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1. Introduction

The investigation of commutative operator algebras by means of function space
techniques is due to M. H. Stone [7]. The notion of a space such that the closure
of every open sefr, clos(G), is open (thus, cla%r) is clopen was introduced by
Stone in [8]. Such spaces are calledremely disconnectedExtremely discon-
nected spaces are also characterized as those topological Xdacesghich (i) the
interior of a closed subsét of X, int(F), is clopen, or (ii) disjoint open subsets
of X have disjoint closures. A compact Hausdorff extremely disconnected space
X is also known as &tonean spacdf .4 is an abelian von Neumann algebra then
A is isomorphic withC (X), whereX is a Stonean space (see [5, Thm. 5.2.1]).

In [4] (and [5]), Kadison studies a class of unbounded continuous complex-
valued (real-valued) functions on an extremely disconnected spécallednor-
mal functionsandself-adjoint functiongnd denoted by (X) andS(X), respec-
tively), and he proves thaV(X) is an algebra [4, Thm. 2.11]. Starting with an
abelian von Neumann algehrd, Kadison introduce#V/(.A), the algebra of (nor-
mal) operators affiliated wittd and S(A), the algebra of self-adjoint operators
affiliated with A4 [4, Thm. 3.3], extending the isomorphism df with C(X) to
a*-isomoprhism ofN(A) onto N(X) [4, Thm. 4.1]. In this direction, one is en-
abled to obtain the spectral theorem for self-adjoint and normal operators (see
also [2]).

In this article, we present a closely related approach to the studyXof, S(X),
and the spectral theorem for unbounded self-adjoint operators. We begin in Sec-
tion 2 with a theorem (Theorem 2.1) on continuous extensions from open dense
subsets of extremely disconnected spaces (see also [3, p. 96]). Theorem 2.1 leads
to a substantial simplification of the proof thsit X)) is an algebra, and it plays a
key role in our development. We continue, in Section 3, with a discussion on the
spectral analysis of a function i§(X), and we give an alternative proof of the
fact thatS(X) is a boundedly complete lattice. In Section 4 we prove the spec-
tral theorem and characterizations of the spectrum and the spectral projections for
unbounded self-adjoint operators.
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2. N(X) and S(X)

THEOREM 2.1. Let X be an extremely disconnected space, and’lbe a com-
pact Hausdorff space. Suppose tiiats an open dense subsetXf If f: U —
Y is a continuous function, thefi has a unique continuous extensigron X.

Proof. The uniqueness s clear, since if two continuous functions agree on a dense
subset then they agree everywhere.

We prove the existence. For eaghe Y, let Ay = (e, f~H(G) (closure de-
notes the closure i), whereN, = {G : G isopeninY, y € G}. Clearly,A, is
a closed (possibly empty) subsetdffor all y € Y.

Now, if x € X then there is a neftx,;} in U such thatx;, — x. SinceY is
compact, the neff(x,)} has a cluster point, say in Y. We claim thatr € A,.

If x ¢ A,, then there is an open sétin Y such thaty € G andx ¢ f~1(G).
Hence there existsdy such that, fod > do, x4 ¢ f~1(G). In particular, ford >
do we havef(x,) ¢ G. SinceG is a neighborhood of andy is a cluster point for
{f(x4)}, thisis a contradiction. Thus, e A,.

We definef(x) = y for x € A,. This is well-defined; for ify; # y» then
A, NA,, =0. To see this, supposg # y». Then there exist open disjoint sets
G1, G2 in Y with y; € Gy andy; € G,. Hence,f ~1(G1) and f ~1(G,) are disjoint
and open inJ. Therefore, they are disjoint and openXn SinceX is extremely
disconnected, their closures are disjoint as well. TAysN A,, = .

To see thay;(x) = f(x) for all x € U, let D be any directed set and takg =
x foralld € D. Then f(xq) = f(x) and f(xs) — f(x), sSOx € Ag(y). Hence,
fx) = f2). )

It remains to show the continuity of. Let F be any closed subset &fand
Ny ={G : Gisopeniny andF € G }. Weclaimthatf ~%(F) = Mgy, £ XG)
(which immediately gives the continuity gf). Infact, if x € f ~X(F) thenf(x) =
yeF.Hencex e Ay C (Ngen, fHG).

Conversely, ifx ¢ f~1(F) then f(x) = y ¢ F. ChooseGs, G, disjoint open
sets inY such thaty e Gy andF C G,. The same argument as before gives that
f~XG1) and f ~X(G) are disjoint. Therefored, N y, fHG) = @. Since

x €A, wehavex ¢(\gcy, fHG). O

Let(i‘T = C U {o0} denote the one-point compactification of the complex plane
andR = [—o0, +0o0] the two-point compactification of the real lifie

DErFINITION. Let X be a Stonean space. A continuous functfanX — C, such
thatU; = {x : f(x) # oo} is (open) dense iX, is called anormal functionon
X. We denote by (X) the set of normal functions oK.

