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1. Introduction

Jacobi structures were independently introduced by Lichnerowicz [27; 28] and
Kirillov [21], and they are a combined generalization of symplectic or Poisson
structures and of contact structures.

A Jacobi structure on am-dimensional manifoldV is a pair(A, E), where
A is a skew-symmetric tensor field of typ2, 0) and E a vector field onM ver-
ifying [A, A] = 2E A A and [E, A] = 0. The manifoldM endowed with a
Jacobi structure is called a Jacobi manifold. A bracket of functions (called Jacobi
bracket) is then defined byf, ¢} = A(df,dg) + fE(g) — gE(f). Thus, the al-
gebraC*(M, R) of C* functions onM, endowed with the Jacobi bracket, is a
local Lie algebra in the sense of Kirillov (see [21]). Conversely, a structure of
local Lie algebra orC*°(M, R) defines a Jacobi structure o (see [16; 21]).
WhenE identically vanishes, we recover the notion of Poisson manifold. Another
link between Jacobi and Poisson manifolds is the following. Take a regular Jacobi
manifold, that is, the vector field defines a regular foliation; thus, the quotient
manifold inherits a Poisson structure.

The purpose of this paper is to extend to Jacobi manifolds the construction of the
canonical double complex for Poisson manifolds due to Koszul [23] and Brylin-
ski [6]. The first step is to define an appropiate differential operatefi(A), d]
that extends the one introduced by Koszul [23] and Brylinski [6]. The restriction
of § to the complex of basic differential fornss;; (M ) is a homology operator, and
the resultant homology groups will be called canonical. Motivated by Brylinski,
we propose the following problem.

ProBLEM A-J. Give conditions on a compact Jacobi manifold which ensure that
any basic cohomology class #j; (M) has a harmonic representativethat is,
doa = 0andsa = 0.

Moreover, the relatiodd + d5 = 0 allows us to introduce a double complex.
Associated with it, there exist two spectral sequences. The second spectral se-
guence always degenerates at the first term; however, this is not true for the first
one. Hence we propose the following problem.
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ProBLEM B-J. Give conditions on a compact Jacobi manifold that ensure the
degeneracy at the first term of the first spectral sequence.

Both problems were proposed by Brylinski in [6] and solved in [10; 11; 12; 13; 30;
42] in the context of Poisson manifolds. In this paper we study these problems for
Jacobi manifolds.

The paper is structured as follows. In Section 2, we introduce the notation and
preliminary results that are necessary for the rest of the paper. We present symplec-
tic, almost cosymplectic, contact, and locally conformal symplectic manifolds as
examples of Jacobi manifolds. In fact, a Jacobi manifold possesses a generalized
foliation, with even-dimensional leaves being locally conformal symplectic man-
ifolds and odd-dimensional leaves being contact manifolds (see [9; 28; 29]). We
can say that symplectic manifolds are the bricks used to construct Poisson struc-
tures; however, Jacobi structures are more involved and so we need symplectic,
locally conformal symplectic, and contact bricks.

The extension of the Koszul-Brylinski operatas given in Section 3. Itis the
commutator of the contraction by the 2-vectoand the exterior differential. Act-
ing on basic forms, we hav& = 0, and thus defines a canonical homology. We
also haveSd + d§ = 0; we can then define a canonical double comm@@r =
Qi (M), d,s), whereQ,’;(M) denotes the space of basiforms with respect to
the vector fieldE. We prove that the second spectral sequence always degenerates
at the first term by using a master formula that generalizes the one obtained in [13].
For the first spectral sequence, we prove that for contact manifolds it degenerates
at the first term (Section 4). Notice that the double comp@?}, d, §) coincides
with that defined by Brylinski [6] for Poisson manifolds, and in this case the first
spectral sequence for a symplectic manifold degenerates at the first term. Our re-
sult thus holds for both symplectic and contact manifolds. However, itis no longer
true for arbitrary Jacobi manifolds. In [13] we have shown a counterexample in
the context of Poisson manifolds. Here, we exhibit a non-Poisson Jacobi counter-
example—more precisely, a locally conformal symplectic (I.c.s.) manifold that is
obtained as a circle bundle over an almost cosymplectic manifold.

With respect to Problem A-J, we prove that any basic cohomology class on a
compact contact manifold has a harmonic representative if and only if it satisfies
a hard Lefschetz theorem. This result is the analog in odd dimension to Mathieu’s
result for symplectic manifolds [30]. Thus, there is a natural parallelism for the
odd- and even-dimensional cases. We also exhibit a strict Jacobi counterexample,
a circle bundle over the Kodaira-Thurston manifold. With respect to the finiteness
of the canonical homology groups, we prove that, for a contact manifold, they are
isomorphic to the basic de Rham cohomology groups. Therefore, they have finite
dimension if, for instance, the manifold k& contact or Sasakian. Of course, the
finiteness of the canonical homology groups is guaranteed for compact symplectic
manifolds [6].

Section 5 is devoted to the study of the canonical homology of a particular
kind of Jacobi manifolds—namely, the locally conformal symplectic manifolds.

A very interesting case are the so-called locally conformal symplectic manifolds
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of the first kind (see Vaisman [39]). In contrast with the symplectic case, we prove
that, in general, the canonical homology groups of an arbitrary l.c.s. manifold
are not finite-dimensional. Moreover, we exhibit a 6-dimensional compact I.c.s.
nilmanifold for which the first spectral sequence does not degenerate at the first
term.

All the manifolds considered throughout this paper are assumed to be connected.

2. Jacobi Manifolds

Let M be aC* manifold. Denote byX(M) the Lie algebra of the vector fields
on M and byC* (M, R) the algebra o€ > real-valued functions om. A Jacobi
structureon M is a pair(A, E), whereA is a skew-symmetric tensor field of type
(2,0) andE a vector field onM verifying

[A,A]=2EAA, LzA=[E,A]=0. 1)

Here [, ]is the Schouten—Nijenhuis bracket afids the Lie derivative. The man-
ifold M endowed with a Jacobi structure is callethaobi manifold If (M, A, E)

is a Jacobi manifold, we can define a bracket of functions (cdiedbi brackex
as follows:

{f. g} = Adf,dg) + fE(g) — gE(f) forall f,geC¥(M,R). (2)
The mapping , }: C®(M, R) x C*®(M, R) — C*(M, R) is bilinear and verifies

(i) support f, g} C supportf N supportg,
(i) {f .8} =—{g. f} and
(i) {f. (g, h}} +1{g. {h, f1} +{h, {f. g}} = 0 (Jacobi's identity)

for f, g, h € C*(M, R).

Thus, the spac€ (M, R) endowed with the Jacobi bracket itoaal Lie alge-
brain the sense of Kirillov (see [21]). Conversely, a structure of local Lie algebra
on the spac& (M, R) of real-valued functions on a manifold determines a
Jacobi structure oM (see [16; 21]).

If the vector fieldE vanishes, thefi, } is a derivation in each argument, that is,
{, } defines @Poisson brackebn M. In this case, (1) reduces ta [ A] = 0, and
(M, A) is aPoisson manifoldThe Poisson and Jacobi manifolds were introduced
by Lichnerowicz (see [26; 28]; see also [3; 17; 25; 40; 41]).

The main examples of Poisson manifolds are symplectic and almost cosym-
plectic manifolds. Asymplectic manifolds a pair(M, ©2), whereM is an even-
dimensional manifold anf is a closed nondegenerate 2-formMnWe define a
skew-symmetric tensor field of type (2, 0) on M given by

A, B) = QO Ha), b XB))

for all o, B € QYM), whereQY(M) is the space of all 1-forms oi andb:
X(M) — QYM) is the isomorphism of (M, R)-modules defined by(X) =
ix$2. If we choose canonical coordinateg, p;) on M, we have
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Q= dq' A dp;, A= — A,
; e ; dq'  Op;

with dim M = 2m.

An almost cosymplectic manifoldee Blair [4]) is a tripl€ M, ®, n), whereM
is an odd-dimensional manifolg is a closed 2-form, anglis a closed 1-form on
M suchthaiy A ®™ is a volume form with dimM = 2m +1. Ifb: X(M) — QY (M)
is the isomorphism of *° (M, R)-modules defined by(X) = ix ® + (ixn)n, then
the vector field = b~(») is called theReeb vector fieldf M. The vector field
is characterized by the relationsp = 0 andizn = 1. It should be noticed that an
almost cosymplectic manifold was called “cosymplectic” by Libermann [24]. A
skew-symmetric tensor field of type (2, 0) on M is defined by

Ala, B) = (O Ha), b HB)) = DO Ha — a(®)n), b HB — BE)N))

for all o, 8 € QY(M). Thus, (M, A) becomes a Poisson manifold. In canonical
coordinatesq?, ..., q™, p1. ..., Pm,2), diMM = 2m + 1, we have

D= dq' Adp;, n=dz, §=i, A= i/\i
i=1 0z = dq' Opi
(see [12; 13]). Other very interesting examples of Jacobi manifolds thatoare
Poisson manifolds are the contact manifolds and the locally conformal symplectic
manifolds that we will next describe.

