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1. Introduction

Let M" be am-dimensional submanifold in a Euclidean space? of dimension
n + p. Denote byR the normalized scalar curvature andMythe mean curvature
of M”".

Otsuki [O] introduced a kind of curvatures; > A, > --- > A, for M2 in
E%*P and showed that they can be used to study the geometry of surfaces in
higher-dimensional Euclidean space. Shiohama [S] proved that a complete ori-
ented surface it?+?” with A, = 0 (1 < @ < p) isacylinder. Chen [C1] classified
compact oriented surfaces B#+? with A, > 0.

In higher-dimensional cases, Chen [C3] introduced the notiatto$calar cur-
vaturesiy > Ao > --- > A, for M in E"*7, and found a relationship between
the wth scalar curvatures and the scalar curvature. Whea 2, it reduces to
that introduced byDtsuki [O]. Chen [C3] also proved that a closed submanifold
M" (n > 3)in E"P with [, (2)"?dV = ¢, andr, =0 (2 < o < p)is an
n-sphere, where, is the volume of the unit-sphere andV denotes the volume
element ofM”.

In this paper, we give a further description of the behavior ofdttescalar
curvatures and obtain some applications of them. In Section 2, we first prove
thati, < 0 (2 < o < p) for any submanifold” in E"*?. Then we prove an
inequality involving the integral of; for closedM” in E"*? with R > 0.

Suppose that” is closed inE"*7. The total mean curvature af" is defined
to be the integral/,,, H" dV. An interesting and outstanding problem is to find
the best possible lower bound of this integral in terms of the geometric or topo-
logic invariants ofM". A special case of this problem is the famous Willmore’s
conjecture. There have been many results obtained on this problem. In Section 3
we give an estimate of the total mean curvature for closed submanifoldstin
with R > 0. The main result of this paper is the following theorem.

THEOREM 3.1. Let M" be a closed submanifold iB"*? with R > 0. Then

H"dV = ZKnCnfl‘f‘ {1_ 2Kn<cnl>} / Rn/zdv,
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wherek, = (m/HT'(%)/T(%) . Moreover, the equality holds if and only if
M" is imbedded as a hypersphere in @n+ 1)-dimensional linear subspace of
En+p.

2. Theath Scalar Curvatures of M"

Let f: M" — E"*? be an immersion of an-dimensional closed manifols"
into a Euclidean spacg”*?. Throughout this paper, we identify” with its im-
mersed image ik *? and agree on the following index ranges<i, j, k < n;
<o, B,y<pin+l1l<rs,t<n+p;1<A B C<n+p.

Let (e, . .., eq,q,) be a local orthonormal frame field ii(E"*?) such that
(e1, ..., e,) are tangent ta". Let (wy, . . ., w,yp) be the dual coframe. Then
there is a unique connection 1-foi@, ), the Levi—Civita connection form, such
that

dwy = E wap AN wp, wap+wps =0, dwsp = E wAc N\ WCB-
B c

Restricting these forms t&7", we havew, = O for all . Hence 0= dw,
> wr A w; forall r. By Cartan’s lemma we have,; = Z hwj, Whereh{j
h’ forall i, j, andr.

The first and second fundamental forms are

| = Z(a) )2 and =) hwiwje.
l _] r

The shape operatet, of M" with respect to a normal vecteris the linear self-
adjoint operator off (M") corresponding to the quadratic form K= (11, e). The
matrix for A, with respect to the bases,...,e,}iSL, = (hidnxn- The mean
curvature vector field, the mean curvaturé, and the square length of the sec-
ond fundamental forn§ can be expressed §s= ), H,e,, H = |§|, andS =
Zi,j’r(h;‘j)z, whereH, = (1/n) }_, hi; for everyr. The Riemannian curvature
tensor{R;jx} and the normalized scalar curvatukean be expressed as

Riji n’H? — S
Riju = Z(h{kh;, Wik, R= Z pre f_Jl) prp— (2.1)

Let B, be the bundle of unit normal vectorsM" in E"*P_ Then the(p — 1)-
form do,_1 = Wpypast A -+ A Onypatp—1 CAN be regarded as(@p — 1)-form
on B,. On the other hand, the volume elementdf can be written agdV =
w1 A --- A w,. Hence the(n + p — 1)-form dV A do,_; can be regarded as the
volume element oB,,.

At an arbitrary point(x, e) € B,, denoteA, = (A;;). We define thetth mean
curvatureK;(x, e) at(x, e) by

det($;; +tA;;) =1+ Z(Z) K (x, e)t", (2.2)
k

whered;; is the Kronecker delta,is a parameter, and

n\ n! )
(k) T K=k
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K, (x, e) isthe so-calledlipschitz—Killing curvaturat (x, ¢). We call the integral

Ki(x):= /p_1|Kk(x, e)|"*do, 1
S

X

over the sphers/ ~Lof all unit normal vectors at thekth total absolute curvature
of M" atx. Thekthtotal absolute curvature a¥” with respect tof is defined by

1
TAL(S) = . 1/ K} (x)dV.
n+p—-1JM"

For all TA;(f), we have the following lemmas.