A continuous functiory : X — R, such thatUy = {x : —oo < f(x) < 400}
is (open) dense iX, is called aself-adjoint functioron X. We denote by§(X)
the set of self-adjoint functions ox.
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Let f € N(X). We definef* to be the unique element of(X) that extendsf
defined only.

ProposITION 2.2. N(X) is a*-algebra containingC (X ), and S(X) is the sub-
algebra of self-adjoint elements &f(X).

Proof. By definition of f*, f* € N(X) wheneverf € N(X).

To see thatv(X) is an algebra, suppose thaandg are inN(X). Write Uy =
{x: f(x) #oo}andlU, = {x : g(x) # oo}. ThenUs N U, is open and dense in
X, and bothf + ¢ and fg are defined and continuous oaN U,. By Theorem 2.1,
f +g and fg both have unique continuous extensionsorf +g andf - g, respec-
tively. Now it is easy to see that, with these operatioasand.), N(X) becomes
an algebra with the constant function 1 as unit &{& ) as a subalgebra.

Itis also easy to see that, fgre N(X), f = f* iff there is a uniqug € S(X)
such thatf = 6 o g, wheref: R — C is defined by

A if AeR,
oA = )
oo if A =Zo0.

ThusS(X) is the subalgebra of self-adjoint elemeqfs = f) of N(X). O

Note thatf is invertible inN (X) precisely when 4f makes sense on a dense open
setofX, iffint{x : f(x) = 0} = @. Note also that, iff € N(X) ande is a projec-
tion in C(X)—that is,e = X (the characteristic function @) with G a clopen

setinX—then "

Fe(n) = { f(x) I. x€G,

0 if x¢G.

3. The Spectral Analysis of a Self-Adjoint Function

For real-valued functiong, g in C(X), we will write f < g if f(x) < g(x) for
all x € X. Let{f,}ocq be a collection of real-valued functions (X ). We de-
note by\/, ., fo the Lu.b{ f, : « € @}, thatis,\/,., fo = f is such thatf, <
fforalla € Q,andif f, < g foralla € Q then f < g. Similarly, A ., f«
denotes the g.l.b.f, :a € Q}.

DEeFINITION. Let {e;},cr be a collection of projections i€ (X) and G, =
{x € X : ex(x) = 1}. The family {e;},cr is called aresolutionof the iden-
tity in C(X) if

(') \/AGR =1~ CIOS(UAGR GA) =X,

(i) N\,crer =0« int(ﬂkeR Gk) =,
(i) Ayoren=er & int(),.,G,) =G, forallreR.

Clearly, condition (iii) implies thate; },<r is monotonic ink.

ProrosiTioN 3.1. There is a bijective correspondence betwe&x ) and the
collection of all resolutions of the identity I6i(X).
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Proof. Givenanyy € S(X), if G, = int{x : ¢(x) < A }fori € R, thene, = Xg,
defines a resolution of the identity \(X).

Moreover,G; = int{x : ¢(x) < A}isequivalenttdx : ¢(x) <A} C G, C
{x:@(x) <A}, whichinturnis equivalenttp- (1—e;) > A(1—e¢;) andp e, <
re; forall A eR.

Conversely, lefe, }.cr be any resolution of the identity ii(X), and letG;,
{x : ex(x) = 1}. Define the functiorp: X — R by

+00 on (U,G:)",
p(x) =1 —oc0 on (), Gy,
supfA:x¢ G, }=inf{A:xeG,} on | J,G.~(),G:.
It is easy to see that as defined satisfies the conditibm : ¢(x) < A} C G, C
{x:@(x) <ar}forall A € R, and this condition determingsuniquely.

We now show thap is continous. Supposg(xg) = +oo. Let R be any pos-
itive real number. Choose any > R. Thenxg € (G,)¢ and for allx € (G,)*¢
we havep(x) > A > R. Thus,U = (G,)° is an open neighborhood af, and
e(U) C (R, +0o0]. Similarly, suppos&(xg) = —oo. Given anyR > 0, choose
A < —R. ThenU = G, is an open neighborhood ®f and¢(U) C [—o0, R).

Now suppose thap(xo) is finite. Leta, 8 € R such thate < ¢(xp) < B.
Chooser, u e Rsuch thaty < A < ¢(xo) < u < B. ThenU = G, N (Gy)¢ is
an open neighborhood af, ande(U) C [A, 1] € (o, B).