Let M be a(2m + 1)-dimensional manifold ang a 1-form onM. We say that

is acontactl-form if n A (dn)™ # 0 at every point. In such a caé#, n) is termed
acontact manifoldsee e.g. [4]). Using the classical theorem of Darboux, around
every point of M there exist canonical coordinatésq, ..., q", p1, ..., pm)
such that

n=dr =3 pidg"

A contact manifold(M, n) is a Jacobi manifold. In fact, we define the skew-
symmetric tensor field of type (2, 0) on M given by

Aa, B) = dn(>~Ya),b"%(B))

for all o, B € QYM), whereb: X(M) — QM) is the isomorphism of
C>°(M, R)-modules defined by(X) = ixdn + n(X)n. The vector fieldE is just
the Reeb vector field = b~1(n) of (M, ). Using canonical coordinates, we have

9 a\ 9 9
A=S(Z+p )AL, E=Z
Z(aql +p8t> i o1

We remark thai;n = 1 andizdn = 0.

On the other hand, let us recall that almost symplectic manifolts a pair
(M, ), whereM is an even-dimensional manifold agzlis a nondegenerate 2-
form on M. An almost symplectic manifold is said to tecally conformal sym-
plectic (I.c.s.) if, for each poink € M, there is an open neighborho@d such
thatd(e~?2) = 0 for some functiorr : U — R (see e.g. [16; 39]). Equivalently,
(M, Q) is a l.c.s. manifold if there exists a closed 1-fagnsuch that
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dQ=w A Q. 3)

The 1-formw is called the_ee 1-formof M. It is obvious that the I.c.s. manifolds
with Lee 1-form identically zero are just symplectic manifolds.

In a similar way as for contact manifolds, we define a skew-symmetric tensor
field A of type (2, 0) and a vector field= on M by

A, p) =20 ). b™(B) and E=b""'w @)

for all 1-forms« and 8, whereb: X(M) — QM) is the isomorphism of
C*(M, R)-modules defined by(X) = ixQ. Then(M, A, E) is a Jacobi mani-
fold. Notice that

The contact manifolds and the locally conformal symplectic manifolds are a par-
ticular class of Jacobi manifolds known as transitive Jacobi manifolds.
Take a Jacobi manifoldM, A, E) and define a linear mapping

AN TIM — TM

given by(A*‘fC (@), B) = Ax(e, B)foralle, B € TM andx € M. For a contact man-
ifold (M, n) with Reeb vector field, we have thatV’ (o) = —b X a) + a(&,)&,
for all « € T*M. For al.c.s. manifold M, Q), we obtainA* = —b~1.

The Jacobi manifoldM, A, E) is said to bdaransitiveif, for all x € M, the tan-
gent spacd, M is generated by (T*M) andE, [9]. Let (M, A, E) be a tran-
sitive Jacobi manifold. Then we have the following statements (see [9] and the
references therein).

(&) IfdimM = 2m + 1 then, for every € M, it follows that
T.M = N (T'M) & (E,).

Therefore, the 1-forny defined byn, (u + LE,) = A foru € A‘fc(Tx*M) and
A € Ris a contact 1-form.

(b) If dim M = 2m then we deduce that’ : 7*M — T, M is an isomorphism.
Thus, if we put

Q(X, V) = A (A)IX, (A*)7ty) forall X,YeT, M

and ifw, = ig Q,, we get tha(M, ) is a l.c.s. manifold with Lee 1-form.

Therefore, a transitive Jacobi manifdldf, A, E) is a contact or a l.c.s. manifold.

Next, we will prove that an arbitrary Jacobi manifold is foliated by leaves that
are contact or l.c.s. manifolds. Roughly speaking, a Jacobi manifold is made of
contact or |.c.s. pieces.

Let (M, A, E) be a Jacobi manifold. If € C*(M, R), then the vector field
defined byX; = A*(df) + fE is called theHamiltonian vector fielcassociated
with f. It should be noticed that the Hamiltonian vector field associated with the
constant function 1 is just. A direct computation shows thak, X,] = X1 ¢
[28]. Denote byD, the subspace df, M generated by all the Hamiltonian vec-
tor fields evaluated at the pointe M. In other words,D, = A* (T*M) + (E,).
SinceD is involutive, one easily deduces thatdefines a generalized foliation in
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the sense of Sussmann [36]. This foliation is termecdttsracteristic foliationn
[9]. Moreover, ifL is a leaf of D then the Jacobi structue\, E) on M induces
a transitive Jacobi structufe\ ;, £;) on L. Thus, we deduce that the leavesdf
are contact or l.c.s. manifolds (for a detailed study we refer to [9; 16]).

Next, we explain the local structure of Jacobi manifolds. (Mt A, E) be a
Jacobi manifold with Jacobi brackgt }. Given a nonzero function on M, we
construct a new Jacobi structure shby putting

Ay, =aA, E, = aE +[A,a].
We say that A, E) and(A,, E,) areconformally equivalentThe Jacobi bracket
arising from(A,, E,) becomes
1
{.f’ g}a = _{a.fa ag} for a” f7g€COO(M’ R)
a
The following result was proved in [9].

THEOREM 2.1. Let (M, A, E) be ann-dimensional Jacobi manifold with Jacobi
bracket{ , }, xo a point in M, and S the leaf passing throughy.
(i) If S is a contact leaf with odd dimensi@wm + 1, then there exist local co-

ordinates(t, g%, ..., q™, p1, ..., pm» 25 ..., 2"2""1) centered atxy such
that
_ 0
oot
m 9 9 n—2m-—1 9
A= o pi— | A—+ @
;(861’ b at) op; ; o1 " oz
0 d
AP A —,
+ dz*  0zf

l<a<f<n—2m-1

and the functiong\* and A*# do not depend on the coordinates;’, p; and
vanish atxg. Thus, the Jacobi bracket is given by

{t.q'y=—q". {1.z°}=A"—¢q% {q¢'.p}=26. (% }=n",
the other brackets of coordinate functions being zero.
(i) If Sis alocally conformal symplectic leaf with even dimengien then there
exists a nonzero functiondefined on a neighborhood of as well as local

coordinatesq, ..., ¢", p1, - - ., Pm, 2% . . ., 2"~2") centered akg such that
the Jacobi structuréA ., E,), locally conformal to(A, E), is given by

1<a<B<n—2m
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and the functiongE,)* and (A ,)*# do not depend on the coordinaigs p;
and vanish afcg. Thus, the Jacobi bracket is given by

g pila =38 14" 2% = q'(E",
{z% 2%} = (M) + 2(Eo)’ — 2P(EW)*,
the other brackets of coordinate functions being zero.

REMARK 2.2. (i) A Jacobi manifoldM, A, E) is said to beegular if the vector
field E is complete E # 0 at every point, and the 1-dimensional foliation defined
by E is regular in the sense of Palais [34]. In such a case, the space of Maxes
M/E has the structure of a differentiable manifold and the canonical projection
w: M — M is a fibration (surjective submersion). Moreover, we can define on
M a 2-vectorA as
A@, B) o = A(*a, T*B)

for all @, B € QL(M). Notice that, from (1),A is well-defined andM, A) is a
Poisson manifold (see [9]).

(i) If (M, n) is a regular contact manifold with Reeb vector fi€ldhen it is
well known that the quotient Poisson manifall = M /¢ is a symplectic mani-
fold with symplectic form< such thatt*Q = dn (see e.g. [4]). In fact2 is the
dual 2-form of the bivecton.

(iii) In Section 5, we will prove that if M, 2) is a regular |.c.s. manifold of the
first kind then the quotient Poisson manifold is an almost cosymplectic manifold.

