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The aim of this paper is to study Gabriel’s problem from the point of view of
potential theory; that is, to study under what conditions onγ (and�)∫

γ

u(z) |dz| ≤ K
∫
∂�

u(z) |dz|,

whereγ ⊂ � andu belongs to some set of functions (subharmonic or analytic).
More specifically (but highly relevant), we examine under what conditions∫

γ

u(z) |dz| ≤ K
∫
∂�

u(z)Vγ(z) |dz|,

whereVγ(z) is the normalized total angle subtended byγ at the pointz.
The main idea in solving this problem is to exchange the roles of (a) the total

angle with which the curveγ is seen from a point on the boundary and (b) the
Poisson kernel of the domain�. We shall show that solving Gabriel’s problem
is equivalent to estimating the constant coming from this exchange; we shall call
such constantthe functionalK associated to the domain�.

Several authors have studied Gabriel’s problem for particular curves and do-
mains. Our purpose in this paper is to survey this area, to unify proofs and presen-
tation, and to describe the solution to some of the problems just mentioned. We
will also describe a few problems that remain open.

The plan of the paper is as follows. In Section 2 we survey the history of the
problem and present the known results; Section 3 is dedicated to studying the func-
tionalK introduced in this work. In Section 4 and Section 5, Theorems 1 and 3
unify and extend previous results for subharmonic and holomorphic functions and
give the exact constant for Gabriel’s problem. Also in Section 4 we pay special
attention to the case whenγ is a circle. Gabriel conjectured that, for holomorphic
functions, the constantK is at most 2; in Section 5 we prove this conjecture false.
Section 6 considers a classical problem (in geometric function theory) of Hay-
man and Wu under this viewpoint; we give a necessary geometric condition on
the domain� for the constantK to be finite. In Section 7 we generalize Gabriel’s
problem ton dimensions for positive subharmonic functions and0 convex. We
finish in Section 8 by stating some questions that remain open.
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1. Introduction and Notation

Subharmonic functionsu satisfy the submean value property as follows. LetCs
denote the circleCs = { z : |z| = s }, and let 0< r < R; then∫

Cr

u(z) |dz| ≤ r

R

∫
CR

u(z) |dz|, (1)

where|dz| denotes arclength.
The quotientr/R in (1) has a geometric meaning. For a pointz exterior to a Jor-

dan curveγ we defineVγ(z), the (normalized absolute)total anglesubtended by
γ at z, as

Vγ(z) = 1

2π

∫
γ

|∂γ arg(z− w)| |dw|, (2)

where∂γ arg(z − w) means the directional derivative of the argument in the di-
rectionγ ′. (Here and hereafter, by theexterior of a Jordan curveγ we mean the
unbounded component ofĈ \ γ ; similarly, by theinterior of a Jordan curveγ we
mean the bounded component ofĈ \ γ.)

If we defineψ to be the angle between the segment fromz tow and the tangent
to the curveγ at the pointw, then (2) can be written as

Vγ(z) = 1

2π

∫
γ

| sinψ |
|z− w| |dw|

(see [B, p. 455; C; T, p. 340]). Observe thatVγ can be also defined as

Vγ(z) = 1

2π

∫ 2π

0
gγ(z, e

ıθ ) dθ,

where the functiongγ(z, eıθ ) counts how many times the ray emerging from the
point z in the directionθ intersects the curveγ.

If γ is aclosedconvex curve then, for everyz exterior to the curveγ, Vγ < 1.
In fact, this property characterizes convex curves: IfVγ(z) < 1 for every pointz
in the exterior of the Jordan curveγ, thenγ is convex. Observe that ifγ is Cr,
0 is CR, andz ∈ CR, then the quotientr/R = sin

(
π
2VCr(z)

)
and thus (1) can be

written as ∫
Cr

u(z) |dz| ≤
∫
CR

u(z) sin

(
π

2
VCr(z)

)
|dz|. (3)

It seems natural to ask to what extent result (3) can be generalized, a question
which attracted a lot of attention in the 1930s. Gabriel was the first one to pose
and study the following problem:
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Given a pair of Jordan rectifiable curves0 and γ, with γ contained in
�, the interior of 0, and given any positive numberλ, find the best
constantK such that, for all positive subharmonic functionsu,∫

γ

u(z)λ |dz| ≤ K
∫
0

u(z)λVγ(z) |dz| (G)

We shall refer to this question asGabriel’s problem.
Before finishing this section we will introduce some useful notation. Through-

out this paperγ and0 will be rectifiable curves, sometimes with additional proper-
ties (such as convexity) whenever specified;0 is a Jordan curve andγ is contained
in �, the interior of0. Also, z will always denote a point inγ andw a point in
0. We shall denote their Euclidean distance byr; that is,r = |z − w|. We use
P �
z (w) to denote the normalized Poisson kernel of� at z ∈ γ evaluated atw ∈0

(i.e., the density of harmonic measure with respect to arclength).
In applications, the curves0 orγ will often be convex; the results then are more

precise and require an extra bit of notation. In the special case of0 being con-
vex: Hw will be the half-plane tangent to0 atw that containsz; Pw will be its
normalized Poisson kernel; andp will be the Euclidean distance fromz to ∂Hw.

If γ is convex (or simply a segment):Hz will be the half-plane tangent toγ at z
that containsw; Qz will be its normalized Poisson kernel; andq will be the Eu-
clidean distance fromw to ∂Hz. (If w happens to lie on the tangent line toγ atz,
thenHz is either half-plane.)

Note that the subindex inHz,Qz, . . . always stands for the point that is at the
boundary.

2. Background

As mentioned in Section 1, in the 1930s Gabriel proposed the problem (G). Since
then, different authors have studied it and obtained results for special curves or for
special exponents. In this section we will describe the known results.

We shall divide this section into four parts: in Sections 2.1 and 2.2, the func-
tions considered will be positive and subharmonic (restricting the exponent to 1
in 2.1). In 2.3 they will be holomorphic functions(λ = ∞); finally, in 2.4, we
consider the closely related Hayman–Wu problem.

2.1. u Positive Subharmonic andλ = 1

In general, for positive subharmonic functionsu, one has∫
γ

u(z) |dz| ≤
∫
0

u(w)

[ ∫
γ

P �
z (w) |dz|

]
|dw|

(simply by comparingu with its minimal harmonic majorant).
In the particular case ofγ being a circleCr, sayCr = { z : |z| = r }, “separa-

tion” of variables simplifies the problem because
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Cr

u(z) |dz| ≤
∫
0

u(w)

[ ∫
Cr

P �
z (w) |dz|

]
|dw|

=
∫
0

u(w)P �
0 (w) |dw|.

In this case, for0 (with the property that, through each pointp of 0, one can draw
a circleCt of radiust independent of the pointp such that its interior is exterior
to0) Verblunsky [V] and Reuter [R] fort = ∞ (i.e., convex curves) showed that∫

Cr

u(z) |dz| ≤
(

2+ r
t

)∫
0

u(w)VCr(w) |dw|.

2.2. u Positive Subharmonic andλ ≥ 1

Gabriel [G3] studied the problem (G) for0 convex and showed that, forλ > 2,
the constantK is finite. He conjectured that this should be true forλ ≥ 1, but Fen-
ton [F] proved this false:K explodes atλ = 2 for the simple case whenγ is a
segment perpendicular to0.

