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A fundamental problem that arises in dynamical systems in the study of the local
behavior of a diffeomorphism or flow is the linearizability of the system near a
fixed point. This is the question of whether there exists a local change of variable
converting the system to a linear one. Grobman [G1; G2] and Hartman [Ha2; Ha3]
proved that there is always a linearizing change of variable that is a homeomor-
phism if the fixed point is hyperbolic. A fixed point of a diffeomorphism (resp.
flow) is hyperbolicif the derivative at the point has no eigenvalues on the unit cir-
cle (resp. imaginary axis). Knowing that the change of variable is merely continu-
ous, however, is not always satisfactory. Itis natural, therefore, to ask how smooth
this change of variable can be.

The question of whether there exists a linearizing change of variable of a cer-
tain smoothness goes back at least to Poincaré [P]; see [S1] for the analytic case.
Sternberg [S1; S2] proved that, in general, the existence of a smooth linearization
depends upon an absence of “resonance” in the eigenvalues of the derivative at
the fixed point. This work has been extended by Belitskii [B1; B2], Sell [Se], and
others.

If the fixed point is not hyperbolic, then except in trivial cases the system is not
linearizable. However, Takens [T] proved that, in this case, if one decomposes the
derivative at the fixed point into its center part (the part corresponding to eigenval-
ues with modulus 1) and its hyperbolic part then, if the eigenvalues of the hyper-
bolic part satisfy the same Sternberg nonresonance conditions, there will exist a
smoothpartial linearization. For a diffeomorphism this is a local change of vari-
able in which the origin is the fixed point and the system has the f§rm) —

[¢(&), B:x], where all eigenvalues @Dg)o have modulus 1 and; is linear and
hyperbolic for eacl§.

In [M1], a characterization of smooth linearizability is given that is completely
different in flavor from the Sternberg eigenvalue conditions. There it is shown
that, for the special case of hyperbolic attracting or repelling fixed points, smooth
linearizability is equivalent to the existence/smoothness of certain invariant sub-
manifolds. In this paper we extend those results to the case where there are eigen-
values on the unit circle. That s, the derivative consists of a nontrivial center part,
together with either an attracting or a repelling part. These will be cphetially
attracting or partially repelling fixed points, respectively. We show that in this
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case the existence of a smooth partial linearization, in the manner of Takens, fol-
lows from the existence of smooth invariant submanifolds analogous to those of
the hyperbolic case. A corollary is that any partially attracting or repelling fixed
point of aC? diffeomorphism can b€ partially linearized. This is the analog for
partially hyperbolic fixed points of a result of Hartman [Hal], and is not implied
by the work of Takens.

By the local nature of the question, we can take the fixed point to be the ori-
gin in R". Therefore, letf be a local diffeomorphism fixing @ R", which is at
leastC”. Throughout this paper we assume the origin is a partially attracting fixed
point. The repelling case can be treated by takjiig. Consequently, let 1=
Ao > - -+ > A, be the distinct moduli of the eigenvalues(@¥f),. To each split-
ting of the spectrum{ig, ..., A;} > {A;y1, ..., An}, there exist complementary,
generalized eigenspaces fdf)o. These are properly referred to as the pseudo-
unstable and strong stable subspaces, respectively. However, as there actually are
no unstable eigenvalues (those with modulus greater than 1), we will refer to the
pseudo-unstable subspace for a given splitting as the center/weak-stable subspace,
or center/weak subspace for short.

A general result is that, for the nonlinear functigrthere are nonlinear analogs
of these subspaces: the center/weak and strong stable manifolds. Locally these
are embedded disks tangent to the corresponding subspaces at zero (and so can
be given as graphs over these subspaces) that are germwise invariantfunder
Moreover, under iteration by, points in these invariant submanifolds exhibit the
same asymptotic rates of expansion/contraction as vectors in the corresponding
subspaces do under the linear map.

By the pseudo-stable manifold theorem [HPS], the strong stable manifold is
unique and as smooth as the diffeomorphism. The center/weak manifolds, how-
ever, are not unique. In this case, the pseudo-stable manifold theorem guarantees
the existence of center/weak manifolds of at least a minimum smoothness which
depends upon the gap between the two pieces of the spectrum. For the splitting
as above, the center/weak manifold will be at leasprovidedi] > A;; 1. How-
ever, this does not imply that there might not exist center/weak manifolds that are
more smooth than predicted. We say tlidtas a complete set @f " center/weak
manifoldsif, to every such splitting of the spectrum @ f)o, there exists at least
one center/weak manifold that@®". We will prove that the existence of a partial
linearization is, up to a slight loss of differentiability, equivalent to the existence
of a complete set of center/weak manifolds.

Throughout this paper we will follow the common practice whereby, for any real
number > 0, a function is said to bef classC" if it possesses continuous deriva-
tives up to orderf] and its |-]th-order derivative igr)-Holder. Heref]and(r) de-
note the integer and fractional parts-ofespectively. The case whenthe top deriva-
tive is 1-Holder or Lipschitz does not fit this well; this case is writte@'45-P (k e
N), wherer = k+Lip is considered distinct (and distinguishable) from k + 1.

Tueorem 1. Assumé e R” is a partially attracting fixed point for £"+2 (1 <
r < oo) germ of a diffeomorphisnf. If f has aC” partial linearization, thenf
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has a complete set af " center/weak manifolds. Converselyfihas a complete
set of C” center/weak manifolds, thefihas aC”~* partial linearization for any
e > 0.

This theorem has its analog for flows. A partial linearization for a flow is a
local change of variable converting the original vector field to one of the form
[Y (&), A:x], where(DY)q has only pure imaginary eigenvalues and all eigenval-
ues ofA; have nonzero real part. This is equivalent to the change of variable con-
verting the original flow to one of the form' (£, x) = [¢'(§), Bix], whereyp' has

a center at the origin ans is hyperbolic forr # 0. (Here B, = B(t, &) is not

the power of a matrix, but rather the solution of the nonautonomous @DE;
Ayie)B OnL(R", R").)

TuEOREM 2. Assumé e R” is a partially attracting singularity for aC"*+2 (1 <
r < oo) germ of a vector fielX. If the local flow ofX has aC” partial lineariza-
tion, thenX has a complete set of " center/weak manifolds. ConverselyXif
has a complete set af " center/weak manifolds, then the local flowXohas a
C’ ¢ partial linearization for anys > 0.

CoroLLARY 1. A partially attracting fixed point of & 2*-P diffeomorphism or
flow can beC? partially linearized.

Two significant differences between the preceding results and those for purely at-
tracting fixed points is an inherent loss of differentiability for this case, and a lack

of uniqueness. For an attracting fixed point, it is shown in [M1] that the conjugacy

is uniquely determined by where it sends the weak stable eigenspaces (provided it
is at leasC'*¢, and assuming its derivative is the identity at the origin). The pres-
ence of a center direction in general destroys this uniqueness because the structure
in a neighborhood of the fixed point may depend upon properties of the system far
away from the point. However, the root source of the uniqueness is still there, and
this is enough to obtain Theorem 2 from Theorem 1. (Itis also possible to recover
this uniqueness if one assumes that the fixed point is topologically attracting.)

REMARK. There is an omission in the statement of uniqueness in Theorem 1 of
[M1]. This should read: “Moreover, if > 1, and the weak unstable manifolds
are nestedthe givenC” conjugacy is the only conjugacy betwegmnd its linear

part which is . ...” (This theorem is stated for a repelling instead of an attracting
fixed point.) A similar correction must be made to Theorem 2 of [M1].

A more fundamental difference is that the differentiability obtained for the
conjugacy here is arbitrarily close to, but not equal to, the differentiability of
the center/weak manifolds. This appears to be unavoidable. Although the loss
of differentiability, as measured by, can be chosen to be as small as desired,
the neighborhood of the origin on which the partial linearization holds shrinks to
zero ag — 0. (The loss of differentiability actually only pertains to the smooth-
ness in the center direction. The smoothness of the conjugacy in the complimen-
tary direction is the same as the center/weak manifolds. See the remark near the
beginning of the proof of Proposition 2.)
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Although they differ considerably in the details, the underlying structure of the
proof of Theorem 1 is the same as in [M1]. We start by finding a strong sta-
ble foliation for each strong versus center/weak stable splitting of the spectrum
of (Df)o. A strong stable foliatiorfor a particular splitting is an invariant foli-
ation on a neighborhood of the fixed point having the strong stable manifold as
a leaf (and hence is generally “parallel” to the strong stable subspace). This is
handled by Proposition 1. The presence of the strong stable foliations will allow
us to choose coordinates in whighis “triangular”. This means that, relative to
these coordinates, tlith component off will depend only on the firstvariables.
Oncey is in this form, we can inductively apply Proposition 2 to obtain the partial
linearization.

