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1. Introduction

This paper summarizes some of the findings of the co-authors in their investi-
gation of setsE in the extended complex plarie that exhibit a high degree of
symmetry with respect to the action of the quasiconformal group. Our focus is
exclusively on compact subsefsof C. A situation roughly dual to this one, the
case of quasiconformally homogeneous domains, was studied in [GP] and [Sa].
We begin by establishing some convenient notation and terminology. The sym-
bol 7 stands for the group of sense-preserving homeomorphi3$cnitself; Q
signifies the subgroup of that comprises all the quasiconformal self-mappings
of C; for 1 < K < oo, Qk denotes the family of mappings i@ that arek-
qguasiconformal. (N.B. We observe accepted convention in requiring as part of
the definition of a plane quasiconformal mapping that it be sense-preserving, al-
though orientation will not be a serious concern in what follows.) The fa@ily
be it noted, is nothing other than the classical Mobius group, the group of linear
fractional transformations of. By contrast, wherk > 1 the family Qg is not
closed under composition and so does not constitute a group. For each nonempty
subsett of C we write

TE)={feT:f(E)=E}, QE)=QNT(E), Qk(E)=QxNT(E).

ThusT = 7(C), @ = Q(C) andQx = ().

A nonempty subsef of C is said to bejuasiconformally homogeneo(resp.,
K-quasiconformally homogenequihe action onE of the groupQ(E) (resp., the
family Qg (E)) is transitive: for each pair of poinésandb of E there exists a map-
ping f in Q(E) (resp., inQk (E)) suchthatf (a) = b. SinceQg (E) is nota group
whenkK > 1, this definition does entail a slight departure from the standard mean-
ing of “action.” The expression “conformally homogeneous” will be employed as
a preferred synonym for “1-quasiconformally homogeneous.” We defingthe
dex of quasiconformal homogenelf(E) of a quasiconformally homogeneous
setE in C by
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K(E) =inf{K : E is K-quasiconformally homogenegus

Then 1< K(E) < oco. We stress thatU(F) is assigned meaning only for sefs

that are assumed from the outset to be quasiconformally homogeneous. We also
point out that the definition o (E) leaves open the possibility &f(E) being fi-

nite yetE not beingk-quasiconformally homogeneous f&r= KC(£). For want

of a better name we label a nonempty Beh C topologically homogeneowshen

the group7 (E) acts transitively orE . We alert the reader to the fact that this defi-
nition is at variance with the common usage of the term “homogeneous” in topol-
ogy, where homogeneity for a plane geusually makes reference to the action

on E of its full internal homeomorphism group, not merely to the actionfon

of T(E).

We useS(zo, r) and B(zo, r) to denote the circle and open disk@h respec-
tively, that are centered at and have radius, abbreviatingS(0, 1) to S and
B(0, 1) to B. We remind the reader that a Jordan cuivia C is termed auasi-
circle (resp.,K-quasicirclg under the condition that = f(S) for somef from
Q (resp., fromQg). In particular,J is a 1-quasicircle if and only i¥f is acir-
cleinC, meaning that/ is either a true Euclidean circle @ or a set of the type
J = L U {oo}, whereL is a Euclidean line irC. Similarly, a domainD in Cis
designated guasidisk(resp.,K-quasidisk providedD = f(B) for somef from
Q (resp.,Qk). Obviously D is a quasidisk precisely wheiD is a quasicircle,
an analogous statement expressing the relatiok-qtiasidisk tok-quasicircle.

A 1-quasidisk is therefore ampen disk inC: under the umbrella of this term are
included open Euclidean disks @, open Euclidean half-planes i@, and the
complements irC of closed Euclidean disks i@.

Let E be aK-quasicircle or &-quasidisk inC. With the aid of elementary prop-
erties of Mobius transformations, it is a simple matter to check/hd) < K?2.
Indeed, ifE is aK-quasicircle then the famil@ 2 (E) contains a group whose ac-
tion onE is triply transitive. The purpose of this paper is to explore implications in
the opposite direction, that is, to determine features that are imposed upon a com-
pact subsef of @ by virtue of homogeneity with respect to the action@(E)
or Qg (E). Our point of departure is a beautiful theorem discovered by Erkama
[E] (see also [BE])a Jordan curve/ in Cis quasiconformally homogeneous if
and only ifJ is a quasicircle.In order to place the discussion of quasiconformally
homogeneous compacta into context, we briefly review the situation for the well-
understood counterparts of such sets in the topological and conformal categories.

