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Periodic Orbits and Homoclinic Loops
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0. Introduction

Poincaré invented homoclinic orbits, conjectured their existence in the planar
three-body problem, and despaired of understanding their complexity. Research
by Birkhoff, Cartwright and Littlewood, and Levinson revealed that near transverse
homoclinic points there are robust periodic points. A pinnacle of this line of re-
search, and the basis for much of modern dynamical theory, is Smale’s “horseshoe”
theorem [22]. For a diffeomorphisni of a manifold of any dimension, it states
that every neighborhood of a transverse homoclinic point meets a structurally sta-
ble, hyperbolic compact invariant sEton which some iteratg* is topologically
conjugate to the shift map on the Cantor sét 2

Similar results have been obtained under weakenings of the transversality as-
sumption, including work by Burns and Weiss [6], Churchill and Rod [7], Collins
[8], Gavrilov and Silnikov [13; 14], Guckenheimer and Holmes [15], Mischaikow
[18], Mischaikow and Mrozek [19], Newhouse [20], and Rayskin [21].

Among many important consequences is the existence of hyperbolic periodic
orbits in K of all periodskn, n > 1. Note, however, that is not specified in the
horseshoe theorem, and in most cases there is no way to estimate it (but see [19]).
Collins [8] has shown that a differentiably transverse homoclinic point implies the
existence of periodic points of all sufficiently high minimum periods; estimating
such periods, however, requires detailed knowledge of the associated homoclinic
tangle.

Although the horseshoe theorem guarantees infinitely many periodic orbits, it
is insufficient for the existence of a second fixed point. For example, the toral dif-
feomorphism induced by the matr[ﬁ i] has only one fixed point, even though
transverse homoclinic points are dense.

It turns out that, for diffeomorphisms of the plane, even a nontransverse homo-
clinic point implies a second fixed point; in fact, there is a block of fixed points
having index+1. But the proof of this (Hirsch [17]), based on Brouwer’s plane
translation theorem, gives no indication of the location of such a block.

In this paper we consider a saddle fixed pginfior an orientation-preserving
homeomorphisny of a surfaceX (definitions will be given in Section 1). Let’
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be a homoclinic point associated o that is, a point different fronp where the
stable and unstable curv@g (p), W,(p) meet; no transversality or even cross-
ing of these curves is assumed. Suppase J; U J, is a homoclinic loop ap,
whereJ; andJ, are arcs inW;(p) andW, (p) respectively, having common end-
pointsp, p’. Assume there is a closed 2-cell, with interidgrwhose boundary is
the union of two arcs itW,(p) and W, (p) with endpointsp and p’ in common
but otherwise disjoint; such a 2-cell always exists wieis simply connected.
Our main result, stated more precisely in Theorem 1.2, is this:

If A is a Jordan curve bounding an op@rcell V, then there existg
{1, 2} such that the fixed point index ¢f' in V is p for all n # 0, and
o depends only on the geometry\of

An immediate consequence is that, for every 2, every map sufficiently close
to f" has a block of fixed points i of indexp.

Theorem 1.5 is a similar result for homoclinic loops that are homotopically triv-
ial, but not necessarily Jordan curves.

The main theorem is stated in Section 1, and several applications are derived.
Section 2 contains the proof of the main theorem.

1. The Main Result and Applications

We useZ, N, andN, to denote the integers, natural numbers, and positive natural
numbers. All maps are assumed to be continueudenotes homeomorphism.

For any mapg, the mapsg” (n > 1) are defined recursively by' = g and
" (x) = g(g"(x)) providedg”(x) is in the domain of. By X we denote a con-
nected, oriented surface with met#icandf : X — X isan orientation-preserving
injective map. We calf a diffeomorphism wherf and f ~* areC? (continuously
differentiable).

