On a Problem Raised by Gabriel and Beurling

ANA GRANADOS

The aim of this paper is to study Gabriel's problem from the point of view of
potential theory; that is, to study under what conditiong/qand )

/u(z) dz| < K/ u(2) |dz,
Y aQ

wherey C Q andu belongs to some set of functions (subharmonic or analytic).
More specifically (but highly relevant), we examine under what conditions

/u(z) dz| < K/ UV, (2) ldzl,
Y aQ

whereV, (z) is the normalized total angle subtendedybgt the pointz.

The main idea in solving this problem is to exchange the roles of (a) the total
angle with which the curve is seen from a point on the boundary and (b) the
Poisson kernel of the domaid. We shall show that solving Gabriel's problem
is equivalent to estimating the constant coming from this exchange; we shall call
such constarthe functionalk associated to the domain.

Several authors have studied Gabriel's problem for particular curves and do-
mains. Our purpose in this paper is to survey this area, to unify proofs and presen-
tation, and to describe the solution to some of the problems just mentioned. We
will also describe a few problems that remain open.

The plan of the paper is as follows. In Section 2 we survey the history of the
problem and present the known results; Section 3 is dedicated to studying the func-
tional K introduced in this work. In Section 4 and Section 5, Theorems 1 and 3
unify and extend previous results for subharmonic and holomorphic functions and
give the exact constant for Gabriel's problem. Also in Section 4 we pay special
attention to the case whenis a circle. Gabriel conjectured that, for holomorphic
functions, the constar is at most 2; in Section 5 we prove this conjecture false.
Section 6 considers a classical problem (in geometric function theory) of Hay-
man and Wu under this viewpoint; we give a necessary geometric condition on
the domairt2 for the constank to be finite. In Section 7 we generalize Gabriel’s
problem ton dimensions for positive subharmonic functions dahdonvex. We
finish in Section 8 by stating some questions that remain open.
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1. Introduction and Notation

Subharmonic functions satisfy the submean value property as follows. Cet
denote the circl€, = {z: |z] = s}, and let O< r < R; then

/u(z)ldzlf%/c u(z) |dz|, @)

where|dz| denotes arclength.

The quotient/R in (1) has a geometric meaning. For a paieixterior to a Jor-
dan curvey we defineV, (z), the (normalized absolutédtal anglesubtended by
y atz, as

1
Vy(@) = o— / |0y, arg(z — w)| |dwl, @
Y

whered, arg(z — w) means the directional derivative of the argument in the di-
rectiony’. (Here and hereafter, by thexterior of a Jordan curver we mean the
unbounded component 61\ y; similarly, by theinterior of a Jordan curve we
mean the bounded component®f, y.)
If we defineys to be the angle between the segment feotm w and the tangent
to the curvey at the pointw, then (2) can be written as
1 |siny|

\% = —
y(2) o Ll —wl

(see [B, p. 455; C; T, p. 340]). Observe thgtcan be also defined as

ldw]

1 2 )
Vy(2) = Z/ gy(z,€") db,
0

where the functiorg, (z, ') counts how many times the ray emerging from the
pointz in the directiory intersects the curve.
If y is aclosedconvex curve then, for everyexterior to the curver, vV, < 1.
In fact, this property characterizes convex curvest,Ifz) < 1 for every point:
in the exterior of the Jordan curye theny is convex. Observe that jf is C,,
[ is Cg, andz € Cg, then the quotient/R = sin(%Vcr(z)) and thus (1) can be

written as
/ u(z) |dz| S/ M(Z)Sin<ch,A(z)> |dz]. (3
C Cr 2

It seems natural to ask to what extent result (3) can be generalized, a question
which attracted a lot of attention in the 1930s. Gabriel was the first one to pose
and study the following problem:
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Given a pair of Jordan rectifiable curvdsand y, with y contained in
Q, the interior of I, and given any positive humbeyr, find the best
constantk such that, for all positive subharmonic functians

f u(@) dzl < K f u(2)V,(2) |dz] ©)
y r

We shall refer to this question &abriel's problem.

Before finishing this section we will introduce some useful notation. Through-
out this papey andrI” will be rectifiable curves, sometimes with additional proper-
ties (such as convexity) whenever specifieds a Jordan curve andis contained
in ©, the interior ofl". Also, z will always denote a point ir andw a point in
I'. We shall denote their Euclidean distancerythat is,r = |z — w|. We use
Pzﬂ(w) to denote the normalized Poisson kernefoét z € y evaluated atv e T’
(i.e., the density of harmonic measure with respect to arclength).

In applications, the curveds or y will often be convex; the results then are more

precise and require an extra bit of notation. In the special casehlsing con-
vex: H,, will be the half-plane tangent tb at w that containg; P, will be its
normalized Poisson kernel; apdwill be the Euclidean distance fromto oH,,.
If y is convex (or simply a segment}f, will be the half-plane tangent tp at z
that containsv; Q. will be its normalized Poisson kernel; agdwill be the Eu-
clidean distance fromv to 9H,. (If w happens to lie on the tangent linejtat z,
thenH., is either half-plane.)

Note that the subindex iH,, Q., ... always stands for the point that is at the
boundary.

2. Background

As mentioned in Section 1, in the 1930s Gabriel proposed the problem (G). Since
then, different authors have studied it and obtained results for special curves or for
special exponents. In this section we will describe the known results.

We shall divide this section into four parts: in Sections 2.1 and 2.2, the func-
tions considered will be positive and subharmonic (restricting the exponent to 1
in 2.1). In 2.3 they will be holomorphic functiona = o0); finally, in 2.4, we
consider the closely related Hayman—Wu problem.

2.1. u Positive Subharmonic and =1

In general, for positive subharmonic functiansone has

/u(z) |dz| S/u(w)[/PZQ(w) Idzl} |[dw|
Y r 1%

(simply by comparing: with its minimal harmonic majorant).
In the particular case of being a circleC,, sayC, = {z : |z| = r}, “separa-
tion” of variables simplifies the problem because
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/ u(z) |dz| Sfu(w)[/ P2 (w) Idzl] |[dw|
C, r C,

= / u(w) P8 (w) |dw.
r

In this case, fof" (with the property that, through each popof I', one can draw
a circleC, of radiust independent of the point such that its interior is exterior
to ") Verblunsky [V] and Reuter [R] for = oo (i.e., convex curves) showed that

/ u(2) |dz| < <2+ f)/u(w)vc,(w) \dw|.
fol t) Jr

2.2. u Positive Subharmonic and > 1

Gabriel [G3] studied the problem (G) fér convex and showed that, far> 2,
the constanK is finite. He conjectured that this should be trueXor 1, but Fen-
ton [F] proved this falseX explodes at. = 2 for the simple case when is a
segment perpendicular

We have stated that, for a circle, the constark was always finite fon. > 1
(more preciselyk < 2+ r/t for r, t as before); this suggests thatdlepends on
the geometry of the curve. It would be nice to characterize those curyefor
which the constank is finite fora > 1.

