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A fundamental problem that arises in dynamical systems in the study of the local
behavior of a diffeomorphism or flow is the linearizability of the system near a
fixed point. This is the question of whether there exists a local change of variable
converting the system to a linear one. Grobman [G1; G2] and Hartman [Ha2; Ha3]
proved that there is always a linearizing change of variable that is a homeomor-
phism if the fixed point is hyperbolic. A fixed point of a diffeomorphism (resp.
flow) is hyperbolicif the derivative at the point has no eigenvalues on the unit cir-
cle (resp. imaginary axis). Knowing that the change of variable is merely continu-
ous, however, is not always satisfactory. It is natural, therefore, to ask how smooth
this change of variable can be.

The question of whether there exists a linearizing change of variable of a cer-
tain smoothness goes back at least to Poincaré [P]; see [S1] for the analytic case.
Sternberg [S1; S2] proved that, in general, the existence of a smooth linearization
depends upon an absence of “resonance” in the eigenvalues of the derivative at
the fixed point. This work has been extended by Belitskii [B1; B2], Sell [Se], and
others.

If the fixed point is not hyperbolic, then except in trivial cases the system is not
linearizable. However, Takens [T] proved that, in this case, if one decomposes the
derivative at the fixed point into its center part (the part corresponding to eigenval-
ues with modulus 1) and its hyperbolic part then, if the eigenvalues of the hyper-
bolic part satisfy the same Sternberg nonresonance conditions, there will exist a
smoothpartial linearization.For a diffeomorphism this is a local change of vari-
able in which the origin is the fixed point and the system has the form(ξ, x) 7→
[ϕ(ξ), Bξx], where all eigenvalues of(Dϕ)0 have modulus 1 andBξ is linear and
hyperbolic for eachξ.

In [M1], a characterization of smooth linearizability is given that is completely
different in flavor from the Sternberg eigenvalue conditions. There it is shown
that, for the special case of hyperbolic attracting or repelling fixed points, smooth
linearizability is equivalent to the existence/smoothness of certain invariant sub-
manifolds. In this paper we extend those results to the case where there are eigen-
values on the unit circle. That is, the derivative consists of a nontrivial center part,
together with either an attracting or a repelling part. These will be calledpartially
attracting or partially repelling fixed points, respectively. We show that in this
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case the existence of a smooth partial linearization, in the manner of Takens, fol-
lows from the existence of smooth invariant submanifolds analogous to those of
the hyperbolic case. A corollary is that any partially attracting or repelling fixed
point of aC3 diffeomorphism can beC1 partially linearized. This is the analog for
partially hyperbolic fixed points of a result of Hartman [Ha1], and is not implied
by the work of Takens.

By the local nature of the question, we can take the fixed point to be the ori-
gin in Rn. Therefore, letf be a local diffeomorphism fixing 0∈ Rn, which is at
leastCr. Throughout this paper we assume the origin is a partially attracting fixed
point. The repelling case can be treated by takingf −1. Consequently, let 1=
λ0 > · · · > λm be the distinct moduli of the eigenvalues of(Df )0. To each split-
ting of the spectrum,{λ0, . . . , λi} > {λi+1, . . . , λm}, there exist complementary,
generalized eigenspaces for(Df )0. These are properly referred to as the pseudo-
unstable and strong stable subspaces, respectively. However, as there actually are
no unstable eigenvalues (those with modulus greater than 1), we will refer to the
pseudo-unstable subspace for a given splitting as the center/weak-stable subspace,
or center/weak subspace for short.

A general result is that, for the nonlinear functionf, there are nonlinear analogs
of these subspaces: the center/weak and strong stable manifolds. Locally these
are embedded disks tangent to the corresponding subspaces at zero (and so can
be given as graphs over these subspaces) that are germwise invariant underf.

Moreover, under iteration byf, points in these invariant submanifolds exhibit the
same asymptotic rates of expansion/contraction as vectors in the corresponding
subspaces do under the linear map.

By the pseudo-stable manifold theorem [HPS], the strong stable manifold is
unique and as smooth as the diffeomorphism. The center/weak manifolds, how-
ever, are not unique. In this case, the pseudo-stable manifold theorem guarantees
the existence of center/weak manifolds of at least a minimum smoothness which
depends upon the gap between the two pieces of the spectrum. For the splitting
as above, the center/weak manifold will be at leastCs providedλsi > λi+1. How-
ever, this does not imply that there might not exist center/weak manifolds that are
more smooth than predicted. We say thatf has a complete set ofCr center/weak
manifoldsif, to every such splitting of the spectrum of(Df )0, there exists at least
one center/weak manifold that isCr.We will prove that the existence of a partial
linearization is, up to a slight loss of differentiability, equivalent to the existence
of a complete set of center/weak manifolds.

Throughout this paper we will follow the common practice whereby, for any real
numberr ≥ 0, a function is said to beof classCr if it possesses continuous deriva-
tives up to order [r] and its [r]th-order derivative is(r)-Hölder. Here [r] and(r)de-
note the integer and fractional parts ofr, respectively. The case when the top deriva-
tive is 1-Hölder or Lipschitz does not fit this well; this case is written asCk+Lip (k ∈
N),wherer = k+Lip is considered distinct (and distinguishable) fromr = k+1.

Theorem 1. Assume0∈Rn is a partially attracting fixed point for aCr+2 (1<
r < ∞) germ of a diffeomorphismf. If f has aCr partial linearization, thenf
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has a complete set ofCr center/weak manifolds. Conversely, iff has a complete
set ofCr center/weak manifolds, thenf has aCr−ε partial linearization for any
ε > 0.

This theorem has its analog for flows. A partial linearization for a flow is a
local change of variable converting the original vector field to one of the form
[Y(ξ), Aξx], where(DY)0 has only pure imaginary eigenvalues and all eigenval-
ues ofAξ have nonzero real part. This is equivalent to the change of variable con-
verting the original flow to one of the form8t(ξ, x) = [ϕt(ξ), Btξ x],whereϕt has
a center at the origin andBt0 is hyperbolic fort 6= 0. (HereBtξ = B(t, ξ) is not
the power of a matrix, but rather the solution of the nonautonomous ODE:B ′ =
Aϕt(ξ)B onL(Rn,Rn).)

Theorem 2. Assume0∈Rn is a partially attracting singularity for aCr+2 (1<
r <∞) germ of a vector fieldX. If the local flow ofX has aCr partial lineariza-
tion, thenX has a complete set ofCr center/weak manifolds. Conversely, ifX
has a complete set ofCr center/weak manifolds, then the local flow ofX has a
Cr−ε partial linearization for anyε > 0.

Corollary 1. A partially attracting fixed point of aC2+Lip diffeomorphism or
flow can beC1 partially linearized.

Two significant differences between the preceding results and those for purely at-
tracting fixed points is an inherent loss of differentiability for this case, and a lack
of uniqueness. For an attracting fixed point, it is shown in [M1] that the conjugacy
is uniquely determined by where it sends the weak stable eigenspaces (provided it
is at leastC1+ε, and assuming its derivative is the identity at the origin). The pres-
ence of a center direction in general destroys this uniqueness because the structure
in a neighborhood of the fixed point may depend upon properties of the system far
away from the point. However, the root source of the uniqueness is still there, and
this is enough to obtain Theorem 2 from Theorem 1. (It is also possible to recover
this uniqueness if one assumes that the fixed point is topologically attracting.)

Remark. There is an omission in the statement of uniqueness in Theorem 1 of
[M1]. This should read: “Moreover, ifr > 1, and the weak unstable manifolds
are nested,the givenCr conjugacy is the only conjugacy betweenf and its linear
part which is . . . .” (This theorem is stated for a repelling instead of an attracting
fixed point.) A similar correction must be made to Theorem 2 of [M1].

A more fundamental difference is that the differentiability obtained for the
conjugacy here is arbitrarily close to, but not equal to, the differentiability of
the center/weak manifolds. This appears to be unavoidable. Although the loss
of differentiability, as measured byε, can be chosen to be as small as desired,
the neighborhood of the origin on which the partial linearization holds shrinks to
zero asε→ 0. (The loss of differentiability actually only pertains to the smooth-
ness in the center direction. The smoothness of the conjugacy in the complimen-
tary direction is the same as the center/weak manifolds. See the remark near the
beginning of the proof of Proposition 2.)
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Although they differ considerably in the details, the underlying structure of the
proof of Theorem 1 is the same as in [M1]. We start by finding a strong sta-
ble foliation for each strong versus center/weak stable splitting of the spectrum
of (Df )0. A strong stable foliationfor a particular splitting is an invariant foli-
ation on a neighborhood of the fixed point having the strong stable manifold as
a leaf (and hence is generally “parallel” to the strong stable subspace). This is
handled by Proposition 1. The presence of the strong stable foliations will allow
us to choose coordinates in whichf is “triangular”. This means that, relative to
these coordinates, theith component off will depend only on the firsti variables.
Oncef is in this form, we can inductively apply Proposition 2 to obtain the partial
linearization.

Proposition 1. Letf : Rn→ Rn be aCr+2 diffeomorphism with the origin as a
partially attracting fixed point. To each strong versus center/weak stable splitting
of the spectrum of(Df )0, there exists aCr+1 strong stable foliation of a neigh-
borhood of 0. Moreover, in each case the strong stable foliation can be chosen
so that the collection of strong stable foliations is nested. That is, the leaves of a
lower-dimensional foliation will be subordinate to(i.e., foliate) the leaves of the
higher-dimensional foliations.

If f is the time-1 map of the local flow of aCr+2 vector field with a singular-
ity at the origin, then in addition the strong stable foliations can be chosen to be
invariant under the local flow.

For Proposition 2 we assume that(Df )0 has a three-way invariant splittingEc ⊕
Ew ⊕ Es. The labels are intended to indicate center, weak stable, and strong sta-
ble subspaces. These will correspond to blocks of(Df )0 which have eigenvalues,
respectively: on the unit circle; inside the unit circle but of intermediate size; and
of only one modulus that is smaller than all others. Given a matrixL, we will use
|sp(L)| to denote the set of moduli of the eigenvalues ofL, and a comparison of
that set to a real number means that the comparison holds for each element of the
set.