The orbit of x is the sety(x) = {f/(x) : i € Z}. The fixed point set off is
denoted by Fixf). We callg € Fix(f) smoothif it belongs to a coordinate chart
in which £ is represented by @' map; such a chart ismoothfor ¢. If f is C%,
then of course all fixed points are smooth. But in many constructions some fixed
points of a nonsmooth map are smooth, as when a diffeomorphism of the plane is
extended to the 2-sphere.

Letg € Fix(f) be smooth. We calj simpleif 1 is not an eigenvalue of the lin-
ear operatodlf,, hyperbolicif no eigenvalue lies on the unit circ c C, asink
if eigenvalues are insid&!, asourceif they are outside, andlliptic if the eigen-
values are ors* but different from 1.

A fixed point p is asaddleif (a) it is not in the boundary ok, (b) there is a
chart atp in which f is locally represented as a linear n‘{ag)g] and (c) either
w > 1> X > 0, makingp adirectsaddle, o < —1 < A < 0, defining atwisted
saddle. Such a chart isliagonalizing. By the Hartman—Grobman linearization
theorem (Hartman [16]), fop to be a saddle it is sufficient that there be a smooth
chart atp in whichdf, has eigenvalueg, A as just described.
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An n-periodicpoint for f means a fixed point for ", n > 1. Whenn is the
minimum period,y (z) is anr-orbit. An r-periodic point is simple, hyperbolic,
and so forth when it has the corresponding property as a fixed poiit'for

Thestable curveW, = W, (p) of a saddle fixed poinp is the connected com-
ponent ofp in the set ofx for which there is a convergent sequenge— p in
X with xo = x and f(x;) = x;41. Theunstable curveV, at p is defined as the
stable curve forf ~1. Note thatW, and W, are mapped homeomorphically onto
themselves by. Owing to the linearization assumption, there are bijective maps
Zu, & : R — W taking O top, calledparameterizationsf W,, W;, respectively.
The images of [Doo) and(—oo, 0] are the foutbranchesat p.

A homoclinic pointfor p is any pointp’ € W, 0 W, \ {p}, in which case the
homoclinic loopA defined byp’ is the closed path formed by the two atksc
W, andJ, c W, having common endpoinis andp’. There corresponds an ele-
ment [A] of the fundamental group oX at p, determined by first traversing
from p to p’ in J, and then fronp’ to p in J;. If [ A] is the unit element then
is aninessential homoclinic loopThe loopA is simpleif J, N J; = {p, p}, in
which caseA is homeomorphic to the unit circle. Every homoclinic loop contains
a simple homoclinic loop.

Suppose is a simple homoclinic loop iX bounding a closed 2-celd C X.

The corresponding open 2-céll = D \ aD is ahomaoclinic cell. We call V a
positivecell if some diagonalizing chart takesto the origin Oc R? and a neigh-
borhood ofp in D onto a neighborhood of 0 in the first quadrant. In the contrary
case,D is anegativecell: there is a diagonalizing chart taking a neighborhood

of p in D onto a neighborhood of the origin in the complement of the open first
guadrant (see Figure 1). Thus, when seen through a diagonalizing chart, a positive
cell appears convex nearwhile a negative region appears concave.

£
o

Figure 1 Homoclinic cells: (a) positive, (b) negative

(a)

Let U C X be an open set such thétn Fix(f) is compact. Thdixed point
index of f in U is denoted byl (f, U) € Z; if it is nonzero, there exists a fixed
pointinU (Dold [9]). WhenU is a coordinate chart identified with an open setin
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R?, we can calculaté( f, U) as follows. LetM C U be a compact surface with
boundary whose interior contains Fi&) N U. ThenI(f, U) is the degree of the
map

x— f(x)
lx = fCOI’

wheredM and S* inherit their orientations fronR2. If dM is replaced by any
oriented Jordan curvE on which f has no fixed points, then the same formula
defines thendex of f alongT".