In Section 4 we shall establish an analog of Gabriel's estimate, giving the exact
constant not only for convex curves but for any

2.3. u the Modulus of a Holomorphic Function

The case of. = oo for u being subharmonic and positive will be of special inter-
est, because it is equivalent to Gabriel's problem (Gftaeing the modulus of
a holomorphic function and for exponent 1 (see Lemma 4 in Section 5.1).
Gabriel [G3] showed thak is finite if I is convex. As a matter of fact, he
showed moreX is finite not only for exponent 1 for the modulus of a holomor-
phic function but forany positive exponent. Gabriel conjectured ti&at< 2. We
shall give a counterexample to this conjecture in Section 5.2.
Carlson [C] proved that, for any rectifiable curyeand any positive number
A, K < 21if " acircle. As a corollary one obtains the result proved by Féjer and
Riesz (see e.g. [D, p. 46]): far the unit disc,y the segment—1, 1), andi > O,

1
/ ol dx < = / ()] db, @)
-1 2 Jop

where the integral on the left is “counted only once” (i.e., wendbconsider the
curvey = [—1, 1]to be the closed curve that starts-dt goesto 1, and then returns
to —1 again). To see (4), simply observe tiat; 1,(¢'?) =  for eache'? € aD.

2.4. A Related Problem

We will also consider the problem of estimating the best consfasich that, for
special functions and exponents,
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/|u<z)|x dz) < k/rw(zw dz| 5)
Y

(observe that no total angle is involved).

Gabriel obtained some results on (5) for very particular cases as follows. Given
a circleT, a convex curvey, and any exponent > 0, the constank < 2 for
holomorphic functions: (see [G2]). Giverl" convex,y a circle, and exponent
A = 1, the constanK < 2 for positive subharmonic functioms(see [G1]). Also,
Beurling [B, p. 457] considered the problem of estimating the best conktémt
some special curves. For more on this, see Section 3.3.

Observe that if the curve is convex then the total anglg, < 1; hence, in this
case, the constait is at most the constant in Gabriel's problem (G).

2.5. Application to Conformal Mappings

Onereason for the interest in these results is their application to the study of confor-
mal mappings between simply connected (Jordan) domains. We offer two exam-
ples. First, considey a conformal mapping frorf2 onto the unit dis@®. Consider
(5) when the exponent = 1, the functionu = g’, and the curver is a segment.
Then the problem of finding the be&tin (5) is the classical Hayman—-Wu prob-
lem (see Section 6).

Likewise, considerg a conformal mapping from the unit dig2 onto a sim-
ply connected (Jordan) domait, and apply (4) tof = g’ with A = 1. Then we
obtain that the Euclidean length of hyperbolic geodesic® is at most half the
length of the boundary a®. For more on these applications see Section 6.

3. The FunctionalK Associated to a DomairR

We shall now describe a certain collection of functionals defined on the sphere
bundle ofQ2. We introduce the following notation. Given any directioand any
pointz € R?, let L, . be a straight line containingwhose tangent ig (which di-
vides the complex plane into two half-planes); ebe any point inR?. Denote
by Q. (w) the normalized Poisson kernel of the half-plane with boundarythat
contains the pointv. (If w lies onL, , then we can take either half-plane; note
that this use oD, (w) is a slight abuse of notation.)

Fix the domain and an exponerit (1 < A < o0), and define the functional
K} for every pointz € € and unit vectow (observe thatz, v) is a point in the
sphere bundle of2) as follows:

K} r(z,v) =sup Q( )
wel Qz(w)

K:(z.V) {/(—Zg(w))ﬂpﬂ( )1d |}A1 1<i<oo
S = (W w . < < s
r 0.w) ) '

P2 (w)
KX (z,v) _exp/ Iog(

0:(w)
whereg =1/(A» — 1).

A=1

>Pf(w> ldw], 1 = oo,
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31

Let us give a couple of relevant examples.

ExampLE 1. If ' is a convex rectifiable Jordan curve, it is easy to estimate
K} (z,v) and to see that it is bounded if > 2. Toward this end, recall first
the notationQ, (w), P,(z), andH, (see Section1). Sinc® ¢ H,,, the integral

of the functionalk: can be bounded by

———— | P d P, dw|,
A(QW) cldwl = (G ) ) Pr@ 1dw

where agairg = 1/(A» — 1). (Note thatw € I is the variable of integration.)
If ¢ is the angle between the segment passing threwgidw and the perpen-
dicular line todH, containingz, and ifds is the arc element subtendedzathen

[(Pw(z))ﬂp()|d|<l 1
v w — s
-\ Q. (w) < 7 Ji [cosp|?
1 " 1
55A|wwww¢

_ 4 (1-p 1-p
T p2p 2 2 )=

where the first inequality follows from the fact that

|cosg|
|z — w2

The last inequality comes from = 1/(A — 1). Here B denotes the Beta function
(see [GR, p. 957]).

Py(z) <

and Q.(w) =

lz — w|?

ExampLE 2. If " is the disc therK°(z, v) = 0. This will be obvious after the
forthcoming Lemma 1.

Note that bothK}:(z, v) and KX°(z, v) are really defined on the sphere bundle:
they depend not only on the point 2 but also in the direction of the tangent
to y atz (recall thatQ,(w) depends on).

3.2

The following integral expression in the case= oo will be useful later.

LEMMA 1.

1
KXz, v)=exp[ lo —_ dw?,
r @) p/r g|25|n1/f| @z
wherey is the angle between the segment from w and L, . and wheredow$
denotes harmonic measure$h
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Proof.

Q
/Iog(PZ (w)>P,Q(w) |dw| =/ P2 (w)log P2 (w) |dw|
r o.(w)) - r ’

_ f P2 (w)10g(Q. (w)) |dw|
I
=1+ 1I.