3. The Canonical Double Complex for Jacobi Manifolds

Let (M, A, E) be a Jacobi manifold, and denote @§(M) the space of differen-
tial k-forms onM. We introduce the differential operatdr Q*(M) — QM)
given by the commutator af A) and the exterior differential; that is,

5 =[i(A),d] = i(A)od —d oi(A) (6)

(see [8]). We notice that i = 0 (i.e., if (M, A) is a Poisson manifold) thehis
just the Koszul operator (see [6; 23]).
A direct computation gives the following explicit expressiorsof

ProposiTiON 3.1. We have
S(fodfin--- Ndfy)
= > (D fo, fiY — FE(f) + FE(fo))dfa

1<i<k

/\"‘/\jj?i/\"‘/\dfk
+ Y DM fod(fi £} — FES) + [ESD) Adfy

1<i<j<k
/\"'/\g]\ci/\"'/\CTf;/\"'/\dfk,

where the hat denotes missing arguments.
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Proof. The result follows from a direct computation that takes (2) into account.
UJ
ProrosiTioN 3.2. For a Jacobi manifold M, A, E) we have

82 = i(A)igd + di(A)ig.
Proof. A straightforward computation, using (6), shows that
82 = i(A)di(N)d — di(N)i(AN)d + di(A)di(A). (7)
Using that [[(a), d], i(b)] = i([a, b]) together with (1) and (6), it follows that
Si(A) —i(A)S =[5, i(AM)] = [[i(A). d], i(M)] =i([A, A]) = 2igi(A).  (8)

Now, using again (6):

Si(A) — i(A)S = 2i(A)di(A) — di(A)i(A) — i(A)i(A)d. (9)

Thus, from (8) and (9) we have
i(A)di(A) = igi(A) + S{di(A)i(A) + i(A)i(A)d). (10)
Finally, the proposition follows from (7) and (10). O

ProrosiTioN 3.3. For a Jacobi manifold M, A, E) we have
(1) igd = —dig;
(i) Lgé=6LE.
Proof. (i) From (6) and the Cartan formuldy = d o ix + ix o d it follows that
ip o8 =ip(i(A)d —di(A)) = i(A)Lg — i(A)dip — Lri(A) + digi(A).
Now, using (1):
Lei(A) —i(AN)Lg = i(LeA) =i([E, A]) = 0. (11)

Thus,
iE 0d = dl(A)lE - l(A)dlE = —(SZE

(i) Using again (11), and sinc€gd = d L, it follows that
Lg8=Lp(i(A)d —di(A) =i(A)Lgd —dLEI(N)
=i(A)dLg —di(A)Lg = L. O
For an integek, we will denote byQ (M) the subspace dfasick-forms. That
is,
Qk(M) ={ae QM) |iga =0, Lra =0}
={ae QM) |ipa =0, igda = 0}.
If C3*(M, R) is the space odbasic functionn M, thenQé(M) isaCg’(M, R)-

module.
The following corollary is a consequence of Propositions 3.2 and 3.3.
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COROLLARY 3.4. Leta € Q%(M). Then we have
(i) sa e Qi (M),
(i) 6%« = 0.

Using Proposition 3.1, we also deduce the following.

CoroLLARY 3.5. If fo, f1,..., fr are basic functions, then theform fy dfi A
-+ A dfy is basic and we have
S(fodfsn- - Adfi) =Y (=D Hfo, fildfin---ndfi n-- Adf

I<i<k

+ Y (DM fodlfi, fiY Adfa

I<i<j<k

A "/\gj?i/\"'/\g-f;/\"'/\dfk-

Let (M, A, E) be a Jacobi manifold. Corollary 3.4 allows us to introduce the
differential complex

—s k) 25 kM) 2 QI M) — -

wheredz = 8lez andQp(M) = ), Qg(M). This complex is called the
canonical complexof M. If M is a Poisson manifold (i.e., i€ = 0) then this
complex is just the canonical complex introduced by Brylinski (see [6]). The
homology of this complex is denoted y*2"(M) and is called theanonical
homologyof (M, A, E).

Also, we can consider the subcomplex of the de Rham complex given by the
basic forms

— Qb B k) B kM) —

wheredy = deZ(M). The cohomology of this complex is denoted Hy; (M)
and is called théasic de Rham cohomology (M, A, E). A direct computation
shows that/§ + 6d = 0. Thus we can introduce theanonical double complex
E..+(M), defined by

EpqM) =QE (M) for p,qg>0.

This double complex is concentrated on the first quadrant. Then we define the
periodic double complegPS'(M) by

EP(M) = Q4 "(M) forall p,qeZ.

Thus (see e.qg. [5]) there are two spectral sequefE&d/)} and{’E" (M)} (of
homological type) associated with the periodic double complex. Both of these
spectral sequences converge to the total homolagyM ), that is, the homology
of the total complex&. (M), D), where& (M) = ®p+q=k &y q(M)andD =
d+6.

REMaRrk 3.6. (i) If M is a Poisson manifold (i.e., iE = 0) then the peri-
odic double comple£!< (M) of M coincides with the one previously defined by
Brylinski [6].
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(i) Let (M, A, E) be a regular Jacobi manifold arid, A) the correspond-
ing quotient Poisson manifold (see Remark 2.2). We deduceStifai) and
EP% (M) are isomorphic in such a way that the behavior of the corresponding
spectral sequences is just the same. In particular, the canonical homology group
H;*(M) is isomorphic to the canonical homology groHpa“(M), and the basic
de Rham cohomology groufi} (M) is isomorphic to the de Rham cohomology
groupH?(M).

Denote bys, the differential of bidegreé—r, r — 1), so that the groupE;f;l(M)
are isomorphic to the homology groups of the following sequence:

r Sr r 8r r
T EP"F”J]*I’#»I(M) — Ep,q(M) - Ep,r’q+r,l(M) —> .

It should be noticed that a basic differential fosne £ (M) lives to E;, (M) if
it satisfies

da = 0, doa = 5061, d()l]_ = 80[2, ey d()tr_3 = (SOlr_g, dol,-_z = 3()[,_1 (12)

for some basic differential forms, . . ., «,_1. Denote by §], the homology class
defined byx in E | (M). The differential operatas, is then given by
8,[0[], = [d()[r,]_] re (13)

In particular, forr = 1 the groupsE;q(M) of the first spectral sequence are
isomorphic to the homology groups of the sequence
) 1)
e EX5 (M) > ERS(M) > £)5 (M) —> -
Thus, we have
{a €& (M) | Spa = 0}

85(Epy 1 (M)

1 ~
E, (M)=

_{aeQf (M) | Sa =0}
B 5(QIP(M))

= H2(M). (14)

Forr = 2, the groupsEiq(M) are isomorphic to the homology groups of the
sequence

d d
o> Eb (M) =5 E) (M) = Eb_y (M) —> -+ .
From (14) we obtain
2
E; (M)
N {ae&py(M) | da =0 andda = Say for someas € £, (M) }. (15)

d(HZ (M)

Similar definitions can be given for the termd§ (M), r > 3.
Let’s, be the differential of bidegreg — 1, —r), so that the group@;ﬁ,l(M)
are isomorphic to the homology groups of the sequence
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(M) = 'E, (M) =5 'E] (M) —> -+ .

I
oo — 'E p+r—Lqg—r

p—r+lg+r

We notice that a basic differential forfhe £5% (M) lives to’E}, (M) if it satisfies

dp =0, 08 =dps, Spr=4dp2, ..., 06,3 =dBf;—2, fr2=dfr1  (16)

for some basic differential formgy, .. ., 8,_1. Denote by'[B], the homology
class defined by in 'E},  (M). The differential operatds, is then defined by
/8;[/3]r = /[Slgrfllr- (17)

Forr =1, the groupéEll,,q(M) of the second spectral sequence are isomorphic to
the homology groups of the sequence

d d
e E)0 (M) > EPS(M) > D% (M) —> -+

Thus, we have
By = {a €&FS(M) | dpa = 0}
pat dg(EV) (M)
p+lq
. {2eQ} (M) | da =0}

d(QE "N (M))

= H/ "(M). 18)

Forr = 2, the groupSEﬁ,q(M) are isomorphic to the homology groups of the
sequence

/ 8 5y
—E} (M) — E; (M) — E; (M) — -~ . (19)
From (19), we obtain
12
E}, (M)
 lae ENS(M) | da = 0 andda = da; for somea; e Eﬁirqul(M)}
S(HE " (M)

In order to study the second spectral sequence, we need the following master
formula.

(20)

LemMA 3.7. For a Jacobi manifold M, A, E), we have
ki(A)di(A) ™ = i(A)*d + (k — Ddi(A)* + k(k — Di(A)ig (21)
for all positive integers.
Proof. We proceed by induction. Far= 1 the proof is trivial. From (8) we have
2i(A)di(A) = i(AN)?d + di(A)? + 2i(A)ig. (22)
Thus, (21) holds fok = 2. Suppose that (21) is true for an arbitrary
ki(A)di(A) = i(A)Kd + (k = Ddi(A)* + k(k — Di(A) Lip. (23)
If we applyi(A)*~* (on the right) to both sides of (22), we obtain that
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2i(A)di(A)* = i(A)2di(A) 4 di(A) T+ 2i(A)Fig.
Thus,
2ki(A)di(A)* = ki(A)2di(A) L + kdi(A) L+ 2ki(A)Kig. (24)
Now, if we applyi(A) (on the left) to both sides of (23) then we deduce that
ki(A)2di(A) Y = i(A)d + (k — Di(A)di(A)F + k(k — Di(A)kig.  (25)
Adding (24) to (25), we finally have
(k +Di(A)di(A)* = i(A)Fd + kdi(A) + k(k + Di(A)Kig. O

THEOREM 3.8. ForaJacobi manifoldM, A, E), the second spectral sequence of
the double comple&)< (M) degenerates dEX(M); thatis, EX(M) = 'E®(M).

Proof. We will show thats, = 0 forallr > 1

Considerg € £)5 (M) such that[ 8], € El, ,(M). Hence, there exist baS|c dlf-
ferential formsgs, . . ., 8,1 that satisfy (16) and such thaf[ 8], = '[88,-1] .
fact, sincedp = 0, we have

8B =[i(A), d]B = d(—i(A)B).
Thus, we can takg; = —i(A)B. From (11) we deduce that
ipf1=—i(A)igp =0, Lepr=—i(A)LB =0,

which implies thatgy € £7%; _;(M).