Let B C X be ablockof fixed points; thatisB is compact and relatively open in
Fix(f). There exists an open neighborhaddgl C X such thatB = Fix(f) N Uo.
The number

oM — S,

Ind(f, B) = Ind(f],, ) €Z,

called theindex of f at B, is independent of the choice 6f. Whenp is an iso-
lated fixed point we set Ind, {p}) = I(f, p), called thendex of f at p. A direct
saddle has index1. Twisted saddles, sources, sinks, and elliptic fixed points have
index+1.

The following assumptions are in force throughout the rest of this article.

HypoTHESIS 1.1.

(i) f:X = X is an orientation-preserving homeomorphism of a surface
(i) pe X\ 9X is a direct saddle fixed point fof.
(iii) vV c X is an open 2-cell bounded by a simple homoclinic laopt p.
To V we assign the number
1 if V is a positive region,
p=pV)= o , ,
2 if V is a negative region.

For eachn € N we define an open séf, C V,
Vo=Vu(f)={xeV:fix)eV,i=1...,n—1}.

Thus, FiX /™) NV, is the union of the:-periodic orbits inV.
The following theorem is our fundamental result.

TueoreM 1.2. Under Hypothesi&.1,Fix(f") NV, is a block of fixed points for
f"ofindexp(V) forall n > 1.

Before giving the proof of Theorem 1.2 in Section 2, we present several conse-
guences. Hypothesis 1.1 is always assumed.
Homeomorphisms of the Sphere

Assume thag : S2 ~ S§? is an orientation-preserving homeomorphism having a
simple homoclinic loopA at a direct saddle.

TueoreM 1.3. The fixed point index ¢f in one of the two complementary com-
ponents ofA is 1, and the index in the other &
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Proof. This follows from Theorem 1.2, because one complementary component
of A has positive type and the other has negative type. O

The persistence of blocks having nonzero index implies the following.

CoRrOLLARY 1.4. Every mapS? — $2 sufficiently close t@ has at least three
fixed points.

A homoclinic loop constrains fixed point indices. Suppose, for example, that there
are exactly three fixed points: a direct saddle and two other fixed points with re-
spective indices 5 and2. Then the saddle does not admit a homoclinic point.

Inessential Homoclinic Loops and Nielsen Classes

Fixed pointsa, b are in the samélielsen clasgprovided they are endpoints of a
path that is homotopic to its composition withkeeping endpoints fixed. Equiv-
alently, f is covered by a map in a universal covering space having fixed points
overa andb.

When X is compact, every Nielsen class is a block of fixed points, and the
Nielsen numbeof f is the number of Nielsen classes having nonzero index. This
number, a homotopy invariant ¢gf is a lower bound for the number of fixed points
for any map homotopic tg.

THEOREM 1.5. Assume Hypothesisl, and letp belong to an inessential homo-
clinic loop. Then its Nielsen class contains a block of positive index, and such a
block must contain a fixed poigt # p. When the Nielsen class pfis finite, ¢

can be chosen with positive index.

Thus, in the presence of an inessential homoclinic loop, the number of fixed
points exceeds the Nielsen number. Theoreh® is asimilar result for Lef-
schetz numbers.

CoroLLARY 1.6. If adirect saddlep is the only member of its Nielsen class, then
p does not belong to an inessential homoclinic loop.

Proof of Theorem 1.5We assume thak is not simply connected, otherwise
using Theorem 1.2. Sinc¥ is orientable, there is a universal covering space
7:R? > X.

Choosep € 7 (p), and letf: RZ — RZ2 be the unique lift off with a fixed
point at5. Thenp is a direct saddle fof .

LetI" be a null homotopic homoclinic loop @t There is a unique homoclinic
loop " ¢ R2for f that containgy and projects ontd underr. Let A c I be
a simple homoclinic loop ap. There is a unique open 2-céll ¢ R? bounded
by A, andV is a closed 2-cell. Applying Theorem 1.2, we choose a blbak
Fix(f) NV such that

Ind(f, L) = o €{1, 2}.

