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A Complete Bounded Minimal Cylinder inR3

Francisco Martín & Santiago Morales

1. Introduction

Calabi asked if it were possible to have a complete minimal surface inR3 entirely
contained in a half-space. As a consequence of the strong half-space theorem
[6], no such surfaces are properly immersed. The first examples of complete ori-
entable nonflat minimal surfaces with a bounded coordinate function were obtained
by Jorge and Xavier [7]. Their construction is based on an ingenious idea of using
Runge’s theorem. Later, Brito [1] discovered a new method to construct surfaces
of this kind. Examples of complete minimal surfaces with nontrivial topology,
contained in a slab ofR3, were obtained by Rosenberg and Toubiana [12], López
[8; 9], Costa and Simoes [3], and Brito [2], among others.

A few years ago, Nadirashvili [10] used Runge’s theorem in a more elaborate
way to produce a complete minimal disc inside a ball inR3 (see also [4]).

In this paper we generalize the techniques used by Nadirashvili to obtain new
examples of complete minimal surfaces inside a ball inR3 that have the conformal
structure of an annulus. To be more precise, we have proved the following.

Theorem 1. There exist an open setA of C and a complete minimal immersion
X : A→ R3 satisfying:

(1) X(A) is a bounded set ofR3;
(2) A has the conformal type of an annulus.

This theorem is proved in Section 3.
We have obtained the immersionX as limit of a sequence of bounded minimal

annuli with boundary. To construct the sequence we require a technical lemma
whose proof is exhibited in Section 4. This lemma allows us to modify the intrinsic
metric of a minimal annulus around the boundary without excessively increasing
the diameter of the annulus inR3.

2. Background and Notation

The aims of this section are to establish the principal notation used in the paper
and to summarize some results about minimal surfaces.
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We setDr = {z ∈C : |z| < r}, Sr = {z ∈C : |z| = r}, andD∗ = D1\ {0}. Let
X : D∗ → R3 be a conformal minimal immersion. Then

φj = ∂Xj

∂u
− i ∂Xj

∂v
, j = 1,2,3, z = u+ iv, (1)

are holomorphic functions onD∗, with real residues at 0, verifying
∑3

j=1φ
2
j ≡ 0

and
∑3

j=1|φj |2 6≡ 0. If we define

f = φ1− iφ2 and g = φ3

φ1− iφ2
, (2)

theng is a meromorphic function onD∗ that coincides with the stereographic pro-
jection of the Gauss map. The behavior off is determined by the rule thatf is
holomorphic onD∗, with zeroes precisely at the poles ofg, but with twice order.

Conversely, iff andg are (respectively) a holomorphic and meromorphic func-
tion onD∗ such that

φ1= f

2
(1− g2), φ2 = i f

2
(1+ g2), φ3 = fg (3)

are holomorphic functions onD∗ and if φ1, φ2, φ3 have no real periods in zero,
then

X : D∗ → R3,

X(z) = Re
∫ z

z0

(φ1(w), φ2(w), φ3(w)) dw + c, z0 ∈D∗, c ∈R3, (4)

is a conformal minimal immersion. It is usual to labelφ = (φ1, φ2, φ3) as the
Weierstrass representation of the immersionX. We can write the conformal metric
associated to the immersionX, λ2

X(z)〈·, ·〉, in terms of the Weierstrass represen-
tation as follows:

λX(z) = 1

2
|f(z)|(1+ |g(z)|2) = ‖φ(z)‖√

2
. (5)

For more details on minimal surfaces, see [11].
If φ : D∗ → C3 is holomorphic then we say thatφ is ofz2-typeif φj(z) = φ̂j(z2)

for j = 1,2,3, whereφ̂j are holomorphic functions onD∗. When the Weierstrass
representationφ is az2-type map, thenX(z)+X(−z) is constant onD∗. Hence,
we defineS(X) = X(z)+X(−z) for any one particularz∈D∗.

Letα be a curve inD∗. By length(α,X)we mean the length ofα with the metric
associated to immersionX. ForT ⊂ D∗ we define the following distance: Ifa, b ∈
T let dist(X,T )(a, b) = inf {length(α,X) | α : [0,1] → T, α(0) = a, α(1) = b}.
If A ⊂ T, then dist(X,T )(z, A)means the distance between pointz and setA. Any
other distance or length that we use without mentioning the metric will be associ-
ated to the Euclidean metric.