LeEmma 2.1 [CL2]. Let f: M" — E"*P be an immersion of a closed mani-
fold into E"*?. ThenTA,(f) > n(M") > B(M"), whereu(M") is the Morse
number,8;(M") is theith Betti number, angg(M") = >""_ Bi(M™").

LEmMMA 2.2 [C2; CL1]. Letf: M" — E™P be an immersion of a closed man-
ifold into E"*?. ThenTA,(f) > 2for k = 1,..., n. The equality holds when
and only when/" is imbedded as either a hyperspheré ik n, or as a convex
hypersurface ik = n, in an (n + 1)-dimensional linear subspace &f'*7.

To describe howk,(x, ¢) depends om, we take a local orthonormal frame field
{eA}Tz’l’ in a neighborhood af as before. ThemandA, can be expressed as=
> Velniq @NAA, = 3 YyLuio, Whered"  y2 = 1. In this caseK(x, e) is
given by

-1
n
Ka(x,e) = (2) ;(AiiAjj — A%). (2.3)
Denotell = (T1,g) < Where
1
My = Pttt prepnth 2.4
ﬂ n(n _ 1) ;:( 123 J] 1y 1y ) ( )

for all « andB. ThenTl is symmetric andK,(x, ¢) can be expressed as
Ka(x,e) =) Tapyays. (2.5)
o,

Choose a suitable local normal frame figd,,}”_; such thatk,(x, e) can be
rewritten ask»(x,e) =), La¥2, Wheree = D o Valnig @NAAL > Ap > -+ >
A, are the eigenvalues of. We call such a frame fieldx; ey, . . ., e, €541, . . .,
é,+p) aFrenet-Otsuki frameand we callh, (¢ =1, ..., p) theath scalar cur-
vature ofM" in E"*P. By means of the method of definition, we see thatithe
are defined continuously on the whole manifaf¢ and are differentiable on the
open subset in whichy; > A, > --- > A, (see [C3]).

PULS, o nip = Y DR andS,ve = Suvania = X, (1) for all o

]
andpg. ThenIl,z can be expressed as

Mop = m(”zﬂn+afln+ﬁ — Sutantp) (2.6)
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for all o, 8. Since the matriX H, o Hy1p)pxp 1S Of rank 1 and(S,+4,148) pxp 1S
positive semidefinite, it follows from (2.6) that there are at l€ast- 1) numbers

of the eigenvalues dfl that are less than or equal to zero. From the definition of
A«, We obtain the following proposition.

ProposITION 2.1. LetM" (n > 2) be a submanifold iE"+? with p > 2. Sup-
pose thatiy > A, > --- > A, are theath scalar curvatures of/”. ThenO >
Az > --- > X, everywhere o/".

Let M" be a closed submanifold ii**? with R > 0. Chen [C3] established an
equality for the submanifoldZ/?™ in E2"+2 with R = 0 (see Corollary 2.1). In
this section, we will prove an inequality that generalizes his result.

Before starting our discussion, we need the following lemma.

LeEMMA 2.3. Letc, denote the volume of the unit sphére If n > 2, then
Cn-1 2 F(#)

o VE ()

Proof. Let F(u) = 2InT'(u)—In F(u—%)—ln F(u+%) andy(u) =dInT(u)/du.
Sincey"(u) = -2 72 (1/(u +n)%) < 0foru > 0, ¥(u) is a concave function
foru > 0. HenceF'(u) = 2{y/(u) — (v — 3) + ¥(u + H]} > 0. It follows
that F(«) is a monotone increasing function fer> 0. It is easy to see that

4
réra-5

In 4sinn In 4 +1In V2 In V2
= — — = — — ] > el B
T 4 b1d 2 2
ThereforeF (1) > F(1) > In(v/2/2) for u > 1, from which we have

F2w) > (V2/2Tu — HTu + ). (2.8)

Sincec,_1 = 2(y/7)"/T'(n/2), using the “duplication formula of gamma func-
tion” we have

G 2 T() _ VEN(RN() — 2ri(g)
o V7T ﬁr(ﬁ)r(% |

<o. 2.7)

F(1) =In

(2.9)

1. U

Let us prove the main result of this section now. By using Proposition 2.1, we have

|Ka(x, e)|"?
= [R? + 22(33 = 32) + - + Ap (32 — §D)|"/2
< (RY; = 2aly5 = 5| — -+ = 2,155 — ¥iD"/?
< WA RIFL" = 22l3F = TP — = a,152 = 5, (2.10)

where we have used thitu) = u"/? is convex in [Q +00).
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We need the following spherical integrals