Proposition 2. Letf be a germ of aCr+1(1 < r <∞) diffeomorphism fixing
0 ∈ Rn. Suppose, relative to some splittingEc ⊕ Ew ⊕ Es, that f has the form
f(ξ, x, y) = [ϕ(ξ), f1(ξ, x), f2(ξ, x, y)] and (Df )0 is block diagonal,

(Df )0 =:

[
U

A

B

]
,

such that|sp(U)| = 1, |sp(B)| = β < 1, andβ < |sp(A)| < 1. If f has aCr

center/weak stable manifold tangent toEc ⊕ Ew, then for anys < r there exists
aCs local diffeomorphismG conjugatingf to (ξ, x, y) 7→ [ϕ(ξ), f1(ξ, x), Bξy]
for someCr functionξ 7→ Bξ ∈L(Es, Es).

Let ψt be a local flow of aCr+1 vector field that has a singularity at0 ∈ Rn.
Supposeψt(ξ, x, y) = [ϕt(ξ), ψ t

1(ξ, x), ψ
t
2(ξ, x, y)], and thatf := ψ1 satisfies

the foregoing hypotheses, where the center/weak stable manifold is invariant un-
der ψt . Then, for anys < r, there is aCs local diffeomorphismG such that
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(G B ψt B G−1)(ξ, x, y) = [ϕt(ξ), ψ t
1(ξ, x), B

t
ξ y] near 0 for someCr function

Btξ : R× Ec → L(Es, Es).

Moreover, in both casesG can be chosen so that it is the identity on the first
two components; that is,G(ξ, x, y) = [ξ, x,G2(ξ, x, y)].

All of the work in proving Theorem 1 is contained in Proposition 2—which we
leave for last. Proposition 1 is a relatively simple application of theCr section
theorem [HPS; Sh].

Proof of Proposition 1.This proof applies more naturally to a partially repelling
fixed point, so replacef with its inverse. LetT := (Df )0, and defineτ := f −T .
Given anyε > 0, we can assume, by cuttingτ off with a smooth bump function
in a sufficiently small neighborhood of 0, thatf is defined on all ofRn, thatτ has
support in a small neighborhood about 0, and that‖(Dτ)p‖ < ε for all p. If f is
the time-1 map for the local flow of a vector field, we perform this modification
instead on the vector field itself. In this wayf will have the same properties, but
in addition it will still be the time-1 map of a flow.

LetEcw be the center/weak unstable plane andEuu the strong unstable plane of
T associated to some splittingσcw t σuu of the spectrum ofT, where 1≤ |σcw| <
|σuu|. Label the blocks of(Df )x relative toEuu ⊕ Ecw as follows:

(Df )x =:

[
Ax Bx
Cx Nx

]
.

At x = 0,we haveT = A0⊕N0.Since the eigenvalues ofA0 have moduli strictly
greater than those ofN0, which are themselves at least 1 in modulus, we can
chooseα > ν > 1 as well as adapted norms onEuu,Ecw such that‖N0‖ < ν <

α < ‖A−1
0 ‖−1; moreover, for anyδ > 0, we can choose these so that‖N−1

0 ‖ <
1+ δ. Chooseκ with ν/α < κ < 1, and fixδ so small thatκ(1+ δ)r+1 < 1.

For ε sufficiently small, we will have‖A−1
x ‖ < α−1, ‖Nx‖ < ν, ‖N−1

x ‖ <
1 + δ, and (Df −1)x < 1 + δ for all x. Let L1(E

uu, Ecw) be the unit ball in
L(Euu, Ecw), and letP : Rn → L1(E

uu, Ecw) be a plane field onRn. The im-
age of this plane field under(Df ) will be the plane fieldP̂ defined byP̂f(x) =
(Cx + NxPx)(Ax + BxPx)−1. Therefore, an invariant plane field for(Df ) corre-
sponds to an invariant section of the functionF, fromRn×L1(E

uu, Ecw) to itself,
defined byF(x, P ) := [f(x), (Cx +NxP )(Ax +BxP )−1]. By Proposition 4.5 of
[HP], if ε is sufficiently small thenF is well-defined and, moreover, it contracts
fibers of the disk bundle5 : Rn × L1(E

uu, Ecw)→ Rn by κ < 1.
Becausef is Cr+2, (Df ) is Cr+1 and soF is Cr+1. By theCr section the-

orem,F has a unique invariant section, which is continuous. Moreover, the in-
variant section will beCr+1 providedκ Lip(f −1)r+1 < 1. However, Lip(f −1) =
supx‖(Df −1)x‖ ≤ 1+ δ. Therefore,(Df ) has a unique invariant plane fieldP
such thatPx ∈L1(E

uu, Ecw) for all x, and it isCr+1.

At this point we invoke general stable manifold theory. Sincef is C1 close
to T andRn is aρ-pseudo hyperbolic set forT when|σcw| < ρ < |σuu|, it fol-
lows that ifε is sufficiently small thenRn will be aρ-pseudo hyperbolic set forf.
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Therefore, by the pseudo-stable manifold theorem, through each point there exists
a unique strong unstable manifold that isCr+2. Since these are unique, the col-
lection of strong unstable manifolds forms a foliation ofRn byCr+2 leaves. The
tangent plane field to this foliation is continuous, close toEuu, and invariant un-
der(Df ). SinceP is the only invariant plane field close toEuu, the tangent plane
field is P. However,P is then obviously integrable. Therefore, by Froebenius’
theorem, the collection of strong unstable manifolds is in fact aCr+1 foliation.

Finally, this can be done for each weak unstable versus strong unstable split-
ting. In each case there will be a minimumε needed to make it work, which will
be achieved by cutting offτ in a sufficiently small neighborhood of the origin. If
we decide in advance how small this neighborhood must be for each of the split-
tings, then we can do this once so that the same modifiedf can be used for each
case. In this way, the collection of strong unstable foliations that we obtain are all
invariant foliations for the same function. Because the modified function agrees
with the original diffeomorphism near the origin, these foliations are locally in-
variant under the originalf. Now suppose that the original diffeomorphism was
the time-1 map of a flow. By construction, the modifiedf is the time-1 map of
the flowϕt of the modified vector field. The strong unstable manifolds for a flow
are the same as for its time-1 map. Therefore, these foliations are invariant un-
derϕt . Since the modified vector field agrees with the original vector field near
the origin,ϕt agrees with the original flow near the origin. Consequently, these
foliations are locally invariant under the original flow.

We are left with showing that these foliations can be chosen so they are nested. In
fact, as constructed, they already are. From the pseudo-stable manifold theorem,
the strong unstable manifolds for a splitting|σcw| < ρ < |σuu| are the equivalence
classes of the relationx1 ∼ x2 if and only if limn→∞ ρn‖f −n(x1)− f −n(x2)‖ =
0. Given two splittings withρ1 < ρ2, since the associated strong unstable mani-
folds are for the samef, the equivalence classes determined byρ2 will clearly be
subsets of those forρ1. Consequently, the foliations are nested.

Proof of Theorem 1.The significant part of this proof is the second half—the
construction of a partial linearization from a complete set of center/weak mani-
folds. The first half, that aCr partial linearization implies a complete set ofCr

center/weak manifolds, is just another simple application of theCr section the-
orem. Since a partial linearization will take the invariant manifolds of one sys-
tem to those of another, it is sufficient to show thatf has a complete set ofCr

center/weak manifolds after applying the partial linearization. Therefore, assume
f(ξ, x) = (ϕ(ξ), Bξx) is a function fromRc ×Rm into itself, where the spectrum
of (Dϕ)0 is on the unit circle andB0 is hyperbolic. LetRw × Rs = Rm be the
weak stable and strong stable subspaces ofB0 for some splitting of its spectrum.
We want to show thatf has aCr center/weak manifold tangent toRc × Rw.

If we viewRc×Rm as a vector bundle overRc, thenf is a bundle map. Suppose,
for eachξ ∈Rc, we have subspacesV(ξ) ⊂ Rm of dimensionw such thatV(0) =
Rw × {0} andV(ϕ(ξ)) = BξV(ξ). The union of these subspaces would then be a
surface invariant underf, tangent toRc×Rw at 0, and as smooth asV. Therefore,
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it will be enough to show there is aCr section of the bundleRc × L(Rw,Rs)→
Rc that is invariant under the natural action off. We now proceed as in the proof
of Proposition 1. BecauseB contractsRs more strongly thanRw, the natural ac-
tion of f is a fiber contraction onRc ×L(Rw,Rs) by someκ < 1. The base map
is ϕ, and since all eigenvalues of(Dϕ)0 have modulus 1, we can make Lip(ϕ−1)

as close to unity as we wish by restricting to a sufficiently small neighborhood of
the origin. In particular, sincer < ∞, we can makeκ Lip(ϕ−1)r < 1. Conse-
quently, we can apply theCr section theorem and conclude thatV exists and is as
smooth asf.

We can now address the major part of the proof. Let 1= λ0 > · · · > λm
be the distinct moduli of eigenvalues of(Df )0. Let Ei be the invariant subspace
of (Df )0 corresponding to eigenvalues with modulusλi. Relative to coordinates
(x0, . . . , xm)∈E0⊕ · · · ⊕Em = Rn, (Df )0 is block diagonal andλi is the mod-
ulus of the eigenvalues of blocki, Bi. Let Fi := Ei+1 ⊕ · · · ⊕ Em (i < m). By
Proposition 1 there exist a total ofm distinctCr+1 strong stable foliations of de-
creasing dimension, tangent to the planesF0, . . . , Fm−1 at 0, and these foliations
are nested.

Sincef : E1 ⊕ F1 → E1 ⊕ F1 has an invariant foliation whose leaf through
the origin is tangent toF1, we can choose a foliation chart taking the leaves to
the vertical planes, that is, the family of planes parallel toF1. F1 further decom-
poses asF1 = E2 ⊕ F2, and there is a second invariant foliation that is subordi-
nate to the first and tangent toF2. Thus, with respect to the first foliation chart, the
second foliation will have leaves that are graphs overF2 and are restricted to sin-
gleE2 ⊕ F2 planes. Consequently, the second foliation can be taken to the fam-
ily of planes parallel toF2 by a change of coordinates that moves points only in
theE2 direction. This means that the planes parallel toF1 = E2 ⊕ F2, the origi-
nal foliation, are taken to themselves, and so this is a common foliation chart for
both foliations. Continuing in this way from the highest-dimensional foliations to
the lowest, we can construct a common foliation chart for all of the strong stable
foliations, which isCr+1.