By apolygonal pair(P,Q)we mean a pair of closed simple curves inR2 formed
by a finite number of straight segments verifying:

(a) D1/3 ⊂ Int(Q) ⊂ Int(Q) ⊂ D2/3 ⊂ D2/3 ⊂ Int(P ) ⊂ Int(P ) ⊂ D1;
(b) −z∈P for all z∈P and−z∈Q for all z∈Q,
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where Int(α)denotes the interior domain bounded by a Jordan curveα; the exterior
domain is denoted by Ext(α). For a pair(P,Q), we writeT = Int(P ) \ Int(Q).
If ξ > 0 is small enough then(P ξ,Qξ ) represents a new polygonal pair, parallel
to (P,Q), such that:

(i) the Euclidean distance inR2 from P to P ξ is ξ ;
(ii) the Euclidean distance inR2 fromQ toQξ is ξ ;

(iii) the corresponding setT ξ associated to(P ξ,Qξ ) is contained inT

(see Figure 1 on page 505).

3. Proof of the Theorem

In order to prove the main theorem, we need the following lemma.

Lemma 1. LetX : D∗ → R3 be a conformal minimal immersion. Consider the
polygonal pair(P,Q), ρ, r > 0 and1> k > 0, satisfying:

(1) (1− k)ρ < dist(X,T )(z, S2/3) < ρ for all z∈P ∪Q;
(2) X(T ) ⊂ Br = {p ∈R3 : ‖p‖ < r};
(3) X(z) = Re

( ∫ z
2/3 φ(w) dw

)+ c, wherec ∈R3 andφ : D∗ → C3 is ofz2-type;
(4) S(X) = 0.

Then, for anyε > 0 and for anys, ξ, k ′ > 0 verifying

(1− k)ρ < dist(X,T ξ )(z, S2/3) < ρ ∀z∈P ξ ∪Qξ, (6)

ρ < (1− k ′)(ρ + s), (7)

ρk < s, (8)

there exist a polygonal pair(P̃, Q̃) and a conformal minimal immersionY :D∗ →
R3 such that:

(1) (1− k ′)(ρ + s) < dist(Y,T̃ )(z, S2/3) < ρ + s for all z∈ P̃ ∪ Q̃;
(2) Y(T̃ ) ⊂ BR whereR = √r 2 + (2s)2 + ε;
(3) Y(z) = Re

( ∫ z
2/3ψ(w) dw

) + c ′, wherec ′ ∈ R3 andψ : D∗ → C3 is of z2-
type;

(4) S(Y ) = 0;
(5) ‖Y −X‖ < ε in T ξ ;
(6) T ξ ⊂ I(T̃ ) andT̃ ⊂ I(T ), whereI(O) denotes the topological interior of the

setO.

This lemma is similar in spirit to that used by Nadirashvili in [10]. However, we
have worked with non–simply connected planar domains bounded by polygonal
pairs, and so a period problem arises. To solve this problem we have made our
Weierstrass dataφ az2-type map. Furthermore, when we take the limit in the con-
formal structure of our minimal annuli, this structure must not degenerate. This is
why we have dealt with pairs of parallel annuliT andT ξ .

Lemma 1 is proved in Section 4.
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We use the lemma to construct the sequence

χn = (Xn : D∗ → R3, (Pn,Qn), εn, ξn, kn),

whereXn is a conformal minimal immersion,(Pn,Qn) is a polygonal pair, and
{εn}, {ξn}, {kn} are decreasing sequences of nonvanishing terms that converge to
zero. The sequence{χn} must verify the following properties:

(An) (1− kn)ρn < dist(Xn,Tn)(z, S2/3) < ρn for all z ∈ Pn ∪ Qn, whereρn =∑n
i=11/i;

(Bn) (1− kn−1)ρn−1 < dist
(Xn−1,T

ξn
n−1)
(z, S2/3) < ρn−1 for all z∈P ξn

n−1∪Qξn
n−1;

(Cn) Xn(Tn) ⊂ Brn, wherer1 > 1 andrn =
√
r 2
n−1+ (2/n)2 + εn;

(Dn) S(Xn) = 0;
(En) Xn(z) = Re

( ∫ z
2/3 φ

n(w) dw
)+ cn, wherecn ∈R3 andφn : D∗ → C3 is of

z2-type;
(Fn) 0< kn < 1, ρnkn < 1/(n+1), andεn < 1/n2;
(Gn) ‖Xn −Xn−1‖ < εn in T ξnn−1;
(Hn) λXn ≥ αnλXn−1 in T ξnn−1, where{αi}i∈N is a sequence of real numbers such

that 0< αi < 1 and
{∏n

i=1 αi
}
n

converges to 1/2 (e.g., takeα1= 1
2e

1/2 and
αn = e−1/2n for n > 1);

(In) Tn ⊂ I(Tn−1);
(Jn) T

ξn−1
n−2 ⊂ I(T ξnn−1);

(Kn) T
ξn
n−1⊂ I(Tn).

For instance, we can take

χ1= (X1, (P1,Q1), ε1= 1/2, ξ1, k1= 1/3),

whereX1: D∗ → R3 is given byX1(u+ iv) = 5/2(u,−v,0) and where(P1,Q1)

is a suitable polygonal pair. Suppose that we haveχ1, . . . , χn.