We have stated that, forγ a circle, the constantK was always finite forλ ≥ 1
(more precisely,K ≤ 2+ r/t for r, t as before); this suggests thatλ depends on
the geometry of the curveγ. It would be nice to characterize those curvesγ for
which the constantK is finite forλ ≥ 1.

In Section 4 we shall establish an analog of Gabriel’s estimate, giving the exact
constant not only for convex curves but for any0.

2.3. u the Modulus of a Holomorphic Function

The case ofλ = ∞ for u being subharmonic and positive will be of special inter-
est, because it is equivalent to Gabriel’s problem (G) foru being the modulus of
a holomorphic function and for exponent 1 (see Lemma 4 in Section 5.1).

Gabriel [G3] showed thatK is finite if 0 is convex. As a matter of fact, he
showed more:K is finite not only for exponent 1 for the modulus of a holomor-
phic function but foranypositive exponent. Gabriel conjectured thatK ≤ 2. We
shall give a counterexample to this conjecture in Section 5.2.

Carlson [C] proved that, for any rectifiable curveγ and any positive number
λ, K ≤ 2 if 0 a circle. As a corollary one obtains the result proved by Féjer and
Riesz (see e.g. [D, p. 46]): for0 the unit disc,γ the segment(−1,1), andλ > 0,∫ 1

−1
|f(x)|λ dx ≤ 1

2

∫
∂D
|f(eıθ )|λ dθ, (4)

where the integral on the left is “counted only once” (i.e., we donot consider the
curveγ = [−1,1] to be the closed curve that starts at−1, goes to1, and then returns
to−1 again). To see (4), simply observe thatV(−1,1)(e

ıθ ) = 1
4 for eacheıθ ∈ ∂D.

2.4. A Related Problem

We will also consider the problem of estimating the best constantK̃ such that, for
special functions and exponents,
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γ

|u(z)|λ |dz| ≤ K̃
∫
0

|u(z)|λ |dz| (5)

(observe that no total angle is involved).
Gabriel obtained some results on (5) for very particular cases as follows. Given

a circle0, a convex curveγ, and any exponentλ > 0, the constantK̃ ≤ 2 for
holomorphic functionsu (see [G2]). Given0 convex,γ a circle, and exponent
λ = 1, the constantK̃ ≤ 2 for positive subharmonic functionsu (see [G1]). Also,
Beurling [B, p. 457] considered the problem of estimating the best constantK̃ for
some special curves. For more on this, see Section 3.3.

Observe that if the curveγ is convex then the total angleVγ < 1; hence, in this
case, the constant̃K is at most the constant in Gabriel’s problem (G).

2.5. Application to Conformal Mappings

One reason for the interest in these results is their application to the study of confor-
mal mappings between simply connected (Jordan) domains. We offer two exam-
ples. First, considerg a conformal mapping from� onto the unit discD. Consider
(5) when the exponentλ = 1, the functionu = g ′, and the curveγ is a segment.
Then the problem of finding the bestK̃ in (5) is the classical Hayman–Wu prob-
lem (see Section 6).

Likewise, considerg a conformal mapping from the unit discD onto a sim-
ply connected (Jordan) domain�, and apply (4) tof = g ′ with λ = 1. Then we
obtain that the Euclidean length of hyperbolic geodesics in� is at most half the
length of the boundary of�. For more on these applications see Section 6.

3. The FunctionalK Associated to a Domain���

We shall now describe a certain collection of functionals defined on the sphere
bundle of�. We introduce the following notation. Given any directionv and any
pointz∈R2, letLv,z be a straight line containingz whose tangent isv (which di-
vides the complex plane into two half-planes); letw be any point inR2. Denote
byQz(w) the normalized Poisson kernel of the half-plane with boundaryLv,z that
contains the pointw. (If w lies onLv,z then we can take either half-plane; note
that this use ofQz(w) is a slight abuse of notation.)

Fix the domain� and an exponentλ (1 ≤ λ ≤ ∞), and define the functional
Kλ
0 for every pointz ∈ � and unit vectorv (observe that(z, v) is a point in the

sphere bundle of�) as follows:

K1
0(z, v) = sup

w∈0

P �
z (w)

Qz(w)
, λ = 1,

Kλ
0(z, v) =

{∫
0

(
P �
z (w)

Qz(w)

)β
P �
z (w) |dw|

}λ−1

, 1< λ <∞,

K∞0 (z, v) = exp
∫
0

log

(
P �
z (w)

Qz(w)

)
P �
z (w) |dw|, λ = ∞,

whereβ = 1/(λ−1).
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3.1

Let us give a couple of relevant examples.

Example 1. If 0 is a convex rectifiable Jordan curve, it is easy to estimate
Kλ
0(z, v) and to see that it is bounded ifλ > 2. Toward this end, recall first

the notationQz(w), Pw(z), andHw (see Section 1). Since� ⊂ Hw, the integral
of the functionalKλ

0 can be bounded by∫
0

(
P �
z (w)

Qz(w)

)β
P �
z (w) |dw| ≤

∫
0

(
Pw(z)

Qz(w)

)β
Pw(z) |dw|,

where againβ = 1/(λ−1). (Note thatw ∈0 is the variable of integration.)
If φ is the angle between the segment passing throughz andw and the perpen-

dicular line to∂Hz containingz, and ifds is the arc element subtended atz, then∫
0

(
Pw(z)

Qz(w)

)β
Pw(z) |dw| ≤ 1

π

∫
0

1

|cosφ|β ds

≤ 1

π

∫ π

0

1

|cosφ|β 2dφ

= 4

π2β+1
B

(
1− β

2
,

1− β
2

)
<∞,

where the first inequality follows from the fact that

Pw(z) ≤ 1

|z− w|2 and Qz(w) = |cosφ|
|z− w|2 .

The last inequality comes fromβ = 1/(λ− 1). HereB denotes the Beta function
(see [GR, p. 957]).

Example 2. If 0 is the disc thenK∞0 (z, v) = 0. This will be obvious after the
forthcoming Lemma 1.

Note that bothKλ
0(z, v) andK∞0 (z, v) are really defined on the sphere bundle:

they depend not only on the pointz ∈� but also in the directionv of the tangent
to γ at z (recall thatQz(w) depends onv).

3.2

The following integral expression in the caseλ = ∞ will be useful later.

Lemma 1.

K∞0 (z, v) = exp
∫
0

log
1

|2 sinψ | dω
�
z ,

whereψ is the angle between the segment fromz to w andLv,z and wheredω�z
denotes harmonic measure in�.
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Proof. ∫
0

log

(
P �
z (w)

Qz(w)

)
P �
z (w) |dw| =

∫
0

P �
z (w) logP �

z (w) |dw|

−
∫
0

P �
z (w) log(Qz(w)) |dw|

= I + II.
Let us calculateI : If g denotes the Green’s function for� with pole atz, then

I =
∫
0

log

(
1

2π

∂g

∂n

)
P �
z (w) |dw|

= log

(
1

2π

)
1+

∫
0

P �
z (w) log

∂g

∂n
|dw|.

Yet g is identically zero on0 and so∂g/∂n = |∇g|. This, together with the pre-
vious calculation, gives

I = log

(
1

2π

)
+
∫
0

P �
z (w) log|∇g| |dw|.