ProposiTION 1. Let f: R” — R be aC’"*? diffeomorphism with the origin as a
partially attracting fixed point. To each strong versus center/weak stable splitting
of the spectrum of Df)o, there exists aC’+! strong stable foliation of a neigh-
borhood of 0. Moreover, in each case the strong stable foliation can be chosen
so that the collection of strong stable foliations is nested. That is, the leaves of a
lower-dimensional foliation will be subordinate toe., foliate the leaves of the
higher-dimensional foliations.

If £ is the timel map of the local flow of &@"*2 vector field with a singular-
ity at the origin, then in addition the strong stable foliations can be chosen to be
invariant under the local flow.

For Proposition 2 we assume th@f ), has a three-way invariant splitting® &

EY & E*. The labels are intended to indicatenter, veak stable, andi®ng sta-

ble subspaces. These will correspond to blockdxf), which have eigenvalues,
respectively: on the unit circle; inside the unit circle but of intermediate size; and
of only one modulus that is smaller than all others. Given a matyiwe will use

|sp(L)| to denote the set of moduli of the eigenvalued.ofand a comparison of

that set to a real number means that the comparison holds for each element of the
set.

ProrosITION 2. Let f be a germ of a€"*1(1 < r < o0) diffeomorphism fixing
0 € R". Suppose, relative to some splittidy & E¥ & E*, that f has the form

f(‘i:v X, y) = [¢(€)7 fl(";:s )C), fZ(Ss X, y)] and (Df)o is block dia.gona.l,

U
(Df)o =1|: A :|
B

such that|sp(U)| = 1, |sp(B)| = B < 1, and8 < [sp(A)| < L. If f has aC”
center/weak stable manifold tangent6 & E™, then for anys < r there exists
a C* local diffeomorphisnG conjugatingf to (&, x, y) = [¢(§), fi(&, x), Bey]
for someC” function& — B; € L(E*, E*).

Let ¢’ be a local flow of aC”+* vector field that has a singularity @t e R”.
Supposey’(&. x. y) = [¢'(€), Wi(. x). Y4(&. x, y)]. and thatf := y* satisfies
the foregoing hypotheses, where the center/weak stable manifold is invariant un-
der ¢'. Then, for anys < r, there is aC* local diffeomorphismG such that
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(Goy' o GHE x,y) = [¢'(E), ¥iE, x), B;y] near 0 for someC" function
B{:R x E¢ — L(E*, E*). '

Moreover, in both case& can be chosen so that it is the identity on the first
two componentghat is,G (&, x, y) = [&, x, G2(&, x, y)].

All of the work in proving Theorem 1 is contained in Proposition 2—which we
leave for last. Proposition 1 is a relatively simple application of@tiesection
theorem [HPS; Sh].

Proof of Proposition 1.This proof applies more naturally to a partially repelling
fixed point, so replac¢ with its inverse. Lef" := (Df)o, and define := f —T.
Given anys > 0, we can assume, by cuttingoff with a smooth bump function
in a sufficiently small neighborhood of hat f is defined on all oRR”, thatr has
support in a small neighborhood aboutedd thatl|(Dz),|| < ¢ forall p. If fis
the time-1 map for the local flow of a vector field, we perform this modification
instead on the vector field itself. In this wgywill have the same properties, but
in addition it will still be the time-1 map of a flow.

Let E<” be the center/weak unstable plane &t the strong unstable plane of
T associated to some splitting,, LI o, of the spectrum of, where 1< |o,,,| <
|owu|. Label the blocks of Df), relative toE** & E<* as follows:

. Ax BX
(Df); = [c,c N }
At x = 0, we havel' = Ay@ No. Since the eigenvalues dfy have moduli strictly
greater than those dfy, which are themselves at least 1 in modulus, we can
choosaxr > v > 1 as well as adapted norms @¥“, E< such that| Ng|| < v <
a < [|AgtI7; moreover, for any > 0, we can choose these so thiaf, || <
1+ 8. Choosec with v/ < k < 1, and fixs so small thak (1 + 8)" ! < 1.

For ¢ sufficiently small, we will have|A Y| < a7%, [Nl < v, INJY] <
146, and(Df ™Y, < 1+ 6 for all x. Let Ly(E**, E”) be the unit ball in
L(E"*, E"), and letP: R” — Ly(E*, E") be a plane field ofR". The im-
age of this plane field undeéDf) will be the plane fieldP defined byP;,, =
(Cy + N, P,)(A, + B, P,)*. Therefore, an invariant plane field fobf) corre-
sponds to an invariant section of the functiénfromR” x L,(E"", E<*) to itself,
defined byF(x, P) :=[f(x), (Cx + N, P)(A, + B, P)~1]. By Proposition 4.5 of
[HP], if ¢ is sufficiently small therF is well-defined and, moreover, it contracts
fibers of the disk bundI€l: R” x Li(E", E*) - R" byx < 1.

Becausef is C’+2, (Df) is C’*! and soF is C"*1. By the C" section the-
orem, F has a unigue invariant section, which is continuous. Moreover, the in-
variant section will bec"** providedx Lip(f~1)"*! < 1. However, Lip(f 1) =
sup. (Df Y|l < 1+ 8. Therefore,(Df) has a unique invariant plane fiell
such thatP, € L1(E**, E<*) for all x, and it isC"*1.

At this point we invoke general stable manifold theory. Sirfces C? close
to T andR” is a p-pseudo hyperbolic set f&f when|o.,| < p < |o,ul, it fol-
lows that ife is sufficiently small thefR” will be a p-pseudo hyperbolic set fgf.
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Therefore, by the pseudo-stable manifold theorem, through each point there exists
a unique strong unstable manifold thatds*2. Since these are unique, the col-
lection of strong unstable manifolds forms a foliationRsf by C"*2 leaves. The
tangent plane field to this foliation is continuous, clos&t¥, and invariant un-
der(Df). SinceP is the only invariant plane field close £, the tangent plane

field is P. However, P is then obviously integrable. Therefore, by Froebenius’
theorem, the collection of strong unstable manifolds is in fact & foliation.

Finally, this can be done for each weak unstable versus strong unstable split-
ting. In each case there will be a minimumnmeeded to make it work, which will
be achieved by cutting off in a sufficiently small neighborhood of the origin. If
we decide in advance how small this neighborhood must be for each of the split-
tings, then we can do this once so that the same modifiedn be used for each
case. In this way, the collection of strong unstable foliations that we obtain are all
invariant foliations for the same function. Because the modified function agrees
with the original diffeomorphism near the origin, these foliations are locally in-
variant under the original. Now suppose that the original diffeomorphism was
the time-1 map of a flow. By construction, the modifigds the time-1 map of
the flowe’ of the modified vector field. The strong unstable manifolds for a flow
are the same as for its time-1 map. Therefore, these foliations are invariant un-
der¢’. Since the modified vector field agrees with the original vector field near
the origin,¢’ agrees with the original flow near the origin. Consequently, these
foliations are locally invariant under the original flow.

We are left with showing that these foliations can be chosen so they are nested. In
fact, as constructed, they already are. From the pseudo-stable manifold theorem,
the strong unstable manifolds for a splitting,,| < p < |o,| are the equivalence
classes of the relatiaty, ~ x, if and only if lim,, .o p" || f " (x1) — f "(x2)| =
0. Given two splittings withp; < p», since the associated strong unstable mani-
folds are for the samég, the equivalence classes determinecbwvill clearly be
subsets of those fqr;. Consequently, the foliations are nested. O

Proof of Theorem 1The significant part of this proof is the second half—the
construction of a partial linearization from a complete set of center/weak mani-
folds. The first half, that & partial linearization implies a complete set©f
center/weak manifolds, is just another simple application ofCtheection the-
orem. Since a partial linearization will take the invariant manifolds of one sys-
tem to those of another, it is sufficient to show tlfahas a complete set @f”
center/weak manifolds after applying the partial linearization. Therefore, assume
f(& x) = (¢(&), Bex) is a function fromR¢ x R™ into itself, where the spectrum
of (Dg)g is on the unit circle andy is hyperbolic. LefR* x R* = R™ be the
weak stable and strong stable subspace®,dbr some splitting of its spectrum.
We want to show that has aC” center/weak manifold tangent Ry x R*.

Ifwe viewR¢ x R™ as a vector bundle ov&¢, thenf is a bundle map. Suppose,
for eacht € R¢, we have subspacéqé) ¢ R™ of dimensionw such thatV/ (0) =
R* x {0} andV(¢(£)) = B:V(&). The union of these subspaces would then be a
surface invariant undef, tangent tdR¢ x R at 0, and as smooth &@& Therefore,
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it will be enough to show there is@" section of the bundI&¢ x L(R", R*) —

R¢ that is invariant under the natural action HfWe now proceed as in the proof

of Proposition 1. Becausk contractsR* more strongly thafiR®, the natural ac-
tion of f is a fiber contraction olR“ x L(R", R*) by somex < 1. The base map

is ¢, and since all eigenvalues 6Dy)o have modulus 1, we can make kKip?)

as close to unity as we wish by restricting to a sufficiently small neighborhood of
the origin. In particular, since < oo, we can make Lip(¢~1)" < 1. Conse-
quently, we can apply th€” section theorem and conclude thaexists and is as
smooth asf.