Now we construct then+1 term. Choosekn+1 verifying (Fn+1) andξn+1 verify-
ing (Bn+1) and(Jn+1) (the choice ofξn+1 is possible becauseχn satisfies(An) and
(Kn)). Moreover, we choose two decreasing and convergent sequences to zero,
{ε̂m} and{ξ̂m}, with ξ̂m < ξn+1 and ε̂m < 1/(n + 1)2 for all m. For eachm we
considerYm : D∗ → R3 and(P̃m, Q̃m), as given by Lemma 1, for the following
data:

X = Xn, (P,Q) = (Pn,Qn), k ′ = kn+1, k = kn, ρ = ρn, r = rn,
s = 1/(n+1), ε = ε̂m, ξ = ξ̂m.

From assertion (5) of the lemma, we deduce that the sequence{Ym} converges to
Xn on the space Har(Tn) of harmonic maps fromTn inR3. This implies that{λYm}
converges uniformly toλXn in T ξn+1

n and hence there is am0 ∈N such that

λYm0
≥ αn+1λXn in T ξn+1

n . (9)

We defineXn+1 = Ym0, (Pn+1,Qn+1) = (P̃m0, Q̃m0 ), andεn+1 = ε̂m0. Observe
thatkn+1, ξn+1, andεn+1 could be chosen sufficiently small so that the sequences
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{ki}, {ξi}, and{εi} decrease and converge to zero. Because of the way in which we
have chosen the termχn+1, it is easy to check (using Lemma 1) thatχn+1 verifies
(An+1), (Bn+1), . . . , (Kn+1). This concludes the construction of the sequence{χi}.

Now we define

A = I

(⋂
n∈N

Tn

)
.

The open setA has the following properties.

(1) A = ⋃
n T

ξn+1
n . To prove this, first note that properties(In), (Jn), and(Kn)

imply
⋃
n T

ξn+1
n ⊆ A. On the other hand, suppose thatz∈A\⋃n T

ξn+1
n . Then

z ∈ Tn \ T ξn+1
n for all n ∈N. This implies thatz ∈ ∂A, which is absurd (recall

thatA is open). This contradiction proves the equality.
(2) A is an open arc-connected set.
(3) C \ A has two connected components; one of them contains 0 and the other

one is not bounded. Indeed, any point ofC \ Ā could be connected with 0 or
∞ by a continuous curve inC \ Tn if n is large enough. Then,C \A has two
connected components becauseC \ Ā has two arc-connected components.

Therefore,A is a domain inC such thatC ∪ {∞} \ A consists of two connected
components; thusA is biholomorphic toC \ {0}, D \ {0}, orCϑ = {z ∈C : ϑ <
|z| < 1} (see [5, Thm. IV.6.9]). ButA is a hyperbolic domain, soA 6≡ C − {0}.
Furthermore,A is a subset of the annulusC1/3 and a generator of the homology of
A also generates the homology ofC1/3. Therefore,A ≡ Cϑ for aϑ ∈ ]0,1[.

LetK be a compact set that is a subset ofA. Then there is ann0 such thatK ⊂
T
ξn
n−1 for all n > n0. From(Gn), we have:

‖XN −Xn−1‖ <
∞∑
i=n

εi <

∞∑
i=n

1

i2
in K, N > n > n0.

Thus, the sequence of minimal immersion{Xn} is a Cauchy sequence in Har(A).
Consequently, Harnack’s theorem implies that{Xn} converges in Har(A).

LetX : A→ R3 be the limit of{Xn}. ThenX has the following properties.

(i) X is minimal and conformal.
(ii) X is an immersion. Indeed, for anyz ∈ A there existsn ∈ N such thatz ∈

T
ξn+1
n . From property(Hi) it follows that, for allk > n,

λXk (z) ≥ αkλXk−1(z) ≥ · · · ≥ αk · · ·αn+1λXn(z) ≥ αk · · ·α1λXn(z).

Taking the limit ask→∞, we deduce that

λX(z) ≥ 1
2λXn(z) > 0 (10)

and soX is an immersion.
(iii) X(A) is bounded inR3. Let z∈A andn∈N be such thatz∈ T ξn+1

n ; then

‖X(z)‖ ≤ ‖X(z)−Xn(z)‖ + ‖Xn(z)‖ ≤ 1
2 + rn

for ann large enough. The sequence{rn} is bounded inR.
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(iv) The annulusA is complete with the metric induced byX. Indeed, ifn is large
enough and taking (10) into account, one has:

dist(X,T ξn+1
n )(2/3, ∂T ξn+1

n ) > 1
2 dist(Xn,T ξn+1

n )(2/3, ∂T ξn+1
n ).

The right-hand side of this inequality is controlled by(Bn), so we infer that

dist(X,T ξn+1
n )(2/3, ∂T ξn+1

n ) > 1
2(1− kn)ρn.