To see thap € S(X), note that(|J, G) and(), G, both have empty interior.
HenceU, = |, G, ~ ), G is dense inX. O

THEOREM 3.2. Let ¢ € S(X) and with{e,},cr be the resolution of the iden-
tity in C(X) defined byp. For J = (a, 8] with —oc0 < o < B < o0, let
fi=eg—e. FI1 = {ho,Ag,..., At Witha =X <Ay < -+ <X, =8
is any partition of [, B], if &; € [Aj_y, 2;] for j =1,2,...,n, and if |II|| =
maXj=12,. .. .4 —Xj_1), then

= [ITT]f;
c(x)

H‘/’ i — Zéj(é’x,- —e)
j=1

thatis,p - f; = ff L de; (in the Riemann-Stieltjes sejse

Proof. Setyn: = Z;.':lgj(exj —e,1). Forx € Gg ~ G, we havee; ,(x) =
e (x) = 0 ande;, (x) = eg(x) = 1 Hence there exists a uniqyie=1,2,...,n
suchthat;, ;(x) = 0ande;;(x) = L Thengn ¢(x) = §; andy- f;(x) = ¢(x) €
[}\.j_]_, )\j], SO

lo - f1(x) —om:(X)| = lo(x) —§;| < (A; — Aj—1) < [IT].

Forx € G, we havey - f;(x) = 0 ande; ,(x) = ey (x) =1 Hencegpn ¢(x) =
0 and the estimate trivially holds. Fert Gz we havep - f;(x) = 0 ande;, (x) =
eg(x) = 0, and again the estimate trivially holds. O

REMARK 3.3. Note thatp, the element ofS(X) associated witHe; },cr is the
unique element of (X) satisfyingy - f; = ff Adey. Infact, if Yy € S(X) with
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V- fi =9 fiforalJ = (a, B], theny = ponlJ,{x : fi(x) #0} =, G, ~
;. G». which is dense irX. Thereforey = ¢ everywhere.

DEeFINITION. Let{e, };cr be aresolution of the identity ii (X ). We definez,- =
\/[L<)» e, andG,- = {x e X :e-(x) =1}.

Note thate;- is a projection and thaj- < e;. Moreover,G,- = clos( U, G 1)
For eachf € N(X), thespectrunof f is defined to be the set

o(f) ={AreC: f —Alisnotinvertible inN(X) }.

ProrosiTiON 3.4. Lety be a self-adjoint function and I€¢; }, <r be its resolution
of the identity. Then € o () iff e, — e)- # 0.

Proof. Giveng € S(X), deflneG0 int{ x : ¢(x) = A} forall » e R. We prove
thate, — e,- = Xo0.
A

First observe théﬂ;f and{J,_, G, are disjoint open sets. Singeis extremely

disconnected, their closures are disjoint as well; tharfsm G- = (. Moreover,
G,- € G, andG? C Gy, s0Gy- UG? C G;.

To get equality, supposee G, ~ GQ. Then, sinceG, is open, there exists a
netx, — x such that; € G; andx; ¢ {x : ¢(x) = A}, S0@(x,) < A forall d;
but thenx, € J,_, G.. Hencex, e clog(lJ, ., G,.). Thus, forallx € R, G, =
G;- U G)? andé’)L —e- = XG)? O

There is a natural partial ordering #(X ) that may be defined as followsg: >
wheng — ¢ > 0, thatis,p(x) > ¥(x) for all x € U, N U,,. This partial ordering
induces a lattice structure ¢ X), for if ¢, ¢ € S(X) then the functiong v ¢ =
3@ +v)F3lp-vlandg Ay = (¢ + )~ 3l ~ | are, respectively, the
least upper and greatest lower boundg @ind in S(X).

LemMma 3.5. Letg, ¢ € S(X), and let{e; }icr, { f1}rer b€ their respective res-
olutions of the identity. Thep < v iff f, <, iff H, € G, forall A e R, where
H, =int{x : ¥(x) <A}andG,; =int{x : ¢(x) < 1 }.

The proof is obvious.
In the following theorem we prove that X) has the least upper bound prop-
erty—or, in Kadison’s terminology, that(X) is a boundedly complete lattice.

THEOREM 3.6. If X is Stonean, thef(X) has the least upper bound property.

Proof. SupposeF = {¢q}ecq iS @ nonempty subset 6 X) with an upper bound
(say,yo) in S(X). We prove that there igg in S(X) such thatyg is the least upper
bound of F = {¢y }uca.

DefineG; = int((Nyeol{ * : 9o (x) < 1}) and lete, = X, forall A e R. We
claim that the family{e; },cr is a resolution of the identity if'(X).

LetA = ¥o(x) < +00. Theng,(x) < A for all @ € 2 and hence

{x: Yo(x) < +00} C Gj.
Since{ x : Yo(x) < +o00} is dense inX, we have cIo(sUAeR G,\) = X.
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Next note thaf ), . Gi. € Ngecal* : ¢a(x) = —00}. Thus, in{(,.g G.) €
iNt(Ngeal{ * : va(x) = —00}) =0.

To complete the proof of our claim, let and u be real numbers withy >
. Clearly, G, < G, and oG, < int({1,.,G,). On the other hand, i €
ﬂu>A G, then, for alle € 2 and allx > A, we havep, (x) < u. Hencep, (x) <
A for all @ € Q. Therefore,,_, G, € (,ealx @ @o(x) < A} and soG; =
int((),~,Gu)-

Now letgg be the (unique) function i§(X) that corresponds to the resolution
of the identity{e,; },cr. Note now thatG, = int{x : ¢o(x) < A}. From Lemma
3.5, we havey, < ¢ foralla € Q.