LetD be the unit disc, letH : D→ � be conformal withH(0) = z, and letG
be the Green’s function onD with pole at zero. Then, by changing variables and
observing thatg BH = G, we have

I = log
1

2π
+
∫
∂D

log|∇G| dθ
2π
−
∫
∂D

log|H ′| dθ
2π

= log
1

2π
− log|H ′(0)|

= log
1

2π|H ′(0)| ,

where we have used that|∇G| = 1 on∂D.
We now calculateII. After the change of variables given byH, the integralII

becomes

II =
∫
∂D

log
π|H(ξ)−H(0)|2

q(Hξ)

|dξ|
2π

= logπ +
∫
∂D

log
|H(ξ)−H(0)|

|ξ|
|dξ|
2π
+
∫
∂D

log
|H(ξ)−H(0)|

q(Hξ)

|dξ|
2π

= log(π|H ′(0)|)+
∫
∂D

log
|H(ξ)−H(0)|

q(Hξ)

|dξ|
2π

.

Finally, addingI andII and doing the same (conformal) change of variables yields
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logK∞0 (z, v) = log
1

2
+
∫
∂D

log
|H(ξ)−H(0)|

q(Hξ)

|dξ|
2π

=
∫
∂D

log
1

|2 sinψ(ξ)|
|dξ|
2π

=
∫
0

log
1

|2 sinψ | dω
�
z ,

where the angleψ anddω�z are as in Lemma 1. This finishes the proof.

3.3

The expression ∫
0

log
1

|2 sinψ | dω
�
z (6)

appears in Beurling’s work related to this type of problems [B, p. 457]. Beurling
has implicitly conjectured that

2 exp

(∫
0

log
1

|2 sinψ | dω
�
z

)
≤ 2

for every0 convex, every pointz in �, and every directionv. Beurling’s conjec-
ture is still unresolved.

It is easily seen that

sup
0 convex,z,v

2 exp

(∫
0

log
1

|2 sinψ | dω
�
z

)
≤ 4

by observing∫
0

log
1

|2 sinψ | dω
�
z =

∫ π

0
log

1

2 sinψ
dθ(ψ)

≤ log
1

2
+
∫ π

0
log

1

sinψ

2

π
dψ

= log
1

2
+ 2 log 2= log 2,

whereθ(ψ) denotes the harmonic measure in� of the arcI (which we now de-
scribe). Letv1 andv2 be counterclockwise and clockwise (respectively) rotations
of anglesψ of the directionv. Let r1, r , andr2 be the rays emerging from the
pointz with directionsv1, v, andv2, respectively. Then we define the arcI on the
curve0 as the arc whose final points are the intersection ofr1 andr2 with 0 and
which contains the intersection point ofr with 0.

Beurling proved by a nice symmetry argument [B, p. 455] the nontrivial esti-
mate

sup
0 convex,z,v

2 exp

(∫
0

log
1

|2 sinψ | dω
�
z

)
≤ 3.7.

Clearly, this supremum over convex curves0 should be at least 2. For this, take
0 to be the unit circle; then
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0

log
1

|2 sinψ | dω
�
z = 0

and Carlson’s result in Section 2.3 follows.
The relevance of sharp bounds on the functional will become clear in Sections

4 and 5.

3.4

Before finishing this section we make a useful observation aboutK∞0 (z, v). Denote

K(�, z, v) =
∫
0

log
1

|2 sinψ | dω
�
z .

First, note that obtaining a bound forK(�, z, v) valid for all triples(�, z, v)
is equivalent to obtaining a bound forK(�, 0, v) valid for all pairs(�, v) with
0 ∈ �. We now have the following result, which will be crucial in Section 5 for
showing that Gabriel’s conjecture is not true.

Lemma 2. For every domain� and pointz∈�,
K(�, z, v) ≤ 0 for all v ⇐⇒ K(�, z, v) = 0 for all v.

Proof. Integrating over all directionsv the expression forK(�, z, v),∫
∂D
K(�, z, v)

dv
2π
=
∫
∂�

∫
∂D

log
1

|2 sinψ |
dv
2π

dω�z = 0,

where the last equality follows from Jensen’s identity (see e.g. [Ru, p. 307]).
Thus, ifK(�, z, v) ≤ 0 thenK(�, z, v) = 0 for all v.

4. Subharmonic Functions

4.1

The main result of this section is the following theorem.

Theorem 1. Let0, γ be rectifiable Jordan curves withγ contained in�, u pos-
itive and subharmonic on�, andλ > 2. Then∫

γ

u(z)λ |dz| ≤ K(λ, 0)
∫
0

u(w)λVγ(w) |dw|, (7)

where
K(λ, 0) = 2 sup

z∈�, v∈∂D
Kλ
0(z, v). (8)

The constant is sharp.

Observe that the constantKλ
0 does not depend explicitly onγ.

For0 convex, one obtains Gabriel’s result ([G3]). Recall that in this case and
for exponentλ > 2, it follows thatK(λ, 0) <∞ (see Example 1 in Section 3.1).
Although the proof works for allλ ≥ 1, given a convex curve0 and an exponent



470 Ana Granados

λ ≤ 2, K(λ, 0) = ∞. Fenton [F] gave an example for0 = ∂H. (Actually, more
is true: there is a pair(z, v) such thatKλ

0(z, v) = ∞.)
The condition thatu be positive is necessary for Theorem 1 to hold, as the ex-

ampleU(z) = log|z| in the unit disc reveals (see[F]). For then, ifγ is not a point,
the integral on the right-hand side of (7) is zero while the left-hand side is positive.

Proof. Let γ (t) (0 ≤ t ≤ 1) be a parameterization of the rectifiable curveγ. For
eachn ∈N, consider a partition 0= t0 < t1 < · · · < tn = 1 such that the points
γ (t0), . . . , γ (tn)∈ γ divide the curveγ inton pieces of the same length. Approx-
imate the curveγ by a polygonalP γ with verticesγ (t0), . . . , γ (tn)∈ γ and sides
L1, . . . , Ln (i.e., each sideLj is a Euclidean segment that starts at the pointγ (tj−1)

and finishes at the pointγ (tj )).
Observe that

lengthLj = |γ (tj )− γ (tj−1)| ≤ lengthγ

n
<∞.

For anyu, we have∣∣∣∣∫
γ

u(z) |dz| −
n∑
i=1

∫
Lj

u(z) |dz|
∣∣∣∣→ 0 as n→∞,

|Vγ − VPγ | → 0 as n→∞.
It will be enough to prove (7) for the polygonalP γ . Moreover, since bothVPγ
and the integral on the left-hand side of (7) are additive on the sidesLj of P γ , it
is enough to prove (7) for a segment, sayL.

Recall the notationQz(w). We want to show that∫
L

u(z)λ |dz| ≤ K(λ, 0)
∫
0

u(w)λVL(w) |dw|,
which holds if and only if

u(z)λ ≤ K(λ, 0)
2

∫
0

u(w)λQz(w) |dw|. (9)

To see this, simply observe that for any directionv with segmentL = [z, z + tv]
and for anyw ∈0, sinceQz(w) depends only onv we have

VL(w)

|L| →
1

2

q

π|w − z|2 =
Qz(w)

2
ast → 0.

