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A Complete Bounded Minimal Cylinder iR®

FrRANCISCO MARTIN & SANTIAGO MORALES

1. Introduction

Calabi asked if it were possible to have a complete minimal surfaé entirely
contained in a half-space. As a consequence of the strong half-space theorem
[6], no such surfaces are properly immersed. The first examples of complete ori-
entable nonflat minimal surfaces with abounded coordinate function were obtained
by Jorge and Xavier [7]. Their construction is based on an ingenious idea of using
Runge’s theorem. Later, Brito [1] discovered a new method to construct surfaces
of this kind. Examples of complete minimal surfaces with nontrivial topology,
contained in a slab dk3, were obtained by Rosenberg and Toubiana [12], Lopez
[8; 9], Costa and Simoes [3], and Brito [2], among others.

A few years ago, Nadirashvili [10] used Runge’s theorem in a more elaborate
way to produce a complete minimal disc inside a balRin(see also [4]).

In this paper we generalize the techniques used by Nadirashvili to obtain new
examples of complete minimal surfaces inside a ballithat have the conformal
structure of an annulus. To be more precise, we have proved the following.

THEOREM 1. There exist an open sdtof C and a complete minimal immersion
X: A — R3 satisfying

(1) X(A) is a bounded set oR3;

(2) A has the conformal type of an annulus.

This theorem is proved in Section 3.

We have obtained the immersighas limit of a sequence of bounded minimal
annuli with boundary. To construct the sequence we require a technical lemma
whose proof is exhibited in Section 4. This lemma allows us to modify the intrinsic
metric of a minimal annulus around the boundary without excessively increasing
the diameter of the annulus &®.

2. Background and Notation

The aims of this section are to establish the principal notation used in the paper
and to summarize some results about minimal surfaces.
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WesetD, ={zeC:|z| <r}, S, ={zeC: |z] =r}, andD* = D;\ {0}. Let
X: D* — R3 be a conformal minimal immersion. Then

¢j=—L —i—L, j=123 z=u+i, @

are holomorphic functions ob*, with real residues at 0, verifyinEf.=l ¢j2 =0
:’;1ndz;°.’:1|¢j|2 # 0. If we define

@3
b1 — iz’ @
theng is a meromorphic function oB* that coincides with the stereographic pro-
jection of the Gauss map. The behaviorfofs determined by the rule that is
holomorphic onD*, with zeroes precisely at the polesgfbut with twice order.

Conversely, iff andg are (respectively) a holomorphic and meromorphic func-
tion on D* such that

¢1=£(1—g2), ¢2=i§(1+82), $3=fg 3)
are holomorphic functions ob* and if ¢1, ¢, ¢3 have no real periods in zero,
then

f=¢1—ip> and g=

X: D* — RS,

4
X(2) =Re [ ($1(w), p2(w), ps(w))dw +¢, zoeD* ceR®  (4)
<0
is a conformal minimal immersion. It is usual to lakel= (¢1, @2, ¢3) as the
Weierstrass representation of the immerstoWe can write the conformal metric
associated to the immersiof, A2 (z)(-, -), in terms of the Weierstrass represen-
tation as follows:

I

1
(@ =31 @A+ lg()%) = 7

®)
For more details on minimal surfaces, see [11].

If ¢: D* — C3is holomorphic then we say thais of z2-typeif ¢;(z) = $;(z?)
forj =123 where&, are holomorphic functions ob*. When the Weierstrass
representatio is az2-type map, therX(z) + X(—z) is constant orD*. Hence,
we defineS(X) = X(z) + X(—z) for any one particulag € D*.

Leta be acurveirD*. By length(e, X)) we mean the length ef with the metric
associated toimmersion ForT ¢ D* we define the following distance: df b €
T let distx 1y(a, b) = inf{length(er, X) | @: [0,1] — T, «(0) = a, « (1) = b}.

If A C T, then distx.1)(z, A) means the distance between paigind setA. Any
other distance or length that we use without mentioning the metric will be associ-
ated to the Euclidean metric.