The completeness is due to the fact that
{

1
2(1− kn)ρn

}
n∈N diverges.

This completes the proof of the theorem.

4. Proof of the Lemma

This section is devoted to proving Lemma 1. As we mentioned before, it is a gen-
eralized version of that used by Nadirashvili in [10] and by Collin and Rosenberg
in [4]. Although the proof is similar, we have introduced some new techniques
that permit us to apply Nadirashvili’s methods to non–simply connected planar
domains.

The following proposition is a direct consequence of Runge’s theorem and plays
a crucial role in this section.

Proposition 1. Let τ > 1and letE1, E2 be two disjoint compact sets ofC such
that:

(a) Ei = −Ei, i = 1,2;
(b) C \ (E1∪E2) has two arc-connected components, one that contains zero and

one that is not bounded.

Then there existsh : C \ {0} → C, a holomorphic nonnull function, such that:

(i) |h− 1| < 1/τ in E1;
(ii) |h− τ | < 1/τ in E2;

(iii) h(z) = ĥ(z2), whereĥ is a holomorphic function inC \ {0}.
Proof. Let E2

i = {z2 : z ∈ Ei}, i = 1,2. It is clear thatE2
1 andE2

2 are disjoint
and thatC \ (E2

1 ∪E2
2) has two connected components: one contains zero and the

other is not bounded. Thanks to Runge’s theorem, for anyε > 0 there exists a
holomorphic functionµ : C \ {0} → C (with pole in zero) such that:

(a) |µ| < ε onE2
1;

(b) |µ− a| < ε onE2
2, whereea = τ.

We defineh(z) = eµ(z2) for ε small enough.

The main idea in the proof of Lemma 1 is to use Proposition 1 successively over a
labyrinth constructed in a neighborhood of the boundary ofT . We thus modify the
intrinsic metric of our immersion near the boundary without increasing in excess
the distance inR3. Hence, the next step is to describe some subsets ofD∗ that we
use to construct the aforementioned labyrinth.
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Consider(P,Q), the polygonal pair given in the statement of Lemma 1. Lets

ands ′ be the number of sides ofP andQ, respectively, and letN be a nontrivial
multiple of s ands ′.

Remark 1. Along the proof of the lemma, a set of real positive constants{ri, i =
1, . . . ,13} depending onX, (P,Q), k, ρ, r, ε, s, ξ, andk ′ will appear. It is im-
portant to note that the choice of these constants does not depend on the integerN.

Let r1 andr2 be a lower and an upper bound (respectively) for the length of the
sides of polygonsP ζ andQζ for all ζ ≤ 2/N. Let v1, . . . , v2N be points in the
polygonP that divide each side ofP into 2N/s equal parts. We can transfer this
partition to the polygonP 2/N : v ′1, . . . , v ′2N (see Figure 1). We define the following
sets:

Li = the segment that joinsvi andv ′i , i = 1, . . . ,2N;
Pi = P i/N3

, i = 0, . . . ,2N 2;
A =⋃N 2−1

i=0 Int(P2i ) \ Int(P2i+1) andÃ =⋃N 2

i=1 Int(P2i−1) \ Int(P2i );
R =⋃2N 2

i=0 Pi;

Figure 1 Polygonal pairs(P,Q) and(P ξ,Qξ )



506 Francisco Martín & Santiago Morales

B =⋃N
i=1L2i andB̃ =⋃N−1

i=0 L2i+1;
L = B ∩A, L̃ = B̃ ∩ Ã, andH = R ∪ L ∪ L̃;

�P
N = {z∈ Int(P0) \ Int(P2N 2) : dist(z,H ) ≥ min{1/(4N3), r1/N

2}}.
We defineω1

i as the union of the segmentLi and those connected components of
�P
N that have nonempty intersection withLi for i = 1, . . . , N. Similarly, we de-

fineω2
i as the union of the segmentLN+i and those connected components of�P

N

that intersectLN+i for i = 1, . . . , N. Finally,

$
j

i = {z ∈ C : dist(z, ωji ) < δ}, wherej = 1,2, i = 1, . . . , N, andδ > 0 is
chosen in such a way that the sets$j

i (j = 1,2, i = 1, . . . , N ) are pairwise
disjoint (see Figure 2); and

ωi = ω1
i ∪ ω2

i and$i = $ 1
i ∪$ 2

i for i = 1, . . . , N.

Figure 2 Distribution of the sets$j

i

BecauseP is symmetric (i.e.,P = −P), the construction of the sets just de-
scribed leads us toω1

i = −ω2
i and$ 1

i = −$ 2
i .

For the polygonQ we define, in the same way, the sets

�
Q
N, ω

j

N+1, . . . , ω
j

2N, $
j

N+1, . . . ,$
j

2N, j = 1,2.

Finally, we define�N = �P
N ∪�QN.
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The aim of all this construction is to guarantee the following claims for anN

large enough.