ACKNOWLEDGMENT. The authors would like to thank Pertti Mattila for a number
of constructive and illuminating suggestions.
2. The Topological and Conformal Cases

The topologically homogeneous compacta in the extended complex plane are com-
pletely classified by the following theorem.
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THEOREM 2.1. A compact subsef of Cis topologically homogeneous if and
only if one of the following is true(i) E = ¢; (if) E is a finite set of points

(iii) E isthe union of a finite collection of Jordan curves that constitute the bound-
ary components of a domain @@ (iv) E is a Cantor set.

It has long been known that any subgeof C that falls into one of the categories
listed in this theorem is topologically homogeneous. The fact that this list is actu-
ally exhaustive follows without difficulty from the Baire category theorem and a
result of Burgess [Bu, Thm. 3], which identifies Jordan curves as the only continua
E in C with the property thaf (E) acts transitively orE.

The expected analog of the Burgess theorem in the setting of conformal homo-
geneity is common knowledge to mathematicians conversant with Lie groups and
their homogeneous spaces—for instance, it is a straightforward consequence of
the classification of Lie subgroups of the Mébius group, say as found in [G]—but
this pretty result remains surprisingly obscure among geometric function theorists.

THEOREM 2.2. A continuumg in C is conformally homogeneous if and only if
E isacircle inC.

By combining Theorems 2.1 and 2.2 with Theorem 9.18 in [Sp], one arrives easily
at a partial classification of the conformally homogeneous compact subgets of

THEOREM 2.3. If a compact seE in Cis conformally homogeneous, then one of
the following is true (i) E = C; (ii) E is a finite set of points(iii) E is a circle
in C; (iv) E is the disjoint union of two circles i@.

Notall finite subsets of are homogeneous with respectto the action of the Mdbius
group, of course, so elaboration on case (ii) of Theorem 2.3 is necessary if the
classification of conformally homogeneous compactd is to be completed. (It

is not hard to check that any set of type (i), (iii), or (iv) in Theorem 2.3 is confor-
mally homogeneous.) A bit of notation and terminology will facilitate the state-
ment of the desired result, the proof of which is a straightforward application of
the ideas discussed in [B2, pp. 84—-86]. For each positive integéy, indicates

the set of complexth-roots of unity. A regular polyhedroh inscribed in the unit
spheres? in R? is said to ben standard positiorprovided that0, 0, 1) is a ver-

tex of P and that some vertex d@f adjacent tq0, 0, 1) corresponds under stereo-
graphic projection frong0, 0, 1) to a point of the positive real axis in the complex
plane.

THEOREM 2.4. LetE be a subset of® of finite cardinalityn > 1. ThenE is con-
formally homogeneous if and only#fis Mébius equivalent to a subsgt of (@
that belongs to one of the following categorig$) n < 3 and Ej is a subset of
{0,1,00}; (ii)) n = 4and Eqg = {0, 1, oo, A} for some real numbek different
fromOand1; (iii) n > 5andEq = U,; (iv) n > 6is even andtg = U,, U cU,,,
wherem = n/2 andc is a nonzero complex number such th&t£ 1; (v) n = 6,
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8, 12, or 20 and Ej is the set of points that correspond under stereographic pro-
jection to then vertices of a regular polyhedron inscribed in standard position in
the spheres?.

3. The Quasiconformal Case

We open the discussion with the observation that any quasiconformally homo-
geneous compact subset@fautomatically has a finite index of quasiconformal
homogeneity.

Tueorem 3.1. If a compact sef in Cis guasiconformally homogeneous, then
it must be the case th&t(E) < co.

Proof. Theorem 2.1 delineates the possible topological structure€ticah ex-
hibit. Since the present theorem is plainly true wher= C or E is a finite set
of points, we need only concern ourselves with alternatives (iii) and (iv) in Theo-
rem 2.1. We assume, as we may, thdies in the finite plane. Moreover, in the
situation whereE is a union of Jordan curves, we are free to supposesthb¢s
in the domain whose boundary components are provided by the curves in question
and, ifE is itself a Jordan curve, that the origin belongs to the bounded component
of E¢, the complement oF in C. WhenE is a Jordan curve, we usE to Sig-
nify the group of mappings i@(FE) that leave the s€0, oo} invariant; in all other
cases, we také& to mean the subgroup @l(E) consisting of those mappings that
fix the pointoo. In each instancef acts transitively otk a fact readily confirmed
with the aid of [N, Lemma 1.14]. For = 1,2,... we defineF, = { f € F :
K(f) < n}, whereK(f) designates the maximal dilatation of a quasiconformal
mappingyf.