By apolygonal pair(P, Q) we mean a pair of closed simple curve®ihformed
by a finite number of straight segments verifying:

(@) D13 C Int(Q) C Int(Q) C D23 C Dyj3 C Int(P) C Int(P) C Dy;
(b) —ze Pforallze Pand—ze Qforallz € Q,
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where In{«) denotes the interior domain bounded by a Jordan aurttee exterior
domain is denoted by E&t). For a pair(P, Q), we writeT = Int(P) \ Int(Q).
If £ > 0 is small enough the@P?, Q%) represents a new polygonal pair, parallel
to (P, Q), such that:

() the Euclidean distance iR? from P to P¢ is &;

(i) the Euclidean distance iR? from Q to Q¢ is &;
(ii) the corresponding set¢ associated toP¢, Q%) is contained iff”

(see Figure 1 on page 505).

3. Proof of the Theorem
In order to prove the main theorem, we need the following lemma.

Lemma 1. LetX: D* — RS be a conformal minimal immersion. Consider the
polygonal pair(P, Q), p,r > 0and1 > k > 0, satisfying

(1) A-k)p < diSt(X,T)(Z, S2/3) <pforalzePUQ,;

(2) X(T) C B, =7{p€R3 el <rk

(3) X(2) = Re( [,3¢(w) dw) +c, wherec e R® and¢: D* — C?is of z*-type

4) sSxX)=0.

Then, for any > 0 and for anys, &, k¥’ > 0 verifying

(L—k)p < disty 7¢)(z, S2/3) < p Vze PEUQF, (6)
p<A=k)(p+s), (7)
pk <s, (8)

there exist a polygonal paifP, Q) and a conformal minimal immersidft D* —

RR3 such that

(1) A=k (p+s) <disty 5z, Szy3) < p+sforallze PUQ;

(2) Y(T) C Bgr whereR = \/r2 + (25)2 + ¢;

(3) Y(2) = Re( fz‘"‘/a Y(w)dw) + ¢/, wherec’ e R®* andy : D* — C3is of z%-
type

4) S(Y)=0;

5) Yy — X <e inNTE;

(6) T¢ c I(T) andT C I(T), wherel (O) denotes the topological interior of the
setO.

This lemma is similar in spirit to that used by Nadirashvili in [10]. However, we
have worked with non—simply connected planar domains bounded by polygonal
pairs, and so a period problem arises. To solve this problem we have made our
Weierstrass data az?-type map. Furthermore, when we take the limit in the con-
formal structure of our minimal annuli, this structure must not degenerate. This is
why we have dealt with pairs of parallel anniiliandT* .

Lemma 1is proved in Section 4.
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We use the lemma to construct the sequence
Xn = (Xn D* — ]R37 (Pna Qn)a En, gna kn)a

whereX, is a conformal minimal immersior(,P,, Q,) is a polygonal pair, and
{eq}, {£.}, {k,} are decreasing sequences of nonvanishing terms that converge to
zero. The sequendg ,} must verify the following properties:
(An) A —ky)pn < distx, 1,)(z, S2/3) < p, forall z € P, U Q,, wherep, =
i 1/is
(Bn) A—ky_1)pna< diSt TE”)(Z 52/3) < ,0n cforall z e Pénlu Qn ¥
(Cn) Xu(T,) C B,,, Whererl > 1andr,1 Vi 1+ 2/n)? + ¢&,;
(Dn) S(X,) =0
(En) X.(z) = Re( fzz/sqb”(w) dw) + ¢,, wherec, e R® and¢”: D* — C3is of
z2-type;
(Fn) 0<k, <1, pok, <1/(n+1), ande, < 1/n?;
Gn) 1Xy — Xucall <&, in T,7;
(Hn) Ax, = a,rx, , In Tf“l, where{a; };cn IS @ sequence of real numbers such
thatO< o; < 1and{[]_,;} convergesto/2 (e.g., taker = 3¢%?and
o, = e Y2 forn > 1);
(In) T, C (T-0);
() TE5 C1(TE:
(Kn) T,"1 C I(T,).
For instance, we can take

x1= (X1, (P, Q1), e1=1/2, &, k1 =1/3),

whereX;: D* — R3is given byX;(u + iv) = 5/2(u, —v, 0) and wherg Py, Q1)
is a suitable polygonal pair. Suppose that we haye. ., x,.

