is otherwise disjoint from every other geodesic in
the necklace. In this note we give a new characterization of hyperellipticity in
terms of geodesic necklaces; this characterization is distinct from that given by
Schmutz-Schaller [11]. We also give a geometric proof of Jørgensen’s theorem
[5], which states that, on a hyperbolic orbifold of dimension 2, there are infi-
nitely many closed geodesics passing through every point of intersection of closed
geodesics.

We denote the hyperbolic plane byH2; we will usually regard this as the up-
per half-plane. The group of all orientation preserving isometries ofH2 can be
canonically identified with PSL(2,R), the group of real 2× 2 matrices with unit
determinant.

A discrete subgroup of PSL(2,R) is elementaryif it is a finite extension of
a cyclic group. For our purposes, a Fuchsian group is a finitely generated non-
elementary discrete subgroup of PSL(2,R).

We will use the following notation throughout. Matrices in PSL(2,R) are
denoted byã, b̃, . . . ; the corresponding hyperbolic isometries are denoted by
a, b, . . . . If the transformationa is hyperbolic, its axis is denoted byAa; fur-
ther, if a is a hyperbolic element of the discrete groupG, then we denote byLa
the projection ofAa, which is a geodesic onH2/G.

Elliptic elements of order 2 are calledhalf-turns.The fixed point of a half-turn
in H2 is its center(or vertex). In general, for any groupH and for any setA, the
stabilizerof A in H is given by

Stab(A) = {h∈H | h(A) = A}.
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2. The One-Holed Torus

Let a andb be hyperbolic transformations whose axes cross, whereH = 〈a, b〉
is discrete. (We use〈a, . . . 〉 to denote the group generated bya, . . . .) It is well
known thatH2/H is a torus with one hole if and only if the trace of the com-
mutator [̃a, b̃] is less than−2. If S = H2/H is not a torus with a hole, thenS
has finite area, andS has one of the signatures(0,3; ν1, ν2, ν3), 2 ≤ νi ≤ ∞;
(0,4;2,2,2, ν), 2 < ν ≤ ∞; or (1,1; ν), 2 ≤ ν ≤ ∞ (see [10]). It is also well
known that ifS = H2/H is not a torus with a hole and ifH is a subgroup of the
discrete groupG, thenH is of finite index inG, which also has one of the above
signatures.

It follows from the preceding remarks that, if the hyperbolic transformationsa

andb (with crossing axes) generate a purely hyperbolic Fuchsian groupH, then
H is free on these two generators andT = H2/H is a torus with a hole. Then, us-
ing the fact that all pairs of generators ofH can be obtained froma andb by using
Nielsen transformations, it follows that, ifa ′ andb ′ are any generators ofH, then
Aa ′ andAb ′ also cross.

2.1. The Canonical Extension. In any case, letz be the point of intersection
of Aa andAb, and letj be the half-turn with center atz. Thenj(Aa) = Aa but
with reversed orientation, andj(Ab) = Ab but with reversed orientation. It fol-
lows thatjaj−1 = a−1, andjbj−1 = b−1. (Even thoughj−1 = j, we writejaj−1

to emphasize the fact that this is a conjugation.) Sincej2 = 1, this implies that
ja = ja−1 andjb = jb−1 are also half-turns. The center ofja lies onAa halfway
betweenz anda(z); call this pointza. Likewise, the center ofjb is at zb ∈ Ab,
halfway betweenz andb(z).

In the case thatS = H2/H is a torus with a hole, then the three pointsz, za, zb
project to three distinct points onS.

2.2. Boundary Axes and Half-Planes. In general, a hyperbolic elementa ∈
G is aboundary elementif its axisAa bounds a half-plane that is precisely invari-
ant under a hyperbolic cyclic subgroup ofG. In this case, the axisAa is called
a boundary axis.In the case thatH2/G is a torus with a hole, the commutator
[a, b] is a primitive boundary element, and every boundary element ofG is conju-
gate to some power of it. The projections of the boundary axes are theboundary
geodesics.