We shall prove (9). Suppose first thatu is harmonic; then, by Hölder’s inequality,

u(z)λ =
(∫

0

u(w)P �
z (w) |dw|

)λ
≤
(∫

0

u(w)λQz(w) |dw|
)(∫

0

(
P �
z (w)

Qz(w)

)β
P �
z (w) |dw|

)1/β

, (H)

whereβ = 1/(λ−1). Comparing this inequality with (9), for harmonic functions
we obtain
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K(λ, 0) = 2 sup
z∈�,v∈∂D

(∫
0

(
P �
z (w)

Qz(w)

)β
P �
z (w) |dw|

)1/β

= 2 sup
z∈�,v∈∂D

Kλ
0(z, v).

For u subharmonic, consider its harmonic majorantU. The result follows from
applying (9) toU.

Note that the constantK(λ, 0) is the best possible; forz0 ∈ � and direc-
tion v, takeu to be the harmonic function on� with boundary valuesu(w) =
(P �

z0
(w)/Qz0(w))

β. For suchu, equality in (H) is attained; that is,

u(z0)
λ = Kλ

0(z0, v)
∫
0

u(w)λQz0(w) |dw|.

Moreover, ifγε is the curveγε = z0 + tv for t ∈ [0, ε] with ε > 0, then

lim
ε→0

∫
γε
u(z)λ |dz|∫

0
u(w)λVγε(w) |dw|

= 2Kλ
0(z0, v).

This concludes the proof of Theorem 1.

There is a more useful estimate for the constantK(λ, 0) which involves both
curves more explicitly but which is not sharp. For the sake of completeness we
shall give it here.

Lemma 3. Letλ ≥ 1, letλ′ be such that1/λ+1/λ′ = 1, and letβ = λ′/λ. Then,
for γ, 0,�, u as in Theorem 1,∫

γ

u(z)λ |dz| ≤ C(γ, 0)
∫
0

u(w)λVγ(w) |dw|,
where

C(γ, 0)β = sup
0

∫
0

1

V
β
γ

(∫
γ

(P �
z (w))

λ |dz|
)β
.

Proof. It is just Minkowski’s inequality.

4.2. γ a Circle

As one can easily imagine, the case of the curveγ being a circleCr (say, cen-
tered at the origin and of radiusr) is particularly simple. Separation of variables
simplifies the problem because∫

Cr

u(z) |dz| ≤
∫
0

u(w)

[ ∫
Cr

P �
z (w) |dz|

]
|dw|

=
∫
0

u(w)P �
0 (w) |dw|.

In this case, Gabriel’s inequality (G) holds for more general curves0 and for all
exponentsλ ≥ 1.
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Before stating the principal result of this section, we will introduce the notion
of exterior curvature, which will be a basic tool for handling the geometry of the
curve0. Let0 be a rectifiable Jordan curve. For almost every pointp ∈0 we con-
sider the family of circlesCpt of radii t tangent to0 atp whose interiors do not
intersect0 and which are contained in the exterior of0. Let

tp = sup{radii of Cpt }
(tp = ∞ at all pointsp if and only if0 convex). We define theexterior curvature
kext
p of 0 atp as

kext
p =

1

tp
.

We can now state the main result of this section.

Theorem 2. For any circleCr, any positive subharmonic functionu, and any
λ ≥ 1, ∫

Cr

u(z)λ |dz| ≤
∫
0

u(w)λ
[
2 sin

(
π

2
VCr(w)

)
+ rkext

w

]
|dw|; (10)

if λ = 1 it is sharp.

Observe that Theorem 2 implies the results obtained by Verblunsky and Reuter
(their estimate uses the upper bound 1 instead of the factor sin

(
π
2VCr(w)

); see Sec-
tion 2.1).

Proof. We may assume thatλ = 1, sinceuλ is subharmonic wheneveru is positive
and subharmonic; we may also assume thatu is harmonic, sinceu has a harmonic
majorantv such thatu = v on0 andu ≤ v onCr. Thus,∫

Cr

u(z) |dz| ≤
∫
Cr

v(z) |dz| = 2πrv(0)

= 2πr
∫
0

v(w)P �
0 (w) |dw| = 2πr

∫
0

u(w)P �
0 (w) |dw|. (11)

For almost everyw ∈�, consider the radiustw of exterior curvature of0 at the
pointw. To simplify notation, let

t = tw,
Ct = circle tangent to0 atw of radiustw contained in�c,

Et = exterior ofCt .

Since� ⊂ Et we have
P �

0 (w) ≤ PEt0 (w), (12)

wherePEt0 (w) is the Poisson kernel of the domainEt evaluated at the point 0.
Recall that ifz0 is the center of the circleCt then

P
Et
0 (w) =

1

2πt

|z0|2 − t 2
|z0 + w|2 .



On a Problem Raised by Gabriel and Beurling 473

To estimate this, letθ be the angle between the inward normal to0 atw and the
segment joiningw and 0. A straightforward calculation shows

P
Et
0 (w) ≤

1

2π

(
2 cosθ

|w| +
1

t

)
.

The normalized absolute total angle arises naturally, and sinceCt is a circle it is
easy to see that

VCt(w) = 4
1

2π
arcsin

t

|w| ,
so that

P
Et
0 (w) ≤

1

2π

[
2 cosθ

r
sin

(
π

2
VCt

)
+ 1

t

]
. (13)

With estimates (12) and (13), and recalling the definition of exterior curvature
kext
w , our initial inequality (11) becomes

2πr
∫
0

u(w)P �
0 (w) |dw| ≤

∫
0

2πru(w)PEt0 (w)

≤
∫
0

u(w)

[
2 sin

(
π

2
VCt

)
+ rkext

w

]
,

and the theorem follows.

As claimed in the theorem, forλ = 1 the result is sharp. To see this, set� to be
the upper half-plane and setγ to be the circle centered atz = ıL and with radius
r = 1, whereL� 1. Then∫

R
u(ω)

[
2 sin

(
π

2
VCr

)
+ rkext

w

]
|dw| ∼= 2

∫
R
u(w) |dw|,

where the number 2 is the constant estimated by Verblunsky and Reuter(tw = ∞
for all w ∈ ∂H).

5. Holomorphic Functions

It is of special interest to consider (G) whenu is the modulus of a holomorphic
functionf. In this section we will first calculate the exact constant for this case
and then give an example yieldingK > 2 and so showing Gabriel’s conjecture
false (see Section 5.2).

5.1. The Exact Constant

We shall need the following observation of Hayman [H], which shows that study-
ing Gabriel’s problem (G) foru subharmonic positive andλ = ∞ is equivalent to
studying (G) foru = |f | with f holomorphic and exponent 1.

Lemma 4. For any pair of rectifiable Jordan curves0 andγ, the following two
conditions are equivalent.
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(A) There exists a constantC such that, for every harmonic and positive func-
tion u, ∫

γ

eu(z) |dz| ≤ C
∫
0

eu(w)Vγ(w) |dw|.

(B) There exists a constantC such that, for any polynomialP,∫
γ

|P(z)| |dz| ≤ C
∫
0

|P(w)|Vγ(w) |dw|.

The constants in(A) and (B) are the same.