Now fix a pointzg of E and letE, = F,(z0), the orbit ofzg under the action
of F,. ThenE = |, E, and, in conjunction with well-known compactness and
convergence properties of quasiconformal mappings (see [V1]), the normaliza-
tions imposed on members &f ensure that each of the sdig is closed. By the
Baire category theorem, at least one of these setsEsayhas an interior point
wo in the relative topology of'. Fix an open disk/ = B(wyg, r) suchthat/ N E
is contained inEy. The collection of setg'(U) with f in Q(E) is an open cov-
ering of E, so we can find a finite number of mappings f», ..., f, in Q(E)
such thatfi(U), fo(U), ..., f,(U) coverE. It follows that any point of E can
be expressed as= f; o f(zo) for some; and somef in Fy, from which we in-
fer that’C(E) < K2N? with K = maxK (f;). O

The kind of restriction imposed on a compact set as a result of quasiconformal ho-
mogeneity is typified by the following theorem, wherein the notafitdim(E)
indicates the Hausdorff dimension of a subBeatf C with respect to the chordal
metric. Because Moébius transformations are bi-Lipschitz mappings in the chordal
metric, H-dim(E) is a Mobius invariant. Of course, K lies in the finite plane
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then#-dim(E) coincides with the usual Hausdorff dimensionfofelative to the
Euclidean metric.

THEOREM 3.2. If a compact proper subsét of Cis K-quasiconformally homo-
geneous, thek{-dim(E) < d < 2, whered depends only oik.

Proof. We may assume thd is a set in the finite plane. We first show thais
locally «-porous at each of its points, whare= (1/2) exp(—27K). (Recall: if
0 < a < 1/2 then a subset of Cislocally «-porous at the point of A provided
there exists a number= p(z) > 0 such that, for eachin the interval(0, p], the
setB(z,r) \ A contains some open disk of radius)

Let zg be a point ofE for which Rezo = max Rez : z € E }. (The setE ob-
viously satisfies the stated porosity requirementatin fact, £ is locally (1/2)-
porous atg, and one can take(zo) to be any positive number.) Consider an arbi-
trary pointz of E. By assumption, the famil@k (E) includes a mapping such
that f(zo) = z. It is known that the linear dilatatiof/, of a K-quasiconformal
self-mappingf of C is bounded above by = ™% (see [LV, Thm. 11.9.2]). We
remind the reader that, far different fromoo and f ~(c0), H(w) is defined by

. Ly(w,r)
H:(w) = limsup—,
r(w) r—>0plf(wJ)

in which
Ly(w,r) = mgflf(w +h) — f(w)l, ly(w,r) = mi:fllf(w +h) — f(w)]

for0 < r < |lw — fY(o0)|. Taket > 0 small enough thaf(co) does not lie
in the closure ofB(z, 4t). The proof of the theorem in [LV] just cited actually
demonstrates that

Ly(w,s)

- <

lp(w,s) —

whenevellw — zg| < o and 0< s < o, with o = (1/2) dist(zo, f Y[S(z, T)]).
We now choos@ = p(z) in (0, 7) so that the distance frogg to the Jordan curve
f7US(z, p)]is smaller tharv.

Let0 < r < p and letwg = zo + (s/2), wheres is the distance fromg to
7Sz, r)]. Then 0< s < 0. The setA = f[S(wo, s/2)] containsz = f(zo)
as well as some point of[S(zo, s)], SO A has diametet/(A) no smaller than
lf(zo, 5). But

r _ L¢(zo,s) -
lf (Zo, S) lf (Zo, S) -

from which we conclude that

Lf(w01 S/Z) >

d(A) - lf(zo, 5) -
2 = 2 — 2H

Since|wg — zo| < o, this leads to
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L¢(wo, s/2) - r
H ~ 2HZ
ensuring thatB(z, ) \ E contains the diskB[ f(wo), r/(2H?)]. As r in (0, p]
was arbitrary, this confirms the locatporosity of E atz for o« = 1/(2H?) =
(1/2) exp(—27K).
Finally, a simple geometric argument (see e.g. [S, p. 353]) revealsthat
dim(E) < d < 2, whered depends only on—hence, depends only aa. [J

ly(wo, s/2) =

The next result dramatizes the extent to which information is refined through
passage from the realm of topological homogeneity to that of quasiconformal
homogeneity.