Let G be any Fuchsian group. The convex hullC(G) is the smallest hyper-
bolically closed and convex set whose Euclidean closure contains the limit set,
3(G). If G is of the first kind, thenC(G) = H2. If G is of the second kind, then
C(G) is bounded by a disjoint collection of boundary axes and hyperbolic lines
that (i) have limit points ofG at both ends and (ii) bound half-planes that are pre-
cisely invariant under the identity. IfG is finitely generated, thenC(G) is bounded
only by boundary axes, and (moduloG) there are only finitely many of these. The
convex coreof G is c(G) = C(G)/G.
Proposition 2.1. LetT be a torus with a hole. Then there is a unique conformal
involutionη : T → T. Furthermore,η has exactly three fixed points onT.
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Proof. Let a andb generate the universal covering groupH of T ; thena andb
are hyperbolic with crossing axes. Letz be the point whereAa crossesAb, and let
j be the half-turn aboutz. Thenj normalizesH ; hencej projects to a conformal
involutionη : T → T.

Let x, xa, xb be the projections ofz, za, zb, respectively. Thenx, xa, andxb
are three distinct fixed points ofη onT.

Now letη be any conformal involution onT. It is well known thatT can be con-
formally embedded in a closed torusT̂, so thatη has a conformal extension tôT
(see e.g. [7]). We call this conformal extension by the same name; thenη : T̂ → T̂

is also a conformal involution. Sinceη preservesT, it also preserves its comple-
ment onT̂, which is topologically a disc. Henceη has at least one fixed point on
T̂. Every conformal homeomorphism of a closed torus has either four fixed points
or none, we conclude thatη has four fixed points on̂T. Moreover, becauseη is a
conformal involution on the complement ofT in T̂ (which is a closed disc),η has
exactly one fixed point there. We conclude thatη has exactly three fixed points
in T.

Sinceη is a hyperbolic isometry, it preserves the boundary geodesic onT ;hence,
it preservesc(T ), whose interiorc0(T ) is also a torus with a hole. We next repro-
duce the foregoing argument, starting withc0(T ) rather thanT. We embedc0(T )

in T̂ ′, so thatη extends to a conformal involution on̂T ′, and conclude (as before)
thatη has three fixed points onc0(T ).

LetS be the double ofc0(T ), so thatS is a symmetric closed Riemann surface of
genus 2. The symmetryr : S → S has one dividing geodesic of fixed points—this
is the boundary geodesic ofc0(T ), andS/r = c(T ). Sinceη is continuous up to
the boundary ofc(T ), it has a unique extension to a conformal homeomorphism
(which we call by the same name) acting onS. Now, η : S → S is a conformal
involution with six fixed points; hence it is the hyperelliptic involution. Since the
conformal structure onS is uniquely determined by the conformal structure onT

and the reflected conformal structure on its double, and since the hyperelliptic in-
volution on any surface is unique, it follows thatη is uniquely determined by the
conformal structure onT.

Remark 2.1. One can prove Proposition 2.1 using the fact that a torus with a hole
has a unique representation as a closed torus with a Euclidean disc removed. It was
also remarked by Abikoff (personal communication) that one can prove this fact
using existence and uniqueness of the infinite Nielsen extension. However, there
does not appear to be a simple direct proof of the uniqueness of the involution.

It follows from the preceding that, ifa andb are any pair of generators of a purely
hyperbolic Fuchsian groupH representing a torus with a hole, and ifj is the
half-turn with fixed point at the point of intersection ofAa andAb, thenj projects
to the unique conformal involutionη on T = H2/H. Also, La andLb each pass
through two of the three fixed points ofη.

Proposition 2.2. Let L be a simple closed nondividing geodesic on the torus
with a holeT. ThenL passes through two of the three fixed points of the unique
conformal involutionη : T → T.
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Proof. It is well known that, givenL, there is another simple closed geodesicM

crossingL exactly once. We choose directions on each of these geodesics, so that
they determine elementsa andb in the fundamental group (i.e.,L = La andM =
Lb). It is also well known thata andb generateπ1(T ).

We saw before thatLa andLb each necessarily pass through two of the three
fixed points ofη.