We can now address the major part of the proof. Letlg > --- > A,
be the distinct moduli of eigenvalues @Df)o. Let E; be the invariant subspace
of (Df)o corresponding to eigenvalues with modulys Relative to coordinates
(x0, .-, Xm) EEg®---®E,, =R", (Df)ois block diagonal and; is the mod-
ulus of the eigenvalues of bloek B;. Let F; .= E; .1 ® ---® E,, (i < m). By
Proposition 1 there exist a total of distinct C"** strong stable foliations of de-
creasing dimension, tangent to the pla#gs. . ., F,,_; at 0, and these foliations
are nested.

Sincef: E;1 ® F1 — E; & F; has an invariant foliation whose leaf through
the origin is tangent td;, we can choose a foliation chart taking the leaves to
the vertical planes, that is, the family of planes parallefio F; further decom-
poses a1 = E, @ F», and there is a second invariant foliation that is subordi-
nate to the first and tangent . Thus, with respect to the first foliation chart, the
second foliation will have leaves that are graphs dueand are restricted to sin-
gle E; & F, planes. Consequently, the second foliation can be taken to the fam-
ily of planes parallel taF, by a change of coordinates that moves points only in
the E; direction. This means that the planes parallefto= E, & F», the origi-
nal foliation, are taken to themselves, and so this is a common foliation chart for
both foliations. Continuing in this way from the highest-dimensional foliations to
the lowest, we can construct a common foliation chart for all of the strong stable
foliations, which isC"*2.

Relative to this common foliation charf, will be C"** and for eacti will leave
the family of planes parallel tB; invariant. Sincethese are the sgbsy, . . ., x;) =
constany, this implies that, for each the componentgy, . . ., f; cannot depend
upon (x;41, . - ., X,»). This holds for everyi, and so we havef(xg, ..., x,) =
[fo(x0), fa(x0, x1), - - -, fm(x0, - - -, xm)]. Since the invariant foliations were al-
ready tangent to the subspacgs this can be done without changin@®f)o.
Therefore(D,, fi)o = Bi.

BecauseE is the generalized eigenspace for eigenvalues of modulus 1, which
will be handled differently from the other subspaces, we distinguish this variable
by writing xo =: & and denotingfy by ¢, so fo(xo) = ¢(£). By induction we
prove that there is @"~¢ partial linearization forf. Suppose that for some> 1
there is aC”* conjugacyG from f to f, where

f,‘\(ga X1, .. ~vxm)
== [(P(f), fl(g’ XJ_), ceey fI(Sa X1y oo vy xi)a Bi+1(€)xi+1a ceey Bm(é)xm]a
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and whereB;(€) is aC" function fromEq to L(E;, E;) with B;(0) = B;. In addi-
tion, we assumé is the identity on the first + 1 components, that i€ (x) =
(x0, . -+ Xi, 8ix1(x), . . ., &u(x)). The base case for the inductiorni is- m, where
f = f and is vacuously true. We want to show there is a subseduierit
conjugacyG that convertsf; (€, x1, . . ., x;) to B;(§)x; while leaving the other
components unchanged.

Letx := (x1,...,x;-1), ¥y := x;, andz := (x;11, . . ., X ). Depending on, ei-
therx or z may span the zero subspace. Recollect the componefitsmthat, rel-
ative to these new variableg(&, x, y, z) = [@(&), f1(€, x), f2(€, x, ), B(&)z].
We then have thap, f1, f> areC"*1, (Dg)o has eigenvalues on the unit circle,
(Dyfg)o has eigenvalues of only a single modulgis= A; < 1, and the moduli
of the eigenvalues c(fDxfl)o are in{Ay, ..., A;_1}, which are strictly between 1
andg.

By assumption we have a complete setéfcenter/weak manifolds fof, in-
cluding aC” center/weak manifold tangentfty & - - - @ E;_;, that is, the span
of (¢, x). This is the graph of & functioni: Eq® --- ® E;_1 — F;. In other
words, it has the formi(&, x, hz (&, x), h3(&, x))}, wherehy, hz areC”. G takes
this to aC’~¢ center/weak manifold foif. However, G is the identity on the
first three terms. Consequently, the center/weak manifolg fcan be written as
{(&, x, ho(&, x), fzg(g x))}, whereh; is unchanged and so is sill".

Because the first three componentsfodo not depend upon, the graph of
hy alone,{(&, x, ha(&, x))}, must be invariant underpf§), fl(g x), fz(g x, n].
Hence, the restricted system hasCé center/weak manifold tangent to the
span of(&, x) and so satisfies the hypotheses of Proposition 2. From this we
can conclude that there existsCd~* conjugacy from the restricted system to
[p®), fl(g, x), B(&)y]. Moreover, this conjugacy has the foii x, g (&, x, y)).
SettingG (&, x, v, z2) = (&, x, g(&, x, ¥), z) gives us the desired conjugacy for the
full system. G o G now satisfies the induction hypothesesiferl. Consequently,
we can continue to linearizgterm by term to get &”—* partial linearization. O

Proof of Theorem 2Let be the local flow ofX, and letf = y* be the time-1

map ofy’. The center/weak subspaces {&X)q and(Df), agree, and a sub-
manifold that is invariant undeg’ will be invariant underf. Therefore,f has a
complete set o€ " center/weak manifolds. The proof now proceeds the same as
Theorem 1, except upon applying Proposition 2, we use that the conjugacy holds
for the full flow. O

Proof of Corollary 1. As observed earlier, there will be guaranteed a center/weak
manifold that isC* providedA} > A;;1. Sincei; > 1,11 for eachi, there will
exist somex > 0 such that&*“ > MA;y1 foralli. Therefore, there is a complete set
of C1+® center/weak manifolds. Consequentlyfifs C3+4 for somes (0 < § <

«), we can apply Theorem 1 with= 1 + § and conclude that there is@*+3—¢
partial linearization, and so in particular there i€ apartial linearization. There-
fore, the corollary holds for any that isC* with s > 3. However, we can get
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away withs = 2 + Lip by using a slightly stronger version of Proposition 1. Itis
shown in [M2] that the loss in differentiability between the diffeomorphism and
the strong stable foliation is strictly less thanClonsequently, iff is C>*-P, we

can find strong stable foliations that aré*? for somes > 0. This means that in
the proof of Theorem 1 we are applying Proposition 2 to a system th@ti§,
wherer = 1+ 6. This is effectively the same as starting with a system that is
C3 and so there exists@' partial linearization. O

We are left with proving Proposition 2.

Proof of Proposition 2.We make the following notational conventions. Given a
subspaceE C R”", E(¢) will be the closed ball of radius about O E. When

we wish to group the subspacgs, EY, E*, we will useE* := E¢ & E" and

E™ = E™ @ E*. We denote points in these subspaces:by= (¢, x) € E¥

andv = (x,y) € E**, and points inR"” by p. Hence,p = (u,y) = (§£,v) =

(¢, x, y). The partial derivatives corresponding to these subspaces will be denoted
D¢, Dy, Dy, . ... In the same vein, when regrouping the componentg’ afe

will use fi(u) := [p(§), f1(§, v)] and (&, v) = [f1(§, x), f2(, x, y)]. SO f =
pOu=f1® f2.

For 0 < 0 < Lip, Hy[-] will denote thef-Hdlder constant of-), and we will
useHj and Hy to denote the (uniformd-Hdlder constant with respect toand
v, respectively. More precisely, for a functianon E< @ E™*, taking values in
some Banach space, we define

1T v) — T2 V)]
Hi[r] =
Tl = S s

where the supremums are over the domain, @nd similarly forH,'. Finally, we
will use || - ||¢r to denote the&” norm on a space af” functions:

3

I Fller = max{ sup|(D'f), | :i =0,.. .,k} (k eN);
p

I £ llcrso := max{|| fllcx, Ho[(D*H)]} (0 < 6 < Lip).

We need to show that, given& center/weak manifold, there exist€é& con-
jugacy for anys < r. Therefore, fixs < r. There are two possibilities. Ifis suffi-
ciently close ta, then either is not an integer and] < s < r, orr is an integer
andr — 1 < s < r. In either case, we can assume that not an integer. There-
fore, sets =: k + 0, wherek e Nand O< 6 < Lip, and choosé with 0 < § <
r — s and such tha# + § < Lip.

