Nonexistence of Some Quasi-Conformal
Harmonic Diffeomorphisms
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1. Introduction

The property of harmonic maps between complete Riemannian manifolds has been
studied extensively by many authors (e.g., [C; Sh; T]). In the present paper we
show some nonexistence results for quasi-conformal harmonic diffeomorphisms
between complete Riemannian manifolds. In dimension 2, harmonic maps are
closely related to the deformation theory of Riemann surfaces. One of the ques-
tions that arises naturally i#Are Riemann surfaces that are related by harmonic
diffeomorphisms necessarily quasi-conformally relat&d® Schoen'’s article [S]

for a general discussion on this subject, where other questions were also dis-
cussed. The result we show in this paper provides some partial answers to the
high-dimensional generalization of this type of question. In particular we prove
the following result, which can be thought of as a Liouville type theorem for
harmonic diffeomorphisms.

THEOREM 1.1. Let M" be a complete manifold witRicciy, > 0, and letN" be
a simply connected manifold with nonpositive sectional curvature, whisréhe
dimension of both manifolds. If there is a popn€ M such thatim,_.., V,,(r) =
o(r™), then there is no quasi-conformal harmonic diffeomorphism fsérimto N
with polynomial growth energy density.

It is not surprising that the growth rate of energy density plays a role here. For
example, Wan proved [W] that a harmonic diffeomorphism between hyperbolic
spaces of dimension 2 is quasi-conformal if and only if it has bounded energy
density. The “only if” part of Wan’s theorem was generalized to high dimension
in [LTW]. Where it was proved that if the Ricci curvature of the domain mani-
fold is bounded from below and if the first eigenvalue of the target manifold is
positive, then any quasi-conformal harmonic diffeomorphism into the target man-
ifold has bounded energy density. These results and some other related results in
[HTTW] all indicate that the growth condition on the energy density is a natu-
ral assumption and is closely related to the study of quasi-conformal diffeomor-
phisms. On the other hand, we can show by examples that Theorem 1.1 will not be
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true if any of the assumptions is removed. We also should point out that, besides
the curvature assumption, we only use the fact that the target manifeitisfies
Sobolev inequality in the proof of Theorelii. Hence Theorem 1.1 still holds for
more general target manifolds—for example, widérs a minimal submanifolds
of R€—since in that case we know from [MS] that Sobolev inequality hold¥on

On the other hand, it is well known that there is no nonconstant holomorphic
map from a complete Kéhler manifoM into a complex Hermitian manifoldy if
M has nonnegative Ricci curvature aNdhas holomorphic bisectional curvature
bounded from above by a negative constant. This follows easily from the gener-
alized Schwarz lemma (cfY]). Using a modified argument of Theorelnd, we
can generalize this result to quasi-conformal diffeomorphisms as follows.

THEOREM 1.2. LetM”" be a complete Riemannian manifold with,_, ., V,(r) =
o(r™), and letN" be a complete Riemannian manifold with(N) > 0, where

n is the dimension of both manifolds,c M is any fixed pointV, (r) is the vol-
ume of the ball of radius centered atp, and A,(N) is the lower bound of the
spectrum of the Laplacian—Beltrami operator. Then there is no quasi-conformal
diffeomorphism frond/ into N.

We know thatr;(N) > 0 if N is simply connected and has sectional curvature
bounded from above by some negative constant. That is why we call Theorem 1.2
a generalization of the aforementioned result on holomorphic maps (which is de-
rived from the generalized Schwarz lemma). The interesting thing is that Theorem
1.2 is invariant under the quasi-isometries whereas Theorem 1.1 is not.

AckNOWLEDGMENTS. The author would like to thank his advisor, Prof. P. Li, for
much valuable advice, as well as Prof. J. Wang for helpful suggestions. The au-
thor would also like to thank the referee for many valuable comments, which were
of great help in improving the exposition of this paper.

2. Proofs of the Theorems

Proof of Theorem.1. We prove by contradiction.