Claim A. There is a constantr3 such that diam($j

i ) ≤ r3/N.

Claim B. If λ2〈·, ·〉 is a metric inD∗ that is conformal to the Euclidean metric
verifying

λ ≥
{
c in T,

cN 4 in �N, c ∈R+,
and ifα is a curve inT from S2/3 to the boundary ofT, then the length ofα with
this metric is greater thancr1N/2. This is a consequence of the fact that each piece
αi (i = 0, . . . , N 2−1) of α connectingP2i with P2i+2 verifies the fact that either
the Euclidean length ofαi is greater thanr1/(2N) orαi goes through a connected
component of�N.

Now, our purpose is to construct (for anN large enough) a sequence of confor-
mal minimal immersions,F0 = X, F1, . . . , F2N in D∗ such that:

(P1i) Fi(z) = Re
( ∫ z

2/3 φ
i(w) dw

)+ c, wherec = X(2/3) andφi : D∗ → C3 is

of z2-type;
(P2i) ‖φi(z)− φi−1(z)‖ ≤ 1/N 2 for all z∈ T \$i;
(P3i) ‖φi(z)‖ ≥ N7/2 for all z∈ωi;
(P4i) ‖φi(z)‖ ≥ 1/

√
N for all z∈$i;

(P5i) distS2(Gi(z),Gi−1(z)) < 1/
(
N
√
N
)

for all z ∈ T \$i, where distS2 is the
intrinsic distance inS2 andGi represents the Gauss map of the immersion
Fi;

(P6i) there exists a setSi = {e1, e2, e3} of orthogonal coordinates inR3 and a
real constantr4 > 0 such that:
(P6.1i) if z∈$i and‖Fi−1(z)‖ ≥ 1/

√
N then

‖((Fi−1(z))1, (Fi−1(z))2)‖ < r4√
N
‖Fi−1(z)‖,

(P6.2i) (Fi(z))3 = (Fi−1(z))3 for all z∈ T̄,
where(·)k is thekth coordinate function with respect to{e1, e2, e3}.

Suppose that we haveF0, . . . , Fj−1 verifying the claims (P1i), . . . ,(P6i), i =
1, . . . , j − 1. Then, for anN large enough, there are positive constantsr5, . . . , r9

such that the following statements hold.

(L1) ‖φj−1‖ ≤ r5 in T \⋃j−1
k=1 $k.

This follows easily from (P2i) for i = 1, . . . , j −1.
(L2) ‖φj−1‖ ≥ r6 in T \⋃j−1

k=1 $k.

To obtain this property, it suffices to apply (P2i) for i = 1, . . . , j − 1 once
again.

(L3) The diameter inR3 of Fj−1($
i
j ) is less thanr7/N.

This is a consequence of (L1), the bound of diam($ i
j ) in ClaimA, and equa-

tion (5).
(L4) The diameter inS2 of Gj−1($

i
j ) is less thanr8/

√
N.
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Indeed, from the bound of diam($ i
j ), we have a bound of diameter ofG0($

i
j ).

The bound is sup{‖(dG0)p‖ : p ∈ T }(r3/N ). From successive applications of
(P5i) we have

diam(Gj−1($
i
j )) < r8/

√
N.

(L5) ‖S(Fj−1)‖ ≤ r9/N.

This is a consequence of (P1i) and (P2i) for i = 1, . . . , j −1.

We shall now constructFj . We look for a set of orthogonal coordinates
{e1, e2, e3} in R3 and a constantr10 > 0 such that:

(D1) if z∈$j and‖Fj−1(z)‖ ≥ 1/
√
N, then

∠(e3, Fj−1(z)) ≤ r10/
√
N or ∠(−e3, Fj−1(z)) ≤ r10/

√
N;

(D2) ∠(±e3,Gj−1(z)) ≥ ν/
√
N for all z∈$j,

where∠(a, b)∈ [0, π [ is the angle formed bya andb in R3 and whereν > 1/r6.
We denote

Con(q, r) = {x ∈ S2 : ∠(x, q) ≤ r}.
Let g1 ∈Gj−1($

1
j ) andg2 ∈Gj−1($

2
j ). Taking (L4) into account, the condition

(D2) holds ife3 is chosen inS2 \ R, where

R = Con

(
g1,

r8+ ν√
N

)
∪
[
−Con

(
g1,

r8+ ν√
N

)]
∪ Con

(
g2,

r8+ ν√
N

)
∪
[
−Con

(
g2,

r8+ ν√
N

)]
.

The next step is to finde3 ∈ S2 \ R satisfying (D1) for a suitabler10 > 0.
To do this, we define

F = {p/‖p‖ : p ∈Fj−1($
1
j ) and‖p‖ ≥ 1/

√
N − r9/N}.