Hayman proved this without the weightVγ and forγ a circle, but Lemma 4 fol-
lows in the very same way. Note also that, since (B) holds for any polynomial, it
also holds for functions holomorphic on the closure of�.

Now we are ready to give the equivalent result to Theorem 1 in this context.

Theorem 3. Let 0, γ be rectifiable Jordan curves withγ contained in�, and
let f be holomorphic on�. Then∫

γ

|f(z)| |dz| ≤ K(∞, 0)
∫
0

|f(w)|Vγ(w) |dw|, (14)

where
K(∞, 0) = 2 sup

z∈�,v∈∂D
K∞0 (z, v). (15)

The constant is sharp.

If 0 is convex then Gabriel’s result follows. In this case, recall thatK(∞, 0) <
∞ (see Sections 3.2 and 3.3). Note also thatKλ

0 does not depend explicitly on the
curveγ.

Proof. By Lemma 4 it is enough to show (14) for functions of the formeu(z) for u
positive harmonic. As in the proof of Theorem 1, (14) will hold if and only if

eu(z) ≤ K(∞, 0)
2

∫
0

eu(w)Qz(w) |dw|, (16)

and we shall prove this.
Recall thatu is harmonic and positive. Letv be a harmonic conjugate and con-

sider the holomorphic functionf = eu+ıv. Sinceu = log|f | is harmonic,

u(z) =
∫
0

u(w)P �
z (w) |dw|

=
∫
0

(
u(w)+ log

∣∣∣∣Qz(w)

P �
z (w)

∣∣∣∣)P �
z (w) |dw| +

∫
0

log

∣∣∣∣P �
z (w)

Qz(w)

∣∣∣∣P �
z (w) |dw|.

Taking the exponential first and then applying Jensen’s inequality,
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eu(z) = exp

{∫
0

(
u(w)+ log

∣∣∣∣Qz(w)

P �
z (w)

∣∣∣∣)P �
z (w) |dw|

}

· exp

{∫
0

log

∣∣∣∣P �
z (w)

Qz(w)

∣∣∣∣P �
z (w) |dw|

}
≤
∫
0

exp{u(w)}Qz(w) |dw|exp

{∫
0

log

∣∣∣∣P �
z (w)

Qz(w)

∣∣∣∣P �
z (w) |dw|

}
. (J)

Hence, for functions of the formeu(z) we have

K(∞, 0)
2

= sup
z∈�,v∈∂D

exp
∫
0

log

(
P �
z (w)

Qz(w)

)
P �
z (w) |dw|,

which proves the theorem.

The constantK(∞, 0) is sharp. To see this, considerHz0 for eachz0 ∈ � and
each directionv. Define the setAz0 as

Az0(v) = { ξ ∈0 : |ξ − a| < 10−10 for all a ∈0 ∩ ∂Hz0 },
and consider the functions

h(w) = χ0\Az log

(
P �
z0
(w)

Qz0(w)

)
,

u(z) = P �[h] (i.e., u is the harmonic function on� with boundary valuesh),

ũ(z) = a harmonic conjugate ofu.

Then, equality in (J) is attained forf(z) = eu+iũ; that is,

|f(z0)| = K∞0 (z0, v)
∫
0

|f(w)|Qz0(w) |dw|.

Moreover, ifγε is the curveγε = z0 + tv for t ∈ [0, ε] with ε > 0, then

lim
ε→0

∫
γε
|f(z)| |dz|∫

0
|f(w)|Vγε(w) |dw|

= 2K∞0 (z0, v).

5.2. Counterexample to Gabriel’s Conjecture

Gabriel [G3] proved that, for anyf holomorphic and0 convex and for anyµ > 0,∫
γ

|f(z)|µ |dz| ≤ K
∫
0

|f(z)|µVγ(z) |dz|;

he conjectured that the constantK could be replaced by 2. We shall show this to
be false and shall do so in the case of interest to u: whenµ = 1.

Recall that, by Lemma 1, the best possible constantK can be written as

K∞0 (z, v) = expK(0, z, v)

with
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K(0, z, v) =
∫
0

log
1

|2 sinψ | dω
�
z ;

hereψ is the angle between the segment fromz tow and the tangent toγ atz, and
dω�z denotes the harmonic measure in�. As we have already observed, the con-
stantK∞0 does not depend explicitly on the curveγ. This is the key factor in the
counterexample.

Consider the domain� to be the bandB = { z∈C : |<(z)| < 2 }, the direction
v = (1,0), and the sets

A = { z∈ ∂B : z = x + ıy, |y| < 2/
√

3},
D = ∂B \ A

(i.e.,A is the set of points where log(1/|2 sinψ |) is positive andD where it is neg-
ative). It is apparent that, from the pointz = 0, A has more harmonic measure
thanD. This is whyK(B, 0, v) should be positive (note thatv points in thex di-
rection); thusK∞0 (z, v) > 1 and thusK(∞, 0) > 2. We proceed to make this
precise.

With � being the bandB just described, takeγ to be the segment [−1,1] and
let z = 0. Since by symmetry

K(∂B, 0, (1,0)) = 4
∫ ∞

0
PB0 (2+ ıy) logPB0 (2+ ıy) dy

+ 4
∫ ∞

0
PB0 (2+ ıy) log

1

Qz(w)
dy

= 4A+ 4B,

it will be enough to see thatA+ B > 0 to finish the counterexample.
We shall first estimateA. As shown in the proof of Lemma 1,

4A = log
1

2π|H ′(0)|
whereH is the conformal mapH : D→ B with H(0) = 0. That is,

H(z) = 4

π
ı log

1+ z
1− z

and so
A = log

1

2
.

To estimateB, observe that

PB0 (2+ ıy) =
1

8

1

cosh(yπ/4)
.

We then have

B =
∫ ∞

0

1

8

1

cosh(yπ/4)
log

π(y2 + 4)

y
dy

= log

([
8

π

]1/4[
0(1/4)

0(3/4)

]1/2)
,



On a Problem Raised by Gabriel and Beurling 477

here0(z) is the Gamma function (see [GR, p. 942]). Adding upA andB, we
obtain

A+ B = log

([
1

2π

]1/4[
0(1/4)

0(3/4)

]1/2)
∼ 0.083> 0,

which shows thatK(∞, 0) > 2.
It is important to observe that the foregoing is not a counterexample to Beur-

ling’s conjecture (see Section 3.3). The weightVγ plays an important role.
Alternatively we could have proceeded as follows. Recall Lemma 2 and note

that

K(�, z, v) =
∫
0

log
1

|2 sinψ | dω
�
z ≤ 0

for all z andv if and only if∫
0

log
1

|2 sinψ | dω
�
z = 0.

As one could expect (and as is quite easy to show),K(∂B, z, v) < 0 if v is the direc-
tion v = (0,1) (i.e., if v points in they direction). Thus, by Lemma 2,K(∂B, z, v)
must be positive for some other directionsv.

6. Conformal Mapping: The Hayman and Wu Problem

The following question was raised by A. Weitsman.

Given a simply connected domain� bounded by a rectifiable Jordan
curve0, find the best constantHW(0) such that, for every straight line
L (or circle) and for every conformal mappingf from� onto the unit
discD, ∫

L∩�
|f ′(z)| |dz| ≤ HW(0)

∫
0

|f ′(z)| |dz|. (17)

In other words, length(f(L ∩ �)) ≤ HW(0) length(∂D). Observe that since
the problem is Möbius invariant, circles and straight lines play the same role. Note
also that there is no total angle in (17).