Now we construct the +1term. Choosg,, ; verifying (Fn.1) andg, 4 verify-
ing (Bn11) and(J,11) (the choice ot, ., is possible becausg, satisfiegA,) and
(Kn)). Moreover, we choose two decreasing and convergent sequences to zero,
{1} and{£,,}, with &,, < £,11andé, < 1/(n 4 1)? for all m. For eachmn we
considerY,,: D* — R3and(P,, O,.), as given by Lemma 1, for the following
data:

X=X, (P.Q)=(P..0n. k'=kpp, k=ky p=pa r=r,
N :1/(71 +1)’ &= éms é: = ém-

From assertion (5) of the lemma, we deduce that the seqyé&p¢eonverges to
X, on the space H&;,) of harmonic maps frorf, in R3. This implies tha{iy, }
converges uniformly tay, in 7.5 and hence there isrg € N such that

)"Ym0 > OllH—l)"Xn in Tn5n+1. (9)

We defineX, 11 = Y, (Putts @ns) = (Pugs Omo), @Nde,i1 = &,. Observe
thatk, .1, &,41, ande, 1 could be chosen sufficiently small so that the sequences
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{k:}, {&:}, and{e;} decrease and converge to zero. Because of the way in which we
have chosen the term, 14, it is easy to check (using Lemma 1) that,; verifies
(Ans1), (Bnyp), ..., (Kny1). This concludes the construction of the sequenge

Now we define
A= |< ﬁ T,,).

neN
The open sef has the following properties.

1) A=, T,f”*l. To prove this, first note that propertiék,), (J,), and(Ky)
imply J, 7,7"** € A. On the other hand, suppose that A \ | J, 7,"**. Then
z€T,\ T for all n  N. This implies that; € 34, which is absurd (recall
that A is open). This contradiction proves the equality.

(2) Ais an open arc-connected set.

(3) C \ A has two connected components; one of them contains 0 and the other
one is not bounded. Indeed, any point®f A could be connected with 0 or
oo by a continuous curve i€ \ 7, if n is large enough. Thel; \ A has two
connected components beca@g A has two arc-connected components.

Therefore,A is a domain inC such thatC U {co} \ A consists of two connected

components; thud is biholomorphic taC \ {0}, D\ {0}, orCy = {z € C: ¥ <

|z| < 1} (see [5, Thm. IV.6.9]). Bu# is a hyperbolic domain, sa # C — {0}.

FurthermoreA is a subset of the annul@y,; and a generator of the homology of

A also generates the homology®f{;3. Therefore A = C for a® €]0, 1[.

Let K be a compact set that is a subsefiofThen there is ang such thatk c

Tfﬁl foralln > ng. From(G,), we have:

oo o0 1
Xy — Xpall < Zsi < Zl—z in K, N >n>no.
Thus, the sequence of minimal immersigfy,} is a Cauchy sequence in Hat).
Consequently, Harnack’s theorem implies th¥}} converges in HA).
Let X: A — RS be the limit of{X,}. ThenX has the following properties.
(i) X is minimal and conformal.
(if) X is an immersion. Indeed, for anye A there exists: € N such that; €
Tf”*l. From property(H;) it follows that, for allk > n,

Ax, () = apdy, () = - >0 oyqary, (2) = Qp - QA (o)
Taking the limit ask — oo, we deduce that
Ax(z) = 3Ax,(2) >0 (10)

and soX is an immersion.
(i) X(A) is bounded irR3. Let z € A andn € N be such that € 7,7"*; then

IX@) < 1X2) = Xu@ Il + 1 X0l < 5 +7a
for ann large enough. The sequenfeg} is bounded irR.
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(iv) The annulusA is complete with the metric induced B§ Indeed, ifz is large
enough and taking (10) into account, one has:

diSt(X’ wal)(z/& 8Tnén+1) > %dist(mens,,H)(Z/?), BTnan).
The right-hand side of this inequality is controlled tB,), so we infer that
diSt(x, T”En+1)(2/3v 37;5"*’1) = %(1_ kn)pn-

The completeness is due to the fact t{éﬂ — kn),on}
This completes the proof of the theorem.