Assume that there is a harmonic diffeomorphisfrom M into N. Leta?(x) =
infyyera, | vy=1y | (du)* o (du)(v)|2. By choosing a suitable orthonormal frarfee}
aroundx in TM, we have that

A2 ... 0
(du)* o (du) = P
0 ... a2
We can assume tha > 12 > - .- > A2 = a?(x). By definition we have:(u) =
YriaZandJ(u) = Ag- - Ay

Let ¢ (x) be a smooth function with compact support definediddn Then
¢ o u~Y(y) is a smooth function with compact support defined\arBy the as-
sumption onN we know that the Sobolev inequality holds (cf. [HS]); that is, we
have a constarft such that
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(n—D/n
[ |Vo| dvy > s(/ |<p|"/<"—1>) forall 9 € C(N).
N N

Applying this to¢ o u~! yields
n—1)/n

(
/ |(V$ o u™b)(y)| doy zS( / |<¢ou1>(y>|"/<“>) N )
N N
On the other hand, direct calculation shows that

f |V (¢ oub)(y)doy < / [(Vi @) (x)]a M (x)J (x) dvy
N M

< [ Gdl1ha() a0 o
M
Using the arithmetic-geometric inequality

S _ e

A h, )P0 < ) ’
(1 v - n—1 “n-1

we have
/ |V (¢ ou™H(y)ldvy < C(n) / (Vi) ()" 2dvy.  (2.2)
M M
Combining (2.1) and (2.2) yields

(n—1/n
( f |(¢ou1>(y)|"/<"l>> <CnS) / IV dle" ™ 2dvy.  (2.3)
N M

Now we estimatg |, |(¢ o u*l)(y)|”/<”*1))("7l)/" using the quasi-conformity of
u as follows.

Recall the definition of the quasi-conformal constant talze sup, ., (A1/2,)-
Then we have.;/A; < «, and

J(x) =Ape Ay = " (@(x)";
e(x) =Y A2 < a(x)*((n — De® +1).
i=1

Combining these yields

(n—=1/n
([1@euboreau)
N

(n=D/n
ZC(n,(x)(/ |¢(x)|"/<"1>e"/2de> . (2.9
M

Together with (2.3), inequality (2.4) implies

(n=2/n
( / |¢>|"/<"‘1>e"/2de> <Cmn,aS) / IVuple™ 2 dvy.  (2.5)
M M

The rest of the proof is just deriving a contradiction from (2.5).
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LetS(r) = SUPs, (1) e(u). Itis well known thate(u) is a subharmonic function

under our curvature assumptions. By the mean value inequality for subharmonic
functions on manifolds with nonnegative Ricci curvature, we have

r 1
S<§> <C(n) V0 Bp(r)e(u)(x) dvy.

By choosingp to be

1 for x € B,(r),
d(x) =
0 for xeM\ B,(2r),
|Vp| < C/r with C =2,
inequality (2.5) yields

1 (n=1/n

n/2

< e(u) de)
Vo () JB, )

V()Y V,2r) 1
r Vp(r) VP(ZI") By (2r)

Combining this with Li and Schoen’s mean value inequality and the volume dou-
bling property of Ricci nonnegative manifolds, we have

(n—1/2 1/n
<S<%>) < C—(V”(:)) (S(2r) "2, (2.6)

Now we use the polynomial growth condition on the energy density. dfhe
polynomial growth assumption is simply that there exists a con#asiich that
S(r) < K1+ r?) for somed > 0. But it is not hard to show that the polynomial
growth condition implies the existence of a constant 0 andr; — oo such that

S(2rj) <A

S@ri/2) ~

<Cn,a,S) e(u) V2 gy,

Applying (2.6) tor;, we have

(S<Q>>(nl)/2(1_ c (Vp(rj))l/n (A)(n—l)/2> 0.
2 Fj

Lettingr; — oo and using thaV,(r) = o(r"), we have

r
lim s{Z)<o.
rj—>00 <2>_

Sincee(u)(x) is a subharmonic function and achieves its maximum at infinity,
we havee(u)(x) = 0, which is a contradiction becauseis a quasi-conformal
diffeomorphism. O

CoroLLARY 2.1. There is no quasi-conformal harmonic diffeomorphism from
Sk x R"* into R" with polynomial growth energy density.
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In order to prove Theorem 1.2 we need the following lemma, which is well known
to the experts. For completeness we include a simple proof here.

LemMma 2.2. If there exists a positive constan}, such that
/N|cp|"dUN < A,,/N|ch|”va forany ¢ € C3°(N), (2.7)
then there exists a positive constan such that
/A.]|g|q dvy < Ay /[:]|Vg|q dvy forany ge Cg°(N), (2.8)
providedg > p. In other words,L ,-Poincaré implied,-Poincaré ifqg > p.
Proof. Lety = |g|?/?. Then
IV = Igl P Vgl

Applying (2.7) toy yields

/|8|quN=/|1ﬁ|deN
N N

<4, [ 1v01doy
N
7\
= Ap(—) f IVgl”|g|?™" dvy
p N
q r rlq (g—p)/q
p N N

Then we have (2.8) witih, = (A,)??(q/p)?. O

Proof of Theorem 1.2By the assumption oV, we now have thd.,-Poincaré
inequality

m [0 = [ 196 forany g cg.
N N
Applying Lemma 2.2 yields

/le”va < C(h, n)/ |Vo!" dv,.

