Inner Functions in the
Hyperbolic Little Bloch Class

WAYNE SMITH

1. Introduction

The hyperbolic derivative of an analytic self-map D — D of the unit disk
is given by|¢’|/(1 — |¢|?). To explain the terminology, we note that integrating
lp’|/(1 — |@|?) over a rectifiable curve in D gives the hyperbolic arclength of
¢(y). This notion of derivative has been used by Yamashita to study hyperbolic
versions of the classical Hardy and Dirichlet spaces; see [Y1] and [Y2]. More re-
cently, in [MM] and [SZ], hyperbolic derivatives have been shown to be pertinent
to the study of composition operators on certain subspacés bf), the space
of analytic functions onD. An analytic self-mapy of D induces a linear oper-
atorC,: H(D) — H(D) defined byC, f = f o ¢. This operator is called the
composition operatomduced byp.

Recall that an analytic functiogf on D is said to belong to the Bloch space
B provided that(1 — |z|)| f'(z)| is uniformly bounded fot € D. Similarly, f €
Bo, the little Bloch space, if1 — |z|?)| f'(z)| — O uniformly as|z| — 1. The
hyperbolic Bloch clas$” is defined by using the hyperbolic derivative in place
of the ordinary derivative in the definition of the Bloch space. Thapis,B" if
¢: D — D is analytic and

1- 2P’
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Similarly, we sayy Bg, the hyperbolic little Bloch class, if € B" and

2 /
im 1 - 1z19)]e'(2)] _
-1 1—]p(2)|?

Note that these are not linear spaces, singerequired to be a self-map @&f. It
is an easy consequence of the Schwarz—Pick lemma that every analytic self-map
of D belongs taB”, and in fact the supremum above is at most 1; see [G, p. 2].
Membership in the hyperbolic little Bloch class, on the other hand, is nontrivial.

It is easy to see that,: B — B is bounded for every analytic self-mapof
D, while C,: Bo — B is bounded if and only ifp € Bg. It is a recent result
of Madigan and Matheson thel,: Bo — Bo is compact if and only it € B;
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see [MM, Thm. 1]. Membership af in B¢ has a simple geometric interpreta-
tion wheng is univalent, sincél — |z|?)|¢’(z)| is comparable to the distance from
¢(z) to dp(D). This results inC, having very strong properties. In particular, the
author showed that i is univalent and in3f;, thenC,: L, — HY is compact
forall0 < p < g < oo; see [Sm, Thm. 6.4]. Here? and H? are the classi-
cal Bergman and Hardy spaces. This paper resulted from an effort to understand
B¢ when the univalence assumption is not made. Our main result, Theorem 1.2,
shows thaB3? contains inner functions. Thyse B/ does not even imply tha,
is compact on?, since an inner function can not induce such an operator.

We introduce the notation

£0(2) = 1 - 1z13)1¢'(2)]
Y 1-lp@)I?
so thatp e B(’; if and only if lim;_.1 7,(z) = 0. Our first result shows that there

is a restriction on the average rate at whighcan go to zero whep is an inner
function.

s

1.1. THeoreM. If ¢ is aninner function, then

T(p(z)z _
/D 112 dA(z) = co.

Although it is clear that finite Blaschke products belongdsg it is not obvious
that Bg contains other inner functions as well. Several constructions of such func-
tions have appeared in the literature recently; see [Sa; St; B1; B2]. On the other
hand, it is not obvious thak{ contains any inner functions at all. In particular, it

is easy to see that i is an inner function i3, then the whole unit circle is in

the singular set fop; that is,¢ does not have an analytic continuation across any
arc inaD. ThusB} contains no finite Blaschke products. Our main result is that
there are inner functions i{.