2cn+ -1
= P
/I 1|)’1|" dSP,]_: ,
e

Cn

) (2.12)

B B 4 F(n+2) c 1
2 n/ZdS n+p )
'/;Fillyr l| p-1= \/_ F( ) ( Cna

X

forr = 2,..., p, which can be found in [W] or [C9, pp. 200, 228]. Integrating
both sides of (2.10) with respect émon S7 ~! we obtain

K3 (x)
Cntp-1

o e 1{A j_;;gi)l n ;_1[62_,,1 _ %%“ (2.12)

4
Itis known thatR = )", A, (see [C3]). From Proposition 2.1, we have> R >
0. Therefore, it follows from Lemma 2.3 and (2.12) that

w2 4 T(F) 2R”/2{0n1 2 (%)

)

1
Ki(x) <22 =
Cntp-1 2 ! ﬁr(%)cn—l Cn—1

Then we can prove our next proposition.

}. (2.13)

PROPOSITION 2.2. LetM" (n > 2) be a closed submanifold i&"+7 with R >
0. Then

/ A2y > ”C“/ K;(x)dv+{1—2xn(c“)}/ R"24V, (2.14)
n Cntp-1 n Cn n

wherex, = (/7/#T(%)/T (%) . Moreover, if the equality i2.14)holds then
Are=02<a<p-1onM".

Proof. Integrating (2.13) onM", we obtain (2.14). Suppose that the equality in
(2.14) holds. Then the relevant inequalities become equalities? Putx e M" |

R(x) > 0}. It follows thati; = R in P, from which we have., =--- =1, =0
in P.

SetQ ={xeM" | R(x) =0}. ThenM" = P U Q. It follows from the equal-
ity sign in (2.10) that at most one ab, . » IS not zero inQ. This, together
with the fact 0> A, > --- > 4, y|eldsA2 = ... = Ap1 = 0in Q. From the
foregoing deductions, we hawg = --- = A,_1 = 0 onP U Q = M". This com-
pletes the proof. O

In the special case when= 2m, p = 2, andR = 0, the inequalities in (2.10)
are in fact equalities, and so is that in (2.14). Thus Proposition 2.2 reduces to the
following result of Chen.

COROLLARY 2.1 [C3]. Suppose that/?" is closed inE?"+2 with R = 0. Then

)" dV = / K3(x)dV. (2.15)
Mn 2Cm+]_ Mn

Cm




502 ZHONG-HuA Hou

3. An Estimate of the Total Mean Curvature

Let f: M" — E"*? be an immersion of the closed manifaif’ into E"*7. The
total mean curvature off" with respect tof is defined by TMf) = [,,, H" dV
and is a conformal invariant when= 2. An interesting and outstanding problem
is to characterize those immersions that minimize the functiona HMThere
are many results obtained on this problem. Chen [C4] proved/ihatl" dV >
cn, Where the equality holds if and only }" is imbedded as a hypersphere in
an(n + 1)-dimensional linear subspace Bf *? whenn > 1. He also obtained a
lower bound of TM f) in terms of the Betti number /" for f with R > 0 (see
e.g. [C6]).

In this section, we obtain a sharp estimate of the total mean curvatuné’for
with R > 0 in terms ofR. For this purpose, we first prove the following lemma.

LemMmA 3.1. Let M" be a submanifold i€ +?. If A1(x) > Oata pointx € M",
thenH?(x) > A1(x), where the equality sign holds atwhen and only when is
a pseudo-umbilical point af7”.

Proof. Let (x;eq, ..., en; €ns1, ..., Enyp) DE A FrenetOtsuki frame in a neigh-
borhood ofx. Itfollows thatn (n — 1)Aa =231 ”“"h}’j*" - (h?j*“)z] for every
«. Hence

DD D= Hu)? —n =D ) k.

a>1 i,j a>1 a>1

On the other hand, we have
1
n+1\2 __ n+1 n+1\2 n+l;n+1
> _n_—l{z(h”‘ — W2 +2) hEh }
i i<j i<j
Therefore,
Z(thrl) —l’l)»l-i- Z(h,1‘+l thrl) + Z(hn+l )

I<j l<j

Using the fac)_, Ao = R, we obtain

S = Z(h?j-‘rl)Z + Z Z(h;lj.+a)2
iJj

a>1 i,j

=n Z(hrH—l)Z Z(hl’l'-‘rl _ h;lj+l)2
z</ l<]

+ Z(nH,M) —n(n—DR.
a>1
It is known thati(n — )R = n2 2 _ S. Therefore,
n’H? = n2A1+ — Z(h”“)2
l<j
Z(h".“ — W2 4+ ) (Hra)?. (3.1)

l<] a>1
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From (3.1) we havé{? > i, and thatt 2 = 1, if and only if 2™ = h/i™, hji™ =
Oforalli # j, andH,, = O foralla > 1. Hencee,; has the same direction as
& andL,.; = HI,, which means that is a pseudo-umbilical point. O

REMARK 3.1. Chen [C5] has obtained Lemma 3.1/#0& 2.