Now, using Lemma 3.7 yields
81 = di(A)?p — i(A)di(A)B = d(5i(A)?).

Thus, we can tak@, = %i(A)Zﬂ. It is clear thatB; is also basic; that iSg 8, =
0 andLgB2 = 0. Proceeding further, we obtain that

(= 1)5

Bs = i(A)'B foralll<s<r-1

and moreover thed; is basic. Then, arepresentative element of the @gss], =
'[68,_1] - is, using Lemma 3.7,

32— 0 Garaicay 8 — iy = a S icayp
' (r = D! (r)! ’
which implies thatg,_; defines the zero homology cIasSlr];Hfqur(M). This
completes the proof. O

With regard to the first spectral sequence, Brylinski has proved that it degener-
ates at the first term for a compact symplectic manifold [6]. He also proposed the
following problem.
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ProBLEM B. Give conditions on a compact Poisson manifold that ensure the
degeneracy at the first term of the first spectral sequence.

Fernandez, Ibafiez, and de Ledn [12; 13] have obtained a counterexample (a 5-
dimensional compact almost cosymplectic maniftél) for which the first spec-

tral sequence does not degenerate at the first term. Another example (a Poisson
structure of rank 2 on the Kodaira—Thurston manif&lfl) was given in [11]. Here,

we propose the natural extension of Brylinski’s Problem B.

ProBLEM B-J. Give conditions on a compact Jacobi manifold that ensure the
degeneracy at the first term of the first spectral sequence.

In the next section we prove that the first spectral sequence degenerates for contact
manifolds also.

4. Canonical Homology, Spectral Sequences, and Basic
de Rham Cohomology on Contact Manifolds

In this section we study the double comp&X'(M) on a particular class of Jacobi
manifolds: contact manifolds.

Let (M, n) be a(2m + 1)-dimensional contact manifold and consider the iso-
morphism of C*(M, R)-modulesb: X(M) — QYM) defined byb(X) =
ixdn + n(X)n. The mapping can be extended to a mapping from the space
X*(M) of k-vectors onto the spaceloformsQ (M) by puttingb (XoA- - -AXy) =
b(X1) A -+ ADb(Xy). Thus,b is also an isomorphism af *° (M, R)-modules.

Now, let X5(M) be the submodule at*(M) defined byX:(M) = {K €
xkM) | i,K = 0}, where(i,K) (e, . .., o4-1) = K(, 01, . . ., 1), and let
Qf(M) be the submodule gg*(M) defined byQf (M) = {a € QM) | iza =
0}. Thenb|x®(M): x’;(M) — Q’g(M) is an isomorphism of *°(M, R)-modules.

We define the star operat® : Q’g(M) — Qg’“*k(M) by

- . (dm™
xpoe = i(b 1|x§](M)(Ol))T-

(26)

Notice that, fromizdn = 0, we haveizs ¥z = 0. We will now prove some prop-
erties of this operator.

LemMA 4.1. Let (M, n) be a contact manifold. Then
(I) [:g o >T<B = >T<B oﬁg;
(i) if «is a basick-form thenkg« is a basic(2m — k)-form.

Proof. Sinceign = 1 andizdn = 0, we deduce thaf:b(X) = b([&, X]) for all
X e X(M). Thus,

Leb(K) =b(LeK) (27)
for all K € x*(M). Now, leta € Qf(M). Using (27) and that/, i(K)] =
i(L:K) forall K € X*(M), we have
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d m m d m
L (hpa) = Lei(b ™Y@ )>( D i Le <( ) )+ (Leb N ))( )
d m
=i~ N Lear ))( ”) = $5(Leat).
This proves (i). Part (ii) is d|rect consequence of (i). O

ProposITION 4.2. Let (M, n) be a contact manifold.
(i) If xe Qé‘(M), then%ﬁa =a.
(i) If «is abasick-form, thensza = (=) %gds¥pa.

Proof. (i) For each poink € M, let Ann(n,) be the vector subspace of those tan-
gent vectors iff, M that are annihilated by, . Therefore, Aniin, ) is a symplectic
vector space with symplectic for@n),, and (), is just the star isomorphism
defined by the symplectic formaln), on Ann(n,). Thus, the result follows from
[24].

(i) Let {I x U, (¢, q', p:)} be a system of canonical coordinatesMnthat is,

,- ) 3\ o 9

We can consider itV the symplectic form2 = Y. dq’' A dp; = dn. Now, if

B is a basick-form then it is ak-form on U, and a direct computation shows
thatxgB = *oB andi(A)B = i(Agq)B, wherexq is the star isomorphism de-
fined on the space of forms il by the symplectic fornf2 and whereAq =
>:(8/3g") A (8/3p;) (see [24]). Thus, using Theorem 2.2.1 of [6], we conclude
thatdza = (—1)*1%zdp%z« for all basick-formsa. O

The following corollary states that the canonical homology of a contact manifold
is just its basic de Rham cohomology.

CoroLLARY 4.3. Let (M, n) be a contact manifold of dimensi@w + 1. Then
the operatorip establishes an isomorphism of the canonical homology group
HEY(M) with the basic de Rham cohomology gratip™ *(M).

Corollary 4.3 permits us to obtain sufficient conditions to ensure the finiteness
of the canonical homology groups of a compact contact manifold. In fact, we
will prove that for a particular class of compact contact manifolds Khepntact
manifolds) the canonical homology groups have finite dimension.

Let (M, ¢, &, n, g) be a(2m + 1)-dimensionahlmost contact metric manifoid
that is (see [4])¢ is a(l, 1) tensor fieldy; is a 1-form.£ is a vector field, ang is
a Riemannian metric oM such that

P> =—1d+n®& nE) =1 and gpX, oY) =g(X,¥)—n(X)n()

for X, Y € X(M), where Id is the identity transformation. Then we hayg) =
andn(X) = g(X, &) forall X € X(M). Thefundamental 2-forn® of M is defined
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by ®(X,Y) = g(X, ¢Y), and the(2m + 1)-form n A ®™ is a volume form onv.
The almost contact metric manifold is said to lentactif dn = ®; K-contact
if it is contact andt is Killing; normalif [¢, ¢] + 2dn ® &€ = 0, Sasakianf it
is contact and normadlmost cosymplecti€ ® andn are closed; andosymplec-
tic if it is almost cosymplectic and normal (see [4]).Mf is a Sasakian manifold
then it isK-contact [4].

Next, let(M, ¢, &, n, g) be a(2m + 1)-dimensional compadt-contact mani-
fold. Denote byF the foliation onM defined by. Itis clear thatF is a transver-
sally oriented foliation. In facty = (dn)™/m! is a transversal volume form
associated with the foliatiotF. If = is the Hodge star isomorphism, then the
characteristic fornX » = »v of F is just the 1-formy.

Since¢ is Killing, we deduce thaf# is a Riemannian foliation and thatis a
bundle-like metric. Moreover, we have

8(Vx§, Y) =dn(X,Y) = ®(X,Y) = —g(¢X,Y)

for X, Y € X(M), whereV is the Riemannian connection gf This implies that
Vx& = —¢X. In particular,V:¢£ = 0 and thus the mean curvature 1-form associ-
ated withF is null.

We can define a star operay: Q& (M) — Qg’"*"(M) by

AA*pX =V

for o € Q& (M) (see [19]). The relations betwe@randx are characterized by
the formulas
*po = (—1)kig *a and xo =*ga AN (28)

for a € Q& (M). Thus, we obtain
o= (—Dfa (29)

for @ € Q% (M). The global scalar produgt, ) onQ*(M) restricts on basic forms
to the expression

(o, ') :/ a Axga’ AD.
M

With respect to this scalar product, the adjoint operakor Q,’;(M) —
Q&Y(M) of dj is given by

(SB = _‘;BdB;B (30)

(see [19]). A direct computation, using (28) and the fact that= (—1)**1(n A
xa) for a € Q& (M) (see [14]), shows that

o = dpa + 1 A Ae), (31)

wheres$ is the codifferential onM, A = [dn]*, and [n] is the operator defined
by [dn]a = a A dn.

Now, letAg: Q¥ (M) — QKk(M) be the basic Laplacian (i.eAz = dpdp +
Sgdp), and letQ%,, (M) be the space of transversally harmonic basforms
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(i.e., the kernel ofA 3 on Qg(M)). We have that a basicform « is transversally
harmonic if

dpa=da =0 and Sza =d8a —n A Aa =0. (32)

In [1] and [2], the authors obtained a basic de Rham—-Hodge decomposition for a
transversally oriented Riemannian foliation on a compact orientable Riemannian
manifold with bundle-like metric and with basic mean curvature 1-form (for a dif-
ferent proof of this result see [20]; we also refer to [38] for a general reference).
Using this result, it follows that there is a decomposition into mutually orthogonal
subspaces

QE(M) = Ap(QE(M)) @ QM) =imdp @ Ims @ Q% (M)

and, moreover, the spa€g;, (M) has finite dimension. Therefore, since the ba-
sic de Rham cohomology grou@s (M) is isomorphic to the spac%,, (M), we
conclude that (M) has finite dimension. From Corollary 4.3, this then implies
our next result.