Let us calculatd : If g denotes the Green'’s function f@rwith pole atz, then

1 og Q
I = | ——|P
/r09<2n an> > (w) [dw]

_ 1 Q g
= Iog<27T>1+frPZ (w) log n |[dw].

Yet g is identically zero o™ and sodg/an = |Vg|. This, together with the pre-
vious calculation, gives

1
I = Iog<g> +/ P (w) log|Vg| |dw].
r

LetD be the unit disc, letd : D — Q be conformal withH(0) = z, and letG
be the Green’s function ob with pole at zero. Then, by changing variables and
observing thag o H = G, we have

I=Ilo 1 +/ lo |VG|d9 /Io |H’|d9
N g27'[ aD g 2 aD g 2
1
= log 5— —log|H'(0)|
2
=log

27|H'(0)|

where we have used thafG| = 1 onaD.
We now calculatd!. After the change of variables given By, the integrall/
becomes

. 2
11:/ IOQNIH(S) H(O)|* |d¢|
aD q(HE) 2n

H(E) — HO)| |dg] / H(E) — HO)| |de]
_ log ) — TN 1451 log L) — TN 48]
o9 +/3D O 2w T, qme  2x

H(E — HO)| |dé|
q(HE) 2

Finally, addingl and/I and doing the same (conformal) change of variables yields

— log(x|H'(0)]) + / log
oD
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1 HE) — HO)| |d
IOQKFO(Z,V)=|OQE+/;D|09|(?(T()|%

:/ |og—1 @
o |12siny(§)] 2n

1
=/ lo dw®,
/F 92 siny|

where the angle/ anddw?’ are as in Lemma 1. This finishes the proof. O

3.3
The expression

1 Q
/; log 2siny| do; (6)

appears in Beurling’s work related to this type of problems [B, p. 457]. Beurling
has implicitly conjectured that

1
2ex /Iog —__dof) <2
r [2siny| ¢

for everyI" convex, every point in , and every direction. Beurling’s conjec-
ture is still unresolved.
It is easily seen that

1
sup 2exp(/ log —— dw?) <4
I convexz,v r |2siny |~

by observing

/Io ;d Q—fnlo 1 do(y)
r g|2$im/f| @z = o gZSim/f

<lo 1+fﬂlo 1 de//
- 92 0 gsinwﬂ

1
= Iog§+2I092= log 2,

wheref () denotes the harmonic measureirof the arcl (which we now de-
scribe). Letv; andv, be counterclockwise and clockwise (respectively) rotations
of anglesyr of the directionv. Letry, r, andr, be the rays emerging from the
pointz with directionsvy, v, andv,, respectively. Then we define the dron the
curvel as the arc whose final points are the intersection @ndr, with I" and
which contains the intersection pointiofvith I".

Beurling proved by a nice symmetry argument [B, p. 455] the nontrivial esti-

mate 1
sup 2exp</ log —— da)?) <37
I" convexz,v r |25|n¢| N

Clearly, this supremum over convex curdéshould be at least 2. For this, take
I" to be the unit circle; then
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1
| do® =0
/r09|23inw| @z

and Carlson’s result in Section 2.3 follows.
The relevance of sharp bounds on the functional will become clear in Sections
4 and 5.

3.4

Before finishing this section we make a useful observation akiffuk, v). Denote

K( v)—flo 1 dw®
BV = 09 g Y

First, note that obtaining a bound f&r(2, z, v) valid for all triples (2, z, v)
is equivalent to obtaining a bound fé&f($2, O, v) valid for all pairs(2, v) with
0 € 2. We now have the following result, which will be crucial in Section 5 for
showing that Gabriel's conjecture is not true.

LEmMA 2. For every domai2 and pointz € 2,

K(R2,z,v) <0forall v < K(,z,v) =0 forall v.
Proof. Integrating over all directiong the expression foK (22, z, V),

dv 1 dv
K(Q,z,V) — = lo — — dw¥ =0,
/am) (&2 )277 /asz/au) g|25|m/f| 2 ¢

where the last equality follows from Jensen’s identity (see e.g. [Ru, p. 307]).
Thus, if K(2, z,v) < 0thenK (2, z,v) = 0 for allv. O

4. Subharmonic Functions
4.1
The main result of this section is the following theorem.

THEOREM 1. LetT, y be rectifiable Jordan curves with contained inQ2, u pos-
itive and subharmonic of, and > 2. Then

/u(z)kldzl < K(/\,F)f u(w)*V, (w) [dwl, (7)
Y r
where
KA T)=2 sup Ki(z V). (8)
7€, vedD

The constant is sharp.

Observe that the constakt: does not depend explicitly on

ForI" convex, one obtains Gabriel's result ([G3]). Recall that in this case and
for exponent. > 2, it follows that K (A, I') < oo (see Example 1in Section 3.1).
Although the proof works for all. > 1, given a convex curv& and an exponent
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A <2, K(A, T) = co. Fenton [F] gave an example for= 9H. (Actually, more
is true: there is a paifz, v) such thatk }:(z, v) = c0.)
The condition that: be positive is necessary for Theorem 1 to hold, as the ex-
ampleU(z) = log|z| in the unit disc reveals (s¢E]). Forthen, ify is not a point,
the integral on the right-hand side of (7) is zero while the left-hand side is positive.

Proof. Let y (r) (0 < r < 1) be a parameterization of the rectifiable cupveFor
eachn € N, consider a partition 8= 19 < #; < --- < t, = 1 such that the points
y(to), ..., ¥ (t,) € y divide the curver inton pieces of the same length. Approx-
imate the curver by a polygonalP? with verticesy (to), ..., y(t,) € y and sides
Ly, ...,L,(i.e., eachsidé; is a Euclidean segment that starts at the ppiint_1)
and finishes at the poimt(z;)).

Observe that
lengthy

lengthL; = |y (t;)) — y(tj_1)| < <00

For anyu, we have

[z = Y [ utoia
Y i=17Lj

|V, = Vpy| = 0 asn — oo.