Loy diverges.

4. Proof of the Lemma

This section is devoted to proving Lemma 1. As we mentioned before, it is a gen-
eralized version of that used by Nadirashvili in [10] and by Collin and Rosenberg
in [4]. Although the proof is similar, we have introduced some new techniques
that permit us to apply Nadirashvili's methods to hon—simply connected planar
domains.

The following proposition is a direct consequence of Runge’s theorem and plays
a crucial role in this section.

ProrosiTioN 1. Letr > land letE;, E, be two disjoint compact sets &f such

that:

(a) E,=—E;,i=12

(b) C\ (E1U E>) has two arc-connected components, one that contains zero and
one that is not bounded.

Then there exists: C \ {0} — C, a holomorphic nonnull function, such that
(i) 1h =1 <1/tin Ey;

(i) |h—1| <z in Ey; A

(i) h(z) = h(z?), whereh is a holomorphic function i€ \ {0}.

Proof. Let E? = {z? : z € E;}, i = 1, 2. Itis clear thatE? and E3 are disjoint

and thatC \ (E? U E3) has two connected components: one contains zero and the
other is not bounded. Thanks to Runge’s theorem, foreany O there exists a
holomorphic functione: C \ {0} — C (with pole in zero) such that:

(@) |n| < eonEZ
(b) |1 —a| < e on E3, wheree® = .

We defineh(z) = e for ¢ small enough. O

The main idea in the proof of Lemma 1 is to use Proposition 1 successively over a
labyrinth constructed in a neighborhood of the boundarg.dalVe thus modify the
intrinsic metric of our immersion near the boundary without increasing in excess
the distance ifR3. Hence, the next step is to describe some subsdis difiat we

use to construct the aforementioned labyrinth.
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Consider(P, Q), the polygonal pair given in the statement of Lemma 1. s_et
ands’ be the number of sides @f andQ, respectively, and lev be a nontrivial
multiple of s ands’.

ReMark 1. Along the proof of the lemma, a set of real positive constants =
1, ...,13} depending orX, (P, Q), k, p, r, &, s, &, andk’ will appear. It is im-
portant to note that the choice of these constants does not depend on thesnteger

Let r; andr, be a lower and an upper bound (respectively) for the length of the
sides of polygonsP? and Q¢ for all ¢ < 2/N. Letvy, ..., vay be points in the
polygon P that divide each side af into 2N/s equal parts. We can transfer this
partition to the polygorP?/V: vy, ..., v, (see Figure 1). We define the following
sets:

L; =the segment that joing andv/, i =1,..., 2N;

P =PiIN i=0,.. 2N?

A=Y Int(Po) \ Int(Parp and A = UL Int(Pzip) \ Int(P2):

R = Uizgoz Pi;

Figure 1 Polygonal pairg P, Q) and(P?, Q%)
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B=ULiL2 andB = U5 Lo
L=BnA, L=BnA,andH =RULUL;
QF = {zeInt(Po) \ INt(P,y2) : dist(z, H) > min{1/(4N3), r1/N?}}.
We definew? as the union of the segment and those connected components of
Qf that have nonempty intersection with for i = 1,..., N. Similarly, we de-
fine »? as the union of the segmehf,,; and those connected component§xf
that intersecLy,; fori =1, ..., N. Finally,

o] = {zeC :dist(z,w]) < 8}, wherej =1,2,i =1,...,N,ands > Ois
chosen in such a way that the S&fﬁi' (j=12,i=1,...,N) are pairwise
disjoint (see Figure 2); and

w; = a)llL)a)lz ando; = w}UwffOfi =1...,N.