Moreover, ifyr € S(X) is such thatp, < ¢ foralla € Q and if H; = int{x :
Y(x) < A}, thenH, Cint{x : ¢,(x) < A} forall @ € Q. It follows that H; C
G, and, from Lemma 3.5 again, we geg < . This completes the proof. [

4. The Spectral Theorem

Let B(H) be the algebra of bounded linear operators on a Hilbert sfa@nd
let Op(H ) be the set of unbounded densely defined linear operataks e re-
call that, forA, B € Op(H), B is called arextensiorof A, denoted byA C B, if
D(A) € D(B) andAx = Bx for all x € D(A).

Let A € Op(H) be a closed operator, and [Ete B(H). We say thatl" com-
muteswith A if TA C AT ; thatis, ifx € D(A) thenTx € D(A) andTAx = ATx.
We denote by A} the set of all operators iB(H ) that commute with the operator
A in the foregoing sense:

{AY ={T € B(H) : TA C AT }.

Itis easy to see thdt} is a subalgebra aB(H ) that is closed in the strong op-
erator topology (s.o0.t.). Note also thaie {A}' iff T* e {A*}. Thus,{A} N {A*}
is a von Neumann algebra. We writa}” = {{A}'}’ for the commutant ofA}'.

DEerINITION. Let A be a von Neumann algebra of operatorsinand letA
Op(H) be a closed operator. We say thats affiliated with A, denotedAnA,
whenA’ c {A}. We denote by (A) the family of self-adjoint operators affiliated
with the algebrad.

Note thatAn A iff A’ c {A}) N {A*Y iff {{A) N {A*}} C A. Note also that
W*(A) = {{A}Y N {A*}} is the smallest von Neumann algebra with whitls
affiliated, and is referred to as the von Neumann alggbreerated byi. Clearly,
if A is self-adjoint(A = A*), then

AnA iff W*(A) = {A) C A.
At this point, we recall some facts from the basic theory of self-adjoint oper-
ators. Leto(A) denote the spectrum of a self-adjoint operatorTheno(A) C

R andV = (il — A)~'is a bounded operator with adjoift* = (—il — A)~*
(see [1, p. 318]). It is easy to see tHatis a normal operator iB(H). In fact,
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V*V = VV* = (V* — V)/2i. Moreover,{A} = {V}. Thus,W*(A) = {A} =
{V}”, where{V}” is the abelian von Neumann algebra generated lfy.e., the
s.o.t.-closure of the set of polynomials¥f).

Let A be an abelian von Neumann algebra, andXlet X 4 be the Gelfand
space (or maximal ideal space).df From the Gelfand—Naimark representation
theorem for abeliag *-algebras, the Gelfand m&p A — C(X) (wherel'(A) =
A is the Gelfand transform of for A € A) is an isometri¢-isomorphism fromA
ontoC(X). As we noted in the introductiony(A) is a (commutative}-algebra
and the isomorphisifi extends to &-isomorphism ofV(A) with N(X). Although
the algebraic properties @f(A) and the extension dff will not be used in the
sequel, we shall also extemtto a bijection ofS(A) with S(X).

TaHeorEM 4.1. LetA be aself-adjoint operator, and let be any abelian von Neu-
mann algebra such thatnA. LetX = X 4. Then there exists a unigyec S(X)

suchthat(AB)" = ¢ - B, wheneve € AandAB € A. We writel['(A) = A = ¢.

Proof. Let V = (il — A)~L. SinceAnA and{V}" = {A}’, we have thaV € A.
Letv = V € C(X) be the Gelfand transform of.

Note thatAV = —(iI — A)V +iV = —1 +iV € A. Hence(AV) = —1+ iv.
If F is the projection onto K&lV), thenF is the largest projection il such that
VF = 0. Therefore F' = X, whereG is the largest clopen set contained in:
v(x) =0}, thatis,G = int{x : v(x) = 0}. SinceV is one-to-onef = 0 and so
G = (. Thus, Yv exists INN(X).

Definegp = —1/v + i. Note thatp* — ¢ = —2i + (v — v)/vv. Furthermore,
sinceV*V = VV* = (V* — V)/2i, it follows thatp* = ¢. Hencep € S(X).

Note also that, ofix : v(x) # 0}, an open dense subsetdf v = —1+iv =
(AVY'. Thus, by Theorem 2.v has a unique continuous extensign; v =
(AVY, onX.

Now, if C = AB with B, C € A, then

VC = VAB = —V(il — A)B+iVB C —B +iVB.
SinceVC € B(H), it follows thatVC = —B + iVB.

Leth, c € C(X) be such thab = B andc = C. Thenvc = (=1 + iv)b. This
impliesc = (=1/v+i)bon{x : v(x) # 0}. Therefore¢c = ¢-b; thatis,(AB)” =
¢-B.