Becauser < oo, there is a sufficiently small neighborhood of 0 on whith
has a center manifold as smooth A3Ne can therefore assume, without loss of
generality, thaiE“ is invariant. The center/weak manifold gfis tangent tag <
and so is locally the graph of@" function: E<*(d) — E*. If we make an ini-
tial change of variable by (u, y) = [u,y — h(u)], thenH o f o H Y(u, y) =
[ fi(u), fo(u, y + h(u)) — h o fi(u)] leavesE<” invariant. Althoughf e C"*1,
his only C" and soH o f o H™1is only C". On the other handf; has not
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changed and so is still”*. The partial with respect te of the second compo-
nent is(Dy f2) y-1(,y)» Which is the composition of " functions, and so i€"".
Therefore, the second componentist! with respect toy. Moreover, since the
graph ofh is tangent toE” at O, (Dh)o = 0 and so(DH)o = I. Therefore,
D(H o f o H Yo = (Df)o.

A priori, E€ may no longer be invariant undéf o f o H~1. However, the fam-
ily of planes parallel tag* is an invariant foliation forf, and E¢ is an invariant
manifold. Therefore, the plang® & E* is invariant underf. Since bothE< @ E*
and the graph of are invariant undey, their intersection is invariant, and their
intersection is precisely the set that is takerktoby H. Therefore, even though
H may not preservé , it takes another invariant set # and soE* is still in-
variant underH o f o H~1. Consequently, bottk¢ and E* are invariant under
the new system.

Having made these preliminary changes, we will again fige denote the
modified diffeomorphism. Therefore, we now have

f(gv-x’ )’) = [(P(é;')’ fl(éa x)’ fZ(E’x’ )’)]7

whereg, f1 areC’+! and wheref, is C" and isC’"*! in y. Moreover, bothE¢
andE<” are invariant undey, which implies f>(&, x, 0) = 0= f1(§, 0).

Let o := max|sp(4)|, and fixx with o’ < «¥ < 1. Fix ¢ > 0 sufficiently
small that(8 + &)(B~ 1 + &)(1+ )* (o + ¢)° < k < 1. Since|sp(B)| = B and
Isp(U)| = 1, we can make a linear change of variable converting?, andU to
reale-Jordan form so thaiB|| < B+ ¢, |B7Y < B~ 1 +¢, ||A]| < @ + ¢, and
IU|l < 1+ ¢. Take the norm o< @ E* & E* to be the box normi| (&, x, y)|| :=
max{|l&]l, x|, IIy]l}. Let O be the orthogonal matrix that is the real Jordan form
of U minus the off-diagonal entries. Then we can asslibie- O] < ¢.

Write f = (Df)o + t. By cuttingr off with a smooth bump function outside a
small neighborhood of ,0ne can assume thatis defined on all oR” and is lin-
ear outside a small ball; given amy > 0, we can also assume sjgDz),|l <
g’. SinceEc and E<* are invariant under bottD f)q andt, the newf will still
leave these invariant and will be as smooth as before'. iff small enough, then
I(D@), |l < 1+e. [(DfD),]l < @+e, and|(Df2),] < B+e forall p. Moreover,
the newf will still be invertible and||D(f 1), < B~ +«.

ReEMARK. The size of the ball on which the nefvagrees with the old is depen-
dent upone, and shrinks as — 0. Moreover,¢ is a function of§, the loss of
differentiability, ands — 0 ass — 0. Therefore, as observed in the comments
after the statement of Corollary 1, in the absence of additional information (e.g.,
the fixed point is topologically attracting), the neighborhood on which the partial
linearization is guaranteed to exist disappears as 0.

It will be convenient to work on a compact invariant neighborhood, &dwe
make one last modification tg. On E¢ we havep (&) = U¢ outsideE“(¢) for
some smalt. BetweenE“(r) and E€(1), smoothly interpolate betwedih and O
so thatp(§) = O& near||&|| = 1. Since||U — O|| can be made as small as we
wish, we can still assumg(Dz),| < & for all p. BecauseO is an isometry,
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O(E“(1)) = E(1). Moreover,|[(Df1),ll < a+e < land|[(Df2),ll < B +e <
1. Therefore,f mapsR”(1) into itself.

With these preliminary modifications, we now have a functfos: (¢, f1, f2)
that satisfies the following. It is equal (aftecCd change of variable) to our origi-
nal f near the originf[R"(1)] c R"(1), andE€, E“* are invariant. Botly and
frareC™t, frisCmandisC™*iny, and|(Df), — (Df)oll < & for all p.

We are finally ready to construé. Define B: := (D, f2),0,0- Since f> is
C*tiny, B: isC". DefineF(&, x, y) = [¢(§), fi(§, x), Bsy]. We are looking
for a conjugacy betweefi and F—that is, a diffeomorphisn¥ such thatF o G =
G o f. Moreover, we wan@ to have the fornG (¢, x, y) = [&, x, y + g(&, x, y)].
Writing this out, we haveB: (y + g) = f2 + g o f. If we definep := f, — B:y,
this can be written ag = Bglg of+ Bglp =: ®(g). Therefore, a fixed point of
@ would give us the desired conjugacy.

Observe thatb is an affine map, and therefore we look for a fixed point in
a function space that is matchedoFrom its definition,p (¢, x, y) is C", and
C™*in y. Moreover,p(£, x,0) = f2(£,x,0) — B:(0) = 0, and(Dyp) ¢ 0,00 =
(Dy f)@0,0 — B: = 0. LetG be the set oC* functionsg : R"(1) — E* such that
g(&, x,y)is C**1in y, and for whichg(&, x,0) = 0 and(D,g)¢.0,0) = 0. We
claim ® mapsg into itself.

Becauses < r, p € G. Moreover, for anyg € G, Bglg will again be ingG.
Therefore, to show thaf is invariant under® we need only show o f € G
for any g € G. Clearly, g o f is C*; since, inf, only f, depends ory, it fol-
lows thatDy[g o fle,x,y) = (Dy8)se.x,y)(Dy ) x.y), Where both terms are at
leastC*. Hence,g o f is C**1in y. Since f(£,0,0) = (p(£), 0, 0), we have
(Dyg)se00 = 0and soDy[g o flo0,0 = O. Likewise, f(u,0) = (fi(u), 0).
Therefore(go f)(u, 0) = g(f1(u), 0) = 0. Consequentlyg o f € G, from which
it follows thatg is invariant undeb.

We want a fixed point of in G, and to exhibit this fixed point we convegtto
another form. Defind,: G — C°[R"(1), L(E*, E)] by 9,(g) := (D,g), and
let D be the image of underd,. C*[R"(1), L(E*, E*)] is a Banach space under
the C* norm. We claim thad, is a bijection onto a closed subspace.

LEmma l. 9,: G — Disone-to-one, an® C C*[R"(1), L(E*, E*)] isaclosed
subspace. Henc@& is a Banach space under tlt&¢' norm.

Proof. 9, is linear, saD is a subspace. We need to shiwis one-to-one and its
image is closedR"(1) is convex and so, given aigye G, we can integrateD, g)
along the line segment joining, 0) and(u, y). Usingg(u, 0) = 0, we have

1
g, y) = g, y) — g, 0) = fo (Dy@) i (¥) d.

Therefore,(D,g) uniquely determineg, andd, is one-to-one. Differentiating
both sides of this expression, under the integral on the right since all derivatives
of (D, g) are continuous, we get the derivativesdh terms of the derivatives of
(Dyg). Consequently, ifg,) C G is a sequence such thad,g,) — N € 9D,
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then(D, g,) is Cauchy and s@g,) is a Cauchy sequence with respect to the usual
C* topology ong. Therefore, it converges to sont&' function g. On the other
hand,(D,g,) is then converging uniformly teD, g). Therefore(D,g) = N, and
gisC*tliny.If g,(u,0)=0 and(Dygn) 0,00 = 0 for alln, then the same holds
for g and sog € G. Therefored,(g) = N is in D, andD is closed. O

Becauseb mapsg into itself, the identification betwedh andD given bya, in-
duces a new ma@: D — D determined by o 9, = 9, o ®. This is just the
map(D,g) = Dy[®(2)] = B; (Dy8) Dy .y + Bi “(Dyp), - Conse-
quently, rather than looking for a fixed point & in G, we can look for a fixed
point of the induced mag@ in D.

Having translated the problem to one Pn we will now work almost exclu-
sively in terms of(¢, v) € E€ @ E™*. The proof proceeds as follows. We produce
yet another subspagé c D, which is not closed but does have a fixed poin®of
Moreover, this fixed point is globally attracting i relative to theC* topology
and so is unique V.

The subspacg/ is defined in terms of a modification of tl§& norm. Toward
that end, we make the following observations. Continuous higher-order deriva-
tives are symmetric and so, fof € D, (D'N ).,y can be reconstructed from the
derivatives D, D' "IN )., and(D{N)..). Infact, if 7; andr, are the projections
onto E¢ and E™* respectively, and ifvy, . . ., w; € R”, thenw; = mew; + m,w;
and we can expan@'N )¢ ) [ws, . . ., w;] as

(DiN)(E,U)[wl, ey w[]
= (DéN)(s,v)[ﬂng ey ngw,-]

1
+ Z(DleilN)(gyv)[T[ij, TeW1, .« - vy TeWj—1, Witd, - - -5 w,~].
j=1

Therefore,
I(D'N) el < G + Dy max{ (D, D" *N) el DN ) eI}
On the other hand, one also has
max{ (D, D' *N) el ID{N) eI} < DN ) l-

Since these hold for alk, v), we obtain both of the following for =1, . . ., k:

1 . ) . )
Tl PMlco < max{[|(D,D'"'N)||co, [(D{N)|co} < [[(D'N)]|co;

n 1H9[(DkN)] < max{Hy[(D,D*'N)], Hy[(D{N)]} < Ho[(D*N)].