Figure 2 Distribution of the setsy/

BecauseP is symmetric (i.e.,P = —P), the construction of the sets just de-
scribed leads us 0! = —w? andw}! = —w 2.
For the polygonQ we define, in the same way, the sets

[¢] J J J J .
QN Onggs s Ooys Dy oo Doy, J =12

Finally, we define2y = QF U QY.
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The aim of all this construction is to guarantee the following claims fovan
large enough.

Claim A. There is a constamt such that diar(m,.f) <rs/N.

Claim B. If A2(-, -) is a metric inD* that is conformal to the Euclidean metric

verifying
c inT,
A >
- { cN* in Qy, ceR*,

and ifa is a curve inT from Sy,3 to the boundary of’, then the length of with
this metric is greater thamr; N/ 2. This is a consequence of the fact that each piece
a; (i =0,..., N2 —1) of « connectingP,; with P,; ., verifies the fact that either
the Euclidean length af; is greater than; /(2N ) or «; goes through a connected
component of2y.

Now, our purpose is to construct (for ahlarge enough) a sequence of confor-
mal minimal immersionsFy = X, Fy, ..., Fopn in D* such that:

(P%) Fi(z) =Re( f;‘/sqbi(w) dw) + ¢, wherec = X(2/3) and¢’: D* — C3is
of z2-type;

(P2) l¢'(zx) —¢' )|l <1/N2forallzeT \ w;;

(P3) ll¢'()l = N"?forall z € w;;

(P4) ¢ ()] = 1/v/N forall z € w;

(P5) dists2(Gi(z), Gi_1(z)) < 1/(N+/N) forall z e T \ w;, where dist: is the
intrinsic distance ir§? andG; represents the Gauss map of the immersion
F;;

(P6) there exists a sef; = {e1, e, e3} of orthogonal coordinates iR® and a
real constant, > 0 such that:
(P6.1) if zew; and| Fi_1(2)|l = 1/+/N then

I((Fia(@)1, (Fra@))ll < \;—%IIFFKZ)II,
(P6.2) (Fi(z))3 = (Fia(z))sforallzeT,
where(.), is thekth coordinate function with respect tey, e, e3}.

Suppose that we havk, ..., F;_; verifying the claims (P, ...,(P6), i =
1,...,j—1 Then, for anN Iarge enough, there are positive constacgis. Ty
such that the following statements hold.

(L1) g7 ~Y < rsin T\ Uj) o
This follows easily from (Pg fori =1,...,j — 1

(L2) I/ = rein T\ Uj{ .
To obtain this property, it suffices to apply (P2ori =1,..., j —1once
again.

(L3) The diameter irR3 of F; ~1(w; ') is less thamr7/N.
This is a consequence of ( Ll) the bound of ddaijﬁ) in ClaimA, and equa-
tion (5).

(L4) The diameter iS2 of G,_4(w) is less thamrg//N.
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Indeed, from the bound of dia(mrj"), we have a bound of diameter Gfo(zzrji).
The bound is sufll(dGo),ll : p € T}(r3/N). From successive applications of
(P5) we have '
diam(G; 1(w})) < rs/v/'N.
(LS) IS(Fj—nll < rg/N.
This is a consequence of (Pand (P2) fori =1,...,j — 1

We shall now construct;. We look for a set of orthogonal coordinates
{e1, e2, e3} in R® and a constanty > 0 such that:

(D1) if z € ; and| Fj_1(2)|l > 1/+/N, then
L(es, F;1(z)) <ro/v'N or  Z(—es, F1(2)) < r1o/v/N:;

(D2) Z(Ees, G;_1(z)) > v/+/N forall z € w;,
where/(a, b) € [0, =[ is the angle formed by andb in R® and wherev > 1/rg.
We denote