N N

As in the proof of Theorerf.1, weapply the preceding inequality #-u~2. Then
we have

f|<¢ou—1)(y>|"va < C(h, n)/ [V (¢ ou ) (»)|" duy. (2.9)
N N

Similar calculation as in the proof of (2.2) shows

/N|VN(¢O’471)()’)|”dUN < C(a)/MI(VM¢)(X)I"de.
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On the other hand, the same calculation as in the proof of (2.4) shows that

/ |6 (x0)|"e(w)"? dvy < C(n,a)/ (@ o u™) (V)" duy.
M N

Combing the preceding two inequalities and choogimag in the proof of Theorem
1.1, wewill have

V,
YOS comam [ ew.
r Bp(r)
Now our assumption on the volume growth yietds) = 0, which completes the
proof. O

Combining the proofs of Theorem 1.1 and Theorem 1.2, we have the following
corollary.

CoroLLARY 2.3. LetM" be a complete Riemannian manifold with nonnegative
Ricci curvature, and lelN” be a complete Riemannian manifold with nonpositive
sectional curvature and1(N) > 0, wheren is the dimension of the both man-
ifolds. Then there exists no quasi-conformal harmonic diffeomorphism ffom
into N.

Finally, we present two examples. They will show that, in Theotelyboth the
volume growth assumption and the polynomial growth assumption of the energy
density are indeed necessary.

ExampLE 1. This example shows that if we do not assué) = o(r") then

we cannot have our theorem. L&t = N = R", and letu be the identity map
between therR”. Thenu has bounded energy density and satisfies all the other
assumptions of Theorel.

ExampLE 2. This example shows that if we do not have the growth condition on
the energy density our theorem also fails. Here wadet S* x R andN = R?,

with u a mapping fromV/ into N (in fact ontoR? \ {0}) given byn = ¢” andw =

6, wheredr? + d6? is the metric onM anddn? + n2dw? is the metric onv. We

can see easily thatu) has exponential growth energy density and satisfies all the
other assumptions of Theorei.

Added in proof.It turns out that the proof of Theorem 1.1 can be sharpened to
prove the following stronger statement.

LetM" and N" be two complete Riemannian manifolds of same dimension. If
there is a pointp € M such thatlim,_.., V,(r) = o(r") and Sobolev inequality
holds onN, then there is no quasi-conformal diffeomorphism fihinto N with
polynomial growth energy density.

References

[C] S. Y. Cheng,Liouville theorem for harmonic map®roc. Sympos. Pure Math., 36,
pp. 147-151Amer. Math. Soc., Providence, RI, 1980.



Nonexistence of Some Quasi-Conformal Harmonic Diffeomorphisms 495

[HTTW] Z. Han, L. F. Tam, A. Treibergs, and T. WaHarmonic maps from the
complex plane into surfaces with nonpositive curvat@emm. Anal.
Geom. 3 (1995), 85-114.

[HS] D. Hoffman and J. SpruckSobolev and isoperimetric inequalities for Rie-
mannian submanifoldComm. Pure Appl. Math. 27 (1974), 715-727.

[LTW] P. Li, L. F. Tam, and J. WangiHarmonic diffeomorphisms between Hada-
mard manifolds;Tran. Amer. Math. Soc. 347 (1995), 3645-3658.

[MS] J. Michael and L. M. SimonSobolev and mean-value inequalities on
generalized submanifolds &", Comm. Pure Appl. Math. 26 (1973),
361-379.

[S] R. Schoen The role of harmonic mappings in rigidity and deformation
problems,Collection: Complex geometry (Osaka, 1990), Lecture Notes in
Pure and Appl. Math., 143, pp. 179-200, Dekker, New York, 1993.

[Sh] Y. Shen,A Liouville theorem for harmonic mapémer. J. Math. 117 (1995),
773-785.

[T] L. F. Tam, Liouville properties of harmonic mapMath. Res. Lett. 2
(1995), 719-735.

[W] T.Wan, Constant mean curvature surfaces, harmonic maps, and universal
Teichmuller space). Differential Geom. 35 (1992), 643—-657.

[Y] S. T. Yau, A general Schwarz lemma for K&hler manifoldsner. J. Math.
100 (1978), 197—-203.

Department of Mathematics
University of California — Irvine
Irvine, CA 92697

Ini@math.uci.edu