Similarly, we can decompose tifleHo6lder constant otDé‘N) into its £- and
v-parts. For any function we have

Hy[t] < H;[t] + HY[t] < 2maxX H}[t], H}[7]}.
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Therefore,
%He[(DgNﬂ < max{ H; [(DfN)], Hy[(DEN)]} < Ho[(DEN)).

Putting these together yields the following lemma.
LeEmMa 2. For N € D, define||N|. by

[N« = max{[[Nllco, [[(DyN)llco, [(D:N)l|co,

-, DL D*IN) [ co, I (DEN) | co,
Hy[(D, D*"'N)]. HJ[(DEN)]. Hi[(DEN)]}.

Then| - ||, and|| - ||¢s are equivalent norms of.

For a functiont on E< & E™*, we will use||t||s to denote the following modifi-
cation of theC® norm of t: ||z|s := sup{ |[[z(&, v)|I/IIv]I® : €] <1, 0 < |[v]| <
1}. We will use the same notation regardless of the range Bince|jv|| < 1, we
have||z||co < ||I7]ls < co. We will need to make a similar changeHj[(Dg‘N)].
In this case, leQy ;[-] denote the following:

e ) — Tl
Q“‘S[’]"%{Z 161 — &P VP

It follows that H; [t] < Qy.s[7] < co.

LemMma 3. For N € D, defing|||N||| by
NI = max{||Nlls, | (DyN)lico, |(DeN) s,
-, DD N [ co, I(DEN) |5,
Hy15[(D,D*'N)], Hy 5[(DEN)], Qo s[(DEN)]Y.

Let N :={NeD:||N]|| <oo}. Then(N, ||| - |lI) is a Banach space. Moreover,
convergence itV with respect td|| - ||| implies convergence in thé* norm.

Proof. Itis clear thaf - ||| is a norm, and term-by-tertp- || < ||| - |||. Therefore,
convergence iffj| - ||| implies convergence iff - ||, which in turn implies conver-
gence in| - || cs. Consequently, we need only show ti\aiis complete undefi - |||.
However, again sincg- [|. < [Il - lll, if (;) is Cauchy with respect i) - ||| then it
is Cauchy with respect tp- ||¢s. Hence,N; converges to som¥ € D in theC*
topology. On the other hand, sin¢¥;) is Cauchy with respect tff - Il [IIN;ll
is bounded< K for somek, and if N; — N in the C* topology, it follows that
IN|II < K. Therefore N € N/, and A is complete. O

We want to show tha® maps\ into itself and has a fixed point which attracts
all other elements ol under iteration by®. Since® is an affine map, this will
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follow if we show B, {(Dyp) € N andN +— B; (N o f)(D, f) is a bounded lin-
ear operator o\ with spectrum strictly inside the unit circle. The first half is
handled by the following lemma.

LEmMa 4. If NeDisC*t% thenN e N.

Proof. We need to show that the terms [pIV||| which differ from || N ||, are fi-
nite if N € D is C**°. These are the termyD;N)|s (i = 0,...,k) as well
as the last terms. IV € D, thenN = (D,g) for someg € G; henceNg o =
(Dyg) .0 = 0. Therefore(D;N) .0 =0 foralli =0,.. .,k and all§. Conse-
quently, [(D{N) e wll = I(DEN) @ — (DEN) o)l < Hs[(DEN)](Iv]1°. Since
i <s, (D{N)isatleasC’, and|(D{N)|ls < H5[(D{N)] < oo.

Becausg DN) is 7+, the first two of the last three terms are bounded by
K = Hys[(D*N)]. Likewise, [[(DEN) e,y — (DEN) gl < K [1E1 — &2+
However, we also haMe(Df N ). | = [(DEN) ¢y — (DEN) .0l < K[,
Therefore,

I(DEN) 1.0y — (DEN) 0|l < 2K minlg1 — &2]1°7°, [[v]|®*+}
< 2K & — &) |Iv]°,
and s0Qy s[(DfN)] < oo. O

Let x be the linear part 08, that is, x(N) ¢ .) = Bgle(g,v)(Dyf)@,v) for N €
D. We want to showy € L(N, N) and|sp(\)| < 1, or equivalently, that there
is a new norm oV with respect to whicH x|l < 1.

LemMmA 5. There exists a norii - || onN, equivalenttd|| - |||, for which| x| <1.

The proof of this lemma is very technical, and we defer it for the moment. We
first use Lemma 5 to complete the proof of Proposition 2. If there exists a norm
for which || x|| < 1, theny (and hence®) is a contraction ofV into itself with re-
spect to this norm. Therefor®, has a unique fixed point iV. SinceN C D, this
corresponds to a (not necessarily unique) fixed ppioit ® in G. By design,G =
id + (0, 0, g) is then aC* function that linearizes the last componentfofthat is,
it solvesF o G = G o f. Moreover,g(¢, x,0) = 0 and sa D, g) .,0) = 0 and, by
construction,(Dyg) 0,00 = 0. Therefore,(Dg)o = 0. Consequently(DG)q =
I +10,0, (Dg)o] = I, which implies thaiG is a diffeomorphism near.0

Recall that thisf differs from the original diffeomorphism. If we return to us-
ing f to denote the original diffeomorphism, théhis a conjugacy betweeR
and a diffeomorphism that agrees wkho f o H~! on a neighborhood of the ori-
gin. ThereforeG o H is a conjugacy betweeyfi and F near 0 Finally, bothG
andH are the identity ori&, x), so the same is true f&F o H, which completes
the proof for diffeomorphisms.

Now suppose thal’ is a local flow satisfying the hypotheses of the proposi-
tion, and thatf = y. We can apply the previous case to obtain a conjugacy
for f. However, in order folG to be a conjugacy for the full flow, we will need the
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modified f used in the proof to still be the time-1 map of a flow agreeing with the
original flow near 0 This can be accomplished by making the modifications to the
vector field itself. As before, we make® change of variable so that® and E<*
are invariant. However, in general(C4 change of variable produces onlya—?
vector field. Therefore, we need to verify that we do not lose any differentiability.

Let X denote the original vector field. Singé is “triangular”, X has the form
X(& x.y) = [Xo(®). X1(£, x), X2(€, x, y)] = [X1(w), X(u, y)]. Let the center/
weak manifold be the graph 6f E<* — E*, andsetH(u, y) = [u, y +h@)]. A
change of variable by produces the vector field( p) = (DH);l(X oH)(p) =
[X1(u), X 0 H(u, y) — (Dh), X1(u)]. This involves(Dh), which is onlyC 2.

On the other handy leavesE“¥ invariant. Hence the last componentioimust
be zero wheny = 0. Therefore,(Dh), X1(u) = X2 o H(u, 0), and Y(p) =
[X1(u), X2 0 H(u, y) — X» 0 H(u, 0)], which is clearlyC".

We can now proceed as we did before. We first make a change of variable that
takes aC"** center manifold taE¢. By the foregoing argument, this does not af-
fect the differentiability ofX. We then apply the change of variable to obtain the
vector fieldY. As with the discrete case, bofif and E“” are necessarily invari-
ant underr. Moreover,Y; = X1 is C"*1, and(D,Y,) isC”, soY,is C" and itis
C"*tin y. Continuing as before, we construct a new vector field that is as smooth
as before, is as close as we wish to a linear vector field, leaves the unit ball invari-
ant, and agrees with the original vector field (up t6’achange of variable) near
0. The flow of this new vector field is then as close as we wish to the linear flow,
and agrees with the original flow (up tacd change of variable) near 0

UseX now to denote the new vector field, atid its flow. X is still triangular,

X(é’ X, }’) = [XO(E)a Xl($7 )C), X2($7 X, )’)]’ and so

Y& x,y) = [0, i 1), Yo, x, vl

We see that¢’(£), ¥;(&, x)] is the flow of [Xo(§), X1(&, x)], and is therefore
C"*1. Moreover,(D,yr5) solves the differential equatiofi = [(D,X2) o ¥5]A,
which isC”. Therefore (D, v}) is C", andy} is C"*1in y. Let f be the time-1
map ofyr’. Then f agrees with the original time-1 map (up t@& change of vari-
able) near Qhas been modified to fit the requirements of the proof, and is still the
time-1 map of a flow. In particular, both’ and f leaveE¢ and E< invariant.