TueoreM 3.3. If a compact subsek of Cis guasiconformally homogeneous,
then one of the following is trudi) E = C; (i) E is afinite set of pointg(iii) E

is the union of a finite collection of quasicircles that constitute the boundary com-
ponents of a domain i¥; (iv) E is a Cantor set witlH-dim(E) < d < 2, where

d depends only ofC(E).

Proof. Assume that~ is described by neither (i) nor (ii). On the basis of The-
orem 2.1 we can assert that eithferis the union of finitely many Jordan curves
which are the boundary components of a domai@ ior E is a Cantor set. In the
former case, each componentifs quasiconformally homogeneous and, in view

of the main result in [E], is thus a quasicircle. Theorem 3.2 justifies the statement
dealing with the Cantor set alternative. O

Again it is a straightforward matter to confirm that any geof type (i), (ii), or

(iii) is quasiconformally homogeneous. Sets of type (iv) are a different matter en-
tirely: that quasiconformally homogeneous Cantor sets exiStisby no means
self-evident. To show that category (iv) is not vacuous, we shall construct such
a Cantor set whose Hausdorff dimension is any prescribed numbey2in [To

do this we employ a standard procedure for constructing self-similar Cantor sets,
into which we introduce an element of quasiconformal “mixing.” We refer to the
mechanism that underlies the mixing process as “conformal exchange.” To be pre-
cise, consider a domaiti in C and disjoint subdomain®; and D, of G. We call

a quasiconformal self-mappiregof C aconformal exchange ob; and D rela-

tive to G provided that fixes each point ot5¢ while mappingD; conformally

onto D, and D, conformally ontoD;. If o is such a mapping and is a M6bius
transformation, therf o o o f 1 is clearly a conformal exchange B = f(D1)
andD;, = f(D») relative toG’ = f(G). In conjunction with this observation, the
following elementary lemma will provide all of the exchange maps that we require
for this paper.

LemMma 3.4. LetG be a quasidisk i€ that is symmetric with respect to both the
real and imaginary axes and has for its intersection with the former the interval
I =(-1,1).ThenGy={zeG:Imz>0}andG, ={ze€G :Imz <0} are
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Jordan domains and = G1U I U G». If D; is a subdomain ofG; that is sym-
metric with respect to the imaginary axis and is relatively compacity I and if
D, = {z:z e D1}, then there exists a quasiconformal self-mappingf C such
that o(z) = z for everyz in G ando(z) = —z for everyz in D; U D;. In par-
ticular, o mapsD; conformally ontoD, and vice versa, so effects a conformal
exchange ofD; and D, relative toG.

Proof. Let g; be the unique homeomorphism 6f onto the closure of the half-
disk G; = {z € B : Imz > 0} that mapsG; conformally toG; and fixes the
points—1, 0, and 1 Extendg; by reflection to a homeomorphisgnof G onto B.
Theng mapsG conformally ontoB. Moreover, the normalization gf; and the
symmetry assumptions ensure tgét-z) = —g(z) for everyz in G. Fix a quasi-
conformal extensioh of g to C. Next, noting thAag(Dlu D») is a compact subset
of B, choose a quasiconformal mappiag of C such thatro(z) = z for eachz
in B¢ andog(z) = —z Whenevelz] < r = max{ |z| : z € g(D1U D5) }. (For ex-
ample, takerg(z) = ze™?(1D, whereg: R — [0, 1] is aC*-function such that
o(t) = L whenr < r, (t) = 0whent > 1, ande’(r) < Owhenr <t < 1)
Theno = h~toogoh is a mapping that fulfills all the stipulated requirements]