Relative to this common foliation chart,f will beCr+1 and for eachi will leave
the family of planes parallel toFi invariant. Since these are the sets{(x0, . . . , xi) =
constant}, this implies that, for eachi, the componentsf0, . . . , fi cannot depend
upon (xi+1, . . . , xm). This holds for everyi, and so we havef(x0, . . . , xm) =
[f0(x0), f1(x0, x1), . . . , fm(x0, . . . , xm)]. Since the invariant foliations were al-
ready tangent to the subspacesFi, this can be done without changing(Df )0.
Therefore,(Dxi fi)0 = Bi.

BecauseE0 is the generalized eigenspace for eigenvalues of modulus 1, which
will be handled differently from the other subspaces, we distinguish this variable
by writing x0 =: ξ and denotingf0 by ϕ, sof0(x0) = ϕ(ξ). By induction we
prove that there is aCr−ε partial linearization forf. Suppose that for somei ≥ 1
there is aCr−ε conjugacyĜ from f to f̂ , where

f̂ (ξ, x1, . . . , xm)

= [ϕ(ξ), f1(ξ, x1), . . . , fi(ξ, x1, . . . , xi), Bi+1(ξ)xi+1, . . . , Bm(ξ)xm],
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and whereBj(ξ) is aCr function fromE0 toL(Ej,Ej ) with Bj(0) = Bj . In addi-
tion, we assumêG is the identity on the firsti + 1 components, that is,̂G(x) =
(x0, . . . , xi, ĝi+1(x), . . . , ĝm(x)).The base case for the induction isi = m,where
f = f̂ , and is vacuously true. We want to show there is a subsequentCr−ε

conjugacyG that convertsfi(ξ, x1, . . . , xi) to Bi(ξ)xi while leaving the other
components unchanged.

Letx := (x1, . . . , xi−1), y := xi, andz := (xi+1, . . . , xm).Depending oni, ei-
therx orzmay span the zero subspace. Recollect the components off̂ so that, rel-
ative to these new variables,̂f(ξ, x, y, z) = [ϕ(ξ), f̂1(ξ, x), f̂2(ξ, x, y), B̂(ξ)z].
We then have thatϕ, f̂1, f̂2 areCr+1, (Dϕ)0 has eigenvalues on the unit circle,
(Dyf̂2)0 has eigenvalues of only a single modulusβ = λi < 1, and the moduli
of the eigenvalues of(Dxf̂1)0 are in{λ1, . . . , λi−1}, which are strictly between 1
andβ.

By assumption we have a complete set ofCr center/weak manifolds forf, in-
cluding aCr center/weak manifold tangent toE0 ⊕ · · · ⊕ Ei−1, that is, the span
of (ξ, x). This is the graph of aCr functionh : E0 ⊕ · · · ⊕ Ei−1 → Fi. In other
words, it has the form{(ξ, x, h2(ξ, x), h3(ξ, x))}, whereh2, h3 areCr. Ĝ takes
this to aCr−ε center/weak manifold forf̂ . However,Ĝ is the identity on the
first three terms. Consequently, the center/weak manifold forf̂ can be written as
{(ξ, x, h2(ξ, x), ĥ3(ξ, x))}, whereh2 is unchanged, and so is stillCr.

Because the first three components off̂ do not depend uponz, the graph of
h2 alone,{(ξ, x, h2(ξ, x))}, must be invariant under [ϕ(ξ), f̂1(ξ, x), f̂2(ξ, x, y)].
Hence, the restricted system has aCr center/weak manifold tangent to the
span of(ξ, x) and so satisfies the hypotheses of Proposition 2. From this we
can conclude that there exists aCr−ε conjugacy from the restricted system to
[ϕ(ξ), f̂1(ξ, x), B(ξ)y]. Moreover, this conjugacy has the form(ξ, x, g(ξ, x, y)).
SettingG(ξ, x, y, z) = (ξ, x, g(ξ, x, y), z) gives us the desired conjugacy for the
full system.G B Ĝ now satisfies the induction hypotheses fori−1.Consequently,
we can continue to linearizef term by term to get aCr−ε partial linearization.

Proof of Theorem 2.Letψt be the local flow ofX, and letf = ψ1 be the time-1
map ofψt . The center/weak subspaces for(DX)0 and(Df )0 agree, and a sub-
manifold that is invariant underψt will be invariant underf. Therefore,f has a
complete set ofCr center/weak manifolds. The proof now proceeds the same as
Theorem 1, except upon applying Proposition 2, we use that the conjugacy holds
for the full flow.

Proof of Corollary 1. As observed earlier, there will be guaranteed a center/weak
manifold that isCs providedλsi > λi+1. Sinceλi > λi+1 for eachi, there will
exist someα > 0 such thatλ1+α

i > λi+1 for all i. Therefore, there is a complete set
of C1+α center/weak manifolds. Consequently, iff isC3+δ for someδ (0< δ ≤
α), we can apply Theorem 1 withr = 1+ δ and conclude that there is aC1+δ−ε

partial linearization, and so in particular there is aC1 partial linearization. There-
fore, the corollary holds for anyf that isCs with s > 3. However, we can get
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away withs = 2+ Lip by using a slightly stronger version of Proposition 1. It is
shown in [M2] that the loss in differentiability between the diffeomorphism and
the strong stable foliation is strictly less than 1. Consequently, iff isC2+Lip, we
can find strong stable foliations that areC2+δ for someδ > 0. This means that in
the proof of Theorem 1 we are applying Proposition 2 to a system that isCr+1,

wherer = 1+ δ. This is effectively the same as starting with a system that is
C3+δ, and so there exists aC1 partial linearization.

We are left with proving Proposition 2.

Proof of Proposition 2.We make the following notational conventions. Given a
subspaceE ⊂ Rn, E(t) will be the closed ball of radiust about 0∈ E. When
we wish to group the subspacesEc,Ew,Es, we will useEcw := Ec ⊕ Ew and
Ews := Ew ⊕ Es. We denote points in these subspaces byu := (ξ, x) ∈ Ecw

andν := (x, y) ∈ Ews, and points inRn by p. Hence,p = (u, y) = (ξ, ν) =
(ξ, x, y). The partial derivatives corresponding to these subspaces will be denoted
Dξ,Du,Dy, . . . . In the same vein, when regrouping the components off we
will use f̂1(u) := [ϕ(ξ), f1(ξ, x)] andµ(ξ, ν) := [f1(ξ, x), f2(ξ, x, y)], sof =
ϕ ⊕ µ = f̂1⊕ f2.

For 0< θ ≤ Lip, Hθ [·] will denote theθ -Hölder constant of(·), and we will
useH ξ

θ andHν
θ to denote the (uniform)θ -Hölder constant with respect toξ and

ν, respectively. More precisely, for a functionτ onEc ⊕ Ews, taking values in
some Banach space, we define

H
ξ
θ [τ ] := sup

ξ1 6=ξ2

sup
ν

‖τ(ξ1, ν)− τ(ξ2, ν)‖
‖ξ1− ξ2‖θ ,

where the supremums are over the domain ofτ, and similarly forHν
θ . Finally, we

will use‖ · ‖Cr to denote theCr norm on a space ofCr functions:

‖f ‖Ck := max

{
sup
p

‖(Dif )p‖ : i = 0, . . . , k

}
(k ∈N);

‖f ‖Ck+θ := max{‖f ‖Ck ,Hθ [(D
kf )]} (0< θ ≤ Lip).

We need to show that, given aCr center/weak manifold, there exists aCs con-
jugacy for anys < r. Therefore, fixs < r. There are two possibilities. Ifs is suffi-
ciently close tor, then eitherr is not an integer and [r] < s < r, or r is an integer
andr − 1 < s < r. In either case, we can assume thats is not an integer. There-
fore, sets =: k + θ, wherek ∈N and 0< θ < Lip, and chooseδ with 0 < δ ≤
r − s and such thatθ + δ ≤ Lip.

Becauser < ∞, there is a sufficiently small neighborhood of 0 on whichf
has a center manifold as smooth asf. We can therefore assume, without loss of
generality, thatEc is invariant. The center/weak manifold off is tangent toEcw

and so is locally the graph of aCr functionh : Ecw(d )→ Es. If we make an ini-
tial change of variable byH(u, y) = [u, y − h(u)], thenH B f B H−1(u, y) =
[f̂1(u), f2(u, y + h(u)) − h B f̂1(u)] leavesEcw invariant. Althoughf ∈ Cr+1,

h is only Cr and soH B f B H−1 is only Cr. On the other hand,f̂1 has not
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changed and so is stillCr+1. The partial with respect toy of the second compo-
nent is(Dyf2)H−1(u,y), which is the composition ofCr functions, and so isCr.

Therefore, the second component isCr+1 with respect toy. Moreover, since the
graph ofh is tangent toEcw at 0, (Dh)0 = 0 and so(DH)0 = I. Therefore,
D(H B f BH−1)0 = (Df )0.

A priori, Ec may no longer be invariant underH B f BH−1. However, the fam-
ily of planes parallel toEs is an invariant foliation forf, andEc is an invariant
manifold. Therefore, the planeEc ⊕Es is invariant underf. Since bothEc ⊕Es
and the graph ofh are invariant underf, their intersection is invariant, and their
intersection is precisely the set that is taken toEc byH. Therefore, even though
H may not preserveEc, it takes another invariant set toEc and soEc is still in-
variant underH B f B H−1. Consequently, bothEc andEcw are invariant under
the new system.

Having made these preliminary changes, we will again usef to denote the
modified diffeomorphism. Therefore, we now have

f(ξ, x, y) = [ϕ(ξ), f1(ξ, x), f2(ξ, x, y)],

whereϕ, f1 areCr+1 and wheref2 is Cr and isCr+1 in y. Moreover, bothEc

andEcw are invariant underf, which impliesf2(ξ, x,0) ≡ 0≡ f1(ξ, 0).
Let α := max|sp(A)|, and fix κ with αδ < κ < 1. Fix ε > 0 sufficiently

small that(β + ε)(β−1 + ε)(1+ ε)s(α + ε)δ < κ < 1. Since|sp(B)| = β and
|sp(U)| = 1, we can make a linear change of variable convertingA, B, andU to
realε-Jordan form so that‖B‖ < β + ε, ‖B−1‖ < β−1 + ε, ‖A‖ < α + ε, and
‖U‖ < 1+ ε. Take the norm onEc⊕Ew⊕Es to be the box norm,‖(ξ, x, y)‖ :=
max{‖ξ‖, ‖x‖, ‖y‖}. LetO be the orthogonal matrix that is the real Jordan form
of U minus the off-diagonal entries. Then we can assume‖U −O‖ < ε.