To see that the restriction 6fin A is T, let A be a bounded self-adjoint opera-
tor in A whose Gelfand transformi = a. Thenv = 1/ — a) andl'(A) = Y=
a =T(A). O

Lemma 4.2. LetA be a self-adjoint operator, and let be any abelian von Neu-

mann algebra such thatnA. Letg = A. Supposes € A and supp(B) € U, =
{x:—00 < @(x) <+o00}. ThenAB e A.

Proof. Let V = (il — A)™%, v = V, andb = B. SetG = suppb) = clos{x :
b(x) # 0} (the support ob). ThenG is a clopen setand C {x : v(x) # 0}.
Now, if e = X andE € A with E = ¢, thenEB = B.
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Definec = ¢ - 1/v. If C € Awith C = ¢, thenc € C(X) andVC = E. Thus,
AB = AEB = AVCB € A. O

DEFINITION. A resolutionof the identity in B(H) is a family of projections
{E}er in B(H) satisfying:

() Vier E2 =1,
(i) N\,cr E»=0,and
(i) A, Ex = ExforallreR.

We are now ready to prove the spectral theorem for unbounded self-adjoint
operators.

THEOREM 4.3 (Spectral Theorem).Let A be an unbounded self-adjoint operator
on H. Then there exists a unique resolution of the iderftity}, g in B(H) such
that:

(i) for any intervalJ = (a, B], if F; = Eg — E, thenAF; is a bounded self-

adjoint operator onH andAF; = ff MdEy;
(i) x e D(A) iff the net{AF;x},;c 7 converges and in fact

B oo
Ax =lim AF;x =Ilim </ )»dE,\)x = (/ )»dE,\>x.
o — 00

Moreover,E; € {A}’, and {E; },cr is called thespectral familyof A.

Proof. (i) Let A = {A}" andX = X 4. If ¢ = A ande, = Xg,, whereG, =
int{x : ¢(x) < A}, then{e,}.cr IS a resolution of the identity i€ (X). For
J = (o, B, let f; = eg — eo. From Theorem 3.2p - f; € C(X) andg - f; =
[ % de,. Now takeE; € Asuch thatt; = e;, and letF; = f;. Then{E; }cr is
a resolution of the identity iB(H) andF; = Eg — E,.

Note that suppf;) = Gg ~ G, € U,. Hence, by Lemma 4.24F; € A.
Moreover,(AF;) = ¢ - f; is real-valued, hencg F; is self-adjoint. Atthe same
time, since the Gelfand map is an isometty;; = f(f ME;.

(i) Note thatF; ¢ A € A = {A} and soF;A C AF, forall J. Let J
be the directed set of half-open intervals= («, 8] in R ordered by inclusion.
SincelJ, . 7{x : f1(x) # 0} is dense inX, it follows that\/,. ; f; = 1 Hence,
\;es Fr = 1. Therefore,F; 1 I in the strong operator topology.

Now, if x € D(A), thenAF;x = F;Ax — Ax. Conversely, SupposéF;x —
y. Then, sinced is closed and”;x — x, we havex € D(A) andAx = y.

It remains to prove the uniqueness of the spectral family. SupfBSgcr
is another resolution of the identity satisfying (i) and (ii). L&be the abelian
von Neumann algebra generated{®/ }, cr.

Let F/ = E; — E, € B. By (i), AF; is the limit in the uniform operator topol-
ogy (hence, s.o0.t.) of anet of operator$irso A F; € B. If B € B’ andx € D(A),
then by (ii) we haveA(BF;x) = BAF;x — BAx. At the same timeBF/x —
Bx. SinceA is closed, we conclude th@te {A}'. Thus,A C B.
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Now, if Y is the Gelfand space @f ande] = (E;), theng - f; = ff X de; and
0 fr= ff Ade; in Y. Because such a representation is unique, it follows that
e; = e, forall A. Therefore,E; = E, forall A eR. O

REMARK 4.4. For anyx € H, let u, be the unique Borel measure Bnsatisfy-
ing w,(J) = (Fyx, x) = ||F;x||?> = (Egx, x) — (E4x, x). Part (i) of the spectral
theorem can be rewritten equivalently as follows:

x € D(A) iﬁ/ 2du,(2) < oo.

For this, first note thaF;Fx = Fyng for J, K € J (SinceE;, E, = Emina,u))-
Furthermore, we have
2

n
lim EjFij
=1

n—oo

| AF;x||?