1.2. THEOREM. Letn be a nonnegative increasing function such that

Ln@)?
/ ; dt =00 and n(4dr) <2n@), 0<t <ty
0

for somerg > 0. Then there exist an inner functignand a constanC such that
7,(z) < Cn(L—[z]?). (1.1)

From Theorem 1.1, we see that Theorem 1.2 is, subject to the regularity assump-
tion onyn, the best possible result of this kind. A typical function satisfying the hy-
potheses of Theorem 1.2s§r) = |logt|~Y2. The result remains valid when the
regularity assumption thaft(4¢) < 2n(¢) is replaced by;(4t) < (4 — e)n(¢) for
somee > 0. This is equivalent to assuming thais of upper type less than one;

see [J]. Itis for clarity of presentation that the simpler form of this regularity con-
dition is used here. Since containmentifj characterizes compact composition
operators o8y, we obtain the following corollary to Theorem 1.2.
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1.3. CoroLLARY. There exists an inner functign such thatC,: Bo — B is
compact.

The function constructed to prove Theorem 1.2 will be a singular inner fungtion
AMdbius mapy from D ontoD satisfies the identityd|o(z)|? = (1—|z|?) |0/ (2)],
and from this it is easy to check thgt = .., Itis well known thatr can be cho-
sen so that o ¢ is a Blaschke product, so there are Blaschke products that satisfy
(1.1). It would be interesting to have a description of the zero sets of Blaschke
products inB%, such as that given by Bishop in [B1] fd#,. The singular set of
each such Blaschke product is the full unit circle, as noted above, and so every
point on the unit circle is a limit of its zeros.

To see what is involved in the construction of the required singular inner func-
tion, letp(z) = exp(—F(z)), where

2w it
e’ +z
F(z) = / T du ()
o € —Z2

andy is a positive singular measure. Then

_ (A-zPIF@Iexp—RF(z) _ (1—[z[)|F()]
T(p(Z) = =< -
1—exp(—2RF(z)) NF(2)

sincex < e*(1—e~2*) when 0< x. Forg to belong taBy, it is only required that
the numerator of this estimate fay(z) tendsto 0 ag&| — 1, thatis,F € Bo. This
is how an inner function iy was shown to exist by Sarason [Sa], who observed
that F € By if the indefinite integralf of 1 belongs to the Zygmund class. Re-
call that a continuous functioyi is said to belong ta., if the second differences
Afl f(x) = f(x+h)—2f(x)+ f(x — h) are uniformlyo(h) ash — 0. The con-
struction was then completed by citing constructions of Kahane [K], Piranian [P],
and Shapiro [Sha] of increasing singular functions jnin the present situation,
an appropriate lower bound for the denominator of the estimate,for (1.2) is
also required. Such a lower bound will result from a lower bound for the first dif-
ferencesA, f(x) = f(x + h) — f(x) of f. We therefore need a construction of
an increasing singular function that produces appropriate estimatds, joand
A2 f, from below and above, respectively. The constructions of Kahane, Piranian,
and Shapiro cited here do not provide the required lower bounds f@r How-
ever, their methods can be adapted to produce the required function. The formu-
lation of the resulting theorem and the construction will be given in Section 3. It
should be remarked that the assumptions made mnTheorem 1.2 are essen-
tially best possible for the existence of a monotone singular fungtisatisfying
|AZ f| < Chn(h); see [K] and [Sha].

It also is of interest to express the estimate (1.2)tfpm terms ofu. Noting
thati F(z) is just the Poisson—Stieltjes integralof it is easy to verify that

A-zAIF' @] _ | (7 2" ar 4
NF(2) —/0 (e — 2 O //O o O

Thus the positive singular measyrave construct will have the property that suf-
ficient cancellation occurs in the numerator for this ratio to tend to|@|as 1.

N )
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The proof of Theorem 1.1 will be given in Section 2, and the constructigh of
is in Section 3. We begin Section 4 by proving a theorem that shows how the esti-
mate we get fomfZ f gives an estimate for the growth of the second derivative of
the Herglotz integral of’. This is then applied to prove Theorem 1.2.

I would like to acknowledge the hospitality of Michigan State University, where
| was visiting when this research was done. In particular, | would like to thank
Joel H. Shapiro for many helpful discussions on the material presented here.