Write f = (Df )0+ τ. By cuttingτ off with a smooth bump function outside a
small neighborhood of 0, we can assume thatf is defined on all ofRn and is lin-
ear outside a small ball; given anyε′ > 0, we can also assume supp‖(Dτ)p‖ <
ε′. SinceEc andEcw are invariant under both(Df )0 andτ, the newf will still
leave these invariant and will be as smooth as before. Ifε′ is small enough, then
‖(Dϕ)p‖ ≤ 1+ε, ‖(Df1)p‖ ≤ α+ε, and‖(Df2)p‖ ≤ β+ε for all p.Moreover,
the newf will still be invertible and‖D(f −1)2‖ ≤ β−1+ ε.
Remark. The size of the ball on which the newf agrees with the old is depen-
dent uponε, and shrinks asε → 0. Moreover,ε is a function ofδ, the loss of
differentiability, andε → 0 asδ → 0. Therefore, as observed in the comments
after the statement of Corollary 1, in the absence of additional information (e.g.,
the fixed point is topologically attracting), the neighborhood on which the partial
linearization is guaranteed to exist disappears asδ→ 0.

It will be convenient to work on a compact invariant neighborhood of 0, so we
make one last modification tof. OnEc we haveϕ(ξ) = Uξ outsideEc(t) for
some smallt. BetweenEc(t) andEc(1), smoothly interpolate betweenU andO
so thatϕ(ξ) = Oξ near‖ξ‖ = 1. Since‖U − O‖ can be made as small as we
wish, we can still assume‖(Dτ)p‖ < ε′ for all p. BecauseO is an isometry,
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O(Ec(1)) = Ec(1).Moreover,‖(Df1)p‖ ≤ α+ ε < 1 and‖(Df2)p‖ ≤ β + ε <
1. Therefore,f mapsRn(1) into itself.

With these preliminary modifications, we now have a functionf = (ϕ, f1, f2)

that satisfies the following. It is equal (after aCr change of variable) to our origi-
nalf near the origin,f [Rn(1)] ⊂ Rn(1), andEc,Ecw are invariant. Bothϕ and
f1 areCr+1, f2 isCr and isCr+1 in y, and‖(Df )p − (Df )0‖ < ε for all p.

We are finally ready to constructG. DefineBξ := (Dyf2)(ξ,0,0). Sincef2 is
Cr+1 in y, Bξ is Cr. DefineF(ξ, x, y) := [ϕ(ξ), f1(ξ, x), Bξy]. We are looking
for a conjugacy betweenf andF—that is, a diffeomorphismG such thatF BG =
G B f.Moreover, we wantG to have the formG(ξ, x, y) = [ξ, x, y + g(ξ, x, y)].
Writing this out, we haveBξ(y + g) = f2 + g B f. If we defineρ := f2 − Bξy,
this can be written asg = B−1

ξ g B f +B−1
ξ ρ =: 8(g). Therefore, a fixed point of

8 would give us the desired conjugacy.
Observe that8 is an affine map, and therefore we look for a fixed point in

a function space that is matched toρ. From its definition,ρ(ξ, x, y) is Cr, and
Cr+1 in y. Moreover,ρ(ξ, x,0) = f2(ξ, x,0) − Bξ(0) = 0, and(Dyρ)(ξ,0,0) =
(Dyf )(ξ,0,0)−Bξ = 0. LetG be the set ofCs functionsg : Rn(1)→ Es such that
g(ξ, x, y) is Cs+1 in y, and for whichg(ξ, x,0) ≡ 0 and(Dyg)(ξ,0,0) ≡ 0. We
claim8 mapsG into itself.

Becauses < r, ρ ∈ G. Moreover, for anyg ∈ G, B−1
ξ g will again be inG.

Therefore, to show thatG is invariant under8 we need only showg B f ∈ G
for any g ∈ G. Clearly, g B f is Cs; since, inf, only f2 depends ony, it fol-
lows thatDy [g B f ](ξ,x,y) = (Dyg)f(ξ,x,y)(Dyf )(ξ,x,y), where both terms are at
leastCs. Hence,g B f is Cs+1 in y. Sincef(ξ, 0,0) = (ϕ(ξ), 0,0), we have
(Dyg)f(ξ,0,0) = 0 and soDy [g B f ](ξ,0,0) = 0. Likewise,f(u, 0) = (f̂1(u),0).
Therefore,(g Bf )(u,0) = g(f̂1(u),0) = 0.Consequently,g Bf ∈ G, from which
it follows thatG is invariant under8.

We want a fixed point of8 in G, and to exhibit this fixed point we convertG to
another form. Define∂y : G → Cs [Rn(1), L(Es, Es)] by ∂y(g) := (Dyg), and
letD be the image ofG under∂y. Cs [Rn(1), L(Es, Es)] is a Banach space under
theCs norm. We claim that∂y is a bijection onto a closed subspace.

Lemma 1. ∂y : G → D is one-to-one, andD ⊂ Cs [Rn(1), L(Es, Es)] is a closed
subspace. Hence,D is a Banach space under theCs norm.

Proof. ∂y is linear, soD is a subspace. We need to show∂y is one-to-one and its
image is closed.Rn(1) is convex and so, given anyg ∈ G, we can integrate(Dyg)

along the line segment joining(u,0) and(u, y). Usingg(u,0) ≡ 0, we have

g(u, y) = g(u, y)− g(u,0) =
∫ 1

0
(Dyg)(u,ty)(y) dt.

Therefore,(Dyg) uniquely determinesg, and∂y is one-to-one. Differentiating
both sides of this expression, under the integral on the right since all derivatives
of (Dyg) are continuous, we get the derivatives ofg in terms of the derivatives of
(Dyg). Consequently, if(gn) ⊂ G is a sequence such that(Dygn) → N ∈ ∂D,
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then(Dygn) is Cauchy and so(gn) is a Cauchy sequence with respect to the usual
Cs topology onG. Therefore, it converges to someCs functiong. On the other
hand,(Dygn) is then converging uniformly to(Dyg). Therefore,(Dyg) = N, and
g isCs+1 in y. If gn(u,0) ≡ 0 and(Dygn)(ξ,0,0) ≡ 0 for alln, then the same holds
for g and sog ∈ G. Therefore,∂y(g) = N is inD, andD is closed.

Because8 mapsG into itself, the identification betweenG andD given by∂y in-
duces a new map2 : D → D determined by2 B ∂y = ∂y B 8. This is just the
map(Dyg) 7→ Dy [8(g)] = B−1

ξ (Dyg)f(u,y)(Dyf )(u,y) +B−1
ξ (Dyρ)(u,y). Conse-

quently, rather than looking for a fixed point of8 in G, we can look for a fixed
point of the induced map2 in D.

Having translated the problem to one onD, we will now work almost exclu-
sively in terms of(ξ, ν)∈Ec ⊕Ews. The proof proceeds as follows. We produce
yet another subspaceN ⊂ D,which is not closed but does have a fixed point of2.

Moreover, this fixed point is globally attracting inN relative to theCs topology
and so is unique inN.

The subspaceN is defined in terms of a modification of theCs norm. Toward
that end, we make the following observations. Continuous higher-order deriva-
tives are symmetric and so, forN ∈D, (DiN )(ξ,ν) can be reconstructed from the
derivatives(DνD

i−1N)(ξ,ν) and(Di
ξN )(ξ,ν). In fact, ifπξ andπν are the projections

ontoEc andEws respectively, and ifw1, . . . , wi ∈ Rn, thenwj = πξwj + πνwj
and we can expand(DiN )(ξ,ν)[w1, . . . , wi ] as

(DiN )(ξ,ν)[w1, . . . , wi ]

= (Di
ξN )(ξ,ν)[πξw1, . . . , πξwi ]

+
i∑

j=1

(DνD
i−1N)(ξ,ν)[πνwj, πξw1, . . . , πξwj−1, wj+1, . . . , wi ].

Therefore,

‖(DiN )(ξ,ν)‖ ≤ (i + 1)max
{‖(DνD

i−1N)(ξ,ν)‖, ‖(Di
ξN )(ξ,ν)‖

}
.

On the other hand, one also has

max
{‖(DνD

i−1N)(ξ,ν)‖, ‖(Di
ξN )(ξ,ν)‖

} ≤ ‖(DiN )(ξ,ν)‖.
Since these hold for all(ξ, ν), we obtain both of the following fori = 1, . . . , k :

1

i + 1
‖(DiN )‖C 0 ≤ max

{‖(DνD
i−1N)‖C 0, ‖(Di

ξN )‖C 0

} ≤ ‖(DiN )‖C 0;
1

k + 1
Hθ [(D

kN)] ≤ max
{
Hθ [(DνD

k−1N)], Hθ [(D
k
ξ N )]

} ≤ Hθ [(D
kN )].

Similarly, we can decompose theθ -Hölder constant of(Dk
ξ N ) into its ξ - and

ν-parts. For any function we have

Hθ [τ ] ≤ H ξ
θ [τ ] +Hν

θ [τ ] ≤ 2 max{H ξ
θ [τ ], Hν

θ [τ ]}.
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Therefore,

1

2
Hθ [(D

k
ξ N )] ≤ max

{
H
ξ
θ [(Dk

ξ N )], H
ν
θ [(Dk

ξ N )]
} ≤ Hθ [(D

k
ξ N )].

Putting these together yields the following lemma.

Lemma 2. For N ∈D, define‖N‖∗ by

‖N‖∗ = max
{‖N‖C 0, ‖(DνN )‖C 0, ‖(DξN )‖C 0,

. . . , ‖(DνD
k−1N)‖C 0, ‖(Dk

ξ N )‖C 0,

Hθ [(DνD
k−1N)], Hν

θ [(Dk
ξ N )], H

ξ
θ [(Dk

ξ N )]
}
.

Then‖ · ‖∗ and‖ · ‖Cs are equivalent norms onD.

For a functionτ onEc ⊕ Ews, we will use‖τ‖δ to denote the following modifi-
cation of theC 0 norm ofτ : ‖τ‖δ := sup{ ‖τ(ξ, ν)‖/‖ν‖δ : ‖ξ‖ ≤ 1, 0 < ‖ν‖ ≤
1}.We will use the same notation regardless of the range ofτ. Since‖ν‖ ≤ 1, we
have‖τ‖C 0 ≤ ‖τ‖δ ≤ ∞.We will need to make a similar change toH ξ

θ [(Dk
ξ N )].

In this case, letQθ,δ[·] denote the following:

Qθ,δ[τ ] := sup
ξ1 6=ξ2
ν 6=0

‖τ(ξ1, ν)− τ(ξ2, ν)‖
‖ξ1− ξ2‖θ‖ν‖δ .