Con(g,r) ={xeS?: L(x,q) <r}.
Let g1 € G;1(w}") andgz € G;_1(w?). Taking (L4) into account, the condition
(D2) holds ifes is chosen ir§? \ R, where

rg+v rgs+v
R:Con(gl,— Ul—-Conl g1, ——
ol R Gl

rg+v rg+v
UCon(gz,— U|[—-Conl g2, —— | |.
N i G

The next step is to finds € S? \ R satisfying (D1) for a suitabley > O.
To do this, we define

F ={p/llpll : p € Fa(@}) and||p|| = 1/v'N —ro/N}.
From the diameter bound rﬂ;_l(wjl), we have thaf C Con(q, 2r7/(v/N —rq))
for anyq € F. Considerrig such that
2(}’8 + U) 2}"7 2r‘g ri1o
+ + < —.
VN VN—-r9g N—-r9 /N
If (S2\R)NF # ¥, we takees € (S?\ R)N F. Onthe other hand, 82\ R)NF =
@ then we takes € S? \ R such that/(es, ¢) < 2(rg + v)/ﬁ for someg € F.
We now check the property (D1) in both cases.
CaseL:(S?\R)NF # . Takez € w; verifying | F;_1(2)|| = 1/V/N. If ze o}

then a straightforward computation leadsA@s, F;_1(z)) < rio/v/N. If z € &?
then, taking into account th@ (F;_1) || < ro/N, we haveF;_1(—z)/| Fi_1(—2)|l €
F and/(Fj_1(—2), —Fj1(2)) < 2ro/(~'N —rg). Therefore,

Z(—es3, Fj_1(2)) = Z(e3, —Fj-1(2))
< Z(e3, F;1(—2)) + £(Fj_1(—2), —F;_1(2))

(2(7‘8 +v) 2r7 ) 2rg r10
< + + <=
VN VN —rg VN—r9g = VN
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Case 2:(S?\ R) N F = . Inthis case, ifp € F then
2(rg +v) 2r7 r10
Z(es, p) < Z(es, q) + Z£(q, p) < + < —.
(e3, p) 3.9) + £(q, p) N TN —re ~IN

This proves (D1) fot € wjl. If z € wjz, the proof is the same as in Case 1.

Finally, we takeey, e; such thatS; = {e1, ez, e3} is a set of orthogonal coordinates
in R3,

Let (f, g) be the Weierstrass data of the immersign, in the coordinate sys-
temsS;. Let h be the function given by Proposition 1 f@h = T \ w;, E> = w;,
andr large enough in ordeN. We definef = fh andg = g/h. Now ¢k (k =
1, 2, 3) are the functions defined by (3) fof, 2); they are holomorphic and have
no periods in zero because they are;dtype, too. Therefore, the minimal im-
mersionF; is well-defined and its expression in the set of coordindfés

Fi(z) = Re( ) d;j(w)dw) + F_1(2/3).
2/3

We shall now see thd; verifies the properties (P1...,(P§g). (Note that claims
(P, ...,(P6) do not depend on changes of coordinateRin Claim (P}) eas-
ily holds. Making some calculations, we get (Pand (P3) for r large enough,
as follows:

) . 1 1-nh
b i = — h—1 2Z
¢’ — o’ ﬁ('ﬂ )|+‘f8 A D
¢ supp{lle’ I}
=——7°= pfr_l in T\ o;;
2
g7 || = %(Iﬂll + ‘fi ) > %Zlfllhl > %Sgp{lfl}(f =1 inw;.
From (D2) we have
sin(w/+/N) sin(v/+/N)
——— <g[ S ———— iIno
1+ cosv/v/N) 1— cosv/+v/N)
and so
Id |g|> _1, 18l
= — ol = 2llp/™
o/l flf I(|g| | flfg|> lé |I1+|g|2

> rgsin(v/v'N) > 1/v/N in o

for an N large enough. Therefore, the property (F4 true.
Property (P9 is a consequence of the following inequality:

zsin(distgz(Gj(Z) — Gj—l(Z)))

2
=1G;(@) — Gja2)lrs < 218(z) — 8(2)|

= 2@l ~1 <22 vy g
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Using (D1), we get (P6;Lfor ra = ri0. And (P6.2) is true because, in the coor-
dinate systens;, we have that

93 = fg=fh, =93
Hence, we have constructed the immersidisFy, ..., Foy Vverifying claims
(PY),....(PG) for j =1,...,2N. In particular, we have the following.