Hayman and Wu[HW] were the first to show that there exists a universal finite
bound HW forall curves0 (see also [GGJ]). The best result known today is that
π/2 ≤ HW ≤ 2, with both estimates due to Øyma (see [Ø1] and [Ø2], respec-
tively). For the rest of this section,�, 0, andL will remain as before.

Brown-Flinn [B-F] showed that ifL ⊂ � then the sharp estimate is HW≤
π/2. The sharp constant for the general case is still unknown. The conjecture is,
again, HW≤ π/2. If the simply connected domain� is convex, we showed that
HW ≤ 1 and this is sharp [FG]; moreover, length(f(L ∩�)) < length(∂D).

Some authors have considered (17) for more general curves than straight lines
and for more general functions than conformal ones. Bishop and Jones [BJ] char-
acterized asAhlfors-regularthose curves for which (17) holds with a finite constant
for any domain� and any conformal mapf. Since arclength is a Carleson mea-
sure, it is straightforward to show that
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L∩�
|g(z)| |dz| ≤ C

∫
0

|g(z)| |dz|

for all g holomorphic in�̄. Thus, (17) holds also for holomorhic functions (not
necessarily the derivative of a conformal one).

It seems natural to ask whether (17) holds if one introduces the total angleVL
subtended atw ∈ 0, and also if in this case it can be generalized by considering
more general curves and functions. Hayman and Hall [HH] gave a nice estimate
of the constant in (17) for general holomorphic functions and certain domains�.

In fact, they generalized Brown’s result ( just recalled). Observe that there isno
weight on the integral on the right-hand side of (17).

Theorem HH. Let0 be a rectifiable Jordan curve whose interior� contains a
circleC. Then, for any holomorphic functionf in �,∫

C

|f(z)| |dz| ≤ 4π
∫
0

|f(z)| |dz|.

Except for the constant, this result is a well-known corollary of the Hayman–Wu
theorem and the characterization of Carleson measures in terms of the Möbius
group. See [G, p. 239] and the proof that follows here. The emphasis now is in the
best constant. Our proof is much simpler than the one in [HH], but the constant
is worse.

Proof. Letψ be any conformal map from� ontoD. Then, by Brown’s result and
conformal invariance,

length(ψ(C)) ≤ π2;
that is, ∫

C

|ψ ′(z)| |dz| ≤ π
2

∫
0

|ψ ′(z)| |dz|.

Let T be any Möbius transformation onD. Applying the preceding inequality to
the functionT B ψ, we deduce that∫

ψ(C)

|T ′(z)| |dz| ≤ π
2

∫
∂D
|T ′(z)| |dz|.

Once there is an estimate as above on the constant for Möbius transformations,
a nice result due to Treil and Volberg[TV] gives anestimate for holomorphic
functions increasing the constant by a factor of 8. One obtains∫

ψ(C)

|f(z)| |dz| ≤ 8π

2

∫
∂D
|f(z)| |dz|

for all functionsf holomorphic on the closure ofD. The result follows.

In the convex case (withC a segment), the result of [FG] and the foregoing proof
together yield the constant 8. This is not the best constant: Beurling [B, p. 457]
proved that the best constant in this case is 1 (and it is sharp). It would be nice to
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obtain the sharp bound in Theorem HH, which is a generalization of the classical
Féjer-Riesz theorem.

We shall now consider the following problem:

For which rectifiable Jordan curves0 and γ (with γ in the interior of
0) does there exist a constantM such that, for all conformal mappings
f from� ontoD,∫

γ

|f ′(z)| |dz| ≤ M
∫
0

|f ′(z)|Vγ(z) |dz|? (P)

It is important to remark that this problem is not Möbius invariant (in particular,
circles and lines are not the same for this problem). We now proceed to answer
(P) depending on the geometries first ofγ and then of0; we will do so in three
different subsections.

6.1:γ a Straight Line.We shall show with an example that in this situation, un-
like the case of the Hayman–Wu theorem (where there is no total angle), there is
no universal bound for the problem (P). That is, there does not exist a finite con-
stantM not depending on the curve0. In the rest of the section we shall denoteγ
byL.

The idea is to construct an increasing family of domains containingL so that,
in the limit domain�, the total angleVL(w) is zero for almost allw ∈ ∂�. To-
ward this end, takeRn to be the ray emerging from 0 with direction 2π/n, and
take0n to be0n = Rn ∪ R−n. TakeL to be the segment(−∞,0), and letfn be
a conformal map from�n = { z ∈C : |argz| > 2π/n } onto the unit discD with
fn(L) = (−1,1). Then

length(fn(L)) =
∫
L

|f ′n(z)| |dz| = 2 for all n.

However, sincef ′n ∈L1(0n) andV(−∞,0)(w)→ 0 asn→∞ for all w ∈0n,∫
0

|f ′n(z)|V(−∞,0)(z) |dz| → 0 for all n

and hence there is no finite universal constantM satisfying (P).

6.2: Conformal Mapping and Unpokeable Domains.As we have just observed
in 6.1, there is no finite constantM for (P) in general (even forγ being a seg-
ment!). The reason for this lies in the geometry of the curve0. In order to have
a finite constantM in (P), we need to place conditions on the geometry of0 to
guarantee thatVL cannot be too small for many pointsw ∈0.

In this section we describe a class of domains for which we shall be able to
obtain a positive result. We shall say these domains are “unpokeable.” The fol-
lowing notation will be convenient to describe the domains of interest. For fixed
R > 1 and 0< η < π and for anyz∈� andeıθ ∈ ∂D, we define thesector

S(z, eıθ, R, η)

= {w ∈C : δ�(z) ≤ |w − z| < Rδ�(z), |arg(w − z)e−ıθ | < η/2 },
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whereδ�(z) denotes the Euclidean distance from the pointz to the boundary of
the domain�. We define akeyholeto be the region

K(z, eıθ, R, η) = S(z, eıθ, R, η) ∪ D(z, δ�(z)).
We say that the domain� is unpokeableif there existsR > 1 such that, for every
z∈� and everyξ ∈ ∂� with |z− ξ| = δ�(z), we have

{w ∈ ∂� : δ�(z) ≤ |z− w| ≤ Rδ�(z) } \ S(z, eıθ, R,1/R) 6= ∅,
whereξ = z+ eıθδ�(z). This condition simply says that there is a point of∂� in
the annulus centered atz of radii δ�(z) andRδ�(z) which is away from the ray
emerging fromz in the direction ofξ.

We characterize the unpokeable domains in terms of harmonic measure. We
need the next lemma (which follows immediately from Beurling’s projection
theorem).

Lemma 5. If z∈� andw ∈ ∂� (sayw = z+ teıα, |w − z| ≤ Rδ�(z)), then

ω(z, ∂� ∩ S(z, eıα,2R, η),K(z, eıα,2R, η) ∩�) ≥ 9(R, η),
where9 is a certain universal continuous positive function defined forR > 1and
0< η < π.

Now we will give the characterization in terms of harmonic measure.

Lemma 6. With the notation just described, the following two conditions are
equivalent.