It follows thatH ξ
θ [τ ] ≤ Qθ,δ[τ ] ≤ ∞.

Lemma 3. For N ∈D, define|||N ||| by

|||N ||| = max
{‖N‖δ, ‖(DνN )‖C 0, ‖(DξN )‖δ,

. . . , ‖(DνD
k−1N)‖C 0, ‖(Dk

ξ N )‖δ,
Hθ+δ[(DνD

k−1N)], Hν
θ+δ[(D

k
ξ N )],Qθ,δ[(D

k
ξ N )]

}
.

LetN := {N ∈D : |||N ||| <∞}. Then(N , ||| · |||) is a Banach space. Moreover,
convergence inN with respect to||| · ||| implies convergence in theCs norm.

Proof. It is clear that||| · ||| is a norm, and term-by-term‖ · ‖∗ ≤ ||| · |||. Therefore,
convergence in||| · ||| implies convergence in‖ · ‖∗, which in turn implies conver-
gence in‖ · ‖Cs .Consequently, we need only show thatN is complete under||| · |||.
However, again since‖ · ‖∗ ≤ ||| · |||, if (Nj ) is Cauchy with respect to||| · ||| then it
is Cauchy with respect to‖ · ‖Cs . Hence,Nj converges to someN ∈D in theCs

topology. On the other hand, since(Nj ) is Cauchy with respect to||| · |||, |||Nj |||
is bounded≤ K for someK, and ifNj → N in theCs topology, it follows that
|||N ||| ≤ K. Therefore,N ∈N , andN is complete.

We want to show that2 mapsN into itself and has a fixed point which attracts
all other elements ofN under iteration by2. Since2 is an affine map, this will
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follow if we showB−1
ξ (Dyρ)∈N andN 7→ B−1

ξ (N B f )(Dyf ) is a bounded lin-
ear operator onN with spectrum strictly inside the unit circle. The first half is
handled by the following lemma.

Lemma 4. If N ∈D isCs+δ, thenN ∈N.
Proof. We need to show that the terms of|||N ||| which differ from‖N‖∗ are fi-
nite if N ∈ D is Cs+δ. These are the terms‖(Di

ξN )‖δ (i = 0, . . . , k) as well
as the last terms. IfN ∈ D, thenN = (Dyg) for someg ∈ G; henceN(ξ,0) =
(Dyg)(ξ,0) ≡ 0. Therefore,(Di

ξN )(ξ,0) = 0 for all i = 0, . . . , k and allξ. Conse-
quently,‖(Di

ξN )(ξ,ν)‖ = ‖(Di
ξN )(ξ,ν) − (Di

ξN )(ξ,0)‖ ≤ Hδ[(Di
ξN )]‖ν‖δ. Since

i < s, (Di
ξN ) is at leastCδ, and‖(Di

ξN )‖δ ≤ Hδ[(Di
ξN )] <∞.

Because(DkN ) is Cθ+δ, the first two of the last three terms are bounded by
K := Hθ+δ[(DkN )]. Likewise,‖(Dk

ξ N )(ξ1,ν) − (Dk
ξ N )(ξ2,ν)‖ ≤ K‖ξ1− ξ2‖θ+δ.

However, we also have‖(Dk
ξ N )(ξ,ν)‖ = ‖(Dk

ξ N )(ξ,ν)− (Dk
ξ N )(ξ,0)‖ ≤ K‖ν‖θ+δ.

Therefore,

‖(Dk
ξ N )(ξ1,ν) − (Dk

ξ N )(ξ2,ν)‖ ≤ 2K min{‖ξ1− ξ2‖θ+δ, ‖ν‖θ+δ}
≤ 2K‖ξ1− ξ2‖θ‖ν‖δ,

and soQθ,δ[(Dk
ξ N )] <∞.

Let χ be the linear part of2, that is,χ(N )(ξ,ν) := B−1
ξ Nf(ξ,ν)(Dyf )(ξ,ν) for N ∈

D. We want to showχ ∈ L(N ,N ) and|sp(N )| < 1, or equivalently, that there
is a new norm onN with respect to which‖χ‖ < 1.

Lemma 5. There exists a norm||| · |||′ onN, equivalent to||| · |||, for which‖χ‖<1.

The proof of this lemma is very technical, and we defer it for the moment. We
first use Lemma 5 to complete the proof of Proposition 2. If there exists a norm
for which‖χ‖ < 1, thenχ (and hence2) is a contraction ofN into itself with re-
spect to this norm. Therefore,2 has a unique fixed point inN. SinceN ⊂ D, this
corresponds to a (not necessarily unique) fixed pointg of8 in G. By design,G =
id+ (0,0, g) is then aCs function that linearizes the last component off ; that is,
it solvesF BG = G Bf.Moreover,g(ξ, x,0) ≡ 0 and so(Dug)(ξ,x,0) ≡ 0 and, by
construction,(Dyg)(ξ,0,0) ≡ 0. Therefore,(Dg)0 = 0. Consequently,(DG)0 =
I + [0,0, (Dg)0] = I, which implies thatG is a diffeomorphism near 0.

Recall that thisf differs from the original diffeomorphism. If we return to us-
ing f to denote the original diffeomorphism, thenG is a conjugacy betweenF
and a diffeomorphism that agrees withH B f BH−1 on a neighborhood of the ori-
gin. Therefore,G B H is a conjugacy betweenf andF near 0. Finally, bothG
andH are the identity on(ξ, x), so the same is true forG BH, which completes
the proof for diffeomorphisms.

Now suppose thatψt is a local flow satisfying the hypotheses of the proposi-
tion, and thatf = ψ1. We can apply the previous case to obtain a conjugacyG

for f.However, in order forG to be a conjugacy for the full flow, we will need the
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modifiedf used in the proof to still be the time-1 map of a flow agreeing with the
original flow near 0. This can be accomplished by making the modifications to the
vector field itself. As before, we make aCr change of variable so thatEc andEcw

are invariant. However, in general, aCr change of variable produces only aCr−1

vector field. Therefore, we need to verify that we do not lose any differentiability.
LetX denote the original vector field. Sinceψt is “triangular”,X has the form

X(ξ, x, y) = [X0(ξ),X1(ξ, x),X2(ξ, x, y)] = [X̂1(u),X2(u, y)]. Let the center/
weak manifold be the graph ofh : Ecw → Es, and setH(u, y) = [u, y+h(u)]. A
change of variable byH produces the vector fieldY(p) = (DH)−1

p (X BH)(p) =
[X̂1(u),X2 B H(u, y) − (Dh)uX̂1(u)]. This involves(Dh), which is onlyCr−1.

On the other hand,Y leavesEcw invariant. Hence the last component ofY must
be zero wheny = 0. Therefore,(Dh)uX̂1(u) = X2 B H(u, 0), and Y(p) =
[X̂1(u),X2 BH(u, y)−X2 BH(u, 0)], which is clearlyCr.

We can now proceed as we did before. We first make a change of variable that
takes aCr+1 center manifold toEc. By the foregoing argument, this does not af-
fect the differentiability ofX. We then apply the change of variable to obtain the
vector fieldY. As with the discrete case, bothEc andEcw are necessarily invari-
ant underY. Moreover,Ŷ1 = X̂1 isCr+1, and(DyY2) isCr, soY2 isCr and it is
Cr+1 in y. Continuing as before, we construct a new vector field that is as smooth
as before, is as close as we wish to a linear vector field, leaves the unit ball invari-
ant, and agrees with the original vector field (up to aCr change of variable) near
0. The flow of this new vector field is then as close as we wish to the linear flow,
and agrees with the original flow (up to aCr change of variable) near 0.

UseX now to denote the new vector field, andψt its flow. X is still triangular,
X(ξ, x, y) = [X0(ξ),X1(ξ, x),X2(ξ, x, y)], and so

ψt(ξ, x, y) = [ϕt(ξ), ψ t
1(ξ, x), ψ

t
2(ξ, x, y)].

We see that [ϕt(ξ), ψ t
1(ξ, x)] is the flow of [X0(ξ),X1(ξ, x)], and is therefore

Cr+1.Moreover,(Dyψ
t
2) solves the differential equationA′ = [(DyX2) Bψt

2]A,
which isCr. Therefore,(Dyψ

t
2) is Cr, andψt

2 is Cr+1 in y. Let f be the time-1
map ofψt . Thenf agrees with the original time-1 map (up to aCr change of vari-
able) near 0, has been modified to fit the requirements of the proof, and is still the
time-1 map of a flow. In particular, bothψt andf leaveEc andEcw invariant.

Now repeat the proof for diffeomorphisms to get a diffeomorphismG conju-
gatingf to [ϕ(ξ), f1(ξ, x), Bξy]. DefineBtξ := (Dyψ

t
2)(ξ,0,0) and9t(ξ, x, y) :=

[ϕt(ξ), ψ t
1(ξ, x), B

t
ξ y]. Btξ isCr, andB1

ξ = (Dyψ
1
2 )(ξ,0,0) = Bξ . Hence

91(ξ, x, y) = [ϕ(ξ), f1(ξ, x), Bξy]

is the function to whichf is conjugate. Therefore,91 B G = G B f = G B ψ1.

We want to show that9t B G = G B ψt for all t. For any fixedt, defineGt :=
(9t)−1 BG B ψt . If Gt = G for eacht, then we will have shown what we want.

Sinceψt+s = ψt B ψs, we haveBt+sξ := (Dyψ
t+s
2 )(ξ,0,0) = Btϕ s(ξ)Bsξ . Conse-

quently,9t+s = 9t B9s, and9t is a flow. Therefore,(9t)−1 = 9−t .Moreover,
Gt B f = (9−t BG Bψt) Bψ1 = 9−t B (G Bψ1) Bψt = 9−t B (91 BG) Bψt =
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91 B (9−t B G B ψt) = 91 B Gt. HenceGt also conjugatesf to 91, and
Gt(ξ, x, y) = (9−t B G B ψt)(ξ, x, y) = [ξ, x, B−t

ϕt(ξ)
G2 B ψt(ξ, x, y)]. If we

definegt by gt (ξ, x, y) = B−t
ϕt(ξ)

G2 B ψt(ξ, x, y) − y, thengt is Cs andGt =
id+ [0,0, gt ].