2 ‘

= |lim
n—oo

Z S](E)\j - E)Lj,].)-x
j=1

n n
H § 2 2 _ 2 : 2 .
nlﬂ;noo = i:j ”F‘/fx“ B nlinoo = Ej MX(JJ)

o0
/ Adu,()) — / A2 duy(h).
J —00
Now, if x € D(A) thenAF;x — Ax. So||AF;x|? — || Ax||%. Therefore,

f 3dp(2) = | Ax|? < oo,

Conversely, suppose thif’ A2du.(h) < cc. Lete > 0andy <a < B < 3§
be any real numbers. If = (¢, 8], K = (y,8], L = (y,a], andM = (B, 4],
then by choosing large enough we have

IAFxx — AFyx|? = |AF x| + || AFyx||? 5/ W2dp () < e
R—J
Hence, the netA F;x},c 7 is Cauchy and so convergesfn
Note also that, forx € D(A), the representatiofAx, x) = ffoookdux(k) is
valid. By the polarization identityAx, y) = [*_ Adu. (1) for x € D(A) and
y € H, whereu, ,(J) = (Fyx,y). This is the classical form of the spectral
decomposition of a self-adjoint operator (see e.g. [6, Thm. 13.30]).

For the proof of the following lemma, see [5, Lemma 5.6.1] (and replace the se-
guence by a net).

LemmA 4.5. If {F,} is an increasing net of projections on the Hilbert space
H such that\/, F; = I, and if Ag is a linear operator with dense domain
U, Fa(H) = (Do) such thatAgF;, is a bounded self-adjoint operator of,
then Ay is closable and its closure is the unique self-adjoint operator satisfying
AF; = AgFy forall 4.



48 Fotios C. PALIOGIANNIS

ProrosiTiON 4.6. If {E,},cr iS a resolution of the identity iB(H) and A is
an abelian von Neumann algebra containiffg, }, g, then there is a self-adjoint
operatorA in S(A) whose spectral family i§E; },cr-

Moreover, ifX = X 4 then the mapping@': S(A) — S(X) is a bijection.

Proof. Lete, = E, forall » € R. Then{e, };cr is a resolution of the identity in
C(X). Letp € S(X) be the (unique) self-adjoint function associateddg;cr
(Proposition 3.1). Thep - f; € C(X) andg - f; = ffkdex, with J = (a, 8]
and f; =epg —e,.

If, for eachJ € 7, F; andA; are the operators id whose Gelfand transforms
(in C(X)) are f; andg - f;, respectively, thedF;},;c 7 is an increasing net of
projections such thay/,_ , F; = I, andA; is a bounded self-adjoint operator.

Define an operatof o with domainDo = J,. ; Fs(H) by Aox = A;x if x €
F;(H). We claimthatA g is well-defined; for this, note first that sinGe- f;) fx =
o - fink, itfollows that A;Fx = A;nx. Now, if x is also inFx (H), thenx =
Fyx, x = Fgx, andAJx = AjFxx = Ajngx = AxFjx = Agx.

From Lemma 4.54 is closable and its closure (= Ao) is self-adjoint. Since
Ag C AandAgF; = A is everywhere defined, we haveF;, = AgF; = A,.
Therefore AF; = ff AdE;.

Next, we show thaF;A c AF; for all J. Supposec € D(A). Then there is a
sequencéx, } in Do such that;, — x andAgx, — Ax (sinceA = Ap). Hence,
F;Agx, — F;Ax. Note that, for each, there exists & such thatv, = Fgxx,,.
Hence,

FJAOX,, = FJAOFK.xn = FJAK.xn = AKFj.xn = AOFJX,,.

Now, F;x, — Fyx andAF,x, = AgF;x, = F;Apx, — F;Ax. SinceA is
closed,F;x € D(A) andAF;x = F;Ax. The same argument as in the proof of
Theorem 4.3 gives thate D(A) iff the net{A F,x},c 7 converges (and F;x —
AXx).

To see thatd is affiliated with.A, suppose thal is in A’ and thatx € D(A).
ThenTF;x — Tx (sinceF;x — x) andATF;x = AF;Tx = TAF;x — TAx.
SinceA is closed,Tx € D(A) andATx = TAx. Thus, A" C {A}.

Itis now clear that{ E, },cr is the spectral family oA (by uniqueness, as in
Theorem 4.3). Moreover, sincgis in S(A), I'(A) makes sense andi F)) =
T'(A) - f;. ThereforeI'(A) - f; = ¢ - f, forall J (since(AF;) = ¢ - f;). Thus,
I'(A) = ¢. (Invoking Theorem 3.2, this also proves that S(A) — S(X) isa
bijection.) O
CoroLLARY 4.7. If Aisaself-adjointoperator andE; }; cr is its spectral family,
thenW*(A) = {A} = {E, : A eRY}".

Proof. Take A = { E; : » € R} in Proposition 4.6. Then is affiliated with
A. Therefore,{A}” € A. On the other hand, sincE; € {A}’, we have{ E;, :

reRY C{AY. 0

ProprosiTION 4.8. Let A be a self-adjoint operator, and letl be any abelian
von Neumann algebra such thay A. Letp = A. Theno(A) = oU,).
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Proof. If A ¢ o(A), thenB = (A\] — A)*e Aandl = (A\I — A)B. Taking
Gelfand transforms, this gives4 (A — ¢) - b with b = B. Thus,A ¢ ¢(U,).
Conversely, ifx ¢ p(U,) thenb = (1/(A — ¢)) € C(X). TakeB € A such that
B = b. Since supph) C U,, AB€ A. Nowb- (. —¢) = (A —¢)-b =1and so
B\ —A) C I = (M — A)B. Thus,A ¢ o(A). O

The spectral familyf E; },cr of a self-adjoint operator completely determines the
spectrum of the operator.