CoRrOLLARY 4.4. Let (M, ) be a compacK-contact manifold. Then the canon-
ical homology group$72"(M) have finite dimension.

REMARK 4.5. Foracompactsymplectic manifold, the canonical homology groups
have finite dimension [6; 13]. For compact contact manifolds, we only are able to
assure the finiteness féf-contact or Sasakian manifolds.

We return to the general case of an arbitrary contact manifdidy). Sincesza =
(—=D)**1%pdg%pa for all basick-form «, we can introduce a harmonic theory on
contact manifolds.

DEerFINITION 4.6. A basick-form « on a contact manifoldM, n) is said to be
harmonicif do = 0 andéga = 0.

A similar definition was introduced by Brylinski in [6] for symplectic and (more
generally) Poisson manifolds by using the Koszul operator. Here, we also ex-
tend Definition 4.6 for arbitrary Jacobi manifolds in such a way that it would be
consistent with Brylinski’s definition.

In [6], Brylinski proposed the following problem.

ProBLEM A. Give conditions on a compact Poisson manifold which ensure that
any cohomology class i *(M) has a harmonic representativethat is,do =
0 andéx = 0.

Brylinski proved that this holds for compact Kéhler manifolds and cotangent bun-
dles, and he conjectured that this would be true for any compact symplectic man-
ifold. This conjecture was recently disproved by Fernandez, Ibafiez, and de Ledn
[10] by exhibiting a counterexample. More generally, Mathieu [30] has proved
that a compact symplectic manifold/, ©2) verifies Brylinski’s conjecture if and
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only if it satisfies the strong Lefschetz theorem: for anyg m, dimN = 2m,
the cup product®]”: H""(N) — H™™(N) is an isomorphism. A simpler
proof of this fact was made by Yang [42]. As a consequence, the odd Betti num-
bers of a compact symplectic manifold verifying Brylinski's conjecture are even.
In the odd-dimensional setting, it was recently proved by Ibafiez [18] that, for a
compact cosymplectic manifold, any de Rham cohomology class has a harmonic
representative.

The following problem is a natural extension of the previous one.

ProBLEM A-J. Give conditions on a compact Jacobi manifold which ensure that
any basic cohomology class Hj; (M) has a harmonic representativethat is,
doa = 0andéga = 0.

The result obtained by Mathieu gives an answer for Problem A-J in the symplectic
setting. We will give a similar answer for Problem A-J in the contact setting.
Let(M, n) be acontact manifold of dimensiom2-1, letQz(M) =), Qg(M)
be the real vector space of basic formsiMnand consider oz (M) the restric-
tionsdy andsg of the differential operatorg ands (see Section 3). We also intro-
duce the operatorgf], f, andh, which are given bydn](e) = dn A «, f(a) =
(Ao, andh(a) = (k — m)a for all @ € Q,’;(M). Itis clear that {in], f, andh
are endomorphisms @t (M). In fact, if « € Q% (M) then [n](x) € Q52(M),
fla) e Q}’_;*Z(M), andh(a) € Q&(M). Moreover, from a direct computation us-
ing (6), (8), and the local expressionspfind A in canonical coordinates, we
obtain the following lemma.

LeEmma 4.7. Let (M, n) be a contact manifold of dimensi@w + 1. Then the
operatorsdg, 383, [dn], f, andh verify.

(i) [7, [dn]l = 2[dn], [h, f]1 = =2f, [ldn], f] = h;
(ii) [[dnl.ds] =0, [h,dg]l =dp,[f,dgl = b5, [[dn]. 88] = dg, [, 8] = —8,
[f.d8] = 0.

From (i) we deduce thd{dn], f, h} spans a Lie algebra isomorphic tg3| the

Lie algebra of all 2x 2-matrices of trace .OFrom (ii) and sinced3 = §2 =
dpép + dpdp = 0 we have that the operatosy], f, k, dg, andép span the Lie
super-algebra €) x R?. Therefore, the spac@z (M) viewed as &sl(2) x R?)-
module belongs to the categoyyof all (sl(2) x R?)-modules on whicth acts
diagonally with only finitely many different eigenvalues (this is studied in [30]).
We denote byH}, (M) the subspace of all the cohomology classe&ji{M)
that contain at least one harmonic form:

Hige g (M)
={ae HN(M) | 3o € QK (M) with dga = 0, Sz = 0, anda = [«] }.

Consequently, using Theorem 1 and Lemma 5 of [30], we obtain the following
result.
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THEOREM 4.8. Let(M, n) be a(not necessarily compaotontact manifold of di-
mension2m + 1. ThenH; (M) = H;, (M) if and only if, for anyn < m, the
cup product{dn]™: Hy'"(M) — Hy ™ (M) is onto.

If (M, ¢, &, n, g)isacompack-contact manifold of dimensioni2 + 1, we de-
duce that the basic de Rham cohomology gréifgM ) is isomorphic to the space
Q,’;H(M) of transversally harmonic basteforms and tha1Hl§(M) has finite di-
mension. Furthermore, from (29) and (30) we obtain that the spgaggs(M)
andQ}" (M) are isomorphic, which implies that the dimensiontHjf ~"(M) is
equal to the dimension df;'*"(M). Therefore, using Theorem 4.8, we have the
following corollary.

CoroLLARY 4.9. Let(M, ¢, &, n, g) be a compacK-contact manifold of dimen-

sion2m + 1. Then the following two assertions are equivalent.

(i) Hy(M) = H}, ., (M).

(i) Foranyn < m, the cup producfdn]”: Hy " (M) — Hy ™ (M) is an iso-
morphism.

Sasakian manifolds may be considered as an odd-dimensional counterpart of Kah-
ler manifolds. This leads to our next result.

CoroLLARY 4.10. Let(M, ¢, &, n, g) be a compact Sasakian manifold. Then
H;(M) = Hj, g (M).

Proof. We will use the fact that a Sasakian manifoldkiscontact. Suppose that
dimM = 2m + 1. A (not necessarily basi&-form o on M is calledC-harmonic
by Ogawa [33] if

dae =0 and da =nA Aa,

wheres is the codifferential o/ and. A = [dn]«, with » the Hodge star isomor-
phism. Notice that th€'-harmonic basic forms are just the transversally harmonic
basic forms (see (32)).

If kK < m anda is aC-harmonick-form, then Ogawa [33] proved thatis basic
and, as a consequence, the-2)-form [dn]a = o Adn is alsoC-harmonic. Now,
if o is a transversally harmonic bagi€orm (with k arbitrary) then, proceeding as
in [33], we also can prove thadf]a = a A dn is a transversally harmonic basic
(k + 2)-form.

Using these results, we will deduce that the cup produwgt’: Hy' ™" (M) —
Hj't"(M) is an isomorphism for < m. The basic de Rham cohomology group
HY' (M) (respectively,H;'*"(M)) has finite dimension, and it can be identi-
fied with the spac&},"(M) (resp.Qy."(M)) of transversally harmonic basic
(m —n)-forms (resp(m + n)-forms). Under these identifications, the cup product
[dn]™: Hy"(M) — Hp™" (M) is just the linear mapping

[dn]": QEy"(M) — QEF"(M), o a A @dn)".
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On the other hand, from results for arbitrary almost contact metric manifolds
(see[7, Lemma 6, Prop. 14]), we deduce that the cup prodyft{ Q5. " (M) —
QiA"(M) is injective. Finally, since the dimensions of the spa@és” (M) and
Qp4"(M) are equal, we conclude that the cup product is an isomorphism. This,
in view of Corollary 4.9, ends the proof of our result. O

ExaMpPLE 4.11. Consider the 3-dimensional tofis = R%/ Z2 endowed with the
contact 1-form
n = cox2nx®)dxt + sin(2rx®)dx?,

where (x, x2, x3) are the standard coordinates 8A. The Reeb vector field is
given by
a . ad

&= COS(ans)ﬁ + Sln(2nx3)ﬁ.
The contact manifold 73, ) is not regular, sincé& induces an irrational flow
on the 2-dimensional torus® = 1/6. In fact, the integral curve of through
(0, 0, 1/6) is given by(t/2, +/3t/2, 1/6). The flow¢ is not Riemannian, since the
union of the leaf closures whose dimension is maximal is not op@= {isee [31,
Prop. 5.3, p. 157]). As we know/(T3) = R sinceT? is connected. Next, we
will compute H2(T3). We have thatdn] defines a nontrivial class iH2(T?), be-
cause our foliation (denoted 1¥) is taut and transversally symplectic (see [38,
Thm. 9.23, p. 125]). Moreover, sincE is a subfoliation of the foliation defined
by the canonical fibratiom : 723 — T 7(x%, x2, x%) = x3, it follows that the
filtration defined byr on the de Rham compleX2*(7®), d) induces a filtration
on the basic compleg2 (72), dp) such that the corresponding spectral sequence
(E;, d;) converges t(H;(T3). Using standard arguments, we obtain that

HAT® = E;t = HYTYL HY),

where?{! is the presheaf defined By'(U) = Hj(x~1(U)) with U an open setin
T1. Using that the foliatior restricted to each fiber of is linear, we deduce that
HZ(T?®) = R. Finally, from Theorem 4.8 we conclude thdg (T3) = H{,, ,(T?).