— 0 asn— oo,

It will be enough to prove (7) for the polygon®”. Moreover, since botiVpy
and the integral on the left-hand side of (7) are additive on the giges$ P”, it
is enough to prove (7) for a segment, day

Recall the notatiorQ, (w). We want to show that

/u(z)A ldz| < K(A,F)f u(w)*Vy (w) [dwl,
L I

which holds if and only if
KA, T
u@ = S50 [y g.w idul, ©)
r

To see this, simply observe that for any directiowith segment. = [z, z + V]
and for anyw € I, sinceQ,(w) depends only o we have
Viw) 1 ¢ _ Q:(w)
—_ — =
|L| 2nm|lw — z|? 2

ast — 0.
We shall prove (9). Suppose first thdat harmonic; then, by Holder’s inequality,

A
u(z)* = ( / u(w) P2 (w) |dw|)
r

Q B 1/B
< ( / u(w) Q. (w) |dw|)< / (M) P2(w) |dw|> (M)
r r\ Q;(w)

whereg = 1/(A — 1). Comparing this inequality with (9), for harmonic functions
we obtain
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P2w)\’ g
K(,T)=2 sup (/(f—) Pl (w) |dw|)
r

7€Q,vedDd 0. (w)
A
=2 sup Kg(z,v).
z€Q,vedD

For u subharmonic, consider its harmonic majorahtThe result follows from
applying (9) toU.

Note that the constank (1, I') is the best possible; farg € © and direc-
tion v, takeu to be the harmonic function of2 with boundary values (w) =
(P£(w)/Q:,(w))?. For suchu, equality in (H) is attained; that is,

o) = KhGov) [ u(w)Quy(w) dul
r
Moreover, ify, is the curvey, = zg + tv for ¢t € [0, ] with ¢ > 0, then

o @il
e=0 [Lu(w)*V,, (w) |[dw|
This concludes the proof of Theorem 1. O

= 2K} (z0, V).

There is a more useful estimate for the constkiit, I') which involves both
curves more explicitly but which is not sharp. For the sake of completeness we
shall give it here.

LEmMMA 3. Leti > 1 let)A besuchthal/x+1/) =1, andletg = A/A. Then,
for y, T, @, u as in Theorem 1,

/ u(2)* 1dz] < C(y, T) / u (W) 'V, (w) |dw,
Y T

C(y.T)” = sup / iﬁ( / (P2 (w))* |dz|)
r r Vy y

Proof. Itis just Minkowski's inequality. O

where
B

4.2. y aCircle

As one can easily imagine, the case of the cyrveeing a circleC, (say, cen-
tered at the origin and of radiu$ is particularly simple. Separation of variables
simplifies the problem because

f u(2) |dz|sfu<w>[/ P2(w) |dz|] \dw|
r F r

= / u(w) P§(w) |dw|.
r

In this case, Gabriel's inequality (G) holds for more general cutvesd for all
exponents. > 1.
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Before stating the principal result of this section, we will introduce the notion
of exterior curvature, which will be a basic tool for handling the geometry of the
curvel. LetT be arectifiable Jordan curve. For almost every ppiatl” we con-
sider the family of circle” of radii r tangent tol" at p whose interiors do not
intersectl” and which are contained in the exteriorlafLet

1, = sup{radii of C;”}

(1, = oo at all pointsp if and only if I" convex). We define thexterior curvature
ktof T atp as
1

kext N
14 t[)
We can now state the main result of this section.
THEOREM 2. For any circleC,, any positive subharmonic functien and any
A>1

f u(2)*|dz| < / u(w)’\[Z Sin<%vcy(w)) + rki"t] ldwl; (10)
c r

if A =1itis sharp.

Observe that Theorem 2 implies the results obtained by Verblunsky and Reuter
(their estimate uses the upper bound 1 instead of the fact((gf\g@;l(w)); see Sec-
tion 2.1).

Proof. We may assume that= 1, sincex” is subharmonic wheneveiis positive
and subharmonic; we may also assume #hiatharmonic, sinca has a harmonic
majorantv such thatt = v onT andu < v onC,. Thus,

/ u(z)|dz| < f v(z) |dz| = 27rv(0)

= 27r /r v(w) Pyt (w) |dw| = 27r /r u(w) P (w) ldwl].  (11)
For almost every € 2, consider the radiug, of exterior curvature of at the
pointw. To simplify notation, let
I =ty,
C, = circle tangent td" at w of radiusz,, contained inQ¢,
E, = exterior ofC,.

SinceQ2 C E; we have
Pgi(w) < Pg'(w), (12)

whereP(f’(w) is the Poisson kernel of the domalh evaluated at the point 0.
Recall that ifzg is the center of the circl€, then
1 |zo|? — 12

Py(w) = s-— .
o' (w) 27t |zo+ w|?
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To estimate this, le? be the angle between the inward normal'tatw and the
segment joiningv and 0. A straightforward calculation shows

E, 1 /2co¥ 1
Forwy =5\ Tl T 7)

The normalized absolute total angle arises naturally, and ginéea circle it is
easy to see that

1 .t
Ve, (w) = 4— arcsin—,
27 |w|

1[2cosy . 1
P(f’(w) < Z[ . sm(%VC,) + ;] 13)

With estimates (12) and (13), and recalling the definition of exterior curvature
kX, our initial inequality (11) becomes

so that

an/u(w)Péz(w) |dw| S/ZNFM(W)P(fI(w)
r r

< / u(u))|:2 Sin(ch[> + rkzxi|,
r 2
and the theorem follows. OJ

As claimed in the theorem, for = 1 the result is sharp. To see this, Seto be
the upper half-plane and sgtto be the circle centered at= (L and with radius
r =1, whereL > 1 Then

/ u(a))|:2 Siﬂ(ch,) —i—rkaXt:| |dw| = 2/ u(w) |[dw|,
R 2 R

where the number 2 is the constant estimated by Verblunsky and Reuterco
for all w € 9H).

5. Holomorphic Functions

It is of special interest to consider (G) wheris the modulus of a holomorphic
function f. In this section we will first calculate the exact constant for this case
and then give an example yielding > 2 and so showing Gabriel's conjecture
false (see Section 5.2).

5.1. The Exact Constant

We shall need the following observation of Hayman [H], which shows that study-
ing Gabriel’s problem (G) for subharmonic positive ard= oo is equivalent to
studying (G) foru = | f| with f holomorphic and exponent 1.