Now repeat the proof for diffeomorphisms to get a diffeomorph@&monju-
gating f to [p(&), fu(€, x), Bey]. DefineBL := (Dyr}) e 0.0 andW'(§, x, y) =
[¢'(®). ¥{(5. ). BLy]. BLisC", and B} = (DyV/3).0.0 = B:. Hence

Wi, x, y) =9, fi§, x), By

is the function to whichyf is conjugate. Thereforahlc G = Go f = G o Y1,
We want to show tha®’ o G = G o ¢! for all z. For any fixeds, defineG’ :=
(W~ toGoy!. If G' = G for eachr, then we will have shown what we want.
Sincey'** =y’ o y*, we haveB.™ = (Dy¥5" )00 = Bs(, B:. Conse-
quently, W'+ = W’ o W* andV¥’ is a flow. Therefore(w’)~! = W~ Moreover,
Gof=(W"0GoyNoyl=0"0(GoyHoy' =¥ "o (WoG)oy’ =
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Wlo (W7 0oGoy') = Wlo G'. HenceG' also conjugatesf to W, and
G'(6,x,y) = (W' oGoy")E x,y) = [£x, B/, Gao¥'(E,x, )] If we
defineg, by g (&, x,y) = B(;,’(g)Gz oY(&,x,y) — y, theng, is C* andG' =
id +[0, 0, g].

All three of G, f, andW? leaveE“" invariant. ThereforeG' does also, and so
(&, x,0) = 0. We have(D,g,), = B, (DyG2)y(»)(Dy¥3), — 1. Therefore,
(Dyg,) is C*, andg, is C**1in y. Moreover,

(Dy81)&,00 = B,/ (DyG2)(w©),00(Dy¥3) 00 — 1.
Since(D,G2) ¢ 0,0) = I forall & and sinceD,v5) 0,0 = B;, we have
- 0
(Dygt)(E,O,O) = B(p,f(g)Bé -1 = BE —1=0.

Consequentlyg; is in G. SinceG' conjugatesf to W, g, is a fixed point ofd.
Hence, if we can show thaD,g,) is in V., it will follow that (D,g,) is a fixed
point of ®. However, we showed tha& has a unique fixed point i®v. Conse-
quently, we will be able to conclude th@b, g;) = (D,g), and hencg, = g and
G' = G. By definition (D, g,) is in N provided|||(D,g,)|l| < co. However, we
can avoid calculating|(D,g;)||| and still derive our desired conclusion.
Because = k +6 andf > 0, we can choosé, § > 0 such that = k +6 + 6.
Let? := s and$ := k + 6. Sinces < r, the hypotheses of the proposition remain
valid with 7 replacing-. Consequently, there is a unigies AV (§, §) such thatV =
(D, ) for someg € G(5), andG = id + [0, 0, 2] conjugatesf to W1. However,
G(5) D G(s), and so botly andg, are inG(s), from which it follows that(D, g)
and(D,g,) are inD(s). But by Lemma 4, since bottD, g,) and(D,g) areC*(s =
§+6), both are then i\ (5, 8). Consequently D, g,) = (D,g) = N. Therefore,
G' = G, andG conjugates to the full flow, which completes the proof. [

REMARK. The fixed pointg of ® has(D,g) € N. In particular,|[|(Dyg)|l| < coc.
From the definition of|| - |||, this implies that all the mixed partials (D* D, g),
and hence in{D*g), areC?+? except(Dg‘Dyg), which isC?* in v = (x, y) but
only C? in £. Consequently, although is as a whole onlyC" %, it is actually
C" as a function of x, y). This fact persists through each of the applications of
Proposition 2. Therefore, the final partial linearizatiorCis™, but itisC" as a
function of the noncenter variables.

We are left with proving Lemma 5. For this we will need the higher-order chain
rule and associated Leibnitz’ rule.

THeoreM 3 [Pu] (Higher order chain rule).Let E, F, G be Banach spaces, let
U c EandV C F be open sets, and lgt: U — V andg: V — G be maps of
classC*. Theng o f is of classC* and, forx € U anduy, . . ., v € E, we have
k
DX(go v, .., vm) =Y D (D) (DPf)(vp),
s=1 /3665'](

whereB; ;. is the set of all partitions of1, . . ., k} into s disjoint, nonempty subsets
and where, foB € B,y (B = {B1,..., By with B u---u B, ={1,...,k}), we
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define the following| ;| = order of g;; vg, = {v; . j € Bi} (SOvg U---Uvg =
{vy, ..., ue}); and

(DPF)e(vg) = (D) (v, ..., (D'P ), (vp))].

CoroLLARY 2 (Leibnitz’ rule). LetE, Fy, F,, F3 be Banach spaces, |&ét ¢ E
be an open set, and let: U — L(F1,F,) andB: U — L(IF,, F3) be maps of
classCk. The functiodB: U — L(Fy, F3) defined bfAB), = A, B, is of class
C* and

D*(AB),(v1, ..., v) = A [(D*B) (v, . . ., v)] + [(D*A) (v1, . . ., v)] By
+ > ([DP1A), (up)]L(D'P'B)  (vp,)]
BeB i
+ (D' A) (vpI(D'PB),, (v5,)]).

Moreover,

k

ID“(AB). || < Z(’s‘) I(D°A) ]l - 1(D**B). .
s=0

Proof of Lemma 5We begin by stating the problem more abstractly; thisis primar-

ily a notational convenience. We haye E ® E" — E® E™ andf(&,v) =

[0(§), (&, v)], where[|(Dg)|l < 1+ &, (D ewl < @ +& =t a < 1, and

n(,0) =0.

Define R; := Bgl andSe .y = (D, f)e. . Both R and S areC” functions
into L(E*, E), |Re|l - ISe.wll < (B+e)(B~1+¢) =: b, anda, b, ¢ satisfy
b(1+¢&)a’ <k < 1. With these we havg(N) = R(N o f)S for N e V.

Define|||N|||; (i =0, ..., k) to be the maximum of the leading 2 1 terms of
VI

NN := max{ [N [ls, | (DuN)llco, [|[(DeN) s,
o Dy D'TIN) || o, I(DEN) |15}
Becaus&D[N) .0 =0, if i <k then

I(DEN) el < [supn(DVDgN)(g,w)n}||v||.
12

Therefore (D N)|ls < [I(DyD{N)l|co < (D, D'N)||co. Consequently, taking
just the first 2 terms:
max{[[Ns. [(DyN)lco. [(DeN)lls. - . .. ID{N) s, [(Dy DN || co}
= max{[|(D,N)llco, [(D,DN)|ico, ..., |(DyD"*N)| co}
= [[(DyN)ll¢i-1.
Therefore/|Nlli—1 < [(DyN)llcis < [IN]ll; foralli =1, .. ., k.

In order to calculatd| x || we need to express the derivativesy@V) in terms
of the derivatives oiV. We do this in steps.
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LemMMmA 6. If A,B: E€ ® E¥ — L(E*, E®), whereB € C", A € C*, and
ANl < oo, then both|||AB]||, IIBA|ll < oo, and in each of the following cases
there exists ak > 0, independent oA and B, such that the given inequality
holds

(i) 1ABls < [IAlls] Bllco;

(i) 1DyD*"HAB)lco < (D,D'"*A)|col|Bllco + K[ Allci-1]| Bl

i=1...,k);

(iii) 1Dz(AB)lls < I(DgA)lIsl Bllco + KIIAllli-allBllci (0 =1, ..., k);

(V) Hoys[D,D*"MAB)] < Hoys[(DyD*A)][IBllco + K[| Allcx | Bllcrs

(V) Hys[DEAB)] < Hy S[(DEA]IBllco + K[| Allctl| Bller;

(Vi) Qo s[DEAB)] < Qo s[(DEA]IBIIco + KAl Bllcr-
Moreover, the same inequalities holdAfB is replaced byBA on the left-hand
side.

Proof. A partial derivative is obtained by restricting the full derivative to the ap-
propriate subspace. Hend@, D'~ = D'| gus  (nyi-1 @and D} = D'|(ge)i. More-
over, the norm of a partial derivative is no more than the norm of the full derivative.
Therefore, from Leibnitz’ rule:

i-1 /.
i- i— l i—
1D, D" HAB), || < (DD lA),,||||B,,||+Z<t>||(D’A)p||||<D ‘B, .
t=0

Sincer < i — 1inthe sum)|(D'A), || < l|All¢ci- and||[(D*~'B),|l < || Bl|¢: for
all ¢, from which (ii) follows. Similarly, ||Dg (AB),|| decomposes into a sum of
terl”ﬂSII(DéA)pllII(D{'B)pll- Forp = (§,v), II(DQA)@,»II < ||(D§A)||5||V||'S-
Foreachr <i —1, [(D;A)|ls < [l Allli—x and[|(D; ™ B), |l < || Bl c:. Therefore,
IDLAB) e I/ 1IVI° < TIDEA) @l /IVIPTIB, Il + KNIl Allli-all Bl i for some
K > 0, from which (iii) follows. (i) is just a special case of (iii).