Notice thatr (L) lies in the Nielsen class of.
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Every fixed point € = %(p) has index—1, since f in a neighborhood of is
conjugate tof in a neighborhood of (7). Becausé/ is compactz ~(p) NV is
finite. ThereforeL \ 7= ~(p) is nonempty, for otherwisé would be a nonempty
finite subset ofr ~X(p) and thus have negative index.

It follows that (L \ 7~%(p)) is a nonempty subset of Fix) disjoint from
p that is contained in the Nielsen class @f Suppose this class is finite; then
L\ 7% p) isfinite. LetL N 7 ~Y(p) have cardinality, 1 < v < co. Then

|nd(f, L\ n_l(p)) = Ind(f, L) — Ind(f, LN (77_1(17)))
= Ind(f, L) — vInd(f, p)

=0+v>2

Hence there existge L \ 7 1(p) with 0 < Ind(f, q) = Ind(f, 7(g)), andn(g)
is in the Nielsen class gf. This completes the proof of Theorem 1.5. O

Periodic Orbits in a Homoclinic Cell

The following theorem can be used to demonstrate the existence of infinitely many
periodic orbits in situtations where the horseshoe theorem may not apply.

THEOREM 1.7. Letr € N be such that everg*-orbit (0 < k < r) in the homo-
clinic cell V is hyperbolic. Then, either

(a) V contains an attracting or repelling*-orbit for somek € {0, ..., r}; or else
(b) V contains a twisted saddle orbit of cardinali®j for everyk =0, ..., r.

Proof. Suppose (a) does not hold. Fix= 2¢ (0 < k < r)andletB C Fix(f”|vn)
be a block having indey € {1, 2} (Theorem 1.2). Then somge B has index
1for f". Since (a) is ruled outy is not a source or sink fof”". The only other
possibility for a hyperbolic, index-1 fixed point fgf” is a twisted saddle. This
implies thatr is the minimal period fog; thus, (b) holds. O

CoroLLARY 1.8. Assume that every periodic orbit ¥ whose cardinality is a
power of 2 is a saddle. Thei¥ contains a twisted saddle orbit of cardinali®y
for everyk e N.

CoroLLARY 1.9. If fisCtandif 0 < Detdf, < 1in adense subset of and if
all periodic points inV are hyperbolic, thef¥ contains either a periodic attractor
or an orbit of cardinality2* for everyk e N.

It is interesting to compare these results to a theorem of Franks [10]. Specialized
to an orientation-preserving diffeomorphism of the 2-sphere, it states:

If all periodic points are hyperbolic, and if at most one orbit whose car-
dinality is a power of2 is repelling or attracting, then there are infinitely
many periodic orbits.
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Corollary 1.8 makes no assumptions on orbits outside the homoclini&cbiit

it does not allow any attractors or repellors of cardinalityr2V. It gives sharper
information than the conclusion of Franks’s theorem on the periods and locations
of periodic orbits.

It is not trivial to construct diffeomorphisms of the disk or sphere, all of whose
periodic orbits are saddles. However, examples are known that even have the
Kupka—Smale property: stable and unstable curves of periodic points have only
transverse intersections (Bowen and Franks [3]; Franks and Young [11]). Gam-
baudo and colleagues [12] have constructed real analytic Kupka—Smale examples
on the disk.

Lefschetz Numbers

Let #Q denote the cardinality of a sét.

Suppose that the surfageis a compact surface and that X — X is continu-
ous. ThelLefschetz numbdref(h), defined as the alternating sum of the traces of
the induced endomorphisms of the singular homology gréipx), i = 0,1, 2,
is equal to Indh, X). Lefschetz proved that, when the fixed point set is finite,
Lef(h) is the sum of the fixed point indices. When every fixed point has irdiex
—1, or 0, this gives the useful estimate

#(Fix(f)) = |Lef(n)].

The following results show that, when fixed points are simple, homoclinic cells
entail the existence of more fixed points than are counted by the Lefschetz number.