Proposition 2.3. LetT be a torus with a hole, and letx be a fixed point of the
unique conformal involutionη : T → T. There are infinitely many simple closed
geodesics passing throughx.

Proof. Let a andb be generators of the Fuchsian group representingT, and letj
be the half-turn with center at the crossing pointz of Aa andAb. ThenLa andLb
are simple geodesics onT crossing exactly once. Call the point of intersectionx1,

and letx2 ∈La andx3 ∈Lb be the other two fixed points ofη.
Let c be eitherab or a−1b. ThenLc is a simple geodesic onT, crossing bothLa

andLb exactly once. SinceLc contains exactly two of the three fixed points ofη
and sinceLc crosses each ofLa andLb exactly once,Lc passes throughx2 andx3

but notx1.

We have shown that, ifa andb are generators ofπ1(T ) (where the correspond-
ing geodesicsLa andLb cross atx1) and ifLa also passes throughx2 andLb also
passes throughx3, then the elementary Nielsen transformations(a, b) 7→ (a, ab)

and(a, b) 7→ (a, a−1b) both yield two new generators whose (simple) geodesics
cross atx2; also, the elementary Nielsen transformations(a, b) 7→ (ab, b) and
(a, b) 7→ (a−1b, b) both yield two new generators whose (simple) geodesics cross
at x3. Since the (outer) automorphism group of a free group is an infinite group
generated by Nielsen transformations, we can now easily construct a sequence of
distinct pairs of generators crossing at any one of the three pointsx1, x2, x3.

3. Jørgensen’s Theorem

We next prove Jørgensen’s theorem [5] (see also [6]) on crossing points of geo-
desics.

Proposition 3.1. LetL andM be closed geodesics crossing at the pointx on
the hyperbolic orbifoldS. Then there are infinitely many distinct closed geodesics
passing throughx.

Proof. LetG be the Fuchsian group representingS, letAa andAb be the axes of
the elementsa andb (respectively), whereAa projects toL = La andAb projects
to M = Lb. We can assume without loss of generality thata andb have been
chosen so thatAa andAb cross atz, which projects tox.

The four fixed points of the hyperbolic elementsa andb are distinct, so there
is a sufficiently high-powern such thatH = 〈an, bn〉 is the uniformizing group
of a torus with a holeT. We know from Proposition 2.3 that there are infinitely
many closed geodesics onT passing through the projection ofz. Hence, there
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are infinitely many axes of hyperbolic transformations ofG passing throughz.
Since the stabilizer ofz inG is finite and since each closed geodesic onS can pass
throughx only finitely often, these infinitely many axes project to infinitely many
distinct closed geodesics onS.

4. Precisely Embedded Subgroups

From here on, we assume that all Fuchsian groups are purely hyperbolic.
Let H be a subgroup of the Fuchsian groupG. If H is non-elementary, then

its convex hullC(H ) has non-empty interior; ifH is a hyperbolic cyclic group,
thenC(H ) consists of a single hyperbolic line, the axis ofH ; if H is trivial, then
C(H ) = ∅. In any case,C(H ) isH -invariant.

Assume thatH is non-elementary. We defineC 0(H ) to be the interior ofC(H ).
We say thatH is precisely embeddedin G if g(C 0(H )) ∩ C 0(H ) = ∅ for all g ∈
G−H ; that is,C 0(H ) is precisely invariant underH in G.

SinceH ⊂ G, there is a natural covering mappH : H2/H → H2/G. One eas-
ily sees that the statement thatH is precisely embedded inG is equivalent to the
statement thatpH is injective onc0(H ). Also, sinceG is torsion-free,pH is a local
homeomorphism. It follows that ifH is precisely embedded inG then we can re-
gardc0(H ) as a subsurface ofc0(G), which in turn is a subsurface ofS = H2/G.

4.1. The Elementary Case. If H is hyperbolic cyclic, thenC(H ) is a single
hyperbolic lineL. In this case, we say thatH is precisely embeddedif L projects
to a simple closed geodesic onS and ifH = Stab(L).