All three ofG, f, and91 leaveEcw invariant. Therefore,Gt does also, and so
gt (ξ, x,0) ≡ 0. We have(Dygt )p = B−tϕt(ξ)(DyG2)ψ t(p)(Dyψ

t
2)p − I. Therefore,

(Dygt ) isCs, andgt isCs+1 in y. Moreover,

(Dygt )(ξ,0,0) = B−tϕt(ξ)(DyG2)(ϕt(ξ),0,0)(Dyψ
t
2)(ξ,0,0) − I.

Since(DyG2)(ξ,0,0) = I for all ξ and since(Dyψ
t
2)(ξ,0,0) = Btξ , we have

(Dygt )(ξ,0,0) = B−tϕt(ξ)Btξ − I = B0
ξ − I = 0.

Consequently,gt is in G. SinceGt conjugatesf to 91, gt is a fixed point of8.
Hence, if we can show that(Dygt ) is in N , it will follow that (Dygt ) is a fixed
point of2. However, we showed that2 has a unique fixed point inN. Conse-
quently, we will be able to conclude that(Dygt ) = (Dyg), and hencegt = g and
Gt = G. By definition (Dygt ) is inN provided|||(Dygt )||| < ∞. However, we
can avoid calculating|||(Dygt )||| and still derive our desired conclusion.

Becauses = k+ θ andθ > 0, we can choosêθ, δ > 0 such thats = k+ θ̂ + δ.
Let r̂ := s andŝ := k + θ̂ . Sinces < r, the hypotheses of the proposition remain
valid with r̂ replacingr.Consequently, there is a uniqueN̂ ∈N (ŝ, δ) such thatN̂ =
(Dyĝ) for someĝ ∈ G(ŝ), andĜ = id + [0,0, ĝ] conjugatesf to91. However,
G(ŝ) ⊃ G(s), and so bothg andgt are inG(ŝ), from which it follows that(Dyg)

and(Dygt ) are inD(ŝ).But by Lemma 4, since both(Dygt ) and(Dyg) areCs(s =
ŝ+ δ), both are then inN (ŝ, δ). Consequently,(Dygt ) = (Dyg) = N̂ . Therefore,
Gt = G, andG conjugates to the full flow, which completes the proof.

Remark. The fixed pointg of 8 has(Dyg)∈N. In particular,|||(Dyg)||| <∞.
From the definition of||| · |||, this implies that all the mixed partials in(DkDyg),

and hence in(Dkg), areCθ+δ except(Dk
ξ Dyg), which isCθ+δ in ν = (x, y) but

only Cθ in ξ. Consequently, althoughg is as a whole onlyCr−δ, it is actually
Cr as a function of(x, y). This fact persists through each of the applications of
Proposition 2. Therefore, the final partial linearization isCr−δ, but it isCr as a
function of the noncenter variables.

We are left with proving Lemma 5. For this we will need the higher-order chain
rule and associated Leibnitz’ rule.

Theorem 3 [Pu] (Higher order chain rule).Let E,F,G be Banach spaces, let
U ⊂ E andV ⊂ F be open sets, and letf : U → V andg : V → G be maps of
classCk. Theng B f is of classCk and, forx ∈U andv1, . . . , vk ∈E, we have

Dk(g B f )x(v1, . . . , vk) =
k∑
s=1

∑
β∈Bs,k

(Dsg)f(x)(D
βf )x(vβ),

whereBs,k is the set of all partitions of{1, . . . , k} into s disjoint, nonempty subsets
and where, forβ ∈ Bs,k (β = {β1, . . . , βs} with β1 t · · · t βs = {1, . . . , k}), we
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define the following: |βi | = order of βi; vβi := { vj : j ∈ βi} (sovβ1 t · · · tvβs =
{v1, . . . , vk}); and

(Dβf )x(vβ) := [(D|β1|f )x(vβ1), . . . , (D
|βs |f )x(vβs )].

Corollary 2 (Leibnitz’ rule). Let E,F1,F2,F3 be Banach spaces, letU ⊂ E
be an open set, and letA : U → L(F1,F2) andB : U → L(F2,F3) be maps of
classCk. The functionAB : U → L(F1,F3) defined by(AB)x = AxBx is of class
Ck and

Dk(AB)x(v1, . . . , vk) = Ax [(DkB)x(v1, . . . , vk)] + [(DkA)x(v1, . . . , vk)]Bx

+
∑
β∈B2,k

(
[(D|β1|A)x(vβ1)][(D

|β2|B)x(vβ2 )]

+ [(D|β2|A)x(vβ2 )][(D
|β1|B)x(vβ1)]

)
.

Moreover,

‖Dk(AB)x‖ ≤
k∑
s=0

(
k

s

)
‖(DsA)x‖ · ‖(Dk−sB)x‖.

Proof of Lemma 5.We begin by stating the problem more abstractly; this is primar-
ily a notational convenience. We havef : Ec ⊕Ews → Ec ⊕Ews andf(ξ, ν) =
[ϕ(ξ), µ(ξ, ν)], where‖(Dϕ)ξ‖ ≤ 1+ ε, ‖(Dµ)(ξ,ν)‖ ≤ α + ε =: a < 1, and
µ(ξ, 0) ≡ 0.

DefineRξ := B−1
ξ andS(ξ,ν) := (Dyf )(ξ,ν). Both R andS areCr functions

into L(Es, Es), ‖Rξ‖ · ‖S(ξ,ν)‖ ≤ (β + ε)(β−1 + ε) =: b, anda, b, ε satisfy
b(1+ ε)raδ < κ < 1. With these we haveχ(N ) = R(N B f )S for N ∈N.

Define|||N |||i (i = 0, . . . , k) to be the maximum of the leading 2i + 1 terms of
|||N |||:
|||N |||i := max

{‖N‖δ, ‖(DνN )‖C 0, ‖(DξN )‖δ,
. . . , ‖(DνD

i−1N)‖C 0, ‖(Di
ξN )‖δ

}
.

Because(Di
ξN )(ξ,0) = 0, if i < k then

‖(Di
ξN )(ξ,ν)‖ ≤

[
sup
t

‖(DνD
i
ξN )(ξ,tν)‖

]
‖ν‖.

Therefore,‖(Di
ξN )‖δ ≤ ‖(DνD

i
ξN )‖C 0 ≤ ‖(DνD

iN )‖C 0. Consequently, taking
just the first 2i terms:

max
{‖N‖δ, ‖(DνN )‖C 0, ‖(DξN )‖δ, . . . , ‖Di−1

ξ N )‖δ, ‖(DνD
i−1N)‖C 0

}
= max

{‖(DνN )‖C 0, ‖(DνDN)‖C 0, . . . , ‖(DνD
i−1N)‖C 0

}
= ‖(DνN )‖C i−1.

Therefore,|||N |||i−1 ≤ ‖(DνN )‖C i−1 ≤ |||N |||i for all i = 1, . . . , k.
In order to calculate‖χ‖ we need to express the derivatives ofχ(N ) in terms

of the derivatives ofN. We do this in steps.
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Lemma 6. If A,B : Ec ⊕ Ews → L(Es, Es), whereB ∈ Cr, A ∈ Cs, and
|||A||| < ∞, then both|||AB|||, |||BA||| < ∞, and in each of the following cases
there exists aK > 0, independent ofA andB, such that the given inequality
holds:

(i) ‖AB‖δ ≤ ‖A‖δ‖B‖C 0;
(ii) ‖DνD

i−1(AB)‖C 0 ≤ ‖(DνD
i−1A)‖C 0‖B‖C 0 +K‖A‖C i−1‖B‖C i

(i = 1, . . . , k);
(iii) ‖Di

ξ (AB)‖δ ≤ ‖(Di
ξA)‖δ‖B‖C 0 +K|||A|||i−1‖B‖C i (i = 1, . . . , k);

(iv) Hθ+δ[DνD
k−1(AB)] ≤ Hθ+δ[(DνD

k−1A)]‖B‖C 0 +K‖A‖Ck‖B‖Cr ;
(v) Hν

θ+δ[D
k
ξ (AB)] ≤ Hν

θ+δ[(D
k
ξ A)]‖B‖C 0 +K‖A‖Ck‖B‖Cr ;

(vi) Qθ,δ[Dk
ξ (AB)] ≤ Qθ,δ[(Dk

ξ A)]‖B‖C 0 +K|||A|||k‖B‖Cr .
Moreover, the same inequalities hold ifAB is replaced byBA on the left-hand
side.

Proof. A partial derivative is obtained by restricting the full derivative to the ap-
propriate subspace. Hence,DνD

i−1 = Di |Ews×(Rn)i−1 andDi
ξ = Di |(Ec)i . More-

over, the norm of a partial derivative is no more than the norm of the full derivative.
Therefore, from Leibnitz’ rule:

‖DνD
i−1(AB)p‖ ≤ ‖(DνD

i−1A)p‖‖Bp‖ +
i−1∑
t=0

(
i

t

)
‖(DtA)p‖‖(Di−tB)p‖.

Sincet ≤ i − 1 in the sum,‖(DtA)p‖ ≤ ‖A‖C i−1 and‖(Di−tB)p‖ ≤ ‖B‖C i for
all t, from which (ii) follows. Similarly,‖Di

ξ (AB)p‖ decomposes into a sum of

terms‖(Dt
ξA)p‖‖(Di−t

ξ B)p‖. For p = (ξ, ν), ‖(Dt
ξA)(ξ,ν)‖ ≤ ‖(Dt

ξA)‖δ‖ν‖δ.
For eacht ≤ i − 1, ‖(Dt

ξA)‖δ ≤ |||A|||i−1 and‖(Di−t
ξ B)p‖ ≤ ‖B‖C i . Therefore,

‖Di
ξ (AB)(ξ,ν)‖/‖ν‖δ ≤ [‖(Di

ξA)(ξ,ν)‖/‖ν‖δ]‖Bp‖ + K|||A|||i−1‖B‖C i for some
K > 0, from which (iii) follows. (i) is just a special case of (iii).

To obtain (iv)–(vi), expandDk(AB)p1 − Dk(AB)p2 into a sum of terms of
the form (DtA)p1(D

k−tB)p1 − (DtA)p2(D
k−tB)p2. (There are, in general, sev-

eral terms for eacht, each corresponding to a different permutation of the input
vectors.) Expanding further:

(DtA)p1(D
k−tB)p1 − (DtA)p2(D

k−tB)p2

= [(DtA)p1 − (DtA)p2 ](Dk−tB)p1 + (DtA)p2 [(Dk−tB)p1 − (Dk−tB)p2 ].