LemMa 4. For any pair of rectifiable Jordan curvds and y, the following two
conditions are equivalent.
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(A) There exists a constaut such that, for every harmonic and positive func-
tion u,

/e“@ |dz| < C/ "MV, (w) |dw|.
y r

(B) There exists a constant such that, for any polynomiat,
/y |P(2)|ldz] = C /F | P(w)| V) (w) [dw].
The constants ifA) and (B) are the same.
Hayman proved this without the weight and fory a circle, but Lemma 4 fol-
lows in the very same way. Note also that, since (B) holds for any polynomial, it

also holds for functions holomorphic on the closureof
Now we are ready to give the equivalent result to Theorem 1 in this context.

THEOREM 3. LetT, y be rectifiable Jordan curves with contained in<2, and
let f be holomorphic orf2. Then

/ ()] dz] < K(o0, T) / @)V, (w) [dw], (14)
14 T
where
K(co, ') =2 sup K&(z,V). (15)
z€Q,vedD

The constant is sharp.

If " is convex then Gabriel's result follows. In this case, recall iéato, I') <
oo (see Sections 3.2 and 3.3). Note also tkiatdoes not depend explicitly on the
curvey.

Proof. By Lemma 4 it is enough to show (14) for functions of the fartf? for u
positive harmonic. As in the proof of Theorem 1, (14) will hold if and only if

K r
e"@ < —(Oz’ ) / "™ Q;(w) |dw|, (16)
r
and we shall prove this.

Recall thatx is harmonic and positive. Letbe a harmonic conjugate and con-
sider the holomorphic functiogi = e“*v. Sinceu = log| f| is harmonic,

u(z) = / u(w) PE(w) |dw|
I
P2 (w)

0.(w)
= |
/r(”(w) o ') 0.(w)

P2 (w) |dw].
o) 2 (w) [dw
Taking the exponential first and then applying Jensen’s inequality,

P2 (w) |dw]| + / log

r
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et —exp{/(u(w)+log Q:(w )DP (w) |dw|}

P2 (w)
exp{/ log

< / explu(w)} Q. (w) |dw|exp{ / jog| =)
T r

P (w )Idwl}

Qz

PE(w) |dw|}. @)

Qz( )
Hence, for functions of the form#® we have
K(oo,T) (P,Q(w)> o
———~ = sup ex lo = P*(w) |dw|,
2 o P 0iany )
which proves the theorem. O

The constani (oo, I') is sharp. To see this, considEr, for eachzg € © and
each directiorv. Define the se#,, as

A, (V) ={£el | —a|l <10 Pforalla e NJH., },

and consider the functions

P (w)
h(w) = xr\a, |09< 0 (w))’

u(z) = P9[h] (i.e., u is the harmonic function o with boundary values),

ii(z) = a harmonic conjugate of.

Then, equality in (J) is attained fgfi(z) = e“*+#; that is,

|f(zo)l = K (zo, V)/Flf(w)leo(w) ldw].

Moreover, ify, is the curvey, = zg + tv for ¢t € [0, ] with ¢ > 0, then

- [ 1f@ldz|
e—0 fr|f(IU)|Vys(w) |[dw |

= 2K’ (zo0, V).

5.2. Counterexample to Gabriel's Conjecture

Gabriel [G3] proved that, for any holomorphic and™ convex and for any. > 0,
/If(Z)I“ ldz| < Kf [f@)"Vy(2) ldzl;
14 r

he conjectured that the constdtcould be replaced by 2. We shall show this to
be false and shall do so in the case of interest to u: whenl.
Recall that, by Lemma 1, the best possible conskactn be written as
K (z,v) = expK(T, z,V)
with
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K(T. | LI
(I, z,v) = /r og 2siny] s
herey is the angle between the segment froto w and the tangent tp atz, and
dwf denotes the harmonic measuresin As we have already observed, the con-
stantK>° does not depend explicitly on the curve This is the key factor in the
counterexample.

Consider the domaif® to be the band = {z € C : |9 (z)| < 2}, the direction
v = (1, 0), and the sets

A={z68B:z=x+ly,|y|<2/\/§},
D=0B\ A

(i.e., A is the set of points where |68ty |2 sini/|) is positive andD where it is neg-
ative). It is apparent that, from the point= 0, A has more harmonic measure
thanD. This is why K (B, 0, v) should be positive (note thatpoints in thex di-
rection); thusk°(z, v) > 1 and thusk (oo, I') > 2. We proceed to make this
precise.

With © being the ban® just described, take to be the segment{l, 1] and
let z = 0. Since by symmetry

K(3B,0, (1, 0)) = 4/ PE(2+1y)log PE(2 + 1y) dy
0

o0
+ 4/ Pcf(2+ ty) log dy
0

= 4A + 4B,

it will be enough to see that + B > 0 to finish the counterexample.
We shall first estimatd . As shown in the proof of Lemma 1,

0. (w)

4A = log

27 |H'(0)]
whereH is the conformal magi : D — B with H(0) = 0. That s,
4 1
H@E) = ~1log =2
T 1-z
and so N 1

To estimateB, observe that

1
P52 =
02+ 1) 8 cosh(yr/4)

We then have

> 1 1 2.4
B =/ - Iogn(y + )dy
o 8coshyr/4) y

871Y4rry/4) 172
:'°g<H [F<3/4>] )
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hereTl'(z) is the Gamma function (see [GR, p. 942]). Adding Apand B, we

obtain L v w4 2
r

which shows thaK (oo, I') > 2.
It is important to observe that the foregoing is not a counterexample to Beur-
ling’s conjecture (see Section 3.3). The weightplays an important role.
Alternatively we could have proceeded as follows. Recall Lemma 2 and note
that

do <0

K(Q =1
(2,2z,V) frOQIZSim/fI o=

for all z andv if and only if

1
[ do® = 0.
frog|23in1ﬁ| @z

As one could expect (and as is quite easy to sh&dB, z, v) < 0if visthe direc-
tionv = (0, 1) (i.e., if v points in they direction). Thus, by Lemma X (3B, z, V)
must be positive for some other directions

6. Conformal Mapping: The Hayman and Wu Problem

The following question was raised by A. Weitsman.

Given a simply connected domaihbounded by a rectifiable Jordan
curver, find the best constaitW(I") such that, for every straight line
L (or circle) and for every conformal mapping from  onto the unit
discD,

/ |F/@)] ldz] < HW(D) f )] 1zl 17)
LNQ r

In other words, lengthf (L N 2)) < HW(T') length(dDD). Observe that since
the problem is Mobius invariant, circles and straight lines play the same role. Note
also that there is no total angle in (17).