To obtain (iv)—(vi), expandd*(AB),, — D*(AB),, into a sum of terms of
the form (D'A),,(D*'B),, — (D'A),,(D*'B),,. (There are, in general, sev-
eral terms for each, each corresponding to a different permutation of the input
vectors.) Expanding further:

(D'A),,(D*'B),, — (D'A),,(D*'B),,
= [(D'A), — (D'A),,}(D* ' B), + (D'A), [(D*' By, — (D*'B),,, .
Consequently,
ID,D*"(AB),, — D,D*"H(AB),,||

< (D, D*1A), — (D, D*24) p, Il Bpy | + 11(D, D*A) , | By, — By, I

k=1
+2 (’j) (DA, = (DAY 1 (D* B

+ [[(D'A) p, | (D* B) py — (D' B) p, ).

Fort <k, (D'A),, is at leastC*. Therefore,
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I(D'A)p, — (D'A), || < II(DA) [ coll p1 — pall.
Moreover, | (D'*1A)| o < ||A|lc. Likewise,
I(D*"B),, — (D*'B), |l < IBllcr | pr— pall*,
and we also have
(D, D**A),,, 1| By, — By, Il < Il AllcxlIBllcr Il pr — p2ll®*.

Becausd| p1 — p2ll < 2andd + & < 1, (iv) follows. Since this argument did not
use anything specific t®, D1 or the form of the pointg;, if we instead use
Dgf, and consider points only of the form = (&, v;), in which casé| p1 — p2l| =
lvi — v2||, we obtain (v).

For the last case, exparldg‘(AB) as in the previous two cases but nowt
replacing the lower-order partials by their full derivatives. This yields

IDE(AB)gy,v) — DE(AB) gy,
< IDEA) €, — (DE Do 11 Bieg,w | + 11(DF A ez 1 Bigg, 1) — Beeo. |

k—1
k .
1=

+ (DL A) e II(DET BY g0y — (DET B) ey ).

Fors <k, (D;A)is C*, and so we have

(DL A) vy — (DiA) el < (sgpn(Dg“A)@,V)||)||sl — &

and
(DL A .l < IDEPA s IV < A1

We also have (D{ ' B) .|| < ||Blic-. Therefore,

[(DEA) €10) — (DEA) ) LI (DET B ey
< (AN Blicr gL — E20*7)1EL — &I v I1°.
Sinceg; € E€(1), ||&1 — &)%Y < 2. Similarly, fort < k,

I(DEA) o HI1(DE B) ey — (D B e
< (AN IP) (1 Bllcr 1161 — &211)
< (2MANNBllcr) & — E201° vII°.
Because

Qos[DE(AB)]:= sup (IDE(AB),v) — DE(AB) g ll/LIEL—E211°[VI°]),
E1#£&2,v#0

(vi) follows. Finally, the previous estimates did not depend on the ordgranid
B. Therefore, they can be repeated®# to obtain the exact same results. [
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LemMma 7. In each of the following cases there exist constdatk’, K” > 0,
depending ory, such that for anyv € N the given inequality holds
() IN o flls <aINI5; , |
(i) 1DLD*"XN o f)lico < a(l+ &) (DD *N)co+ K|[[N|ci-1t
i=1,...,k);
(iily ID{(N o flls < a® L+ &) I(DEN)ls + KI(DuN)llcia (0 =1, ..., k);
(V) Hoys[DyD* (N o f)] < a(l+4 &) Hyys[(DyD*'N)] + K||N||cx;
(V) Hy 5[DEN o )] < a®* (1 +e)*Hy 5[(DEN)] + K Hy5[(D, D*IN)] +
KNl
(Vi) Qos[DE(N o )] <a’(1+ ) Qo s[(DEN)] + K"H [(DEN)] +
K'Hg15[(D, D¥IN) + K (I[N |-
Proof. As in the previous lemma, we will use that (a) a partial derivative is the re-
striction of the full derivative to a subspace and (b) the norm of the full derivative
is always at least as large as that of the partial derivative. Applying these facts to
D,D'"Y(N o f), we have
IDyD' XN o f)pll = ID'(N o f)pl gus xcrmyi-tll
< ||(DiN)f(p)[(Df)g)] | Ews x (mmyi-1l

i—1
3 S IDN Y (DEF, .

t=1 BeB;;
Here(Df)!’ means copies of(Df),. We have
(Df)plgws = (Dy f)p =[0 (D), 17,
and so
(D'N) () [(D)PT] pus e myi-r = (Dy DTN ) [(Dyg) . (D]

Becausd|(D,w), || < a and|[(Df),| < (1+e),

I(D'N) s LD s yi-all < a(L 4 €)' Dy DN co.
For the terms inside the sum,

I(D'N) sy (DPF)pll < DN Yy IHIDPLE) Il - (D1, 1.

There are < i derivatives|| (D% f),I| < | fllci, and[[(D'N) ¢l < IN|lci-1.
Therefore||(D'N) s, (D?), 1l < (I fllci) "IN || ci-1. This holds for each term
in the sum, yielding (ii).

Fort = D[N (includingi = 0), [[(t o )& vl = l[t(p®), uE V) <
Izllsllie(&, v)]1°. Sincew(€,0) = 0, [, V)| < [sup, I(Dyw),llIvIl < alv].
Therefore,|T o flls < a®|t|ls. In particular, we have case (i). For case (iii)
(i > 0,

IDE(N © f)pll = [ID'(N o f)pl gy

i—-1
< NN D HPI+ D D DN (DL, 1.

t=1 BeB;;
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Here we uséD/ f), = [(D}¢), (D}u),]", and therefore
(D'N) s [(Dgf)ps -]
= (DsD"7'N) () [(DL)p. 1 + (D D' IN) () [(DL0)p, -

We can expandDiN)fv(,,)[(Dgf)jj>] completely in this manner to get

(D'N)s(pl(De Y]
= (DEN) ) [(Deg))]

+ Y (DITDDTIN) ) [(De) ™Y, (De ), (D 5.
j=1

Note that

(DL Dy D =INY sl < 1D DTN i Il < I(DyN) cima
and
I(De@)pll < (D fpll = (1 + ).
Setp = (§£,v). Sinceu(¢,0) = 0, (Dep)e0p = 0. Moreover,r > 146
and so(Dgp) is at leastC?. Consequently|(Ds ) vl < Hs[(Dgw)]lIv]I°
I fllcr Ivll®. From the foregoing we hau DiN ) w Il < I(DEN) o fllislvl®
a’[(D{N) s |Ivll°. Therefore,

IAIA

(DN LD DTN < @’ @A+ &) (DNl + i+ &) U fller 1D N) it

Each of the termgD'N ), (D{f), can be expanded in a similar manner. In
this case we us¢(D{p),l < (D{f)pll < IIfllcr and (D)0 = 0. so
(DL el < I fller Ilv]®. Therefore,

II(D’N)f(fo)Ils < a8(||f||Cf)t||(D§N)||5 + 11 fller) Dy N) | cr-1.
Because < i, [[(D¢N)lls < [INlli-1 < [(DyN)||¢ci-1. Hence

I(D'NYF (DL F)lls < K'I(DuN) [l ci1,

which—when combined with the estimate for the first term—yields (iii).

For cases (iv)—(vi) we need to work with*(N o f),, — D*(N o f),,. This
reduces to a sum of term@®’N) sy, (DPf),, — (D'N)p(po)(DPf),,. Let Al7]
be short fort (p1) — (p2); then, using the multilinearity ofD’N), this can be
rewritten as

A[(D'N) o fI(DPf),,

+ Y (DN [P f) .  ADYIF), . (DPIF),].
j=1
If t <k then
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IA[(D'N) o f1Il < I(D"™*N)llcoll F(p1) — F(p2)Il < L+ &)INexllpr— pall.
If + < kthen

[(D'N)s(poy |l < IINllc#s IDPEY Il < N fllers
and
IADYIA <1 fllerllpr— pall®*.

Therefore, every term in the expansion®f (N o f),, — D*(N o f),, except
A[(D*N) o fI[(Df)$)] can be bounded by a constant timi@é|| c« | p1 — p2[”*’.