Consequently,

‖DνD
k−1(AB)p1 −DνD

k−1(AB)p2‖
≤ ‖(DνD

k−1A)p1 − (DνD
k−1A)p2‖‖Bp1‖ + ‖(DνD

k−1A)p2‖‖Bp1 − Bp2‖

+
k−1∑
t=0

(
k

t

)(‖(DtA)p1 − (DtA)p2‖‖(Dk−tB)p1‖

+ ‖(DtA)p2‖‖(Dk−tB)p1 − (Dk−tB)p2‖
)
.

For t < k, (DtA)p2 is at leastC1. Therefore,
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‖(DtA)p1 − (DtA)p2‖ ≤ ‖(Dt+1A)‖C 0‖p1− p2‖.
Moreover,‖(Dt+1A)‖C 0 ≤ ‖A‖Ck . Likewise,

‖(Dk−tB)p1 − (Dk−tB)p2‖ ≤ ‖B‖Cr‖p1− p2‖θ+δ,
and we also have

‖(DνD
k−1A)p2‖‖Bp1 − Bp2‖ ≤ ‖A‖Ck‖B‖Cr‖p1− p2‖θ+δ.

Because‖p1− p2‖ ≤ 2 andθ + δ ≤ 1, (iv) follows. Since this argument did not
use anything specific toDνD

k−1 or the form of the pointspi, if we instead use
Dk
ξ , and consider points only of the formpi = (ξ, νi), in which case‖p1−p2‖ =
‖ν1− ν2‖, we obtain (v).

For the last case, expandDk
ξ (AB) as in the previous two cases but nownot

replacing the lower-order partials by their full derivatives. This yields

‖Dk
ξ (AB)(ξ1,ν) −Dk

ξ (AB)(ξ2,ν)‖
≤ ‖(Dk

ξ A)(ξ1,ν) − (Dk
ξ A)(ξ2,ν)‖‖B(ξ1,ν)‖ + ‖(Dk

ξ A)(ξ2,ν)‖‖B(ξ1,ν) − B(ξ2,ν)‖

+
k−1∑
t=0

(
k

t

)(‖(Dt
ξA)(ξ1,ν) − (Dt

ξA)(ξ2,ν)‖‖(Dk−t
ξ B)(ξ1,ν)‖

+ ‖(Dt
ξA)(ξ2,ν)‖‖(Dk−t

ξ B)(ξ1,ν) − (Dk−t
ξ B)(ξ2,ν)‖

)
.

For t < k, (Dt
ξA) isC1, and so we have

‖(Dt
ξA)(ξ1,ν) − (Dt

ξA)(ξ2,ν)‖ ≤
(

sup
ξ

‖(Dt+1
ξ A)(ξ,ν)‖

)
‖ξ1− ξ2‖

and
‖(Dt+1

ξ A)(ξ,ν)‖ ≤ ‖(Dt+1
ξ A)‖δ‖ν‖δ ≤ |||A|||k‖ν‖δ.

We also have‖(Dk−t
ξ B)(ξ,ν)‖ ≤ ‖B‖Cr . Therefore,

‖(Dt
ξA)(ξ1,ν) − (Dt

ξA)(ξ2,ν)‖‖(Dk−t
ξ B)(ξ1,ν)‖

≤ (|||A|||k‖B‖Cr‖ξ1− ξ2‖1−θ
)‖ξ1− ξ2‖θ‖ν‖δ.

Sinceξi ∈Ec(1), ‖ξ1− ξ2‖1−θ ≤ 2. Similarly, for t ≤ k,
‖(Dt

ξA)(ξ2,ν)‖‖(Dk−t
ξ B)(ξ1,ν) − (Dk−t

ξ B)(ξ2,ν)‖
≤ (|||A|||k‖ν‖δ)(‖B‖Cr‖ξ1− ξ2‖

)
≤ (2|||A|||k‖B‖Cr )‖ξ1− ξ2‖θ‖ν‖δ.

Because

Qθ,δ[D
k
ξ (AB)] := sup

ξ1 6=ξ2,ν 6=0

(‖Dk
ξ (AB)(ξ1,ν)−Dk

ξ (AB)(ξ2,ν)‖/[‖ξ1− ξ2‖θ‖ν‖δ]
)
,

(vi) follows. Finally, the previous estimates did not depend on the order ofA and
B. Therefore, they can be repeated onBA to obtain the exact same results.
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Lemma 7. In each of the following cases there exist constantsK,K ′,K ′′ > 0,
depending onf, such that for anyN ∈N the given inequality holds:
(i) ‖N B f ‖δ ≤ aδ‖N‖δ;
(ii) ‖DνD

i−1(N B f )‖C 0 ≤ a(1+ ε)i−1‖(DνD
i−1N)‖C 0 +K‖N‖C i−1

(i = 1, . . . , k);
(iii) ‖Di

ξ (N B f )‖δ ≤ aδ(1+ ε)i‖(Di
ξN )‖δ +K‖(DνN )‖C i−1 (i = 1, . . . , k);

(iv) Hθ+δ[DνD
k−1(N B f )] ≤ a(1+ ε)rHθ+δ[(DνD

k−1N)] +K‖N‖Ck ;
(v) Hν

θ+δ[D
k
ξ (N B f )] ≤ aθ+δ(1+ ε)kHν

θ+δ[(D
k
ξ N )] +K ′Hθ+δ[(DνD

k−1N)] +
K‖N‖Ck ;

(vi) Qθ,δ[Dk
ξ (N B f )] ≤ aδ(1+ ε)rQθ,δ[(Dk

ξ N )] +K ′′Hν
θ+δ[(D

k
ξ N )]+

K ′Hθ+δ[(DνD
k−1N)+K|||N |||k.

Proof. As in the previous lemma, we will use that (a) a partial derivative is the re-
striction of the full derivative to a subspace and (b) the norm of the full derivative
is always at least as large as that of the partial derivative. Applying these facts to
DνD

i−1(N B f ), we have

‖DνD
i−1(N B f )p‖ = ‖Di(N B f )p|Ews×(Rn)i−1‖

≤ ‖(DiN )f(p)[(Df )
(i)
p ] |Ews×(Rn)i−1‖

+
i−1∑
t=1

∑
β∈Bt,i
‖(DtN )f(p)(D

βf )p‖.

Here(Df )(i)p meansi copies of(Df )p. We have

(Df )p|Ews = (Dνf )p = [ 0 (Dνµ)p ]T,

and so

(DiN )f(p)[(Df )
(i)
p ] |Ews×(Rn)i−1 = (DνD

i−1N)f(p)[(Dνµ)p, (Df )
(i−1)
p ].

Because‖(Dνµ)p‖ ≤ a and‖(Df )p‖ ≤ (1+ ε),
‖(DiN )f(p)[(Df )

(i)
p ] |Ews×(Rn)i−1‖ ≤ a(1+ ε)i−1‖DνD

i−1N‖C 0.

For the terms inside the sum,

‖(DtN )f(p)(D
βf )p‖ ≤ ‖(DtN )f(p)‖‖(D|β1|f )p‖ · · · ‖(D|βt |f )p‖.

There aret < i derivatives‖(D|βj |f )p‖ ≤ ‖f ‖C i , and‖(DtN )f(p)‖ ≤ ‖N‖C i−1.

Therefore,‖(DtN )f(p)(D
βf )p‖ ≤ (‖f ‖C i )i−1‖N‖C i−1. This holds for each term

in the sum, yielding (ii).
For τ = Di

ξN (including i = 0), ‖(τ B f )(ξ, ν)‖ = ‖τ(ϕ(ξ), µ(ξ, ν))‖ ≤
‖τ‖δ‖µ(ξ, ν)‖δ. Sinceµ(ξ, 0) ≡ 0, ‖µ(ξ, ν)‖ ≤ [supp‖(Dνµ)p‖]‖ν‖ ≤ a‖ν‖.
Therefore,‖τ B f ‖δ ≤ aδ‖τ‖δ. In particular, we have case (i). For case (iii)
(i > 0),

‖Di
ξ (N B f )p‖ = ‖Di(N B f )p|(Ec)i‖

≤ ‖(DiN )f(p)[(Dξf )
(i)
p ]‖ +

i−1∑
t=1

∑
β∈Bt,i
‖(DtN )f(p)(D

β

ξf )p‖.
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Here we use(D l
ξf )p = [ (D l

ξϕ)p (Dl
ξµ)p ]T, and therefore

(DtN )f(p)[(D
l
ξf )p, · ]
= (DξD

t−1N)f(p)[(D
l
ξϕ)p, ·] + (DνD

t−1N)f(p)[(D
l
ξµ)p, ·].

We can expand(DiN )f(p)[(Dξf )
(i)
p ] completely in this manner to get

(DiN )f(p)[(Dξf )
(i)
p ]

= (Di
ξN )f(p)[(Dξϕ)

(i)
p ]

+
i∑

j=1

(D
j−1
ξ DνD

i−jN )f(p)[(Dξϕ)
(j−1)
p , (Dξµ)p, (Dξf )

(i−j)
p ].

Note that

‖(Dj−1
ξ DνD

i−jN )f(p)‖ ≤ ‖(DνD
i−1N)f(p)‖ ≤ ‖(DνN )‖C i−1

and
‖(Dξϕ)p‖ ≤ ‖(Dξf )p‖ ≤ (1+ ε).

Setp = (ξ, ν). Sinceµ(ξ, 0) ≡ 0, (Dξµ)(ξ,0) ≡ 0. Moreover, r ≥ 1 + δ
and so(Dξµ) is at leastCδ. Consequently‖(Dξµ)(ξ,ν)‖ ≤ Hδ[(Dξµ)]‖ν‖δ ≤
‖f ‖Cr‖ν‖δ. From the foregoing we have‖(Di

ξN )f(ξ,ν)‖ ≤ ‖(Di
ξN ) B f ‖δ‖ν‖δ ≤

aδ‖(Di
ξN )‖δ‖ν‖δ. Therefore,

‖(DiN )f [(Dξf )
(i)]‖δ ≤ aδ(1+ ε)i‖(Di

ξN )‖δ + i(1+ ε)i−1‖f ‖Cr‖(DνN )‖C i−1.

Each of the terms(DtN )f(p)(D
β

ξf )p can be expanded in a similar manner. In
this case we use‖(D l

ξϕ)p‖ ≤ ‖(D l
ξf )p‖ ≤ ‖f ‖Cr and (D l

ξµ)(ξ,0) ≡ 0, so
‖(D l

ξµ)(ξ,ν)‖ ≤ ‖f ‖Cr‖ν‖δ. Therefore,

‖(DtN )f (D
β

ξ f )‖δ ≤ aδ(‖f ‖Cr )t‖(Dt
ξN )‖δ + t (‖f ‖Cr )t‖(DνN )‖Ct−1.