THeorEM 1.10. AssumeX is a compact surfacesix(f) is finite, and every fixed
point has indext-1, —1, or O. If f admits a homoclinic cell, then

#(Fix(f) = [Lef(f) +1—pl+1+p = [Lef(f)] + 2

Proof. For any open set C X, summing indices over fixed points= A yields

> Ind(f. 2)

< #(Fix(f) N A).

[Ind(f, A)| =

< Y lInd(f, 2)|

Applying this to a homoclinic celV, from Theorem 1.2 we have
#FIX(F)NV) =1+ #(Fix(f)NV) =1+ |Ind(f, V)|
=1+ p,
because Indf, V) = p. Also,
#(Fix(f) N (X \V)) = |Ind(f, X \ V)]
= [Ind(£, X) — (Ind(f, p) + Ind(f, V)|
= [Lef(f) +1—pl,
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because Indf, p) = —1. Therefore,
#(FiX(f)) = #(Fix(f) N ‘_/) + #(FiX(f) N (X \ 1_/))
> A+ p) + |Lef(f) +1—p
> |Lef(f)l + 2. O

CoroLLARY 1.11. AssumeX is a compact surfacerix( f) is finite, and every
fixed point has index-1, —1, or 0. If #(Fix(f)) < |Lef(f)| + 1, then there are
no homoclinic cells.

2. Fixed Point Indices and Retractions

This section contains the proofs of Theorems 1.2 and 1.5. Hypothesis 1.1 contin-
ues to hold. LetD ¢ X denote the closure of the homoclinic c&llThenD is a
compact 2-cell whose boundary is the simple homoclinic Iaop

A retractionof a space&’ onto a subseY, C Y is a mapY — Y fixing every
point in Y.

LEmMA 2.1. Assume we are givene N, and a mapg: D — D with the fol-
lowing properties

(i) g coincides withf” on a neighborhood gp in D; and
(i) Fix(g) = K U{p}, whereK C V is compact.

Thenind(g, K) = p(V).

Proof. Fix a coordinate chart in which is the origin andf” is represented by a
linear map
T(x,y)=(x,uy), 0<i<l<pu.

We identify points neap with their images irR? under this chart.

Consider the case th#t is a positive homoclinic cellp = 1). Then there is a
compact disk neighborhoad ¢ R? centered at the origin and meetifgin only
one of the four closed quadrants; to fix ideas, we assume it is the first quagrant
We takeN so small thag coincides withT in NN D, NNK =@, andN U D is
a 2-cell.

Choose a retraction: N — N N Q). We compute the fixed point index
INd(T os, N). Let ¢ > 0 be so small that the disk, of radiuse lies in N.
Let St denote the circle boundinB,. SinceT o s has the unique fixed point 0, the
index equals the degree of the map

z—Tos(2)
lz =Tos@I’
The retractiors sends any point € N \ Q) to the unique point(z) € 3Q, such
thatz ands(z) are the endpoints of line segment having slope 1;saisdhe iden-

tity on N N Q,. A simple computation shows thattakes no values in the first
guadrant of the unit circle and thus has degree 0. Thu&lad, N) = 0.

u: St — 8Lz
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Now consider the map: NUD — D C N U D defined to b& o s in N and
g in D; this definition is consistent becauses a retraction ang coincides with
T in NN D. Clearly
Fix(h) = {p} UK C Int(N U D).
Therefore,

Lef(h) = Ind(h, Int(N U D)) = Ind(h, p) + Ind(h, K).
The Lefschetz number is 1 becaugeJ D is a compact 2-cell, and

Ind(h, Int(N U D)) = Ind(T o5, N) =
Hence
1=Ind(h, K) = Ind(g, K)
as required.

WhenV is a negative homoclinic cell, we can assume ftiat D excludeghe
interior of the first quadrant. The retractionN — N\ Int Q, is defined by send-
ing z € N N Q) to the unique point 08Q, such that andr(z) are the endpoints
of line segment having slopeAjs the identity onV \ Q,. The degree oi in this
case is—1. Defineh as before. An argument similar to the preceding shows that

= Ind(k, K) = Ind(h, {p}) + Ind(k, K) = =14 Ind(g, K). O

LetJ, Cc W,(p) andJ, C W;(p) denote the two compact arcs whose unionjs
these arcs meet at their common endpoints, whictpaned the homoclinic point
p’ # p, but nowhere else.