THE CANTOR SET E;. Fix a number satisfying O< s < 1/2. Write
Q={zeC:|Rez| =1, [Imz] <1},

and for 1< k < 4 denote byQ, = Q. (s) the closed square of side-length i
thekth quadrantd, of the complex plane that is concentric with and has the same
orientation as the squai@ N H,. If ¢, is the center oD, thenQ, is the image

of @ under the similarity transformatiqf (z) = 2sz + ¢;. Forn > 1 and for 1<

ki, ko, ... ky <4, We SetQp, k,.. .. k, = &k © &k, © - - © &k, (Q) and letE; , sig-

nify the union of the 4 disjoint closed squares of side-leng#y)” thus obtained.
ThenE, = (_, E,., is @ Cantor set whose Hausdorff dimension is given by

2log3

logs

H-dim(E) =

(see e.g. [B1]), which ranges over the inter¢@l2) ass varies ovenr0, 1/2). By
allowing the size of the squares that arise in this process to shrink at a more rapid
rate, one can construct even “smaller” Cantor g&tsets with#-dim(E) = 0

or even with capE) = 0, where “cap” indicates either logarithmic or conformal
capacity. (In the plane, the collections of null sets for the two capacities are iden-
tical.) In particular, we denote bk, the Cantor set obtained for= 1/4 when

the 4' squares that make upy 4, , are replaced by squares that have the same cen-
ters and orientation as before but with side-lengﬁf'l"?1 instead of 2”. Denoting

the union of these squares B ,, we haveE, = ﬂ‘f:l Eo . Itis not difficult

to verify that E¢ has conformal capacity zero (which implies thatdim(Eq) =

0 as well). Each point of E; can be identified by a unique “address(z) =

(k1, ko, . . .), aninfinite sequence from the 4@t 2, 3, 4}, wherek; is the number

of the square in the initial configuratiaf ; that corresponds to the square into
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which z falls when passing front ,_; to E; ,. We usew, (z) as an abbreviation
for the “partial addresslky, ko, . . ., k,) Of z.

ExampLE 3.5. For eachs in [0, 1/2), the Cantor seFE, is quasiconformally ho-
mogeneous and, whén< s < 1/2, is K-quasiconformally homogeneous f&ir
depending only on.

Proof. The argument is a variation on the proof of [GV, Thm. 5]. We initially con-
siders in (0, 1/2) and fix for 1 < I < k < 4 a quasidislGy, in Q that containg),
andQ,, as indicated in Figure 1. (The situation wh@p and Q, are horizontally
aligned is the obvious analog of the one for the case of vertical alignment.)

Qz Q] Q2 Ql

G32 » 0 °

0, o, 0, 0,

Figure 1

Because the configuration ¢f, Q;, andGy; has two orthogonal lines of sym-
metry, it is the image under a similarity transformatioof a configuration meet-
ing the hypotheses of Lemma 3.4. If we fix a mappénghat satisfies the con-
clusion of Lemma 3.4 for said configuration, then = & o o o A~ furnishes a
conformal exchange of the interiors ¢f, and Q, relative toGy;. We setoy; =
opforl <k <1 <4, takeoy, = id for 1 < k < 4, and define

K=K;,=maX{ K(oy):1<k,l<4}.

Now leta andb be points ofE,, say with addresses(a) = (ki, k2, ...) and
w(b) = (I3, 12, . . .). We recursively define a sequengg) of mappings fromQ g
by f]_ = Oy and

-1
Jnt1= S © &k1© 8kp © "+ © 8ky © Okyialyia © (8k1 © 8ky ©*** © 8k,,)

forn > 1. Then f, mapskE; , onto itself, transforming the interior of the square
0, = Qu, conformally to the interior o2, = Q). and f,41 = f, in QF.
SinceK (f1) = K(oyy,) < K and
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K(fut1) = maxK(f), K(0k,.11,.,)} = Max{K(fu), K},

it follows by induction thatf, belongs toQy for eachn. The sequenceéf,) is
drawn from the normal family f € Qk : f(z) = z for eachz € Q¢ } and plainly
converges pointwise oA, a dense subset @f. Standard convergence theorems
for quasiconformal mappings thus ensure tfigt> f uniformly onC (with re-
spect to the chordal metric), wheyeis a member 0Qk. Becausef,, (E; ) =
E;, and f,,(Q,) = Q, whenevemn > n, we conclude thayf preservesE; ,

for eachn, mappingQ, to Q;, from which we then infer thaf (E;) = E; and
f(a) = b. Buta andb were arbitrary points of,, SOK(E,) < K.