2. Proof of Theorem 1.1

The proof of Theorem 1.1 uses the following non-univalent change-of-variable
formula; see [Sh, p. 398]. i is a measurable function ab andg: D — D is

analytic, then
1
fgow(z)lsa’(z)IZIOg(—> dAzngq,dA.
D |z D

Hered A is area measure dd andn,, is the Nevanlinna counting function, defined
by
1
Nyw)= > |og<_>, we D\ {p(0)}.
zep~Yw) Izl

We also recall Littlewood’s inequality, which asserts thatifD — D is analytic

then
1—we(0)

w — ¢(0)

forall w e D\ {¢(0)}. Moreover, ifg is an inner function, then equality holds for
all w outside a set of logarithmic capacity O; see [L] or [Sh].

Ny(w) < log

Proof of Theorem 1.1The change-of-variable formula shows that

7,(2)? 1 / lp'(z)? 1
2 log = dA(z7) = — —  __ _log—dA
/D<1— 222 297 A= | A ppe Y A%

Ny(w)
- /D = i 4

Becausey is an inner function, equality holds outside a set of area measure 0 in

Littlewood'’s inequality. ThusV, (w) is comparable to  |w|? off this set, and so

this last integral diverges. Hence the first integral above also diverges, which fin-

ishes the proof since l@fy/|z|) is comparable to & |z|2for 1/2 < |z] < 1. O

3. Construction of the Increasing Singular Function

In this section we construct the increasing singular funcifahat has the good
estimates for botia, f andA? f described in Section 1. The construction should
be compared to those by Kahane and Shapiro (in [K] and [Sha]) of monotone sin-
gular functions in the Zygmund clags$. While these constructions do produce
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the estimate fon\? f that we need, they do not provide the required estimate for
Ay f. Our construction uses ideas from both [K] and [Sha]. We begin with two
elementary lemmas.

3.1. LemMa. Suppose thafp;} is a sequence of positive real numbers such that
b; <3bjy, all j=J,
for some integer. Then there is a constaut such that
ibjﬂ < Cb,4", alln>1
j=1
Proof. Assume firstthat > J. If J < j < nthenb; < 3*Jp,, and so

J

bj4 < C+b, Y 3774 < Cb,4".
=1 j=J

After increasing the constant, this estimate will hold for < J as well. O

3.2. Lemma. Suppose that the functiop SatiSfieSfolr](t)zt_ldt = o0o. Then
there exists an increasing functignsuch that

1 2
lim p() = 0. p(4r) < —p@). and /Mdtzoo
1—0+ 2 0 t

Proof. Letag = 1, and by induction choosg, k > 1, so that

_ ak—1 t 2
O<ak§E and / n()dtzl.
4 i t

Now define
p() =lY~k+1, ap1<t=a.
It is easy to verify that this function has the stated properties. O

3.3. THEOREM. Letn be a nonnegative increasing function such that, for some
to > 0,

Ln(n)?
/ . dt =00 and n(dr) <2n@), 0<t <t
0

Let p be the associated function from Lemma 3.2. Then there exists an increasing
singular functionf defined o0, 2] and a positive constar@ such that, for
h >0,

|f(x +h) — 2f(x) + f(x — h)] < Cn(h)p()h (3.1)
and
f(x+h) — f(x) > CYph)h, (3.2)

provided[x — i, x + h] C [0, 27x].
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Proof. Following Shapiro, the required functighwill be presented as a limit of
functions{ f,,}, where each function is constructed from its predecessor using the
basic building block
sinx  sin2x

R
Note thatg, g’, andg” all vanish at 0 and 2, and further that

gx) =

gl <% 1E@I<1 lg"l <3
Let p be the function from Lemma 3.2 and define, for integers 0,

_ _ 2n(1)
b, =n4"Hp@™"™ and ¢, = .
N4 ") p( 7,
Note that if 4" < tg then
by =n(@™Mp@E ™) < 2p(d" H3pA Y = 3b,4a, (3.3)

and also

o) 47" 2
sz Z[n(4—n)p(4—n)]2 > IOg4Z / [77(1)/0([)] - co. (34)
n=0

By multiplying p by a constant, we may assume that= 1. Then, using that
andp are increasing and lim, o, p(¢) = 0, we have