If H is a hyperbolic cyclic precisely embedded subgroup ofG, then we choose
some sufficiently smallε > 0 and defineC 0(H ) to be the set of all points at dis-
tance less thanε fromL. The collar lemma (see e.g. [1] or [2, p. 94]) asserts that
there is anε > 0 depending only on the length ofL/H such thatC 0(H ) is pre-
cisely invariant underH inG; that is,C 0(H ) projects to an embedded topological
annulus (collar) onS.

The trivial subgroup is precisely embedded in every group.

Proposition 4.1. If H is precisely embedded in the finitely generated Fuchsian
groupG, thenH is finitely generated.

Proof. There is nothing to prove ifH is elementary, so we assume thatH is non-
elementary.

It is well known that a non-elementary Fuchsian groupG is finitely generated
if and only if c0(G) has finite area. SinceG is finitely generated,c0(G) has finite
area. SinceH ⊂ G, C 0(H ) ⊂ C 0(G). Then, sincepH is injective onc0(H ) and
pH(c

0(H )) ⊂ c0(G), it follows thatc0(H ) has finite area.

Proposition 4.2. LetG be a Fuchsian group, and letS0 be a subsurface ofS =
H2/G. LetS̃0 ⊂ H2 be a connected component of the preimage ofS0, and letH =
Stab(S̃0). ThenH is precisely embedded inG.
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Proof. There is nothing to prove ifH is trivial, so we assume thatH is nontrivial.
SinceS0 is a subsurface ofS, S̃0 is precisely invariant under its stabilizerH

in G. Also, sinceS̃0 is connected, for every primitive hyperbolic elementa ∈ H
there is ana-invariant pathVa ⊂ S̃0; since it isa-invariant, the endpoints ofVa lie
at the endpoints ofAa.

Let a andb be not necessarily distinct (hyperbolic) elements ofH, and letg be
some element ofG, g /∈H. SinceS̃0 is precisely invariant underH, we have that
g(Va)∩ Vb = ∅. Looking at the endpoints of these curves on the circle at infinity,
we see thatg(Aa) ∩ Ab = ∅.

It then follows that, ifH = 〈a〉 is cyclic, then no translate ofAa crossesAa.
Hence, in this case,H is precisely embedded. From here on, we assume thatH is
non-elementary.

The complement ofC(H )consists of anH -invariant set of boundary half-planes,
where each boundary half-plane is either a boundary axis or is bounded by a line
whose stabilizer is the identity, where both of its endpoints are limit points ofH ;
this latter possibility occurs only ifH is infinitely generated.

We first take up the case thatH is finitely generated, in which caseC(H ) is
bounded only by boundary axes. Letb be a boundary element ofH. Then, since no
axis of3(gHg−1) crossesAb, the entire limit set ofgHg−1 lies on one side ofAb.
Either there is a particular boundary axisAb ′ separating3(H ) from3(gHg−1) or
not. If not, thenC(gHg−1) ⊂ C(H ), from which it follows that there is ana ∈H,
so thatAgag−1 ⊂ C(H ). Then, since the fixed points of hyperbolic elements are
dense in3(H )×3(H ), there is someb ∈H with Ab crossingAgag−1 = g(Aa),
which cannot be.

For the infinitely generated case, we note that the hyperbolic lines on the bound-
ary ofC(H ) are either boundary axes (in which case the previous argument ap-
plies) or they are lines that are precisely invariant under the identity inH, where
both endpoints are limit points ofH. In this latter case, we can approximate the
line on the boundary ofC(H ) with axes ofH. As before,3(gHg−1) lies entirely
on one side of each of these axes, so either there is a line on the boundary ofC(H )

separatingC 0(gHg−1) from C 0(H ) or g(C(H )) = C(gHg−1) ⊂ C(H ). Again,
since the axes of hyperbolic elements are dense in3(H )×3(H ), this latter pos-
sibility cannot occur.

5. Conjugation Invariant Subgroups

Let j be a half-turn. A subgroupH ⊂ G is conjugation invariant underj (or sim-
ply conjugation invariant,if there is no danger of confusion) ifjHj−1= H. One
sees at once that, ifH is conjugation invariant, thenj(C(H )) = C(H ).
Proposition 5.1. LetG be a finitely generated Fuchsian group; let j be a half-
turn, and letH1 andH2 be nontrivial, conjugation invariant, precisely embedded
subgroups ofG. Then there is a conjugation invariant precisely embedded sub-
groupH ⊂ G withH ⊃ (H1 ∪H2).