Finally, the case = 0 does not really demand a separate discussion. Indeed,
our construction is such that the mappifigintroduced to treat a pair of poinis
andb from Eq,4 leaves invariant the subsg , of E1/4,, and maps the square in
Eq ,, which contains: to the one which contairts whenever andb are elements
of Eg. Thus, in this situation, the limit mappingactually belongs t@ (E,) for
K = Kya. O

A second example shows that the existenceffguasiconformally homogeneous
Cantor set fork > 1 does not place any restriction &h

ExampLE 3.6. For eachK > 1there exists &-quasiconformally homogeneous
linear Cantor setE in the complex plane.

Proof. In this instance we tailor a Cantor set to fit a prescribed conformal ex-
change. For > 0 the mappingf,: B — B defined byf;(z) = z|z|?" forz # 0
and f; (0) = O is K,-quasiconformal, wher&, satisfies

K, -1 . 27t
Ki+1 J1+4n%?

In particular,K, increases from 1 too ast increases from 0 too. GivenK > 1,
lets > 0 be such thak, = K, setr = ¢~ Y@ and definer: C - Cbyo(z) =
zif z] > 1, byo(2) = fi(2) if r <z <1, and byo(z) = —zif |z| <r. Theno
is a K-quasiconformal self-mapping @f. Moreover,o provides a conformal ex-
change of the open disi3; = B(zo, p) andD, = B(—zg, p) relative toB, where
z0 = (r+r?)/2andp = (r —r?)/2. If Cantor’s “middle interval” construction is
performed, beginning witlky = [—r, r] and obtainingE, ., from E, by remov-
ing from each component of E,, the open middle interval with lengtttimes that
of C, thenE = }_, E, is a self-similar Cantor set whose construction meshes
with the mappingr in such a way as to guarantee thiais K-quasiconformally
homogeneous. O

Takingt = 1/log 9 in Example 3.6 leads to a Cantor set that is the image under
a similarity transformation of Cantor’s classical “middle third” €&tSince K,

is approximately 34.65 for this value of Example 3.6 yields the explicit bound
K(C) < 35 for the granddaddy of all Cantor sets. It is worth mentioning that the
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Cantor sets exhibited in Examples 3.5 and 3.6 are actually homogeneous with re-
spect to families of uniformly bi-Lipschitz self-mappings©f as closer scrutiny
of their constructions would reveal. There are no conformally homogeneous Can-
tor sets inC, of course, linear or otherwise. It is still not known whether Cantor
setsE exist for whichXC(E) = 1, but it is clear that the specific method used to
generate the examples here cannot produce such a set, since all the mappings that
arise in this construction fix the poirb. An easy normal family argument re-
veals that a Cantor sé in C on which the familyQg (E U {zo}) acts transitively
for eachk > K(E), wherezo is a point ofE¢, must bek-quasiconformally ho-
mogeneous foK = K(E). Cantor sets in C that arise as the limit sets of cer-
tain Kleinian groups (finitely generated Schottky groups, for example) also have
K(E) < oo—indeed, exhibit a considerably stronger form of quasiconformal
homogeneity than the one under discussion here. Details will appear in [MNP].
The fact that a quasiconformally homogeneous Cantok setinear has some
noteworthy implications foFE, as the following result illustrates.

Tueorem 3.7.  If a quasiconformally homogeneous Cantor gelies on a cir-
cleinC thenH-dim(E) < d < 1, whered depends only ofC(E). Furthermore,
H-dim(E) — 0askK(E) — 1.

Proof. We may assume thét lies inR and that 0 is the smallest elementtfWe
show that¥ is locally «-porous at each of its points for somén (0, 1/2] that de-
pends only orK = 2K (E), where porosity is now taken to mean porosity with re-
spect to the real line—open intervals replace the open disks of the 2-dimensional
porosity condition encountered in the proof of Theorem 3.2. Fixing a pgiot
E, we choose a mappingin Qk (E) that mapsco to the origin. Set = f ~1(c0)
andp = (1/2)dist(c, E) > 0. Let 0 < o < 1/2 be such thak is not locally
a-porous ateg with p(xg) = p. We shall derive a positive lower bound ferthat
depends only oIK.