From the diameter bound ofFj−1($
1
j ),we have thatF ⊂ Con

(
q,2r7/

(√
N−r9

))
for anyq ∈F. Considerr10 such that

2(r8+ ν)√
N

+ 2r7√
N − r9

+ 2r9√
N − r9

<
r10√
N
.

If (S2\R)∩F 6= ∅,we takee3 ∈ (S2\R)∩F. On the other hand, if(S2\R)∩F =
∅ then we takee3 ∈ S2 \ R such that∠(e3, q) < 2(r8+ ν)/

√
N for someq ∈F.

We now check the property (D1) in both cases.

Case1:(S2\R)∩F 6= ∅. Takez∈$j verifying‖Fj−1(z)‖ ≥ 1/
√
N. If z∈$ 1

j

then a straightforward computation leads to∠(e3, Fj−1(z)) ≤ r10/
√
N. If z ∈$ 2

j

then, taking into account that‖S(Fj−1)‖ ≤ r9/N,we haveFj−1(−z)/‖Fj−1(−z)‖ ∈
F and∠(Fj−1(−z),−Fj−1(z)) ≤ 2r9/(

√
N − r9). Therefore,

∠(−e3, Fj−1(z)) = ∠(e3,−Fj−1(z))

≤ ∠(e3, Fj−1(−z))+ ∠(Fj−1(−z),−Fj−1(z))

≤
(

2(r8+ ν)√
N

+ 2r7√
N − r9

)
+ 2r9√

N − r9

≤ r10√
N
.
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Case 2:(S2 \ R) ∩ F = ∅. In this case, ifp ∈F then

∠(e3, p) ≤ ∠(e3, q)+ ∠(q, p) ≤ 2(r8+ ν)√
N

+ 2r7√
N − r9

<
r10√
N
.

This proves (D1) forz∈$ 1
j . If z∈$ 2

j , the proof is the same as in Case 1.

Finally, we takee1, e2 such thatSj = {e1, e2, e3} is a set of orthogonal coordinates
in R3.

Let (f, g) be the Weierstrass data of the immersionFj−1 in the coordinate sys-
temSj . Let h be the function given by Proposition 1 forE1 = T̄ \$j, E2 = ωj,
andτ large enough in orderN. We definef̃ = fh andg̃ = g/h. Now φ̃

j

k (k =
1,2,3) are the functions defined by (3) for(f̃ , g̃); they are holomorphic and have
no periods in zero because they are ofz2-type, too. Therefore, the minimal im-
mersionFj is well-defined and its expression in the set of coordinatesSj is

Fj(z) = Re

(∫ z

2/3
φ̃ j(w) dw

)
+ Fj−1(2/3).

We shall now see thatFj verifies the properties (P1j), . . . ,(P6j). (Note that claims
(P1j), . . . ,(P6j) do not depend on changes of coordinates inR3.) Claim (P1j) eas-
ily holds. Making some calculations, we get (P2j) and (P3j) for τ large enough,
as follows:

‖φj − φj−1‖ = 1√
2

(
|f(h−1)| +

∣∣∣∣fg21− h
h

∣∣∣∣)
≤ ‖φ

j−1‖
τ −1

≤ supT̄ {‖φj−1‖}
τ −1

in T \$j ;

‖φj‖ = 1√
2

(
|fh| +

∣∣∣∣fg2

h

∣∣∣∣) ≥ 1√
2
|f ||h| ≥ 1√

2
sup
T̄

{|f |}(τ −1) in ωj .

From (D2) we have

sin(ν/
√
N )

1+ cos(ν/
√
N )
≤ |g| ≤ sin(ν/

√
N )

1− cos(ν/
√
N )

in $j,

and so

‖φj‖ = 1√
2
|fg|

( |h|
|g| +

|g|
|h|
)
≥ 2√

2
|fg| ≥ 2‖φj−1‖ |g|

1+ |g|2
≥ r6 sin(ν/

√
N ) ≥ 1/

√
N in $j

for anN large enough. Therefore, the property (P4j) is true.
Property (P5j) is a consequence of the following inequality:

2 sin

(
distS2(Gj(z)−Gj−1(z))

2

)
= ‖Gj(z)−Gj−1(z)‖R3 < 2|g̃(z)− g(z)|

= 2|g(z)||h(z)−1| ≤ 2
supT̄ {|g|}

τ
∀z∈ T \$j .
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Using (D1), we get (P6.1j) for r4 = r10. And (P6.2j) is true because, in the coor-
dinate systemSj, we have that

φ
j−1
3 = fg = fhg

h
= φj3.

Hence, we have constructed the immersionsF0, F1, . . . , F2N verifying claims
(P1j), . . . ,(P6j) for j = 1, . . . ,2N. In particular, we have the following.