THEOREM 4.9. LetA € Op(H ) be a self-adjoint operatof,E, };.cr its resolution
of the identity, andr, 8 € R witha < 8. Theno(A) N (e, B) =D iff Eg- — E, =
0, whereEg- =\/,_4 E,..

Proof. Let A = {A}’, X = X4, ¢ = A, ande, = E;. Recall thato(A) =
(U,). Suppose thap(U,) N (o, B) = 9. Then{x i p(x) < B} ={x:0kx) =
a}. This implies that{x : ¢(x) < B} = int{x : ¢(x) = ¢} = G, and so
clos{x: ¢p(x) < B} =G,.

Let g = Xl x: p(x)<p}- Then we havg > e, forall u < g and thus

g = \/ e, =ep-.
n<p
If € S(X) is such thae,, < ¢ forall u < B, thenG, C {x : ¥(x) > 1}.
Hence

{xip) <B)=Jlx:pm) <pyc |G S {x:yx) =1}
n<p n<p

Therefore, clogx : p(x) < B} C {x : Y¥(x) > 1}; in other wordsg < . Thus,
eg- =8 = XC|OS{x Te(x)<B) = XG(X = €y, that iS,Eﬁ— —E,=0.

Conversely, leEs- — E, = 0 or (equivalentlyys- — e, = 0. Suppose there is
anx € X such thatr < ¢(x) < B. Then there exist real numbexsu with o <
A < u < B such that;(x) = 0 ande,(x) = L It follows thate,(x) = 0 and
eg-(x) = (\,-p eu)(x) = L Thereforegs-(x) — e, (x) = 1, which is a contra-
diction. O

THEOREM 4.10. Let A € Op(H) be a self-adjoint operator angE; },cr its res-
olution of the identity. TheKer(Al — A) = Rang€E; — E,-) forall » € R.
(Thus,x is an eigenvalue oA iff E; — E;- # 0.)

Proof. Let P be the projection onto K€kl — A); thenAP = AP. SincePA C
(AP)* = AP* = AP, itfollowsthatP € {A}'. Thus,P commutes with the spectral
projectionsk); of A.

Take now.A to be the abelian von Neumann algebra generated by, and
{E e, thatis, A = {A, P, E,}". LetX = X4, 9 = A, ¢, = E,, andp = P.
Note thatP is the largest projection il such thatAl — A)P = 0 and, as a re-
sult, {x : p(x) =1} = int{x : p(x) = A} = G. Hence, from Proposition 3.4,
p=e,—e-.Thus,P = E, — E;-. O
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In the remainder of this section we shall characterize the spectral family of a self-
adjoint operator. We begin with some preliminaries.

Let A be any operator. Aounding sequender A is a nondecreasing sequence
{F,} of projections such tha{/.°, F, = I andF,A C AF,, with AF, € B(H)
for all n. Note that, for a self-adjoint operatdr, we can construct a bounding se-
quence F, } for A fromits spectral family{E; },<r. In fact, F,, = F;, whereJ, =
(—n,n],n=212,....

Lemma 4.11. If {F,} is a bounding sequence for a closable operatorthen
{F,} is also a bounding sequence far(the closure ofA) and AF,, = AF, for
all n.

P_roof. Letx € D(A). Fixm arld choose,, € D(A) such that, — x andAx, —
Ax._Then_men — F,x andAfmx,, = AF,x, = F,Ax, - F,Ax. Th_erefore
F,A C AF,,. SinceAF, C AF, andAF,, € B(H), it follows that AF,, =
AF,,. O

A corefor a closed linear operater is a dense linear subspabg of the domain
of A suchthatd = A|p,. Thatis, given anyt € D(A), there exis{x,} € Do such
thatx, — x andAx, — Ax. Note that ifA is a closed operator ar{d),} is a
bounding sequence fot, thenDo = | -, Rang€&F,) is a core forA.

A self-adjoint operatod is said to bepositive(A > 0) if (Ax, x) > 0 for all
x € D(A) or, equivalently, il (A) < [0, +o00) (see [6, Thm. 13.31]). From Propo-
sition 4.8 we see that the mappifilg S(A) — S(X) is order-preserving. Note
also that, forA, B € S(A), AB = A*B* C (BA)* and S0AB is closable. We
shall denote the closure dfB by A - B.

THEOREM 4.12. LetA € Op(H ) be a self-adjoint operator anfF },cr aresolu-
tion of the indentity inB(H). Then{E, },<r is the spectral family ofl iff AE; <
AE; andA(I — E)) > A(I — E,) forall A eR.