Becauser fails to be locallya-porous atcg with p(xg) = p, there exists an
r in (0, p] such that the intervalxo — r, xg + r) contains no open subinterval of
length 2Zvr that is disjoint fromk. It follows that we can select finite sets of points
ap <az <---<a,=xgiNEN(xg—r,xg]landxg=b, < --- < by < byin
E N[xg,x0+r)withp >2 ¢ > 2, and

aj+1—aj < 2ar, by — byy1 < 2ar

forj=12...,p—1andk =12, ..., g — 1 Exceptfora, andb,, the points
a; andb; are mapped byf into (0, co). We are free to suppose th#ta;) <
f(b1), the opposite case being handled similarly. Becgl®g) = f(xo) =0 <
f(ay), it follows that f(a;) must lie in at least one of the open intervélsn R
whose endpoints arg(by) and f(b;,1). Fix such ak and assume that

| f(a1) — f(brsn)| < | f(a1) — f(bi)]

(again, the other case has an analogous treatment). Then
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| f(a1) — f(bisa)l - 1
| f(br) — fbrs)| — 2°

while
lag — by lag—x0| r—2ar 1-2«a
> > = .

by — brya|l = 2ar 2ur 20
Now the restriction off to the diskB(xo, r) is ann, -quasisymmetric embedding
of B(xo, r) into the complex plane, where the homeomorphigm [0, co) —
[0, 00) depends entirely oK (see [V2, Thm. 2.4]). This implies that—* is
n*-quasisymmetric in the domaifi B(xo, r)], with n*(¢) = [r;I;l(t‘l)]‘l fort >
0[TV1, Thm. 2.2]. In particular,

1-20  Ja1— brial *<|f(611) - f(bk+l)|) *<1>
< <7 =n\z)

20 |bx — bryal [f(Dr) — f(bry1)] 2
which leads to the inequality

1
o> ————.
2+ 2n%(1/2)

We conclude that is locally a-porous atxg for o = [2 + 2*(1/2)]~* and
p(x0) = p. Sincexg was an arbitrary point of’, [S, Thm. 3.8.1] guarantees that
H-dim(E) < d, where

log 2

| 2—2a
°g< 1-2a )
is a number that depends solely KQE).

To prove the final assertion we shall demonstrate that, whenk-quasicon-
formally homogeneous witR sufficiently close to 1, the preceding argument can
be reworked to show thd satisfies a locak-porosity condition withx as close to
1/2 as desired. The key idea here is supplied by [TV2, Thm. 2.6], which implies
that for eachk > 1 there exists a homeomorphispp : [0, c0) — [0, co) en-

dowed with the following two properties: evekrquasiconformal self-mapping
of the finite complex plane ig, -quasisymmetric, and

d= <1

Il(igl ng@ =mn ()=t

uniformly on compact subsets @, co). (For explicit bounds om, (¢) the reader
is referred to [VVW, p. 125].) Suppose thatin (0, 1/2) is specified. Fix in
(0, 1) such that

(1+¢)?

<2—-2a
1—¢

and then fixKy for which

() < L+ et
whenever 1< K < Kpand(14+¢)(1—2a)/[2(1—¢&)] <t < (1+¢)/[(2—2a) x
(1-¢)].
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We return to the argument in the first part of this proof, now assumingBhat
is K-quasiconformally homogeneous with<l K < Kj. In the present situation
we claim thatF is locally a-porous at each of its points. Supposing this not to be
the case, we consider a poytof E at which the locak-porosity condition fails.
Proceeding as before, we select a mappifgom Ok (E) for which f(xg) = 0.
Next, letg be a Mobius transformation such thatrg) = xo, g'(xo) = 1, and
g(c) = oo, where againt = f ~(co0). We can choose > 0 such that: does not
lie in B(xq, r) and such that

. < lg(z) — g(w)|
Tz —wl

1- <1l+e¢

for each pair of distinct points andw in B(xg, r). Because the local-porosity
condition is assumed not to hold.&f, we may further require of that (xo — r,
xo+ r) \ E include no open interval of lengthw2. We can thus choose poinis
andb in (xg — r, xg +r) N E for whicha < xo < b and

Xo—a >r—2ar, b—xg>r—2ar.