(a) � is unpokeable.
(b) There existsR > 1,an angleη(R) (0< η < π),and a constantc0 = c0(η, R)

such that, for everyz∈�, there exists a directioneıα such that

ω(z, S(z, eıα, R, η) ∩ ∂�,�) ≥ c0

and there is a closest boundary point outside the sectorS(z, eıα, R, η). That
is, there existsξ ∈ ∂� with ξ = z+ eıθ, where|θ − α| > η/2.

Observe thatc0 = c0(R, η), but it does not depend on the pointz.

Proof.
(a) ⇒ (b) ConsiderR > 1 given by the definition of unpokeable. For each

z ∈�, consider a pointξ = z + eıθδ�(z). By definition, there exist (i) a bound-
ary pointw ∈ ∂� in the annulus of radiiδ�(z) and (ii)Rδ�(z) which is not in
the sectorS(z, eıθ, R,1/R). Take the directioneıα so that argw = α. Then, using
Lemma 5 together with the fact thatK ∩� ⊂ �, we get (b) forη = 1/R.

(b)⇒ (a) This is immediate. For this let̃R = max(1/η,R). If

ω(z, S(z, eıα, R, η) ∩ ∂�,�) ≥ c0,

then it is straightforward to see that

{w ∈ ∂� : δ�(z) ≤ |z− w| ≤ R̃δ�(z)} \ S(z, eıθ, R̃,1/R̃) 6= ∅,
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whereξ is a closest boundary point that can be written asξ = z+ eıθδ�(z). Thus
(a) holds forR̃.

If a simply connected domain is linearly connected [P, p. 103] or linearly locally
connected [Ge], or if its complement satisfies the so-called corkscrew condition
[JK, p. 93], then the domain is unpokeable. But there are unpokeable domains
that are neither linearly (locally) connected nor whose complement satisfies the
corkscrew condition, as the next example shows. Take directionsθn in the unit
disc to beθn = π/n, and around each directionθn take a region

Rn =
{
z∈D : |z| > 1

2
, |argz− θn| < θn − θn+1

4

}
;

now take the domain� to be� = D\⋃n≥1Rn. That is, we are removing from the
unit disc a countable collection of sectors, keeping the height fixed while shrink-
ing the base. This domain� is unpokeable, but it is neither linearly connected
nor locally linearly connected (observe that the two conditions needed for a set to
have this property fail to be true), and its complementC \ �̄ is not corkscrew.

6.3: Theorem.Now we state the theorem that gives a partial answer to (P).

Theorem 4. Let� be a Jordan unpokeable domain,0 = ∂� rectifiable, and let
γ be a rectifiable Jordan curve contained in�. Then, for any conformal mapf
from� onto the unit discD,

length(f(γ )) =
∫
γ

|f ′(z)| |dz| ≤ M
∫
0

|f ′(z)|Vγ(z) |dz|, (18)

whereM depends only on the constantR.

It is important to recall that the Hayman–Wu theorem (see (17)) is not true for gen-
eral� and rectifiableγ.

Proof. Recall the notationQz(w) given in Section 1.7. Just as in the proof of
Theorem 1, we need only show that

|f ′(z)| ≤ M
2

∫
0

|f ′(w)|Qz(w) |dw|. (19)

Although the directionv does not appear explicitly, it plays an important role in
(19) sinceQz(w) depends onv.

Without loss of generality, let the pointz bez = 0, the Euclidean distance from
0 to ∂� be 1, and the pointξ ∈ ∂� that is closest to 0 beξ = 1.

Since the domain� is unpokeable, by Lemma 6 there existη (0 < η < π)

andR > 1 and also a directioneıα (|α| > η/2) and a constantc0 > 0 such that
ω(z, 0 ∩ S(0, eıα, R, η),�) ≥ c0.

We introduce the following notation:
S(α) = S(0, eıα, R, η),

0α = 0 ∩ S(α), 00 = 0 ∩ S(0),
0α,0 = either0α or 00

(i.e., if 0α,0 appears in an inequality then it holds for either one of them).
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We shall find it convenient to express some of the estimates in terms of the
Poincaré geometry of�. Recall that the densityλ� of the Poincaré metric of� is
given by

λ�(z) = λD(gz)|g ′(z)|,
whereg is a conformal map from� ontoD.Recall also thatλD(w) = 2/(1−|w|2).
ThePoincaré distancebetween pointsp, q in � is denoted byd�(p, q).

We shall divide the rest of the proof into two steps: first, we transform the prob-
lem into a conformally invariant one by estimatingQ0(w); second, we rewrite the
problem in terms of conformally invariant quantities.

Step I. We reduce the problem to show|f ′(0)| ≤ C1
∫
0α,0
|f ′(w)| |dw|. Observe

that ∫
0

|f ′(w)|Q0(w) |dw| ≥
∫
0α∪00

|f ′(w)|Q0(w) |dw|.

It therefore suffices to boundQ0(w) from below. The control onQ0(w) depends
on the relative position ofv and the segment [0,1].

We must consider two cases forv as follows.

(i) |v − α| ≤ η/4. In this case the directionv can be close to argw for w ∈ 0α
and soQ0(w) can be arbitrarily small on0α. Yet the pointsw ∈ 00 have
arguments far from the directionv and thus it is easily seen that∫

0α∪00
|f ′(w)|Q0(w) |dw| ≥

∫
00
|f ′(w)|Q0(w) |dw|

≥ c(η, R)
∫
00
|f ′(w)| |dw|.

(ii) |v− α| > η/4. Just as in (i), the pointsw ∈0α have arguments far from the
directionv and so∫

0α∪00
|f ′(w)|Q0(w) |dw| ≥

∫
0α
|f ′(w)|Q0(w) |dw|

≥ c(η, R)
∫
0α
|f ′(w)| |dw|.

Thus, ∫
0

|f ′(w)|Q0(w) |dw| ≥ C
∫
0α,0
|f ′(w)| |dw|

and it is enough to show that

|f ′(0)| ≤ C1

∫
0α,0
|f ′(w)| |dw|. (20)

Step II. We shall rewrite (20) in terms of conformally invariant quantities. Ob-
serve that the right-hand side of (20) can be written as
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0α,0
|f ′(w)| |dw| = length(f(0α,0))

= 2πω(0, f(0α,0),D) = 2πω(f −1(0), 0α,0, �).

When no confusion is possible we will writeω(z,A,�) asω(z,A). Let us denote
f −1(0) = a for the rest of the proof.

Observe now that the left-hand side of (20) is

|f ′(0)| = λD(f(0))

λ�(0)
.

In order to finish the proof, we want to relateλD(f(0))/λ�(0) andω(a, 0α,0); to
do so we must consider two cases depending on the hyperbolic distance between
the pointsa and 0.

Case 1:d�(0, a) ≤ 1. On one hand, by Harnack’s inequality,

ω(a, 0α,0) ≥ ω(0, 0α,0)e−d�(0,a) ≥ c0e
−1.

On the other hand, by the14-Koebe theorem we have

|f ′(0)| = λD(f(0))

λ�(0)
≤ 4d(0, ∂�)λD(f(0))

= 8

1− |f(0)|2 ≤ 8e,

where the last inequality follows from the fact that

1+ |f(0)|
1− |f(0)| = e

dD(f(0),0) = ed�(0,a) ≤ e.
Hence

|f ′(0)| ≤ C1

∫
0α,0
|f ′(w)| |dw|

and the theorem follows.