1 > bn > bn+l g 0, bncn > bn+1cn+l g 0, and 2= o = Cp. (35)

Let fo(x) = x and, forn > 1, supposef,_1(x) has been defined so that it is
increasing and twice differentiable. Divide, [®r] into 4" equal intervalg 1, ; :
1<k <4"}oflengths, = 27 - 47", and setn, r = min{ f,_;(x) : x € I, i }.
Forx € I, ., we now define

fnfl(x) If my k < bncnv
Sa(x) = .
fnfl(x) + bnwn(x) if Mpk > bncnv
wherey, (x) = 47"g(4"x). Sincely, (x)| < 1 andc, > 2, it follows that f, is
increasing. Writings,, = f,, — f.—1, we see that
lun(x)| < b, 4" and |u,(x)| < 3b,4"/2. (3.6)
Thusf, = fo+ ) _, u; converges uniformly to a nondecreasing function, which
we denote byf. Also, by (3.3) we may apply Lemma 3.1 to obtain
n—1 3 .
i b4 < Cb,4",
a0l < ,; Sbi4 <
and so
my i < fn/_l(x) =< My k + Cbn4n5n < My k + Cbn (37)

for x € I,, . Throughout C will denote a constant whose value may change from
line to line but is independent of any parameters, such @msthe inequality of
(3.7). To prove thaff is singular, consider a pointfor which f'(r) exists and is
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positive. Writed, (G) = (G((k + 1)8,) — G(k$,))8,* for the difference quo-
tient of a functionG over the interval, ;. Thend, (f) = d, «(fu-1), Sinceu; is
zero at the endpoints df, , for all j > n. Thus, choosing (n) so thatt € I,, (),

f/(t) = nll—>moo dn,k(n)(f) = n“—>moo dn,k(n)(fn—l) = nli—>moo fy:_l(xn),
wherex,, € I, ku) is chosen to satisfy,, ) (fi—1) = f,_1(x.). By (3.7),

| faa(t) = fu_a(xn)] < Cby,

and since, — 0from (3.5), it follows that limf, (z) = f(¢). Also, sincef’(r) >
0, it follows from (3.7) that lim infm, ,) > 0. Recalling the definition of,, and
thatb,,c, — 0 from (3.5), we now see that, () = f,,_1(t) + b, ¥, (¢) for all n
sufficiently large. Since liny, (r) = f'(t) and f, (t) — f,_,(t) = b, (¢) for all
largen, the series

> bavr () = Y 27 b, (cog4"r) — cog2- 4"1))

is convergent. Bub_ b2 = oo from (3.4), and so this lacunary trigonometric
series diverges off a set of measure 0; see [Z, p. 203]. Fhug = 0 a.e. andf
is singular.

We now turn to the proofs of (3.1) and (3.2). We write

ARG (x) = G(x +h) — G(x)
and
A2G(x) = G(x 4+ h) — 2G(x) + G(x — h)

for the first and second differences of a functi@nNote that bounds for the sec-
ond difference areAiG(x)I < 4sudG]| and, whenG is twice differentiable,
|A2G(x)| < h?sup/G”|. Thus, using (3.6),

|A 1AL A2 ful X AGu] & 3 . 4
nILmOOTSZTSZbkmm 2h4 v

k=1

We choose to satisfy 47~! < h < 477 and estimate
hZ4"bk < 47PCby4” < Cb,,
from Lemma 3.1. Also,
= — <At 4TP < 4p,,
since the sequendé,} is decreasing. Thus
MZ—’f' < Ch, =Cn(4")p@4"") < Cn(h)p(h),

from the definition ofp,, the choice ofp, and the regularity properties gfand
p. This proves (3.1).
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To get a lower bound fon, f, we first show by induction that
[n(x) = byc, /2 (3.8)