Hayman and W{iHW] were the first to show that there exists a universal finite
bound HW forall curvesI” (see also [GGJ]). The best result known today is that
/2 < HW < 2, with both estimates due to @yma (see [@1] and [@2], respec-
tively). For the rest of this sectio®, I', andL will remain as before.

Brown-Flinn [B-F] showed that if. c € then the sharp estimate is HW
/2. The sharp constant for the general case is still unknown. The conjecture is,
again, HW< x/2. If the simply connected domai® is convex, we showed that
HW < 1 and this is sharp [FG]; moreover, lengtiL N 2)) < length(dDD).

Some authors have considered (17) for more general curves than straight lines
and for more general functions than conformal ones. Bishop and Jones [BJ] char-
acterized ag\hlfors-regularthose curves for which (17) holds with afinite constant
for any domain2 and any conformal mag. Since arclength is a Carleson mea-
sure, it is straightforward to show that
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f 8@ 1dz] < c/|g<z>||dz|
LNQ T

for all g holomorphic inQ. Thus, (17) holds also for holomorhic functions (not
necessarily the derivative of a conformal one).

It seems natural to ask whether (17) holds if one introduces the total &pgle
subtended a» € T, and also if in this case it can be generalized by considering
more general curves and functions. Hayman and Hall [HH] gave a nice estimate
of the constant in (17) for general holomorphic functions and certain dorfiains
In fact, they generalized Brown'’s result (just recalled). Observe that thewe is
weight on the integral on the right-hand side of (17).

THEOREM HH. LetT be a rectifiable Jordan curve whose interi@rcontains a
circle C. Then, for any holomorphic functiofiin ,

/If(z)lldzl S4ﬂf|f(Z)||dZ|-
C r

Except for the constant, this result is a well-known corollary of the Hayman-Wu
theorem and the characterization of Carleson measures in terms of the Mobius
group. See [G, p. 239] and the proof that follows here. The emphasis now is in the
best constant. Our proof is much simpler than the one in [HH], but the constant
is worse.

Proof. Let be any conformal map frof2 ontoD. Then, by Brown’s result and
conformal invariance,

length(y(C)) < 7%

/II!/’(Z)IIdZI < %/Ilﬂ’(Z)l ldz|.
C r

Let T be any Mobius transformation di. Applying the preceding inequality to
the functionT o ¢, we deduce that

jT /
/ |T’<z)||dz|s§/ T2 Idz).
w(C) aD

Once there is an estimate as above on the constant for Mébius transformations,
a nice result due to Treil and Volbefd V] gives anestimate for holomorphic
functions increasing the constant by a factor of 8. One obtains

8
/ |f(z>||dz|s7”/ )] ldz]
¥(C) oD

for all functions f holomorphic on the closure @. The result follows. O

that is,

In the convex case (with' a segment), the result of [FG] and the foregoing proof
together yield the constant 8. This is not the best constant: Beurling [B, p. 457]
proved that the best constant in this case is 1 (and it is sharp). It would be nice to
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obtain the sharp bound in Theorem HH, which is a generalization of the classical
Féjer-Riesz theorem.
We shall now consider the following problem:

For which rectifiable Jordan curveE and y (with y in the interior of
I') does there exist a constamt such that, for all conformal mappings
f from Q ontoD),

/If’(Z)IIdZI SM/FIf/(Z)IVy(Z) |dz| ? (P)
14

It is important to remark that this problem is not Mdbius invariant (in particular,
circles and lines are not the same for this problem). We now proceed to answer
(P) depending on the geometries firstyoind then ofl"; we will do so in three
different subsections.

6.1: y a Straight Line. We shall show with an example that in this situation, un-
like the case of the Hayman—Wu theorem (where there is no total angle), there is
no universal bound for the problem (P). That is, there does not exist a finite con-
stantM not depending on the cunig In the rest of the section we shall dengte
by L.

The idea is to construct an increasing family of domains contaihisg that,
in the limit domaing2, the total angleV; (w) is zero for almost allv € 9Q2. To-
ward this end, taker, to be the ray emerging from O with directionr2:, and
takel, to bel’, = R, U R_,. TakeL to be the segmerit-co, 0), and letf, be
a conformal map fron®2,, = {z € C : |argz| > 27/n } onto the unit disd with
fr(L) = (=1 1). Then

length( f,(L)) = /If,[(z)l |dz| =2 foralln.
L

However, sincef, € LXT,) and Vi—so,0)(w) — 0 asn — oo for all w € T,

/ f/IViemo0(@) ldz] — 0 foralln
r

and hence there is no finite universal constd@nsatisfying (P).

6.2: Conformal Mapping and Unpokeable Domaimss we have just observed
in 6.1, there is no finite consta for (P) in general (even foy being a seg-
ment!). The reason for this lies in the geometry of the curfvén order to have
a finite constani/ in (P), we need to place conditions on the geometry ¢b
guarantee thal; cannot be too small for many poinise I.

In this section we describe a class of domains for which we shall be able to
obtain a positive result. We shall say these domains are “unpokeable.” The fol-
lowing notation will be convenient to describe the domains of interest. For fixed
R > land O< 5 < 7 and for any; € Q ande'? € 3D, we define thesector

S(z,e', R, )
={weC:8q(x) <|w—2z| < RSa(2), largw — z)e™*’| < n/2},
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whereéq(z) denotes the Euclidean distance from the peitd the boundary of
the domaire2. We define &eyholeto be the region

K(z, e, R,n) = S(z, €', R, n) UD(z, 80(2)).

We say that the domaif? is unpokeabléf there existsR > 1 such that, for every
z € Q and eveng € 0Q with |z — &] = 8q(z), we have

{wedR:8a(z) <|z—w| < R3a()}\ Sz, e, R, 1/R) # 0,

wheret = z + ¢'%6o(z). This condition simply says that there is a poin®6f in
the annulus centered atof radii §o(z) and Réq(z) which is away from the ray
emerging frony, in the direction of.

We characterize the unpokeable domains in terms of harmonic measure. We
need the next lemma (which follows immediately from Beurling’s projection
theorem).

LemMa 5. If zeQandw €9 (sayw = z + te'?, |lw — z| < Réqa(2)), then
w(z,02N S(z,e'% 2R, n), K(z,e'% 2R, n) N Q) > W(R, n),

whereV is a certain universal continuous positive function defined’for 1and

O<n<m.