Proof. Let z be the fixed point ofj, and letx be the projection ofz to S = H2/G.

For i = 1,2, sinceHi is precisely embedded inG, Si = c0(Hi) is embedded in
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c0(G) ⊂ S; hence we can considerS1 andS2 as subsurfaces ofS. Also, since
C 0(Hi) is connected,Si is connected.

If Hi is cyclic, thenSi consists of a metric tubular neighborhood of a simple
closed geodesic; in this case, the fixed pointx necessarily lies on that geodesic and
so is an interior point ofSi. If Hi is non-elementary then, by Proposition 4.1,Hi is
finitely generated. ThenSi is bounded by a finite number of simple disjoint closed
geodesics; here again, one easily sees thatx necessarily lies in the interior ofSi.

SinceHi is conjugation invariant,j projects to a conformal involutionηi of Si
with fixed pointx. Sinceη1 andη2 are both projections ofj, there is a neigh-
borhoodU ⊂ S1∩ S2 of x for whichη1

∣∣U = η2

∣∣U. By the identity theorem, there
is a single involutionη acting onS1 ∪ S2, whereη

∣∣Si = ηi.
Let S̃ ⊂ H2 be the connected component of the preimage ofS1 ∪ S2 contain-

ing z, and letH = Stab(S̃ ). SinceS1 ∪ S2 is η-invariant andx is an interior point
of S1 ∩ S2, it follows that S̃ is j -invariant. We conclude thatH = Stab(S̃ ) is
conjugation invariant. Also, sinceS1 andS2 are both connected andS1∩ S2 has
non-empty interior,S1 ∪ S2 is connected.

SinceS1 ∪ S2 is connected,S̃ contains liftings of bothS1 and S2; that is,
C 0(Hi) ⊂ S̃ (i = 1,2). It follows thatH = Stab(S̃ ) contains the stabilizers of
bothC 0(H1) andC 0(H2). HenceH contains bothH1 andH2.

SinceS1 ∪ S2 is a subsurface ofS, S̃ is precisely invariant under its stabilizer
H. It then follows from Proposition 4.2 thatH is precisely embedded inG.

Proposition 5.2. LetG be a finitely generated Fuchsian group, and letj be a
half-turn. Then there is a unique maximal, conjugation invariant, precisely em-
bedded subgroupH ⊂ G.
Proof. For any (finitely generated) Fuchsian groupK, let Area(K) denote the hy-
perbolic area ofc(K). We have already observed that ifH is a precisely embed-
ded subgroup ofG thenc0(H ) is embedded inc0(G), from which it follows that
Area(H ) ≤ Area(G).

Further, ifH is precisely embedded inG andH 6= G then, since we are dealing
only with purely hyperbolic groups, there is a hyperbolic elementa ∈ G whose
axis lies outsideC(G). It follows that, in this case,c0(H ) is properly contained
in c0(G), from which we conclude that Area(H ) < Area(G).

Next observe that, ifH is precisely embedded inG, then it is precisely embed-
ded in every intermediate subgroupH ⊂ H ′ ⊂ G. Hence, ifH ′ ⊃ H, H ′ 6= H,
andH ′ is also precisely embedded and conjugation invariant, then Area(H ′) >
Area(H ). Our result now follows from Proposition 5.1, together with the fact that
the set of areas of (unramified) hyperbolic surfaces is discrete inR.

6. The Index of a Half-Turn

Let j be a half-turn; letG be a finitely generated Fuchsian group; and letH be the
maximal, precisely embedded, conjugation invariant subgroup ofG.

We first take up the case thatH is of the first kind; that is, its limit set is the en-
tire circle at infinity. ThenC 0(H ) = H2. SinceH is precisely embedded inG,
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H = G. ThenS = H2/G is a closed surface of some genusp; we set the rank of
H (relative toj) to be 2p.