Consequently, if we le¥ be either of the subspac&s” x (R™)** or (E€)¥, we
have

ILD*(N o f)p, — DX(N o f)p,]Ivl
<MD N sy = (DEN) s o) LDPAHOT v I+ K [Nl ekl pr — p2ll**.
If v = E* x (RM)*1 thenD¥|y, = D,D*'and
[(D*N)f(py) — (DN (o) ILDSY Ty
= [(D*N) oy = (D*N) o)D)y (DS
= [(DyD* "N ) () — (DyD*IN) (o) I (Dy 1) py, (DFIE D]
Since
I(DyD* N ) (pyy = (DyD* N ) ) |
< Hops[(DL DN f(p1) — f(p2) P2,

[(Dvi)py Il < a, I(D)pyll < (L+2), and|| f(p1) — f(p2)Il < (1+&)llp1—p2l,
we get (iv).
Now let V = (E)* and restrict top; = (£, v;). This case can be broken down
like (iii):
[(DN)(pyy = (DN o) DSl
= [(DN)sipy) = (DN LD )]

= [(DEN) (o) — (DEN) 1) L (De) )]

+ Z([(Dka_lN)f(Pl) — (DuD* "IN ) sy
=1

x [(Dgp)p, (De) P, (Dgf>§;'”]>.
Inside the sum,
(DyD*IN) (py) — (DyD¥IN) (o)
< Hos[(D, DTN f(p1) — F(p2) T,

and each of the arguments is bounded|b® )| 0. Therefore, inside the sum-
mation is bounded by
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K'Hp15[(D, D**N)]|Ip1 — p2l”™ = K'Hy15[(D, D*N)]|[vy — vo "

for someK’ > 0.
Because does not depend on

£ v1) = fE v2)ll = [ (E, v1) — (€, v2) |l < allva—val.

Consequently (DEN) s vy — (DEN) pe. vy | < Hy5[(DEN)](@llvr — v2])7+.
Combining this with the previous results af: ), | < (1 + &), we have (v).

Finally we are left with the task of showing (vi). For this case we need to re-
turn to the expansion ab*(N o f),, — D*(N o f),,, but must restrict td/ =
(E€)* before making any estimates:

IDE(N © f)py — DE(N o )l

k
<> D IAID'N)Y o FIDL )l

t=1 BeB;
k

£33 Y DN ) (D).
t=1 BeB;x J

L ADP L DP I

These terms are analogous to those in case (iii). Expanding in the same manner,
and usingp; = (&, v) and||(D§;L)(§,v) I < Ifllcrllv]i®, for the first sum we have

IALD'N) o f1(DL )yl

< IALDLN) o FIIDL )l - - (D 9),
+ Z(nA[(DUD’—lN) o f1I
J
x 1D @)l - DL W) poll - - ||<D¥”f>m||>

< IALDLN) o I )l - - (D 9)
+ 1+ Hoys[(D, D' N1 (all€r — EID° T (N fllen) vl

Dividing [[A[(DN) o f1II := I(DgN)ig(en), nenm — (PN, e v ll into
parts:

(D Ny, uiervn — (P Nig(e), niezm
< 1D N)pien), wier vt — (PeNigier), uem
+ DN g (e, e — (DeNiger ez vl
< Qo s[(DEN)]Ne(ED) — pEDII 16, )P

+ Hy s[(DEN)] (&, v) — p(Ea, v,
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We havelp(§1) —pE2) [l = (1+¢) 61— &2ll and|w(§x, )| < I(Dv)llcolivll =
allv[l. On the one handju(é1, v) — (&2, V)| = [[(Dgp)licollér — &2ll, but also

41, ) = (&2, )| < 2[[(Dup0) | collv]l. Therefore] (s, v) — pu(E2, )7+ <
K'min{[[§1 — &7, [v°*} < K'[l61— &I°IvII°. Hencell A[(DEN) o f]I] <

{05(1 + S)QQa,s[(DéN)] + K/Hé’+a[(D2N)]}I|§1 —&|°vl°.
If t < kthen

1PN = (DEN Yl = (SURICDE N D61 = Eal.

Since || (D{FN) eIl < I(DEN) s vI1P < 1IN Tlllv]?, it follows that
(DN ey — (DEN) o | < NIN k161 — Ellv]°.
Therefore,Q(,,g[(DgN)] < |IN|ll. Moreover,

Hy 5[(DgN)] < I(DyD'N)llco < [N Ik,

and
Hgs[(D,D'7N)] < (DyD'N)|lco < [IN]llx.

Consequently]|A[(D'N) o f](fo)plll < KIINllkE — &0°NvI° for ¢ < k
(somekK > 0).

If t =k, then(fo)p1 = (Dgf);,kl) and||(Dsg),, | < (14 &). Consequently,
we have

IALDN) o FILD: TN/ (€L — E21° 1V ]1)
< a’(L4)' Qo s[(DEN)] + K"Hy s[(DEN)] + K'Hyy5[(D, D*IN)].
The second sum can now be estimated in a similar fashion:
DN s LDY e oo AL (D )]
< DN I Flle) A DY )|

+ 3 IDD N s UL Fller) 2HDE ), - 1ADE )]

I<j

(DD N oy 1L £l ) A AD Y

+ 3 1D DTN oy UL Fller) DL 1) - 1AD )]

I>j

To this we can apply the following estimates:
1A o) < 16D I < I fller 1€ — 201
IDEN ) fp | < NNl e E2, P < a@® Nl 11
1Dy DN ooy Il < IIN s

IO, I < 1 flier Ivlle.
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This leaves onl)nA(Df"'M)n to estimate. SinceD;u) is C7*,

1AM = 1(D{) vy — (DEm el < N1 fller 161 — &211°F,

but alsol| A(D{ i)l < (D) eIl + (D) o |l < 21l fller [Iv[PF. Conse-
quently, we again getA (D} )| < K [|&1—&2[|°||v|° for someK > 0. Therefore,
for some (differentk > 0,

DN o (DL e AL 1), (D)
< KIINllellEL — &1 IvII°.

Combining the first and second sums yields (vi), completing the proof. O

With these two lemmas we can now complete our proof of Lemma 5. The defi-

nition of ||| - ||| is the maximum of a set of 2+ 4 elements. The order in which

these are listed in the definition is significant. We have already observed that the

max of the first 2 i = 1,..., k) elements fod||N]||| is ||(D,N)| ci-1, and the

max of thefirst2+ 1 (G = 1,...,k) elements ig||N|||; (by definition). By the

same argument as in the proof of Lemma| &\ < (i + D)|||N|||;. Therefore,

the cases in Lemma 6 estimate the size of ttheelement in the set determining

IlAB]|| in terms of the firs§ elements fofi| A|||. In particular, for each [||AB]|||; <

K|||AJ)l; for someK not depending o (but depending othand B). Therefore,

if we apply Lemma 6 twice, and then Lemma 7 @V) = R[(N o f)S], and use

IR|lcollSllco < b, we have:

(i) Ix(N)lls < a®blIN|ls;

(i) IDLDHX(N)lco < a(d+¢&) b (Dy,D'"™N)|co + K|IN]lli-1
(i=1... k)

(i) ||D§(X(N))||5 <a’(1+ E)ib”(DéN)Ha + KI(DyN)llci-1 (. =1,...,k);

(V) Hpis[(D,D*"H(x(N))] < a(1+ &) bHyis5[(D,D*7N)] + K|||N|lls:

(V) Hy[(DE(x(N))] < a1+ e)'bHY [(DEN)] +
K'Hp ys[(DyD*IN)] + K[| N lls:

(Vi) Qo s[DE(X(N)] < a®(1+)"bQy s[(DEN)] + K"Hy s[(DEN)] +
K'Hy5[(D,D*IN) + K |IN||l¢.-

Sinceb(1 + ¢)'a’® < «, the leading term in each case has a coefficient less than

k<1

Now define the new norr - |||’ by

IINII" = max{||N 5. ball(DyN) | co. el (D N) s,
- Bl[(DyD*IN) [ o, ek | (DEN) s,
di1Hy5[(D,D**N)]. d2H} [(DEN)]. d3Qy s[(DEN)]},

whereby > ¢y > -+ > by > ¢, > di > d» > d3 > 0 are some collection of
positive constantg)]| - |||’ is clearly equivalent tdj| - ||| for any positive constants.
Moreover, with this relationship between the constants we hai@&|||; < [[|N]|
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andb;||(D,N)|ci < |IN]| for all i. Therefore, we can use this in the preceding
(i)—(vi) to obtain:

() Ix(NV)lls = «lINII';

(i) bill DD HX(N)lico < (e + Kbi /e)IINII' i =1, ..., k);
(iil) cillDe(x(N)ls < (e + Keima/DHIINN G =1,. .., k);

(V) diHpys[DyD*"Y(x(N))] < (k + Kd1/c)IN]|I;

(V) d2H} s[DE(X(N)] < (c + K'dz /d1+ Kda /cO)IINI';

(Vi) d3Qss[Df(X(N))] < (k + K"d3/dz + K'd3/d1 + Kd3z/cp)||IN]||".

Given anyk’ with « < ¥’ < 1, we can choose the constants so that each succes-
sive one is sufficiently smaller than the previous that all of the coefficients on the
right are less thar’. As ||| x(N)]||’ is the maximum of the left-hand sides, we have
lx(MIII” < «’|IIN])| for all N € V. Consequently, there exists a norm equivalent
to ||| - ||l for which || x|| < «’ < 1, which completes the proof of Lemma 5. O
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