Now we will give the characterization in terms of harmonic measure.

LemMA 6. With the notation just described, the following two conditions are

equivalent.

(a) Q is unpokeable.

(b) Thereexist® > 1, ananglen(R) (0 < n < m), and aconstanty = co(7, R)
such that, for every € 2, there exists a direction’* such that

w(z,8(z,e' R, n) NI, Q) > co
and there is a closest boundary point outside the se€tore'®, R, ). That
is, there exist§ € IQ with& = z + ¢'%, where|§ — «| > n/2.

Observe thaty = co(R, 1), but it does not depend on the point

Proof.

(@) = (b) ConsiderR > 1 given by the definition of unpokeable. For each
z € Q, consider a poing = z + ¢'%(z). By definition, there exist (i) a bound-
ary pointw € 92 in the annulus of radibo(z) and (ii) RSq(z) which is not in
the sectoS(z, ¢'?, R, 1/R). Take the directior'* so that argy = «. Then, using
Lemma 5 together with the fact th&t N 2 c 2, we get (b) forp = 1/R.

(b) = (a) This is immediate. For this &8 = max(1/y, R). If

w(z, S(z, €' R, ) N R, Q) > co,
then it is straightforward to see that
{wed:8a(z) < |z—w| < R8q()}\ S(z, e, R, 1/R) # 0,
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wheret is a cﬂlosest boundary point that can be writte§ as z + ¢'%6o(z). Thus
(a) holds forR. O

If a simply connected domain is linearly connected [P, p. 103] or linearly locally
connected [Ge], or if its complement satisfies the so-called corkscrew condition
[JK, p. 93], then the domain is unpokeable. But there are unpokeable domains
that are neither linearly (locally) connected nor whose complement satisfies the
corkscrew condition, as the next example shows. Take direcfipits the unit

disc to bed,, = m/n, and around each directia) take a region

en - Gn+l
4

now take the domaife to be2 = D\ | J,.., R,,. Thatis, we are removing from the
unit disc a countable collection of sectors, keeping the height fixed while shrink-
ing the base. This domaif? is unpokeable, but it is neither linearly connected
nor locally linearly connected (observe that the two conditions needed for a set to
have this property fail to be true), and its complem@nt 2 is not corkscrew.

6.3: Theorem.Now we state the theorem that gives a partial answer to (P).

9

1
an{zeD:|z|>§, largz — 6, | <

THEOREM 4. Let (2 be a Jordan unpokeable domain = 9<2 rectifiable, and let
y be a rectifiable Jordan curve containeddn Then, for any conformal mag
from © onto the unit disd®,

length(f(y)) =/|f/(z)||dz| < M/If’(Z)IVy(Z) ldz|, (18)
Y r

whereM depends only on the constaRt

Itis important to recall that the Hayman—-Wu theorem (see (17)) is not true for gen-
eral 2 and rectifiabley.

Proof. Recall the notation,(w) given in Section 1.7. Just as in the proof of
Theorem 1, we need only show that

M
If' @I =< 7/;|f/(w)|Qz(w) ldw]. (19)

Although the directiory does not appear explicitly, it plays an important role in
(19) sinceQ,(w) depends on.

Without loss of generality, let the pointbez = 0, the Euclidean distance from
0to a2 be 1, and the poirg € 0Q2 that is closestto 0 bg = 1.

Since the domai2 is unpokeable, by Lemma 6 there existO < n < )
andR > 1 and also a directioa’® (Ja| > n/2) and a constant; > 0 such that
w(z, NSO, e R, n), Q) > co.

We introduce the following notation:

S(a) = S(0,¢'“, R, 1),

r*=rns), r’=rnso),
r*% — eitherr® orrr°

(i.e., if 0«0 appears in an inequality then it holds for either one of them).
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We shall find it convenient to express some of the estimates in terms of the
Poincaré geometry ¢@. Recall that the densityg of the Poincaré metric a is
given by
ra(2) = Ap(g)lg' (@),

whereg is a conformal map frore ontoD. Recall also thatp (w) = 2/(1—|w|?).
ThePoincaré distancéetween pointp, g in Q is denoted bylq(p, q).

We shall divide the rest of the proof into two steps: first, we transform the prob-
lem into a conformally invariant one by estimatigg(w); second, we rewrite the
problem in terms of conformally invariant quantities.

Step I. We reduce the problem to shdw/(0)| < C; fra,0|f/(w)| |dw|. Observe
that

/ | f'(w)| Qo(w) l[dw| > / | f'(w)| Qo(w) |dw.
r reyro
It therefore suffices to boun@q(w) from below. The control oo (w) depends

on the relative position of and the segment [Q].
We must consider two cases foas follows.

(i) |v—«a] < n/4. In this case the directiom can be close to arg for w € I'*
and soQo(w) can be arbitrarily small o ®. Yet the pointsw € I'° have
arguments far from the directionand thus it is easily seen that

/ /()] Qo(w) ldw] = / ()] Qo(w) ldw]
reyro ro

> c(n, R)/rolf/(w)l dw.

(i) |v—«a| > n/4. Justas in (i), the point® € I'* have arguments far from the
directionv and so

fruurolf’(w)lQo(w) ldw| = /Falf'(w)lQo(w) ldw|
>c. R) | |f'(w)]ldwl.
Thus, -
[ 17wl aw=c [ i
and it is enough to show that
If'(0)] < lewolf/(w)l ldw]. (20)

Step Il. We shall rewrite (20) in terms of conformally invariant quantities. Ob-
serve that the right-hand side of (20) can be written as
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[ 1 @lldul = tengtr )
rCI.
= 27w(0, f(I'*°), D) = 270 (f 10, I'*°, Q).

When no confusion is possible we will writg(z, A, Q) asw(z, A). Let us denote
£7%0) = a for the rest of the proof.

Observe now that the left-hand side of (20) is
Ap(f(0))

ro(0)
In order to finish the proof, we want to relatg ( £(0))/Aq(0) andw (a, [ *°); to

do so we must consider two cases depending on the hyperbolic distance between
the pointsz and Q

| f' )] =

Case 1dq(0,a) <1 Onone hand, by Harnack’s inequality,
w@, T'*% > (0, %% e 9200 > reL

On the other hand, by thi-,»Koebe theorem we have

A 0
10| = % < 4d(0, 9275 (£(0))
8
TG

where the last inequality follows from the fact that

L+ /Ol _ 0700 _ da00) .
1-170) -

Hence
FOI=c [ iflldul
and the theorem follows.
Case 2:dq(0,a) > 1. Observe first that sincé, (0) = 1,
|f(0)] < Cga(0,a),

wheregq(z, a) is the Green'’s function of2 with pole ata. In this case we thus
want to relatez (0, a) to w(a, I'*?). The next elementary lemma will do the job.