Our next goal is the following.

ProrosITION 2.2. There is a retraction

r: f(D)UD — D
such that

r(f(D)\ D) C J;. @)
Proof. We first prove

JumCIOS(f(D)\D)Z{p’p,} (2)

or, equivalently,
JuNclos(f(V)\ D) = {p, p'}.

Suppose (2) is false, so that there exists

be J,\{p, p'}Nclos(f(V)\ D).

Thenb = lim;_, o, f(a;) for some sequeneg € V \ f'D, andb = f(a) by con-
tinuity. We claim thatf maps a relatively open neighborhotg c D of a onto

a relatively open neighborhoofiN,) C f(D) of f(a). This is becaus¢ maps
the interior of D onto the interior off (D). The assumption that is a direct sad-
dle implies thatf preserves orientation, arjpd'1| ;, Preserves orientation is,.
From this it follows thatv, and f(N,) abutJ, from the same side. Consequently,
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f(N,) contains a relatively open neighborhody C D of b. For sufficiently
largei we haves; € f N, and thusz; € f~D; this contradiction completes the
proof of (2).

From equation (2) we see that

clos(f(D)\ D)ND C Js. 3)
Note also that
f(D)U D =clos(f(D)\ D)U D,
clos(f(D)\ D)N D = clos(f(D)\ D) NaD C J;.
By Tietze's extension theorem, there is a retraction
ro: clos(f(D)\ D)U J; — J;

ro agrees with the identity map @ on the intersection of their domains, which
by (3) is J;. Thusrg and the identity map ob fit together to give the desired re-
tractionr. O

From now ony: f(D) U D — D denotes a retraction as in Proposition 2.2,

Lemma 2.3. Letn € N. For everyg € Fix(f") NV, there is a neighborhood
U C V, ofg suchthatf"|, = (ro f)"|,,.

Proof. The definition ofV, implies thatf/(q) € V,, c V forall j € N. Therefore,
g has a neighborhoot! such thatf/(U) c V, fori =0,..., n. Assume induc-
tivelythat 0<i < n andfi]U = (ro f)'|,: the casé = 0O is trivial. Forx e U
we have(ro f)!(x) = fi(x), and bothf(x) andf*1(x) are inV because € V,,.
Hence

(ro Y*Hx) = (ro AU =r(fHH)) = ),
because and f coincide onV. This completes the induction. O

Lemma 2.4, Fix((ro f|,)") = {p} U (Fix(f")NV,) foralln > 1.

Proof. Letx € D\ {p} ben-periodic forr o f. We first showx ¢ J,. We know that
J, is invariant undetr, andr|J is the identity becaus& C D. Thusr o f|; co-
incides Wlthf|J , whose only periodic point ip. The foregoing implies that no
point on the orbitr underr o f liesin J;. Thus no pointy in this orbit maps out-
sideD underf, for otherwise(r o f)(y) € J, by equation (1). This proves(x) C
D, and by induction we know thak o f)*x = f*x for all k. SinceJ, \ p con-
tains no periodic points fof, the conclusion follows. O

Proof of Theorem 1.2

The setB = Fix(f") NV, is open in FiX f") becauséd/, is open. We prove that
B is compact by showing it is closed it. Since B N dD C {p}, it suffices to
prove thatp is not a limit point of B. Clearly p ¢ B, andp (being a saddle) has a
neighborhood in which the only point of periads p. ThereforeB is a block.
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To prove Ind f", B) = p, letr: f(D)U D — D be aretraction as in Proposi-
tion 2.2. Lemmas 2.4 and 2.3 show that (i, B) = Ind((r o f|,)", B). Now
apply Lemma2.1tg = (ro f|,)" to conclude that Inf(r o £|,)". B) = p. O
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