for all x andn. Since fo(x) = x, bg < 1, andcg = 2, this is true forn = 0.
Now assume that (3.8) has been establishea forl, and considex € I, ;. If
mux < byc, then, by the induction hypothesis and (3.3)(x) = f,_;(x) >
bp_1cn—1/2 > b,c, /2, as required. The other possibility is tha} , > b,c,, in
which case

fn/(x) = f,ifl(x) + bnw,;(-x) = My — bn > bn(cn - 1) > bncn/zs

sincec, > 2. Thus (3.8) holds. Now let € (0, 1) andx be given, and choose
the integel to satisfy 491 < h/(47) < 47%. Recalling that; vanishes at the
endpoints off, 1, forall j > ¢ + 1, from (3.8) we have

Sk +1)8441) — fkdgr1) = fo((k +D)8g41) — fq(kdyi1) = bycydyv1/2.
Because: > 26,1, there are at leadt/(35,+1) terms in the sum below, and so

MS) g S D) = SR
h - h

Iy, kClx,x+h]

- bycq _ n(Dp479) - 3n(1)p(h).

-6 3 - 4
Thus (3.2) holds and the proof is complete. O

4. Proof of Theorem 1.2

Let f be a function on [p2x] with continuous periodic extension, and let

G = / 2 rnar

g el —z

be the Herglotz integral of. Before proving Theorem 1.2, we need a preliminary
result showing how an estimate of f gives an estimate on the growth 6f'.

It is well known thatf € A, (i.e., |A§1f| =o(h) as|h| — Q) ifand only if G' €

Bo, or equivalently(1 — |z1%)|G"(z)| = o(1) as|z| — 1; see [Z, p. 263]. Since

our goal is to construct@ e B!, and sincg1 — |z]%)|G”(z)| will provide an esti-

mate for just the numerator of (z), we need an estimate for the rate at which this
goes to zero. The following theorem gives the estimate we need. The proof em-
ploys the same ideas used in the classical casefthat, (cf. [Z, p. 109]). Note

that we assume in the theorem tlfas continuous, since there are nonmeasurable
functions f satisfyingA2 f = 0.

4.1. THEOREM. Suppose thab(¢) is positive and nondecreasing foe- 0, and
that w(4t) < 3w(t) for all ¢ sufficiently small. Iff is continuous and satisfies
|A? f| < w(h)h for h > 0, then there is a constar@ such that

(L - 12131G"(2)| < Co (L~ |z]?).
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Proof. LetU(r, 8) = RG(re'?), so that

U(r,0) = S@)P(r,t —0)dt,

-7

whereP(r, t) = (1 — r?)|e’ — r|~2 is the Poisson kernel. Noting that'(r, ) is
even int and integrates to 0, whe®’(r, t) represents the second derivative with
respect ta, we see that

b g 82 1 T .
Upg(r,0) = /_n f(t)@P(r,t—G)dt = 5/_,7 Aff(@)P (r,t)dr.

The hypothesized bound fa¥? f therefore gives

\Usor, 0)] < / "t P 1) d.
0

One can check tha®”(r,1) < 0forO <t < tandP”(r,t) > 0fort <t <
7, wheret = t(r) is asymptotic taql — r)/+/3 asr — 1; see [Z, p. 109]. The
assumptiono (47) < 3w(t) implies that

sup ()t t< sup w®)t ! <3w(r)r L.

T<t<m T<i<4r

Using this and the assumption thatr) is increasing, we derive
’ 7 (,()('[) T 2p/
|Ugg (1, 0)| < (1) —tP"(r,t)dt + 3—— t“P"(r,t)dt.
0 T T

Integrating by parts, we have
c

T
—/ tP'(r,t)dt = —tP'(r,7) + P(r,7) — P(r,0) < —1P'(r, 1) < —.
0 T

Similarly, [ t?P"(r, t)dt < C, and so
|Ugo(r, 0)] < C(t)/T < C0(1—71)/(1—r),

sincert is asymptotic tq1 — r)/+/3 andw(¢) is increasing.
Now setp = (1 +r)/2, wherer = |z|, and letH = Ggyy. Then

g it

pe’ +z

H(z) =/ ——Upo(p, D) dr.
_g pett —z

Differentiating with respect ta yields
, T U L0+t
|H(Z)|§2/ 2| 06 (0 ) .
_x P%>— 2prCOSt +r
woll—p) [T dt
dt.
A-p) J_, p2—2prcost +r?