LEmMA 7. Letu be a harmonic and positive function §&. Then, for allg, p €
Q such thatdq(p, q) > 1,

u(q) > cga(p, Qu(p).

This lemma follows immediately from Harnack’s inequality and harmonic major-
antin the annulug¢é € Q : dg(€, p) > 1}.

Now take the function to beu(z) = w(z, I'*°). Recall thatu(0) > ¢, and
apply the lemma witlp = a andg = 0 to obtain
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! u(a)
| £(0)] < Cg(0,a) < cm

< Cu(a) < C/ | f' ()| |dw].
r«o0

This completes the proof of Theorem 4. O

7. An Extension ton Dimensions

Gabriel [G3] found an upper bound for the constant in the @ase2. We will
follow his ideas to estimate the constant for any 3. Throughout this section,
I" andy will be n-dimensional hypersurfaces. The notation used here is the same
as we have used all through the paper (with the obvious changes).
Let P and Q have the same meaning as in Section 1.7 (bm’jﬁl ={(x,y):
x eR", yeR}); thatis,

0= P,l%ﬂ and P = P,,r%jrl, where P, = f/(;?;:
Let S, be the surface area of the unit balli, that is,
2 7T”+1
S, = T%l)

The main result of this section is the following theorem.

THEOREM 5. LetI" and y be smooth Jordan-dimensional hypersurfaces, with
u positive and subharmonic on the componeniRsft \ I that containsy, and
let A > 2. Then

/u(Z)k ldz| < Kn()»,l“)/ u(2)*Vy (2) ldz| (21)
14 r

wherel/A +1/A = 1, B = X/A, V,(2) is the normalized absolute total angle
subtended by atz onT, and

Q B 1B
K., :=K,xT)=S,P, sup</<PzT(u))> P2 (w) |dw|> ) (22)
z r

In the particular case ofl” being convex, there is an upper bound 14y ;:

N n—2,(n—-23-§ Ve
ol (7))

Herel" andB denote the special Gamma and Beta functions, respectively (see e.g.
[GR, pp- 942, 957]). Note that, for each fixed2\ < oo, the right-hand side on
(23) isO(nY?) asn — oo.

Kn,)» =< Sn(Pn))L

(23)

Proof. The proof follows the steps of that given in the 1-dimensional case.]
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The condition of smoothness Inandy could probably be weakened to one of
rectifiability, in the appropriate sense.

8. Some Open Questions

QuestioN 1. Letu be a positive subharmonic functiofl, a convex (Jordan)
curve, andk (A, I') as in Theorem 1. As mentioned in Section 4.1y iis a seg-

ment perpendicular to the curtethen the constank'(i, I') is finite if and only

if A > 2.

In Section 4.2 we saw thatif is a circle then the constaki(x, I') is finite for
any A > 1. Hence, the best exponent that gives a finite constantisl. (As a
matter of fact, if we lef” be the upper half plane then, fpiz) = (¢, |#|*) with
—1<t <1 andl< «a < 2, the best exponent is already= 1.) Consider. as a
function of the curvey, A = A(y). It would be nice to have a better understanding
of this limit exponent for a given curve contained, say, in the upper half-plane.

QuEesTioN 2.  LetQ be a Jordan domain with = 92, and consider the follow-
ing two situations.

(A) Let y be any rectifiable curve containeddn then there exists a finite con-
stantK such that, for any conformal mappiggfrom Q ontoD,

/IW(Z)I ldz| = K(F)/FIW(Z)IVy(Z) |dz|. (24)
14

(B) Lety be any rectifiable curve containeddn then there exists a finite con-
stantK such that, for any holomorphic functiofy

/If(Z)I ldz] = k(r)/rlf(Z)lVy(Z) ldz|. (25)
14

If Qis unpokeable, Theorem 4 establishes that (24) holds. Nevertheless, (25) will
be false in general, as we now show.
LetD(2,1) be the circle centered at 2 of radius 1, andRdie the region

R={zeC:2<MNz<o0, —e M <z <e ™7}

(that is,R is the region between the graphsyof —e™ andy = ¢~ for x > 2).

Let 2 be the domai2 = C \ (R UD) (note that is unpokeable). TakE to be

the boundary of2. Recall (see the proof of Theorem 1) that finding the constant
K in (25) is equivalent to finding a constafitsuch that

C
@) < 5/ ()]0 (w) |dz]
I

for all pointsz € y and directiorv.

Letz = 0ey andv = (1, 0) (that is,v is the direction of the real axis). Fik
large. Leth be the function orf2 with value 0 on(0D(2,) NT") U ({& € 9R :
2<fNe < LinT)andvalueL on Ry = {& € R : RE > L} NT. Take the
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harmonic function to be the Poisson integral bfand take the holomorphic func-
tion f to have modulu$f(z)| = expu(z). Then:

(@) | f(0)] = eLe©.5..2).

(b) /|f(z)|Qz(w) ldz| < <1+ et + B
r

Sincew (0, S;, Q) ~ 1/+/L for L large,

o
Je1Fw)IQ ldul

the constan€ can be as large as we want, so there does not exist a finite constant
K in (25).

Even though situations (A) and (B) are different problems, without the total
angleV they would be the same property (since the arclength @a Carleson
measure). For the particular case®f= D, (25) holds by Carlson (see [C] or
Section 2.3). It would be interesting to characterize those donsaifts which
(25) holds (or give a reasonable sufficient condition for (25) to hold).

as L — oo;

QuestioN 3. It would be nice to consider the following generalization on Ga-
briel's problem inn dimensions:

Given a rectifiable Jordam-dimensional hypersurfacé and a recti-
fiable Jordanm-dimensional hypersurfaceg withm < n and y con-
tained in the interior of[, and given any positive numbe find the
best constank,, such that, for all positive harmonic functions

/u(z)kldzl < Kn/ u(z)"Vr(2) |dz|.
y r
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