If H is of the second kind then, sinceG is finitely generated and purely hyper-
bolic,H is either trivial or free on a finite numbern of generators. IfH is trivial,
then we define the rank ofH (relative toj) to be 0. IfH is nontrivial, then the
rank ofH (relative toj) is the rank of the free groupH. In any case, ifH = G
thenjGj−1= G, soj projects to a conformal involutionη acting onS = H2/G.

The involutionj has a unique fixed pointz ∈H2; we also think of the rank of
H as being the rank ofz or of its projectionx ∈ S = H2/G.

7. Geodesic Necklaces

LetL = L1, . . . , L2p+2 be ageodesic necklaceon the closed surfaceS of genusp ≥
2. That is,L1, . . . , L2p+2 are distinct, unoriented, simple nondividing geodesics,
called thelinks of L; regarding these links as being circularly ordered, eachLi
crossesLi−1 at exactly one point, crossesLi+1 at exactly one point, and crosses
no other link ofL. The 2p+ 2 crossing points of the links are called thetiesof L.
A link in L is evenly spacedif the two arcs between the two ties lying on it have
equal length;L itself isevenly spacedif every link is evenly spaced.

A closed Riemann surface of genusp is hyperelliptic if it admits an orientation
preserving conformal involution, called the hyperelliptic involution, with exactly
2p + 2 fixed points. Equivalently,S is hyperelliptic if it is conformally equiva-
lent to a two-sheeted covering of the Riemann sphere (necessarily branched over
2p + 2 points). It is well known that there is at most one hyperelliptic involution
on any Riemann surface. It is also well known that, on a hyperelliptic surface,
the Weierstrass points are exactly the fixed points of the hyperelliptic involution.
Proofs of these facts can be found for example in [3].

Remark 7.1. Theconstruction of a geodesic necklace on a hyperelliptic surface,
where every link is invariant under the hyperelliptic involution and the ties occur
exactly at the Weierstrass points, appears in [9]; for the convenience of the reader,
we outline the construction here.

Proposition 7.1. If S is hyperelliptic then there is an evenly spaced geodesic
necklaceL on S, where the individual links ofL are invariant under the hyper-
elliptic involutionη and the ties ofL are at the fixed points ofη.

Proof. RegardS as a two-sheeted covering of the Riemann sphere branched over
the pointsz1, . . . , z2p+2, where these points have been ordered in some fashion.
Construct pathsV ′1, . . . , V

′
2p+2, whereV ′i connectszi to zi+1 (V

′
2p+2 connects

z2p+2 to z1) and where these 2p + 2 paths are nonintersecting, except thatzi is a
common point ofV ′i−1 andV ′i . LetVi be the corresponding geodesic on the sphere,
where the hyperbolic metric is defined by making these 2p+2 points special points
of order 2. LetLi be the preimage onS of Vi. Using the standard conformal struc-
ture near a special point of order 2 (that is, two directions at an angle ofα at zi
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lift to two directions at an angle ofα/2 at the preimage ofzi on S), it is easy to
observe that eachLi is anη-invariant simple closed geodesic; thatLi andLi+1 in-
tersect exactly at the preimage ofzi, which is a fixed point ofη; and thatLi and
Lj intersect only ifj = i ± 1. HenceL = L1, . . . , L2p+2 is a geodesic necklace.
Since the conformal involutionη has its fixed points at the ties ofL, every geo-
desic passing through a fixed point ofη is necessarilyη-invariant; hence, every
link of L is η-invariant.

Near each fixed point,η interchanges the two arcs of each link passing through
that fixed point; henceη interchanges the two arcs of each link cut out by the two
fixed points lying on that link. Sinceη is a hyperbolic isometry, each link is evenly
spaced. Therefore,L is evenly spaced.

Proposition 7.2. If there is a geodesic necklaceL = L1, . . . , L2p+2 on S with
2p − 2 successive evenly spaced links, then:

(i) S is hyperelliptic;
(ii) every link ofL is invariant under the hyperelliptic involution;

(iii) the ties ofL lie at the Weierstrass points onS; and
(iv) L is evenly spaced.