Proposition 2. If N is large enough, thenF2N verifies that:

(i) ρ + s < dist(F2N ,T )(z, S2/3) for all z∈P ∪Q;
(ii) dist(F2N ,T

ξ )(z, S2/3) < (1− k ′)(ρ + s) for all z∈P ξ ∪Qξ ;
(iii) there is ar11> 0 such that‖Fj(z)− Fj−1(z)‖ ≤ r11/N

2 in T \$j ;
(iv) ‖F2N −X‖ ≤ 2r11/N in T \⋃2N

j=1$j ;
(v) there is a polygonal pair(P̃, Q̃) such that

(1− k ′)(ρ + s) < dist(F2N ,T̃ )
(z, S2/3) < ρ + s ∀z∈ P̃ ∪ Q̃;

(vi) if T̃ is the set associated to(P̃, Q̃), thenT̃ ⊂ I(T ) andT ξ ⊂ I(T̃ );
(vii) F2N(T̃ ) ⊂ BR−ε/2, whereR = √r 2 + (2s)2 + ε.
Here the minimal immersionX and the constantsε, ρ, s, r, ξ are as in Lemma 1.

Proof. To prove assertion (i), notice that (L2) implies

λF2N =
‖φ2N‖√

2
≥ r6√

2
>

1

2
√
N

in T \⋃2N
k=1$k.

Taking into account (P4j) and (P2i) for i = j +1, . . . ,2N, we have

λF2N ≥
‖φj‖ − ‖φ2N − φj‖√

2
≥ 1√

2

(
1√
N
− 2

N

)
≥ 1

2
√
N

in each$j .

From (P3j) and (P2i) for i = j +1, . . . ,2N, we obtain

λF2N ≥
‖φj‖ − ‖φ2N − φj‖√

2
≥ 1√

2

(
N7/2 − 2

N

)
≥ 1

2
√
N
N 4 in eachωj .

Using the three displayed inequalities together with Claim B, we conclude the
proof of the first assertion in this proposition.

To obtain assertion (ii), considerz ∈ P ξ ∪ Qξ. From inequality (6), there
is a curveα with origin z and ending atz ′ ∈ S2/3 that verifiesα ⊂ T ξ and
length(α,X) < ρ. SinceT ξ ⊂ T \⋃2N

l=1$l (if N is large enough), we can
apply (P2j) for j = 1, . . . ,2N to obtain |length(α, F2N) − length(α,X)| ≤
(2/
√

2N) length(α). Bearing in mind (L2), we get

length(α,X) ≥ r6√
2

length(α),

and then

|length(α, F2N)− length(α,X)| ≤ 2

r6N
ρ.
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Therefore,

length(α, F2N) < length(α,X)+ 2

r6N
ρ < ρ + 2

r6N
ρ < (1− k ′)(ρ + s).

Now we shall prove (iii). First observe that, ifN is large enough and$j is a
set in the labyrinth�N, then it is possible to find a positive constantr11 depend-
ing only onT such that, for allz∈ T \$j, there exists a curveαz in T \$j from
2/3 to z satisfying length(αz) < r11. This comes from the fact that the Euclidean
diameter of$j is uniformly bounded. Using the former, we obtain

‖Fj(z)− Fj−1(z)‖ =
∥∥∥∥Re

∫
αz

(φj(w)− φj−1(w)) dw

∥∥∥∥ ≤ r11
1

N 2
,

which proves assertion (iii). From (iii), it is not hard to deduce (iv).
Concerning (v), we will construct only the polygoñP ; the other polygonQ̃ can

be constructed in a similar way. Let

S = {z∈C \D2/3 : (1− k ′)(ρ + s) < dist(F2N ,T )(z, S2/3) < ρ + s}.
Note thatS is a nonempty open subset ofT . Forζ > 0 satisfying(1−k ′)(ρ+s) <
ζ < ρ + s, consider

Sζ = {z∈C \D2/3 : dist(F2N ,T )(z, S2/3) = ζ }.
SinceSζ is a compact subset ofS, there are closed ballsB1, . . . , Bd of R2 such
thatSζ ⊂⋃d

i=1Bi ⊂ S. Note that 0 and∞ are in disjoint arc-connected compo-
nents ofC \⋃d

i=0Bi. We can then construct a polygonal lineP̃ in
⋃d

i=0Bi such
thatD2/3 ⊂ Int(P̃ ). As φ2N is of z2-type, we haveλF2N (z) = λF2N (−z). This
means that distF2N (z, S2/3) = distF2N (−z, S2/3) for all z ∈D∗. Therefore,P̃ can
be chosen in such a way thatP̃ = −P̃, becauseS = −S andSζ = −Sζ .

As a consequence of assertions (i), (ii), and (v), we obtainP̃ ⊂ Int(P ), Q̃ ⊂
Ext(Q), P ξ ⊂ Int(P̃ ), andQξ ⊂ Ext(Q̃). Thus we haveT̃ ⊂ I(T ) andT ξ ⊂
I(T̃ ), which concludes our proof of (vi).