Proof. Let A = {A)', X = X4, ¢ = A, e, = E;, F; = Eg — E,, and F; =
fr. Theng - e, < re; andg - (L—e;) > A(1— ey). Sincel': S(A) — S(X) is
order-preserving, all we need show is thiak, € S(A), I'(AE)) = ¢ - ¢;, and
AU —E) =¢-1—e).

First note thatAE, is closed. Also, sinc&, € A, we haveE; A C AE,.
Therefore(AE,)* C AE,. On the other handf; A = E;A* C (AE,)*. Hence,
E,-AC(AE))*.

We show thatE; - A = AE,. For this, first note thaF,, = F; , whereJ, =
(—n,n] forn = 1,2,... is a bounding sequence for botE; and E; A. By
Lemma 4.11, this is also the case 6y - A andE, - AF, = E; AF,,. Now

AEAEl = AFnEAFn = E)LFnAFn = E)LAFn =E,- AFm

that is, AE; and E; - A agree on their common co®, = (J.-, Rang&F,).
Hence,E;, - A = AE, and SO(AE,)* = AE,. If T € A’ then, sinced € S(A),
TAE, C ATE, = AE,T. ThUS,AE‘)L € S(A)
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Now, sinceF; and E; commute andAF,E; € A, we havel'(AF,E;) =
T(AE; F)); thatis,p - fie, = I'(AE;) - fy. Thus,T'(AE;) = ¢ - ¢;. Similarly,
(Al — E;)) = ¢ - (L—ey). Conversely, SUPPOSRE; < AE; andA(I — E;) >
AMI — E) forall A € R. From AE;, < AE; we have thatAE; is self-adjoint.
Hence,E A C AE,.

If {P,}.cr is the spectral family ofA, thenE; P, = P, E, for all A, . Take
A ={E,, P,}", the abelian von Neumann algebra generated pgnd P,,. Note
thatA is affiliated with A.

LetX = X4, 9 = A, ¢, = £, P, = p,, andF; = Ps — P,. As before, we
havel'(AE;) = ¢ - e; andI'(A(I — E;)) = ¢ - (L— e;). The hypothesis implies
thaty - ey < Aej andgp - (L—e;) > A1 —¢y).

Now, if X; = {x : ex(x) =1} thenX;, =int{x : p(x) <A} ={x: pi(x) =
1}. Therefore,E;, = P, forall A e R. O

THEOREM 4.13. Let A € Op(H) be a self-adjoint operator anflE, }; cr a reso-
lution of the identity inB(H). Then{E, },cr is the spectral family oA iff :

(i) F;A C AF; for any intervalJ = («, 8] whereF; = Eg — E,—that is,F;
reducesA;
(i) the relationx € Rang&F,) impliesa| x||? < (Ax, x) < B|x||%.

Proof. If {E;}.cr is the spectral family ofA then, as noted in the proof of the
spectral theoremi; A C AF; forall J. Furthermore, it € Rang& F;) thenAx =
AFyx = ([P L dE;)x. Hence(Ax, x) = [* A dpu, (%), which clearly implies ().

Conversely, suppose that conditions (i) and (ii) hold. First note difat <
AF; < BF; means thatAF; is a bounded self-adjoint operator. L&y =
U, Rang&F;). ThenDg is a core forA. SinceAF;E, is self-adjoint, we have
E,AF; C AF;E, = AE, F;. ltfollows thatE, A C AE,.

Now letA € R. Choosex € R such thatc < A and letF; = E;, — E.. If x €
Range€ F;) then we have

(AE;x,x) = (AFyx, x) = (Ax, x) < Al|x||? < A(Exx, x).

Thus,AE; < AE;.
Similarly, giveni € R, chooseu € R such thaix > A and letF, = E, — E,.
If x € Rang€F;) then we have

(AU — E)x,x) = (AF;x, x) = (Ax, x) > A1 x[? = A(| Ex ]| — | Exx|1?).

Lettingu — 400, we get(A(I —E;)x, x) > A((I —E;)x, x). Thus,A(I—E;) >
21 — E;).

SinceDy is a core forA, both inequalities hold for any € D(A). By Theorem
4.12, the proof is complete. O

ExampLE 4.14. Let(S, S, u) be ac-finite measure space and lgt S — R
be a measureable function finite a.e.$inThe multiplication operatoM, with
D(My) = { f € LAS) : gf € L3(S)} andM,(f) = gf for f € D(M,) is a
self-adjoint operator. LeE, = M,, , whereg, = X/,<;, for A € R. One can see
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that{E, },cr is a resolution of the identity iB(L?(S)). Now, sincegg; < r¢;
andg(1—¢,) > A(1— ¢,) a.e., it follows that,E, < AE, andM,(I — E;) >
A — E;) for all » € R. Therefore, from Theorem 4.12F; };¢r is the spectral
family of M,.
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