Proof. Suppose there is a geodesic necklaceL onS with 2p−2 successive evenly
spaced links; we label the links ofL, in order, so that the evenly spaced links are
L2, . . . , L2p−1. For i = 1, . . . ,2p + 1, let xi be the tie betweenLi andLi+1. We
orient each link in some manner and reparameterize it (if necessary) using arc-
length as the parameter, so thatx1 is the base point of bothL1 andL2 and so that,
for i = 3, . . . ,2p, xi−1 is the base point ofLi. Let L+i be the arc ofLi going in
the positive direction fromxi−1 to xi. We choosex1 as the base point forπ1(S).

For eachi = 3, . . . ,2p,we choose the pathvi = L+2 · · ·L+i−1 fromx1 toxi−1. (We
usea · b to denote the path: firsta thenb.) SetL′1 = L1, L

′
2 = L2, and, fori =

3, . . . ,2p, L′i = vi · Li · v−1
i .

It is easy to see that, if one cutsS along the geodesicsL1, . . . , L2p, then the re-
sulting compact 2-manifold is both connected and simply connected. Hence, any
loop onS that is based atx1 can be deformed so as to lie on the graph formed by
L1, . . . , L2p; further, any loop based atx1 is homotopic to a product of theL′i and
their inverses. We conclude thatL′1, . . . , L

′
2p generateπ1(S, x1).

We choose some pointz1 ∈ H2 lying overx1 and, fori = 2, . . . ,2p, let zi be
the endpoint of the lifting ofvi starting atz1.

Let A1 (resp.A2) be the hyperbolic line lying overL1 (resp.L2) and passing
throughz1. For eachi = 3, . . . ,2p, let Ai be the hyperbolic line lying overLi
and passing throughzi−1. We can regardAi as being oriented with the orientation
lifted from Li. There is a unique primitive elementai ∈G, where the (oriented)
axis ofai isAi. We have constructedai so that, under the natural correspondence,
it is the element ofG corresponding toL′i . HenceG = 〈a1, . . . , a2p〉.

For i = 2, . . . ,2p − 1, Li is evenly spaced. This means that, onAi, zi lies
halfway betweenzi−1 andai(zi−1). For i = 2, . . . ,2p − 1, let ji be the half-turn
with fixed point atzi . Then the fact thatzi lies halfway betweenzi−1 andai(zi−1)
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can be interpreted as saying thatji−1 B a−1
i = ji for i = 2, . . . ,2p−1. Sinceji−1

is an involution, we obtain

ji−1= ji B ai = a−1
i B ji, i = 2, . . . ,2p −1. (1)

Also, sinceji is the half-turn with fixed point atzi, which is the point of intersec-
tion ofLi with Li+1, we have that, for alli = 1, . . . ,2p −1,

ji B ai B j−1
i = a−1

i , ji B ai+1 B j−1
i = a−1

i+1. (2)

Let j = j1 be the half-turn with fixed point atz1. We have already observed in
(2) that

j B a1 B j−1= a−1
1 and j B a2 B j−1= a−1

2 .

Furthermore, using equations (1) and (2) yields

j B a3 B j−1= j2 B a2 B a3 B a−1
2 B j−1

2

= a−1
2 B j2 B a3 B j−1

2 B a2

= a−1
2 B a−1

3 B a2.

Thus we have shown thatj B a3 B j−1∈G.
Continuing in this fashion, for everyi = 4, . . . ,2p we have that

j B ai B j−1= j1 B ai B j−1
1

= a−1
2 B j2 B ai B j−1

2 B a2

...

= a−1
2 B a−1

3 B · · · B a−1
i−1 B ji B ai B j−1

i B ai−1 B · · · B a2

= a−1
2 B · · · B a−1

i−1 B a−1
i B ai−1 B · · · B a2.

We have shown thatj B ai B j−1∈G for all i = 1, . . . ,2p. Therefore,j has rank
2p in G; that is,G is conjugation invariant.