Finally, we prove assertion (vii). Thanks to the maximum modulus theorem,
we only need to check that

F2N(P̃ ∪ Q̃) ⊂ BR−ε/2.

Let η ∈ P̃ ∪ Q̃. If η ∈ T \⋃2N
j=1$j, we have

‖F2N(η)‖ ≤ ‖F2N(η)−X(η)‖ + ‖X(η)‖ ≤ 2r11

N
+ r ≤ R − ε

2
.

On the other hand, ifη ∈ $j for j ∈ {1, . . . ,2N} then the reasoning is slightly
more complicated. From (v), it is possible to find a curveγ : [0,1]→ T such that
γ (0)∈ S2/3, γ (1) = η, and length(γ, F2N) ≤ ρ + s. We define:

t̄ = sup{t ∈ [0,1] : γ (t)∈ ∂$j }, t̃ = inf {t ∈ [0,1] : γ (t)∈P ξ };
η̄ = γ (t̄ ), η̃ = γ (t̃ ).
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Figure 3 The partition ofγ

For anN large enough, one has$j ⊂ Int(P ) \ Int(P ξ ) and sot̃ < t̄ . Therefore,
γ is divided into three disjoint pieces:γ1 from S2/3 to η̃, γ2 from η̃ to η̄, andγ3

from η̄ to η (see Figure 3). To continue, we need to demonstrate the existence of
a constantr12, not depending onN, such that

‖Fj(η̄)− Fj(η)‖ ≤ r12

N
+ 2s. (11)

Indeed,

‖Fj(η̄)− Fj(η)‖ ≤ ‖Fj(η̄)− F2N(η̄)‖ + ‖F2N(η̄)− F2N(η)‖
+ ‖F2N(η)− Fj(η)‖

≤ 2
2r11

N
+ ‖F2N(η̄)− F2N(η)‖ ≤ 4

r11

N
+ length(γ3, F2N)

≤ 4
r11

N
+ ρ + s − length(γ1, F2N). (12)

Taking into account that length(γ1, F2N) ≤ ρ + s, we reason as in assertion (ii)
and obtain

|length(γ1, F2N)− length(γ1, F0)| ≤ 2

r6N
(ρ + s). (13)

Using (12) and (13), it follows that

‖Fj(η̄)− Fj(η)‖ ≤ 4
r11

N
+ ρ + s − length(γ1, F0)+ 2(ρ + s)

r6N
;

by (6) in the hypotheses of Lemma 1, we have

≤ 4
r11

N
+ ρ + s − (1− k)ρ + 2(ρ + s)

r6N
.

Thus, inequality (11) holds forr12 = 4r11+ 2(ρ + s)/r6.
At this point, we distinguish two cases.

Case 1:‖Fj−1(η̄)‖ < 1/
√
N . Then

‖F2N(η)‖ ≤ ‖F2N(η)− Fj(η)‖ + ‖Fj(η)+ Fj(η̄)‖
+ ‖Fj(η̄)− Fj−1(η̄)‖ + ‖Fj−1(η̄)‖

≤ 2r11

N
+ r12

N
+ 2s + r11

N 2
+ 1√

N
≤ R − ε

2
for anN large enough.
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Case 2:‖Fj−1(η̄)‖ > 1/
√
N . In this case, from (P6.2j) we have, in the set of

Cartesian coordinates given bySj,

|(Fj(η))3| = |(Fj−1(η))3| ≤ |(Fj−1(η))3− (X(η))3| + |(X(η))3| ≤ 2r11

N
+ r.

Using inequality (11), the fact thatη̄ ∈ T \$j, assertion (iii), and property (P6.1j),

one has

‖((Fj(η))1, (Fj(η))2)‖ ≤ ‖((Fj(η))1, (Fj(η))2)− ((Fj(η̄))1, (Fj(η̄))2)‖
+ ‖((Fj(η̄))1, (Fj(η̄))2)− ((Fj−1(η̄))1, (Fj−1(η̄))2)‖
+ ‖((Fj−1(η̄))1, (Fj−1(η̄))2)‖
≤ r12

N
+ 2s + r11

N 2
+ r4√

N
‖Fj−1(η̄)‖

≤ r12

N
+ 2s + r11

N 2
+ r4√

N

(
2r11

N
+ r

)
≤ 2s + r13√

N
,

wherer13 = r12+ r11+ r4(2r11+ r). By Pythagoras’ theorem,

‖F2N(η)‖ ≤ ‖F2N(η)− Fj(η)‖ + ‖Fj(η)‖

≤ 2r11

N
+
√
|(Fj(η))3|2 + ‖((Fj(η))1, (Fj(η))2)‖2

<
√
r 2 + (2s)2 + ε

2
= R − ε

2

for anN large enough.

In order to finish the proof of the lemma, we defineY asY = F2N − S(F2N)/2.
It is straightforward to check thatY verifies all the claims in Lemma 1.
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