This last integral is equal to/2/ (p? — r?) and so, using thab(¢) is increasing,
we have the estimate

|H'(2)] < Co(1—r)/(1—r)%
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IntegratingH’ to getH = Gyy, We now see that
"Tw@d—t t
Gon () < 1Gos @ +C [ 2220 4y < cf °W 4.
0 (1 ) 1-r t
Choosingp sothat4”! <1—r <477 and using Lemma 3.1,

< Cz4kw(4 N < CHlw@E?) < CM. (4.1)
=0 1-r)
Putting these estimates together, we obtain
Gon(o)l < c2E—0).
1-r)

A computation shows tha¥s, (z) = —zG'(z) — z°G"(z). Also, G’ € B, since the
assumptions ow imply it is bounded and sg¢ € A,. Also w(1) < 3w(475),
which implies 1< Co(¢)t~1, and so

1 4 1 1-—
c/ —tgcf ©® 4 < c2d=n
| |2 1—r2 t 1—r2 t2 (1 - r)

where (4.1) was used to derive the last inequality. Thus
w(l—r)
1-r)
for 1/2 < |z| < 1, and this completes the proof of Theorem 4.1. O

IG'(2)| < Clog

1G"(2)] < 121G (@] + |21 ?|Gee(2)| < C

Proof of Theorem 1.2Let u be the positive singular measure on 2&] with
indefinite integral equal to the singular functigrfrom Theorem 3.3, and let

F(z)z/ ¢ +Zd ()
0

ell

be the Herglotz integral gi. Recall from (1.2) that the associated singular inner
functiong(z) = exp(—F(z)) then satisfies

1L —1zP)|F'(2)]
RF(2) '
Integration by parts shows thE(z) =izG'(z) — 27K, where

Ty(2) < (4.2)

G(z)=f - +Z(f(t)+Kt)dt
0

We setk = (27)~X(f(0) — f(2r)), so that the periodic extension ¢tr) + Kt is
continuous and Theorem 4.1 can be applied. TNEfY (1) + Kt] = A2 f(t), and
so the bound&%f < Cp(h)n(h)h from Theorem 3.3 along with Theorem 4.1 (ap-
plied with w () = Cp(¢)n(¢)) gives an upper bound f¢6”(z)|. Since|G'(z)| <
|G'(0)| + |zl maX{ |G"(w)] : lw| < |z| }, it follows that
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A= 1zPIF @] < A= 1z2PzG" @] + 1 - z1)IG' ()]
<Cnl—zPHpA - Iz? (4.3)
for all |z| sufficiently close to 1.
Letz = |z|e'® whered € [0, 27r), and assume first thati2¢ [0, 0 + (1 — |z|2)).

The denominator of the upper bound fgyin (4.2) is just the Poisson—Stieltjes
integral ofx, and so an estimate for it is

o _ o 1- |22 -1 2y-1 2
RF(z) = mdﬂ(ﬂic A =1zl "ul8,0 + (1 —|z|9)]
o _

= C71(1 — |Z|2)71A(1_|z|2)f(9)
> Clp(1- 127, (4.4)

where the estimate fak,, f from Theorem 3.3 was used for the last inequality. If
2m €[6,60 + (1— |z]?) thenu[6, 0 + (1 — [z]?)] = Au, f(6) + Ap, £(0), where

hi+ hy = 1 — |z|2 Thus maXha, ho} > (1 — |z/%)/2, and it follows that (4.4)
holds in this case as well. Inequalities (4.2), (4.3), and (4.4) now combine to yield

7,(2) < Cn(L— |z,
and the proof is complete. O
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