It follows from equation (1) thatj = j1, . . . , j2p−1 all project to the same con-
formal homeomorphismη of S. Since eachji is an involution, so isη. Of course,
the pointsz1, . . . , z2p−1 project to the 2p−1 distinct tiesx1, . . . , x2p−1 ofL; hence
η has at least 2p − 1 fixed points. It is an easy consequence of Hurwitz’s theo-
rem that the number of fixed points of a conformal involution on a closed surface
of genusp is either 0 or of the form 2p + 2− 4k, 0 ≤ k ≤ [p/2]. Sinceη has
2p − 1 fixed points, it has 2p + 2 fixed points. Thus,S is hyperelliptic andη is
the unique hyperelliptic involution. This concludes the proof of (i).

We have shown thatη has fixed points at those ties ofL that lie between the given
2p − 2 evenly spaced linksL2, . . . , L2p−1. It follows thatη keeps each of these
links invariant. Also, we have definedη as the projection ofj = j1, which keeps
invariant the axis ofa1; henceη(L1) = L1. Similarly, j2p−1, which also projects
to η, keeps invariant the axes ofa2p−1 anda2p; it follows thatη(L2p) = L2p. We
note thatL2p+1 is the unique (unoriented) simple closed geodesic that is disjoint
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fromL1, . . . , L2p−1 and crossesL2p exactly once. Sinceη keepsL1, . . . , L2p in-
variant, it also keepsL2p+1 invariant. Finally,L2p+2 is the unique simple closed
geodesic that is disjoint fromL2, . . . , L2p and crosses each ofL1 andL2p+1 ex-
actly once. Sinceη preservesL1, . . . , L2p+1, it also preservesL2p+2. This con-
cludes the proof of (ii).

We already know that the linksL2, . . . , L2p−1 are evenly spaced and that the
ties between these links are at fixed points ofη. We also know that the tie between
L1 andL2 is a fixed point ofη. Sinceη(L1) = L1, η has a second fixed point on
L1. Likewise, sinceη(L2p−1) = L2p−1, it follows thatη has a second fixed point
onL2p−1. Then, sinceη(L2p) = L2p, the second fixed ofη onL2p−1 must lie on
the tie betweenL2p−1 andL2p. Next,η keepsL2p invariant and so has a second
fixed point onL2p; then, sinceη keepsL2p+1 invariant, this second fixed point
must be the tie betweenL2p andL2p+1. Next,η has a fixed point onL2p+1 and so
has a second fixed point onL2p+1; then, sinceη keepsL2p+2 invariant, this sec-
ond fixed point is at the tie betweenL2p+1 andL2p+2. Finally, once we have one
fixed point ofη onL2p+2, there must be a second fixed point at the tie between
L2p+2 andL1. This concludes the proof of (iii).

Each link ofL is η-invariant, and the ties lie at the fixed points ofη, which acts
as an isometry in the hyperbolic metric. Conclusion (iv) now follows.

Combining the results of Propositions 7.1 and 7.2, we have proven the following.

Theorem 7.1. A closed Riemann surfaceS of genusp ≥ 2 is hyperelliptic if and
only if there is an evenly spaced geodesic necklace on it, which in turn occurs if
and only if there is a necklace on it with2p − 2 successive evenly spaced links.

8. Special Case of Genus 2

Proposition 8.1. On a closed Riemann surface of genus2, every geodesic neck-
lace is evenly spaced, with its ties lying at the fixed points of the hyperelliptic
involution.

Proof. It was shown by Haas and Susskind [4] that, in genus 2, every simple closed
geodesic is invariant under the hyperelliptic involution. Thus, ifv andw are a pair
of simple closed nondividing geodesics meeting at one point, then this point of in-
tersection must be a Weierstrass point—that is, a fixed point of the hyperelliptic
involution. Hence every tie of every geodesic necklace is a Weierstrass point. It
follows that the hyperelliptic involution interchanges the two arcs of each link be-
tween the ties. Hence, as before, every geodesic necklace is evenly spaced.

Remark 8.1. Even in genus 2, the relationships among the six lengths and an-
gles of a geodesic necklace can be quite complicated. A set of six real parameters
for the Teichmüller space of surfaces of genus 2, using three of these lengths and
two of these angles together with the hyperbolic length of one other geodesic arc,
appears in [8].
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