It should be noticed that?® admits neither Sasakian nor regular contact struc-
tures (see e.g. [4, pp. 71, 77]).

We now consider the particular case of regular contact structures in order to obtain
an example of contact manifold for which H; (M) 22 H{, ,(M). Theorem 4.8
yields the following corollary.

CoroLLARY 4.12. Let (M, n) be a(not necessarily compactegular contact
manifold of dimensio@m + 1 with Reeb vector field, and suppose thatV /&, Q)

is the induced symplectic quotient manifold. THEM) = H;, , (M) if and

only if, for anyn < m, the cup produc{]": H™"(M/&) — H™ ™ (M/§) is

onto, whereH * (M /&) is the de Rham cohomology &f/&.

From Corollary 4.12 we obtain the following.
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CoroLLARY 4.13. Let (M, n) be a compact regular contact manifold with Reeb
vector fields, and suppose thatV /&, Q) is the induced symplectic quotient man-
ifold. ThenH; (M) = H,, ,(M) if and only if M/¢ verifies the strong Lefschetz
theorem.

ExampLE 4.14. LetH be theHeisenberg grouponsisting of real matrices of the

form
1 X1 X3
H = {(O 1 X2>
0 0 1

H is a 3-dimensional connected, simply connected, and nilpotent Lie group. A

standard computation shows that a basis for the left invariant 1-formisisgiven

by {dx1, dx2, dx3 — x1dx,}. Now, we take the compact quotiert H, wherel’

is the uniform subgroup off consisting of those matrices whose entries are in-

tegers. Hencd '\ H is a 3-dimensional compact nilmanifold, and the 1-forms

dxi, dx,, dx3 — x1dx; all descend to 1-form&q, oy, az oNT\ H.
TheKodaira—Thurston manifol& T [37] is

X1, X2, X3€R};

KT = (I'\H) x St

Denote byw, the canonical 1-form o8?. Then{ay, a2, a3, a4} is a basis for the
1-forms onK T such that

dag=day =days = 0, daz = —a1 A a.

We recall that there exists a one-to-one correspondence between equivalence
classes of principal circle bundles over a manifdléand the cohomology group
H?(N, Z). Furthermore, given an integral closed 2-foftron N, there is a prin-
cipal circle bundler : M — N with connection forny such thatr*Q = dn; that
is, €2 is the curvature form of the connection [22].

The 2-formQ = 20, Aaz+ a1 Aag 0N KT is symplectic and defines an integer
class. Thus, there exists a principal circle bundleM — KT with connection
form as such thatt*Q = das. We denote by the same symbols the lifted 1-forms
ao; (1 <i <4)toM. It should be noticed tha¥ is also a compact nilmanifold,
with structure equations

doy=dar =das =0, daz=—a1Aa, dos=220sAa3z+ oA dg. (33)

Moreover,(M, as) is a regular contact manifold, and the induced symplectic quo-
tient manifold is justKT. Since KT is a compact nilmanifold, its de Rham co-
homology can be easily computed by using Nomizu’s theorem [32; 35]. In fact,
b1(KT) = 3, and we deduce th& T does not verify the strong Lefschetz theorem.
Thus, we conclude that

Hi(M) % Hy g (M).

To end the example, if we integrate the structure equations (33) we can réfalize
as the nilmanifold™\G, whereG is the group consisting of the matrices
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1 X1 X2 2)C1X2 X4 X3 X5
0 1 0 2)62 0 X2 —(XZ)Z — X4
0 01 22 0 O —2x3
G = 0O 0 O 1 0O O —X2 X1, X2, X3, X4, X5 € R
0 0 O 0 1 0 0
0 0 O 0 0 1 0
0 0 O 0 0O O 1

andT is the subgroup of; consisting of the matrices with integer entries.

In the remainder of this section we study the behavior of the first spectral sequence
for contact manifolds.

THEOREM 4.15. Let (M, n) be a contact manifold of dimensi@w + 1. Then,
for all » > 0, the homomorphism
fri b (M) = E o (M)
given by
frlel, ="T*sa],

is an isomorphism of homology groups. Moreovgrcommutes with the differ-
ential; that is,

(fro8)lelr = (=D PT5, o f)lal,
forall [¢], € E, ,(M).
Proof. Let o € £5y(M). Then, from Lemma 4.355a € )5, , (M). More-
over, if o lives to E7, (M) then there exist basic formg € )%, (M) (i =
1,...,r — 1) that satisfy conditions (12); that is,

Sa =0, da =8y, doy =68ay, ...,doa,_3=380,_2, da,_» = Sa,_1.
We will show that = kg lives to’Ey ,, . ,(M). To do this, we consider the
differential formsgB; = %ga; (i = 1,...,r —1). Then, using Proposition 4.2, it

follows that

dp =0, 08 =dp1, Spr=dp2, ..., 86,3 =dpfr—2, fr—2=dB,—1

and soxga lives to’E;’ZmH(M). Moreover, using again Proposition 4.2, we de-

duce thatf, is an isomorphism.
On the other hand, we have that ; € Q%4 7" (M). As aresultFga, 3 €
Q2m—atr=20=Dpry Then, using (13) and (17), we have
(fr o (Sr)[a]r = fr[do{r—l]r = /[;Bd()l,-_]_] T
(8, o flel, =8,/ [¥pal, = "[6pFpa,—a],.
Now, from Proposition 4.2, we havég%z)a,_1 = (—=1)9 7%z da,_1; we con-
sequently obtain that

(fr 0 89[e], = (D75, 0 f)al,. U
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Using Theorems 3.8 and 4.15, we conclude as follows.

THEOREM 4.16. Let (M, n) be a contact manifold of dimensi@m + 1. Then the
first spectral sequence of the double comp]ﬁ%}(M) degenerates af*(M); that
is, EXM) = E®(M).

5. Canonical Homology and Spectral Sequences of
Locally Conformal Symplectic Manifolds

In this section we study the canonical homology and the behavior of the first spec-
tral sequence for I.c.s. manifolds. Particularly, we will study the case of I.c.s.
manifolds of the first kind according to Vaisman'’s classification [39].
Let (M, ) be a l.c.s. manifold with Lee 1-form. A vector field X on M is
said to be annfinitesimal automorphisrof (M, Q) if LxQ2 = 0. We denote by
Xq(M) the space of the infinitesimal automorphismg #, Q). If X € Xq(M)
then, using (3), we deduce th8kw = d(w (X)) = 0, which implies thatw (X)
is constant. Moreover, ik, Y € Xq(M) then [X, Y] € Xq(M). Thus,Xq(M) is
a Lie subalgebra of the Lie algeb¥a M) of the vector fields o/ (see [39]).
Consider now the homomorphismXq (M) — R defined by

I(X) =w(lX)

for X € Xq(M). We calll theLee homomorphisiof X (M) (see [39]). Since is
closed/ is a Lie algebra homomorphism for the commutative Lie algebra structure
of R, and it is clear that the homomorphisiis either trivial or an epimorphism.

DEFINITION 5.1 [39].  Al.c.s. manifoldV is said to beof the first kindif the Lee
homomorphisni is an epimorphism.

We remark that a l.c.s. manifoldV, Q) is of the first kind if and only if there
existsX € Xq(M) such that (X) # 0. In fact, the following theorem gives the
structure of a I.c.s. manifold of the first kind.

THEOREM 5.2 [39]. Let (M, Q) be a2m-dimensional I.c.s. manifold of the first
kind with Leel-form w, and suppose thatA, E) is the associated Jacobi struc-
ture onM. Then there exists € Xq(M) such that (U) = w(U) = 1and, ifd is
thel-form onM given byd = —iyQ2, we have

QL=do —wA0
and
O(E)=1 iydd=igdd =0, [E,U]=0.
Moreover,w A 6 A (d8)"Lis a volume form oM.

If (M, Q)isal.c.s. manifold of thefirstkind arld € X (M) issuchthab (U) = 1,
thenU is said to be &asic infinitesimal automorphisof (M, Q).
Next, we study the canonical homology of a |.c.s. manifold of the first kind.
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ProrosITION 5.3. Let (M, ) be al.c.s. manifold of the first kind with L&éorm
w, and letU be a basic infinitesimal automorphism o8, Q). If (A, E) is the
associated Jacobi structure gd and é is the canonical operator, then

(i) iyd+8iy =0
(i) S(wAa)=—-wAda+ Lo forall a.