ProrosiTION 2. If N is large enough, thet’, y verifies that

(i) p+s< diSt(FZN,T)(Z, S2/3) forallze PU Q;

(“) diSt(FZN,Tf)(Zﬂ S2/3) < (1— k/)(p + S) for all € PE U QS,
(iii) there is aryy > O such that| F; (z) F1(@)|l <ru/N%inT\ oy;
(iv) |Foy — Xl <2ri/NinT \ U 1 Tj;

(v) there is a polygonal pait P, Q) such that

A—K)(p+s) <disty, 7. 523 <p+s YzePUQ;

(vi) if T is the set associated t®, Q), thenT C I(T) andT¢ c I(T);
(Vi) Fon(T) C Br—gj2, WhereR = /r? + (25)? + ¢.
Here the minimal immersioX and the constants, p, s, r, £ are as in Lemma 1.

Proof. To prove assertion (i), notice that (L2) implies

L e L 07\ U o
Fan «/_ \/— 2\/ﬁ k=1 :

Taking into account (R4and (P2) fori = j +1,..., 2N, we have

g/ 1l — llp> — ¢’|I 1 ( 1 2) 1
AFay = —_— - in eachw;.
oy = Vg = 2\Uv V)7 2w “
From (P3) and (P2 fori = j +1,..., 2N, we obtain
o/l — llp>" — /| 1 ( 72 2) 4
Afpy = > —|N — > —N in eachw;.
= V2 - V2 2JN “

Using the three displayed inequalities together with Claim B, we conclude the
proof of the first assertion in this proposition.

To obtain assertion (ii), considere P¢ U Q°. From inequality (6), there
is a curvea with origin z and endlng a1z’ € Sy/3 that verifiesa C T¢ and
length(er, X) < p. SinceT? C T\Ul 1@ (if N is large enough), we can
apply (P2) for j = 1,...,2N to obtain|lengther, Foy) — lengthle, X)| <
(2/+/2N) length(a). Bearing in mind (L2), we get

length(e, X) > % length(a),
and then

2
llengther, F2y) — length(a, X)| < NP
re
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Therefore,

2 2 ,
length(e, Foy) < length(e, X) + —N,o <p+ —N,o <A—-k)(p+s).

Now we shall prove (iii). First observe that,if is large enough andy; is a
set in the labyrintt2y, then it is possible to find a positive constamltdepend-
ing only onT such that, for alk € T \ @;, there exists a curve, in T \ @; from
2/3 toz satisfying lengtlic,) < r11. This comes from the fact that the Euclidean
diameter ofew; is uniformly bounded. Using the former, we obtain

1 Fj(z) = Fja@)l =

= VPR

which proves assertion (iii). From (iii), it is not harg to deduce (iv). )
Concerning (v), we will construct only the polygdh the other polygorQ can

be constructed in a similar way. Let

Re / (I(w) — ¢ Hw)) dw

={z€C\ Dyz: A—k")(p+s) < distp,, 1)z, S2/3) < p + s}.

Note thatS is a nonempty open subsetbfFor¢ > 0 satisfyingl—k')(p+s) <
¢ < p + s, consider

S; ={z2€C\ Dyj3 : distg,, 1(z, S2/3) = ¢}.

SinceS; is a compact subset &, there are closed ballB, ..., B; of R? such
thatS, c |J’_, B; C S. Note that 0 andx are in disjoint arc-connected compo-
nents ofC \ | J_, B;. We can then construct a polygonal lifein | J?_, B; such
that D3 C Int(P). As ¢V is of z?-type, we have.r,, (z) = Ar,, (—z). This
means that digt, (z, S2/3) = d|stF2N( z, S2/3) for all z € D*. Therefore,P can
be chosen in such a way thAt= — P, becauseS = —S andS; = —S5;.