Then f(a) > 0 andf(b) > 0. We furnish details for the casgb) < f(a); the
other case is similar. We have

[f@) = fO _ fl@) = fb) _

- 1,
| f(a) — f(x0)l f(a)
while
- - — -2

la b|=b a=1+b xo>1+r ar=2_2a'

la — xo| Xo—a Xo—a r
It follows that

1-2a |a— xgl 1

< < .
2 la —b|  2-2a

Now i = f o g1 is a K-quasiconformal mapping df onto itself, so by the
selections oKy, a, andb we have

1 < M@= fCol _ hls@] —hlgColl _ <|g(a)—g(xo)|>
[f@ =@ Jhlg@] =hlg®] ~ N\ lg@) - g®)]
- K<(1+8)|d—xo|) _ 49?2 Ja—x| _ (A+e)

L—-8&)a—->b] ) (QA—¢) ' la — b| A-8)2-2a)
As (1+¢)?(1— )1 < 2 — 2a, this leads to
(1+¢)?
<17 1
1-9e)(2-2a)

a clear contradiction. Accordinglyy must be locallyx-porous at each of its
points. If E, signifies the set of alt in E at which E is locally «-porous with
p(x) = 1/n, then [S, Thm. 3.8.1] implies that

1
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log 2
Iog<2 — Za)
1-2a
whenever 1< K(E) < Kp. Sincewa in (0,1/2) was arbitrary, we havé{-
dim(E) — 0 ask(E) — 1. O

H-dim(E) < supH-dim(E,) <

(N.B. There do exist linear Cantor sefsin C havingH-dim(E) < 1 that are
not quasiconformally homogeneous. As a simple example we:citeE’ U E”,
whereE’ is a Cantor subset gf~oo, 0) for which H-dim(E’) = 0 andE” is a
Cantor set in(0, co) with the feature that O< H-dim(E” N U) < 1 for every
open set/ in C with U N E” # (. Properties of quasiconformal mappings—see
[GV]—imply that no membeyf of Q(E) can move a point of’ to a point ofE”.)

It would ultimately be nice to characterize the quasiconformally homogeneous
Cantor sets in C. Indeed, a characterization of the linear Cantor sets of this type
would already be a welcome development. The outlook for finding one is not en-
couraging: recent work on the bi-Lipschitz equivalence of Cantor sets by Falconer
and Marsh[FM] (see [CP] as well) suggests that, even in the linear case, any
characterization is likely to be quite subtle, involving delicate algebraic invariants.

A result of Astala [A] leads to the following generalization of Theorem 3.7.

CoroLLAry 3.8.  If a quasiconformally homogeneous Cantor Edtes on ak-
quasicircle inC, thenH-dim(E) < d < 2K /(K + 1), whered depends only on
K(E) and K. Moreover,H-dim(E) — 0when bothkC(E) — 1andK — 1.

Proof. Suppose thak is a subset off (S) for a mappingf from the family Q.
ThenE’ = f~Y(E) is a quasiconformally homogeneous Cantor subsét fair
which the estimatdC(E’) < K2K(E) holds. By Theorem 3.7H-dim(E’) <
d’ < 1, whered’ depends only oiiC(E’)—hence, only onfC(E) and K—and
H-dim(E’) — 0when bothC(E) — 1 andK — 1. Corollary 1.3 in [A] implies
that

H-dim(E) < 2K H-d|m(§) —d— 2Kd - 2K .

2+ (K — 1) H-dim(E") 2+(K-1d” K+1

The numbet/ depends only ofC(E) andK. The foregoing inequality also shows
thatH-dim(E) — 0 ask(E) — 1landK — 1. O

We close this paper by remarking that the options in Theorem 3.3 become consid-
erably more limited whe® (E) contains a group that acts transitively Bn

THEOREM 3.9. If E is acompact subset o such thatQx (E) contains a group
I" that acts transitively orE, then one of the following is trudi) E = C; (ii) E

is a finite set of points(iii) E is aK2+ﬁ-quasicircle (iv) E is the disjoint union
of two K 2+¥2-quasicircles.

Proof. It follows from a well-known result of Sullivan and Tukia (see [Su; T])
thatl = g o' o g~%, whereI"’ is a group of Mdbius transformations agds a
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member ofQy for K’ = K2+¥2/2 ThusE’ = g(E) is a conformally homoge-
neous compact set, and the indicated classification is an immediate consequence
of Theorem 2.3. O
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