Proof. Denote byb the canonical isomorphism: X(M) — QY(M), b(X) =
ixQ2. SinceU € Xq(M), we deduce that

Lyb(X) =bLyX =b[U, X].
Thus,Lyb~ Yo = b~ 1Ly« for all o € QY(M); from (4), this implies that
(L)@, B) = (Ly (O e, b7'p) =0. (34)
Therefore, from (6) and (34), we obtain that
iyda = i(A)Lya — Lyi(MNa —Siya
= —i(LyMNa — Siya = —Siya,

which proves (i). )
Now suppose that is the 2-vector oM given by

A=A—-EAU.

SinceiyA = U andi, A = —E (see Theorem 5.2), we have thiah = i, A = 0.
Consequently, from Theorem 5.2 we get that

iAN(wAQ)=oANi(A)a —ipa+oAigipe=oAi(Aa —ipa (35)
and therefore, using thatis closed, we finally obtain
Swna) =wndi(ANa—woni(A)da+diga+igda = —woAda+ Lepa. (36)

O
We next consider the submodtmé',(M) of Q¥(M) defined by

QL (M) ={aeQ¥(M) |iya =0}
and the subspac®¥,, (M) defined by
Qpy(M) = {a e QM) |iya = 0).

Proposition 5.3 allows us to introduce the following subcomplex of the canonical
complex ofM:

Qk+l(M) QgU(M) Qi ity —
We denote by 3"(M) the homology of this complex, that is,

Ker{sz: Q& (M) — Q5 (M)}

Hig (M) = 55(QEHM))
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THEOREM 5.4. Let (M, Q) be a l.c.s. manifold of the first ~kind with Lde

form w, and letU be a basic infinitesimal automorphism. L&t: Qg(M) —

QL (M) @ QK {(M) be the isomorphism @f$° (M, R)-modules defined by
F@) = (@ —oAiya, ipa).

ThenF; induces an isomorphist; : HP(M) — HE"(M) & H&a”bU(M)

Proof. If (A, E) is the associated Jacobi structureMnit is easy to prove (see
(5)) that

il —wniga) =igla —wAniya) =0, igiga =0,
for a € Q& (M). Furthermore, from (5) and Theorem 5.2, we have that
Lel@a—wniga) =—wALgiypa =—wANigLga =0

and
EE(iU()t) = iUEEO{ =0.

Thus,a — w A iya € QX (M), iya € QiH(M), and F is an isomorphism. In
fact, the inverse homomorphism is defined by
F7L Qb (M) @ Q5 (M) — QE(M), (a, B) = a+ oA B.
On the other hand, from Proposition 5.3 we deduce that
Fi($par) = (p(a — w A iya), =Spiya),

which implies thatF; induces a homomorphist, : Hca”(M) — HZ(M) &
HGy (M). In a similar way, the homomorphis# * induces a homomorphism
G HG (M) & HE (M) — H{*(M), and it is obvious thaGy o Fy =
Idecan(M) andF, o G, = 'deCS"(M)@H(‘ﬁ"DU(M)' This ends the proof of our result.
O

Now we define an operata, : Qf (M) — Q™ (M) given by

dya =da — o Aiyda  forall aeQf(M). 37)

The following properties will be useful in the sequel.

ProrosiTION 5.5. Let M be al.c.s. manifold of the first kind] a basic infini-
tesimal automorphism, and\, E) the associated Jacobi structure of. If « is
a form onM such thatiyo = 0, we have

(M dUa =
(i) (igdy + dUiE)Ol = Lpa;

Proof. A direct computation, using (37) and the fact thais closed, shows (i).
Next, from (5) and Theorem 5.2, we deduce that
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ipdya = Lra—wANigLpa —dyipa
=Lra—wA Lpiya —dyiga = Lra —dyipa
and
Lrpdya =dLpa —wN Lriyda
=dLra—wANigdLga =dyLga,
which proves (ii) and (iii). O
Proposition 5.5 allows us to introduce the foIIowing differential complex:

C— QM) L k) 25 @k M) — -
Its cohomology is denoted k¥, (M), that is,
Ker{dy: Qk, (M) — Qk+1(M)}
dy (U (M)

Next, we study the relationship between the cohomology gréijysg M) and
the canonical homology grougg®®"(M) of M. For this purpose, we introduce a
star operator as follows. Let X(M) — QM) be the canonical isomorphism

X € X(M) —> b(X) = ixQ.

Hzl;U(M) =

The mapping can be extended to a mapping from the spte\) of k-vectors
into the spac&*(M) by puttingb(X1 A --- A Xi) = b(X1) A --- Ab(Xy). This
extension is an isomorphism 6f° (M, R)-modules.

Now, denote by{{‘g (M) the submodule ak*(M) defined by

and by, U)(M) the submodule of2%(M) defined by
Qp.uy (M) = {a e QX(M) | ipa = iya =0},

wheref is the 1-form onM given byd = —i;; Q2. Hence, the mappingx(kg )(M):
X0 (M) = Q5 (M) is an isomorphism of * (M, R)-modules.

We define a star operatég : Qf; (M) — Q2" (M) given by
doy" 1
¥pot = l((mxk (M)) 1(01))% (38)

for0 < k < 2m — 2, where dimM = 2m. Notice thatiy (kpga) = ig(%ga) =0
foralla e QfE,U)(M), sinceiydf = ipdf = 0 (see Theorem 5.2). We next state
some properties of this operator.

LEMMA 5.6. We have
(|) ‘CE o >T<B = ;I;B O,CE;
(i) if «is abasick-form andiy«e = 0, thenkp« is a basic(2m — 2 — k)-form.
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Proof. SinceLr Q2 = 0, we deduce that
Lb(X) =bLpX =b[E, X]
for X e X(M). Thus,
Leb(K) =bLpK (39)

for K € X*(M). Therefore, ifoe € Q(E v)(M) then from (39) and Theorem 5.2 it
follows that

do)ym-1
Le(kpa) = ﬁEi(bfl(a»(( : Y
1 (de)m -1 1 (de)m -1
=i DL D! + i(Leb™ (o ))W
dom 1
=i ) (o = FaLr)
This proves (i). Part (ii) follows using (i). O

ProrosITION 5.7. Let (M, ) be a2m-dimensional |.c.s. manifold of the first
kind, U a basic infinitesimal automorphism, arid, E) the associated Jacobi
structure onM. Suppose thad < k < 2m — 2.

(i) If e Q(E v) (M), then¥2a = a.

(i) If «is a basick-form such thaiya = 0, thendza = (=) iz dy%pa.

Proof. For a pointx € M, consider the subspacdg of T, M given by
Sy ={veliM|6,(v) = w:(v) = 0}7

whered is the 1-form onM defined by = —iy 2. Thens, is a symplectic vector
space with symplectic forril6), (see Theorem 5.2), aniép), is the starisomor-
phism defined by the symplectic forcd6), on S, (see [24]). Thus, (i) follows
using the results of [24].

Now suppose that dimf = 2m and that(V, v) is a local chart il such that
(see [39))w (V) = W x I x J with I andJ open intervals ofR. Suppose also
that(¢, ..., "% p1, ..., pm_1, t, s) are canonical coordinates dhsuch that

m—1
0 =dt— Z pidq', o =ds. (40)
i=1
From (4), (5), Theorem 5.2, and (40), we obtain
9 0
E=—, U=—,
ot as

A= Z(aq ) o ( Z”’ap)

Therefore, ifw € Qf,, (M) thena can be viewed as/aform onW alongW x J,
that is,

(41)
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o (x,5)eWxJr—a(x,s)e (Qk(W))x.

Moreover, if we denote by, the exterior differential inW, then—using (37),
(40), and (41)—we may deduce that

(dwag)y = (do —ds Nigjgsda) (r,5) = (duot) (x,1,5) (42)
for (x,t,s) e W x I x J, whereq; is thek-form in W given by
a;t yeW = ay(y) = a(y, s) € (QEW)),.
On the other hand, from (38), (40), and (41) we have that
(B0 (x,1.5) = (Faptts)y  and  (I(A))(x.r5) = ((Ago)s)s, (43)

wherexy, is the star isomorphism oW defined by the symplectic forrio =
>:dq" A dp; and whereA,y = >, 3/dq" A 9/3p;. Consequently, using (42),
(43), and a result of Brylinski (see Theorem 2.2.1 of [6]), we deduce that

((A)dy —dyi(A)a = (=D o dy o %p)a.
It is then sufficient to check that
Spa = (i(A)dy —dyi(AN))e. (44)
However, from (35) we obtain that
(i(AN)dy —dyi(A)a =6ga — w ANiydpa,
which, from Proposition 5.3, implies (44). O

Using Theorem 5.4, Lemma 5.6, and Proposition 5.7 we conclude as follows.