As a consequence of assertions (i), (ii), and (v), we obgaia Int(P), O C
Ext(Q), P¥ C Int(P), and Q¢ C Ext(Q). Thus we havel' C I(T) andT* C
I(T), which concludes our proof of (vi).

Finally, we prove assertion (vii). Thanks to the maximum modulus theorem,
we only need to check that

Fon(PU Q) C Br_e)a.

Letye PU Q. IfneT\Uj larj,wehave

2/'11 &
IFan (Ml < l1Fan(m) — X + I X))l = — tr= R — >

On the other hand, if € @; for j € {1,..., 2N} then the reasoning is slightly
more complicated. From (v), it is possible to find a cuwve0, 1] — T such that
v(0) € S2/3, y(D) = n, and lengtliy, Foy) < p + 5. We define:
f=suptel0,1]: y() edw;}, T=inf{te[0,1]:y()eP);
n=y(), n=y(@).
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Sus %

Figure 3 The partition ofy

For anN large enough, one has; C Int(P) \ Int(P¢) and sof < 7. Therefore,

y is divided into three disjoint pieces, from S,,3 to 77, y» from 77 to 77, andys

from 5 to n (see Figure 3). To continue, we need to demonstrate the existence of
a constant;,, not depending oV, such that

1E;(7) — Fi(pll < % +2s. (65
Indeed,
LE(i) — )|l < |F:(i) — Fan Gl + | Fan (i) — Fan()|
+ | Fan(n) — Fy (|

2r - d
< 255+ I Fan () — Fan ()| < 4— +lengthiys, Fzy)

;
< 4Wﬂ + p + s — length(y1, Fay). (12)

Taking into account that length, Fon) < o + s, we reason as in assertion (ii)
and obtain

2
llength(y1, Fay) — length(ys, Fo)| < rG—N(p +5). 13)
Using (12) and (13), it follows that

7 r 2(p+s
I1F; () — F(m)ll < 4]\1]1 + p +5 — length(ys, Fo) + 2Apts).
FGN
by (6) in the hypotheses of Lemma 1, we have
' 2(p + )
<4= —A-k =r =7
Say Tets ( o+ N

Thus, inequality (11) holds fory, = 4ry1+ 2(p + s)/rs.
At this point, we distinguish two cases.

Case 1| F;_a(i)|| < 1/+/N. Then
| Fon I < 1 Fan () — EIl + 1 F5(n) + F;()l
+1F;(m) — Fam| + 1 F-)l

ri1 1 &

2ri1 | riz

<—+—"+4+2s+ S5 +—=<R-

=N TN TS TN N T2
for an N large enough.
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Case 2:||F;_1(7)|| > 1/+/N. In this case, from (P6;2we have, in the set of
Cartesian coordinates given 5y,

2
|(E5(m)al = |(Fja(m)3] < [(Fj-1(1)3 — (X()3| + [(X(m)3| = %ﬂ +r.

Using inequality (11), the fact thate T \ ;, assertion (iii), and property (P§)1
one has

I CCE5 )2 CEj ) 2) | < ICCE;(m) 1. (F5(m)2) — ((Fj ()1, (F5(m)2) |
+ 1((F ()1, (F5())2) — (Fja(m)1, (Fj(1)2) |
+ [((Fj—a(m)1, (Fj2()2) ||

r12 ri Ta _
<2+ By MR
= S+ 42 N” =G|

r12 r11 rs (2ru r13
<P io+ By A (2E ) <2542,
=N T TN W(N r>— STUN

whereriz = r12 + r11 + r4(2r11 + r). By Pythagoras’ theorem,

IFan (Il < 1Fan () — E;)ll + [1E)l

2
< %1 + VIE@ 32+ 1(Fjm)w (Fim) )2

< \/r2+(2s)2+§: R—%
for an N large enough. O

In order to finish the proof of the lemma, we defii@sY = Foy — S(Fan)/2.
It is straightforward to check that verifies all the claims in Lemma 1.
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