Case 2:d�(0, a) ≥ 1. Observe first that sinceδ�(0) = 1,

|f ′(0)| ≤ Cg�(0, a),
whereg�(z, a) is the Green’s function of� with pole ata. In this case we thus
want to relateg�(0, a) toω(a, 0α,0). The next elementary lemma will do the job.

Lemma 7. Letu be a harmonic and positive function in�. Then, for allq, p ∈
� such thatd�(p, q) ≥ 1,

u(q) ≥ cg�(p, q)u(p).
This lemma follows immediately from Harnack’s inequality and harmonic major-
ant in the annulus{ ξ ∈� : d�(ξ, p) > 1}.

Now take the functionu to beu(z) = ω(z, 0α,0). Recall thatu(0) ≥ c0 and
apply the lemma withp = a andq = 0 to obtain
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|f ′(0)| ≤ Cg(0, a) ≤ Cu(a)
u(0)

≤ Cu(a) ≤ C
∫
0α,0
|f ′(w)| |dw|.

This completes the proof of Theorem 4.

7. An Extension ton Dimensions

Gabriel [G3] found an upper bound for the constant in the casen = 2. We will
follow his ideas to estimate the constant for anyn ≥ 3. Throughout this section,
0 andγ will be n-dimensional hypersurfaces. The notation used here is the same
as we have used all through the paper (with the obvious changes).

LetP andQ have the same meaning as in Section 1.7 (but inRn+1
+ = { (x, y) :

x ∈Rn, y ∈R }); that is,

Q = Pn q

r n+1
and P = Pn p

r n+1
, where Pn =

0(n+1
2 )√
πn+1

.

Let Sn be the surface area of the unit ball inRn, that is,

Sn = 2
√
πn+1

0(n+1
2 )

.

The main result of this section is the following theorem.

Theorem 5. Let0 andγ be smooth Jordann-dimensional hypersurfaces, with
u positive and subharmonic on the component ofRn+1 \ 0 that containsγ, and
let λ > 2. Then ∫

γ

u(z)λ |dz| ≤ Kn(λ, 0)
∫
0

u(z)λVγ(z) |dz| (21)

where1/λ + 1/λ′ = 1, β = λ′/λ, Vγ(z) is the normalized absolute total angle
subtended byγ at z on0, and

Kn,λ := Kn(λ, 0) = SnPn sup
z

(∫
0

(
P �
z (w)

Q

)β
P �
z (w) |dw|

)1/β

. (22)

In the particular case of0 being convex, there is an upper bound forKn,λ:

Kn,λ ≤ Sn(Pn)λ 2
√
π

0(n/2)

[
n− 2

1− β B
(
n− 2

2
,

3− β
2

)]1/β

. (23)

Here0 andB denote the special Gamma and Beta functions, respectively (see e.g.
[GR, pp. 942, 957]). Note that, for each fixed 2< λ <∞, the right-hand side on
(23) isO(n1/2) asn→∞.
Proof. The proof follows the steps of that given in the 1-dimensional case.
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The condition of smoothness in0 andγ could probably be weakened to one of
rectifiability, in the appropriate sense.

8. Some Open Questions

Question 1. Let u be a positive subharmonic function,0 a convex (Jordan)
curve, andK(λ, 0) as in Theorem 1. As mentioned in Section 4.1, ifγ is a seg-
ment perpendicular to the curve0 then the constantK(λ, 0) is finite if and only
if λ > 2.

In Section 4.2 we saw that ifγ is a circle then the constantK(λ, 0) is finite for
anyλ ≥ 1. Hence, the best exponent that gives a finite constant isλ = 1. (As a
matter of fact, if we let0 be the upper half plane then, forγ (t) = (t, |t |α) with
−1≤ t ≤ 1, and 1< α ≤ 2, the best exponent is alreadyλ = 1.) Considerλ as a
function of the curveγ, λ = λ(γ ). It would be nice to have a better understanding
of this limit exponent for a given curveγ contained, say, in the upper half-plane.

Question 2. Let� be a Jordan domain with0 = ∂�, and consider the follow-
ing two situations.

(A) Let γ be any rectifiable curve contained in�; then there exists a finite con-
stantK such that, for any conformal mappingψ from� ontoD,∫

γ

|ψ ′(z)| |dz| ≤ K(0)
∫
0

|ψ ′(z)|Vγ(z) |dz|. (24)

(B) Let γ be any rectifiable curve contained in�; then there exists a finite con-
stantK̃ such that, for any holomorphic functionf,∫

γ

|f(z)| |dz| ≤ K̃(0)
∫
0

|f(z)|Vγ(z) |dz|. (25)

If � is unpokeable, Theorem 4 establishes that (24) holds. Nevertheless, (25) will
be false in general, as we now show.

LetD(2,1) be the circle centered at 2 of radius 1, and letR be the region

R = { z∈C : 2 ≤ <z <∞, −e−<z < =z < e−<z }
(that is,R is the region between the graphs ofy = −e−x andy = e−x for x ≥ 2).
Let� be the domain� = Ĉ \ (R ∪ D) (note that� is unpokeable). Take0 to be
the boundary of�. Recall (see the proof of Theorem 1) that finding the constant
K̃ in (25) is equivalent to finding a constantC such that

|f(z)| ≤ C
2

∫
0

|f(z)|Qz(w) |dz|

for all pointsz∈ γ and directionv.
Let z = 0∈ γ andv = (1,0) (that is,v is the direction of the real axis). FixL

large. Leth be the function on� with value 0 on(∂D(2,1) ∩ 0) ∪ ({ ξ ∈ ∂R :
2 < <ξ < L } ∩ 0) and valueL onRL = { ξ ∈ ∂R : <ξ ≥ L } ∩ 0. Take the
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harmonic functionu to be the Poisson integral ofh and take the holomorphic func-
tion f to have modulus|f(z)| = expu(z). Then:

(a) |f(0)| = eLω(0,SL,�);

(b)
∫
0

|f(z)|Qz(w) |dz| ≤
(

1+ e−L + e
−L√1+ e−2L

L2

)
c.

Sinceω(0, SL,�) ∼ 1/
√
L for L large,

|f(0)|∫
0
|f(w)|Q |dw| → ∞ as L→∞;

the constantC can be as large as we want, so there does not exist a finite constant
K̃ in (25).

Even though situations (A) and (B) are different problems, without the total
angleV they would be the same property (since the arclength onγ is a Carleson
measure). For the particular case of� = D, (25) holds by Carlson (see [C] or
Section 2.3). It would be interesting to characterize those domains� for which
(25) holds (or give a reasonable sufficient condition for (25) to hold).

Question 3. It would be nice to consider the following generalization on Ga-
briel’s problem inn dimensions:

Given a rectifiable Jordann-dimensional hypersurface0 and a recti-
fiable Jordanm-dimensional hypersurfaceγ with m < n and γ con-
tained in the interior of0, and given any positive numberλ, find the
best constantKn such that, for all positive harmonic functionsu,∫

γ

u(z)λ |dz| ≤ Kn
∫
0

u(z)λV0(z) |dz|.
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