CoroLLARY 5.8. Let M be a2m-dimensional |.c.s. manifold of the first kind,
and letU be a basic infinitesimal automorphism. Then the star operasoes-
tablishes an isomorphism of the cohomology gréifp, (M) with the homology
group H3' » 4y (M) for 0 < k < 2m — 2. Thus, there also are the following
isomorphisms

HEM) = Hy 2 "My @ HE K (M) (0 <k <2m—2),
HS3" (M) = Hgy (M), HZ3(M) =0.

In Section 4 we showed that the canonical homology groups of a conipact
contact manifold have finite dimension. Using Corollary 5.8, we will prove that
the corresponding result does not hold for nonsymplectic I.c.s. manifolds. In fact,
we will construct a counterexample. However, before exhibiting our counterex-
ample, we will prove some useful general results.

ProprosITION 5.9.  Let (M, Q) be aregular |.c.s. manifold of the first kind with as-
sociated Jacobi structureA, E). Then there exists an almost cosymplectic struc-
ture (®, ) on the quotient manifold/ = M/E such that the induced Poisson
structure ofM is just the one given bgd, n).
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Proof. Let U be a basic infinitesimal automorphismMf and let9 be the 1-form

given byo = —iyQ. From (5) and Theorem 5.2, it follows that there exists a
unique 2-form® as well as a unique 1-formmon M such that
m"n=w and 7*® =d0b, (45)

wherew is the Lee 1-form of andz: M — M is the canonical projection.
Thus, using (45) and Theorem 5.2, we obtain that the @ajm) is an almost
cosymplectic structure of/. Moreover, we also deduce that the vector figld
is -projectable, and its projectianis just the Reeb vector field of the almost
cosymplectic manifoldM, @, ).

Now, denote by: ¥(M) — QYM) andb: X(M) — QM) the isomor-
phisms defined by(X) = ixQ andb(X) = iz ® + n(X)n, respectively.

If & is a 1-form onM, then by (4) we obtain that (b~ *&) = 0. Furthermore,
a(£) = 0if and only if0(b~z*@) = 0. Thus, if&(¢) = 0 we deduce that the
vector fieldb—Y(z*a&) is w-projectable, and its projection is just the vector field
b~1a (see (45) and Theorem 5.2). Therefore, using (4), Theorem 5.2, and (45), we
conclude that

O e, b B o =0 Ha —a@n), b B - BEM) on
=doO 7@ — (@) om)E, b 'n*B — (B(&) o m)E)
=doO n*a, b~ p)
= QO n*a, b In*B) = A(n*a, n*p)
for @, B € QL(M). This completes the proof. O

Let (M, ®, n) be an almost cosymplectic manifold with Reeb vector fieltive
consider the submodutef (M) of Q*(M) given by

QEM) = {a € QM) | ica =0},
and we define the operatdy : Qf (M) — Q™ (M) by
dea = do —n Aig(de) forall a e QE(M).

We have thai/Z = 0 (see [13]), so we can consider the corresponding differen-
tial complex

e @F ) s @kan) s @by — -
We denote by{;(M) the cohomology of this complex.

ProposITION 5.10. Let (M, ®, n) be an almost cosymplectic manifold with Reeb
vector fields. Suppose thetd] € H2(M, 7). Then the following statements hold.

(i) There exists a principal circle bundte: M — M with connection fornd
such that® is the curvature form of the connectighat is,7*® = d6.
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(i) M is aregularl.c.s. manifold of the first kind that induces the almost cosym-
plectic structure(®, ). Moreover, a basic infinitesimal automorphigmof
M is the horizontal lift of& to M.

(i) Hj, (M) = HE(M) for all k.

Proof. (i) follows from [22].

(i) Put @ = d6 — *n A 6. A direct inspection shows thai, ) is a l.c.s.
manifold of the first kind with Lee 1-forrm = 7*y. It is clear that a basic infin-
itesimal automorphisny of M is the horizontal lifte” of £ to M. Furthermore,
the associated Jacobi structure dnis just (A, E), whereE is the infinitesimal
generator of the action ¢f-. This implies that the corresponding quotient Poisson
manifold M/E is the almost cosymplectic manifold?, @, ).

(ii) Using thatU = £, we deduce that the isomorphismt: QM) —

Qf (M) satisfies

JT*OZ.EZI.UOJT*, ﬂ*OngdUOJT*.

Therefore,7*: Q"(AZI) — QK (M) induces an isomorphism between the coho-
mology groupsH/ (M) and Hg,, (M). O

REMARK 5.11. If g is a Riemannian metric oM, theng = g + 0 ® 6 is a
Riemannian metric oM andE is Killing with respect tog.

EXAMPLE 5.12. LetN be a compact symplectic manifold with symplectic 2-form
. Consider the following almost cosymplectic structude n) onM = N x S*:

o = prI(CTD), n = pr;),

where pry and pr; are the canonical projections #f onto the first and second
factor (respectively) ané is the length element ¢f*. Notice that the Reeb vector
field &€ of M is the vector fieldt on S* characterized by the conditiar) = 1.
Denote byH*(N) the de Rham cohomology &f, and consider th&-bilinear

mapping

HY(N) x C*(S%, R) — Hf(M)
defined by

(le], /) = [(pr3(fHpri(e)].

Because{ “(N) has finite dimension, we deduce that this mapping induces an iso-
morphism between the real vector spa¢ggN) @ C*(S*, R) and Hg"(M). In
particular,Hé"(M) has infinite dimension.

Now, suppose thatf] € H3(N, Z). Then it is clear thatp] € H?(M, Z). Let
7: M — M be the principal circle bundle ovef defined by {p] (see [22]). From
Proposition 5.10 and Remark 5.11, we conclude Mid a compact I.c.s. manifold
of the first kind and that there exists a Riemannian mgtoa M such thatt is a
Killing vector field with respect t@, with (A, E) the associated Jacobi structure
on M. However, the canonical homology groupsiéthave infinite dimension. In
fact, using Corollary 5.8, Proposition 5.10 and the foregoing results, we have that
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HEM) = (H>75N) @ C*(SLR) @ (H*" 1 K(N) ® C*(S, R))
and H$" (M) = C®(SLR)
for0 < k < 2m — 2, where dimN = 2m — 2.

In Section 4 we showed that the first spectral sequence of the canonical double
complex of a contact manifold degenerates at the first term. This result does not
hold for arbitrary I.c.s. manifolds as the next example will demonstrate. Before
that, we have the following result.

ProrosiTION 5.13. Under the same hypotheses as in Proposition 5.10, the first
spectral sequence of the canonical double compleX afegenerates at the first
term if and only if the first spectral sequence of the canonical double complex of
M does so also.

ExampLE 5.14. LetK be the 5-dimensional connected, simply connected, nilpo-
tent Lie group consisting of the real matrices of the form

1 X1 X2 Xsp X3 X4

01 0 0 0 —x
Jlo o 1 0 -xs o0 |
K=Ylo o o 1 o o]]|*€<Ek
00 0 0 1 0
00 00 0 1

(see [12; 13]). A basis for the left invariant 1-forms is given{by,, dx», dx3 +
x2dxs, dxs4 + x1dxo, dxs}. We take the compact quotieM = I'\K, wherel’
is the uniform subgroup oK consisting of those matrices with integer entries.
Thus, M is a 5-dimensional compact nilmanifold, and the 1-forfrs,, dxo,
dxs3 + x2dxs, dx4 + x1dx>, dxs} all descend to a basis of 1-fornfe, . . ., as}
such that

dOll = dOlz = d055 = 0,

daz = o A as, dog = 01 A oo,

Define a 2-form® = a1 A a4 + a2 A a3z and a 1-formy = as on M. The pair
(®, ) is an almost cosymplectic structure o (see [12; 13]). Moreover, the
2-form @ defines an integer class, sap][e H%(M, Z), and hence there exists
a principal circle bundler : M — M with connection formyg such thatr*® =
dag. We denote by the same symbols the formsWmand their pull-backs ta1.
Thus, we deduce thatl is a compact nilmanifold with structure equations

dag=day =das =0,
dosz = oo A as, dogs = o1 A oy, (46)
dog = 01 A og + ax Aas.
Furthermore, from Proposition 5.10 we get thaf, ) is a |.c.s. manifold of the

first kind, with
Q=o1Aag+ar» Aaz — as A og.
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Since the first spectral sequenceMfdoes not degenerate at the first term (see
[12; 13]), the same holds fa¥l.

To end the example, if we integrate the structure equations (46) we can realize
M as the nilmanifold™\G, whereg is the group consisting of the matrices of the
form

1 x1 x2 (x)? (x2? x5 x3 x4 Xe
0 1 0 2)61 0 0 0 —X2 —ZX4
0O 0 1 0 2, 0 —xs 0 —2x3
0 0 O 1 0 0 0 0 X2
0 0 O 0 1 0 0 0 X5
0O 0 O 0 0 1 0 0 0
0O 0 O 0 0 0 1 0 0
0O 0 O 0 0 0 0 1 0
0O 0 O 0 0 0 0 0 1

(with x1, x2, x3, x4, x5, x6 € R) andT is the subgroup of; consisting of the ma-
trices with integer entries.
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