Using Proposition 2.2, Lemma 2.2, and Lemma 3.1, we get the main result of this
paper.

THEOREM 3.1. Let M" be a closed submanifold iB”+? with R > 0. Then

H"dV > 2k,cp_1+ {1— 2/{,1<C”_1>}/ R"24v,

Cn

Mmn

and the equality holds when and only whiti is imbedded as a hypersphere in
an (n + 1)-dimensional linear subspace &f'*7.

Let us conclude this section by giving another application of Proposition 2.2.

ProrosiTiON 3.1. LetM" be a closed submanifold "7 with R > 0. Suppose
that {1} are theath scalar curvatures oM". Then

H"dV > K”c”‘lf Ki(x)dV + {1— 2xn<c”‘1)}/ R"24Vv, (3.2)
M" Cntp-1 n Cp n

wherek, = (/7/4T(%)/T () . Moreover, the equality i3.2) holds if and

only if either(a) M" is imbedded as a hypersphere in @+ 1)-dimensional lin-

ear subspace of"*? or (b) M" is pseudo-umbilical witR = O and A, = 0

@=<a=<p-1.

Proof. Note that (3.2) follows from (2.14) and Lemma 3.1. Suppose that the equal-
ity in (3.2) holds. It follows from Lemma 3.1 that” is pseudo-umbilical.

ConsiderMo = { x € M" | R(x) > 0}. From the proof of Proposition 2.2, we
haveir, = --- = A, = 0in Mo. Thus M, is totally umbilical. From a result in
[C6, p. 50], we have that every connected compone gfs of constant curva-
ture. HencerR is constant ilV/y. ThereforeMy = M" or @ sinceRr is continuous
onM".

If Mo = M", thenM" is of constant curvature. Thug” is imbedded as a hy-
persphere in aiiz + 1)-dimensional linear subspace Bf'*?. If My = ¢, then
R = 0onM". Moreover, it follows from Proposition 2.2 that, =02 <« <
p—HonM".

The converse is clear. This completes the proof of Proposition 3.1. O

Let M2 be a closed surface i**?. Then the normalized scalar curvatutés just
the Gauss curvature and 3&Y) is precisely the total absolute curvature. Using
Proposition 3.1 and Lemma 2.1, we can prove the following corollaries.

CoroLLARY 3.1. Let M? be a closed surface iE?*? with nonnegative Gauss
curvature. IffM2 H?dV < (2+ m)m, thenM? is homeomorphic to 8-sphere.
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CoroLLARY 3.2 [C8]. LetM?be aclosed flat surface in a Euclidean sp&e?
with p > 2. Then/,,, H2dV > 272. The equality holds when and only whe#t
is imbedded as a Clifford torug? = S'(a) x S'a) c E* ¢ E?*?, whereS(a)
is a plane circle of radiug.

Proof of Corollary 3.1 and 3.2From Proposition 3.1, we have

2 /1
grav=" (2 [ krav)s(1-% Rav, (3.3)
2 2
M2 Cp+l M2 4) Juz

where the equality holds when and only when eithris imbedded as a 2-sphere
or R = 0 onM?2. On the other hand, from Lemma 2.1 and Gauss—Bonnet formula,
we have

1
2 [ Kk3av = p?) = pu?), / RAV = 27x(M?).  (3.4)
Cp+1 Jm2 M2
If R is not identically equal to zero, the¥f? is homeomorphic to a real projec-
tive planeR P? or a unit spheré&?. If M2 is homeomorphic t&® P2, theny(M?) =
1andu(M?) > 3. From (3.3) and (3.4), we have

H?dV > (7 + 2)7. (3.5)
M2
If R =0 onM?, thenM? is homeomorphic to a torug? or a Klein bottlek 2. In
this casey(M?) = 0 andu(M?) > 4. From (3.3) and (3.4), we have

H2dV > 2n2. (3.6)
M2
Therefore, Corollary 3.1 follows from (3.5) and (3.6).

Let us prove Corollary 3.2. The first part of Corollary 3.2 follows from (3.6).
Suppose that the equality in (3.6) holds. It follows from Lemma 3.1 Mtiatis
pseudo-umbilical. Using a result of Chen [C7], we get the second part of Corol-
lary 3.2. The converse is trivial. This completes the proof. O

REMARK 3.2. Chen has proved Corollary 3.1 for= 2 in [C5] and forM ? being
pseudo-umbilical in [C7].
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