Becauset < i, ‖(Dt
ξN )‖δ ≤ |||N |||i−1 ≤ ‖(DνN )‖C i−1. Hence

‖(DtN )f (D
β

ξ f )‖δ ≤ K ′‖(DνN )‖C i−1,

which—when combined with the estimate for the first term—yields (iii).
For cases (iv)–(vi) we need to work withDk(N B f )p1 − Dk(N B f )p2. This

reduces to a sum of terms(DtN )f(p1)(D
βf )p1 − (DtN )f(p2 )(D

βf )p2. Let 1[τ ]
be short forτ(p1) − τ(p2); then, using the multilinearity of(DtN ), this can be
rewritten as

1[(DtN ) B f ](Dβf )p1

+
t∑

j=1

(DtN )f(p2 )[(D
|β1|f )p2, . . . , 1(D

|βj |f ), . . . , (D|βt |f )p1].

If t < k then
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‖1[(DtN ) B f ]‖ ≤ ‖(Dt+1N)‖C 0‖f(p1)− f(p2)‖ ≤ (1+ ε)‖N‖Ck‖p1− p2‖.
If t ≤ k then

‖(DtN )f(p2 )‖ ≤ ‖N‖Ck , ‖(D|βj |f )p1‖ ≤ ‖f ‖Cr ,
and

‖1(D|βj |f )‖ ≤ ‖f ‖Cr‖p1− p2‖θ+δ.
Therefore, every term in the expansion ofDk(N B f )p1 − Dk(N B f )p2 except
1[(DkN ) Bf ][(Df )(k)p1

] can be bounded by a constant times‖N‖Ck‖p1−p2‖θ+δ.
Consequently, if we letV be either of the subspacesEws × (Rn)k−1 or (Ec)k, we
have

‖[Dk(N B f )p1 −Dk(N B f )p2 ] |V ‖
≤ ‖[(DkN )f(p1) − (DkN )f(p2 )][(Df )

(k)
p1

] |V ‖ +K‖N‖Ck‖p1− p2‖θ+δ.
If V = Ews × (Rn)k−1, thenDk|V = DνD

k−1 and

[(DkN )f(p1) − (DkN )f(p2 )][(Df )
(k)
p1

] |V
= [(DkN )f(p1) − (DkN )f(p2 )][(Dνf )p1, (Df )

(k−1)
p1

]

= [(DνD
k−1N)f(p1) − (DνD

k−1N)f(p2 )][(Dνµ)p1, (Df )
(k−1)
p1

].

Since

‖(DνD
k−1N)f(p1) − (DνD

k−1N)f(p2 )‖
≤ Hθ+δ[(DνD

k−1N)]‖f(p1)− f(p2)‖θ+δ,
‖(Dνµ)p1‖ ≤ a, ‖(Df )p1‖ ≤ (1+ε), and‖f(p1)−f(p2)‖ ≤ (1+ε)‖p1−p2‖,
we get (iv).

Now letV = (Ec)k and restrict topi = (ξ, νi). This case can be broken down
like (iii):

[(DkN )f(p1) − (DkN )f(p2 )][(Df )
(k)
p1

]|V
= [(DkN )f(p1) − (DkN )f(p2 )][(Dξf )

(k)
p1

]

= [(Dk
ξ N )f(p1) − (Dk

ξ N )f(p2 )][(Dξϕ)
(k)
p1

]

+
i∑

j=1

(
[(DνD

k−1N)f(p1) − (DνD
k−1N)f(p1)]

× [(Dξµ)p, (Dξϕ)
(j−1)
p , (Dξf )

(i−j)
p ]

)
.

Inside the sum,

‖(DνD
k−1N)f(p1) − (DνD

k−1N)f(p1)‖
≤ Hθ+δ[(DνD

k−1N)]‖f(p1)− f(p2)‖θ+δ,
and each of the arguments is bounded by‖(Df )‖C 0. Therefore, inside the sum-
mation is bounded by
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K ′Hθ+δ[(DνD
k−1N)]‖p1− p2‖θ+δ = K ′Hθ+δ[(DνD

k−1N)]‖ν1− ν2‖θ+δ

for someK ′ > 0.
Becauseϕ does not depend onν,

‖f(ξ, ν1)− f(ξ, ν2)‖ = ‖µ(ξ, ν1)− µ(ξ, ν2)‖ ≤ a‖ν1− ν2‖.
Consequently,‖(Dk

ξ N )f(ξ,ν1) − (Dk
ξ N )f(ξ,ν2 )‖ ≤ Hν

θ+δ[(D
k
ξ N )](a‖ν1− ν2‖)θ+δ.

Combining this with the previous results and‖(Dξϕ)p1‖ ≤ (1+ ε), we have (v).
Finally we are left with the task of showing (vi). For this case we need to re-

turn to the expansion ofDk(N B f )p1 − Dk(N B f )p2, but must restrict toV =
(Ec)k before making any estimates:

‖Dk
ξ (N B f )p1 −Dk

ξ (N B f )p2‖

≤
k∑
t=1

∑
β∈Bt,k

‖1[(DtN ) B f ](Dβ

ξ f )p1‖

+
k∑
t=1

∑
β∈Bt,k

∑
j

‖(DtN )f(p2 )[(D
|β1|
ξ f )p2,

. . . , 1(D
|βj |
ξ f ), . . . , (D

|βt |
ξ f )p1]‖.

These terms are analogous to those in case (iii). Expanding in the same manner,
and usingpi = (ξi, ν) and‖(D l

ξµ)(ξ,ν)‖ ≤ ‖f ‖Cr‖ν‖δ, for the first sum we have

‖1[(DtN ) B f ](Dβ

ξ f )p1‖
≤ ‖1[(Dt

ξN ) B f ]‖‖(D|β1|
ξ ϕ)p1‖ · · · ‖(D|βt |ξ ϕ)p1‖

+
∑
j

(
‖1[(DνD

t−1N) B f ]‖

× ‖(D|β1|
ξ ϕ)p1‖ · · · ‖(D|βj |ξ µ)p1‖ · · · ‖(D|βt |ξ f )p1‖

)
≤ ‖1[(Dt

ξN ) B f ]‖‖(D|β1|
ξ ϕ)p1‖ · · · ‖(D|βt |ξ ϕ)p1‖

+ t ·Hθ+δ[(DνD
t−1N)](a‖ξ1− ξ2‖)θ+δ(‖f ‖Cr )t‖ν‖δ.

Dividing ‖1[(Dt
ξN ) B f ]‖ := ‖(Dt

ξN )[ϕ(ξ1),µ(ξ1,ν)] − (Dt
ξN )[ϕ(ξ2 ),µ(ξ2,ν)]‖ into

parts:

‖(Dt
ξN )[ϕ(ξ1),µ(ξ1,ν)] − (Dt

ξN )[ϕ(ξ2 ),µ(ξ2,ν)]‖
≤ ‖(Dt

ξN )[ϕ(ξ1),µ(ξ1,ν)] − (Dt
ξN )[ϕ(ξ2 ),µ(ξ1,ν)]‖

+ ‖(Dt
ξN )[ϕ(ξ2 ),µ(ξ1,ν)] − (Dt

ξN )[ϕ(ξ2 ),µ(ξ2,ν)]‖
≤ Qθ,δ[(D

t
ξN )]‖ϕ(ξ1)− ϕ(ξ2)‖θ‖µ(ξ1, ν)‖δ

+Hν
θ+δ[(D

t
ξN )]‖µ(ξ1, ν)− µ(ξ2, ν)‖θ+δ.
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We have‖ϕ(ξ1)−ϕ(ξ2)‖ ≤ (1+ε)‖ξ1−ξ2‖ and‖µ(ξ1, ν)‖ ≤ ‖(Dνµ)‖C 0‖ν‖ ≤
a‖ν‖. On the one hand,‖µ(ξ1, ν) − µ(ξ2, ν)‖ ≤ ‖(Dξµ)‖C 0‖ξ1− ξ2‖, but also
‖µ(ξ1, ν)−µ(ξ2, ν)‖ ≤ 2‖(Dνµ)‖C 0‖ν‖. Therefore,‖µ(ξ1, ν)−µ(ξ2, ν)‖θ+δ ≤
K ′min{‖ξ1− ξ2‖θ+δ, ‖ν‖θ+δ} ≤ K ′‖ξ1− ξ2‖θ‖ν‖δ. Hence‖1[(Dt

ξN ) B f ]‖ ≤{
aδ(1+ ε)θQθ,δ[(Dt

ξN )] +K ′Hν
θ+δ[(D

t
ξN )]

}‖ξ1− ξ2‖θ‖ν‖δ.
If t < k then

‖(Dt
ξN )(ξ1,ν) − (Dt

ξN )(ξ2,ν)‖ ≤ (sup
ξ

‖(Dt+1
ξ N )(ξ,ν)‖)‖ξ1− ξ2‖.

Since‖(Dt+1
ξ N )(ξ,ν)‖ ≤ ‖(Dt+1

ξ N )‖δ‖ν‖δ ≤ |||N |||k‖ν‖δ, it follows that

‖(Dt
ξN )(ξ1,ν) − (Dt

ξN )(ξ2,ν)‖ ≤ |||N |||k‖ξ1− ξ2‖‖ν‖δ.
Therefore,Qθ,δ[(Dt

ξN )] ≤ |||N |||k. Moreover,

Hν
θ+δ[(D

t
ξN )] ≤ ‖(DνD

tN )‖C 0 ≤ |||N |||k,
and

Hθ+δ[(DνD
t−1N)] ≤ ‖(DνD

tN )‖C 0 ≤ |||N |||k.
Consequently,‖1[(DtN ) B f ](Dβ

ξ f )p1‖ ≤ K|||N |||k‖ξ1 − ξ2‖θ‖ν‖δ for t < k

(someK > 0).
If t = k, then(Dβ

ξ f )p1 = (Dξf )
(k)
p1

and‖(Dξϕ)p1‖ ≤ (1+ ε). Consequently,
we have

‖1[(DkN ) B f ][(Dξf )
(k)
p1

]‖/(‖ξ1− ξ2‖θ‖ν‖δ)
≤ aδ(1+ ε)rQθ,δ[(D

k
ξ N )] +K ′′Hν

θ+δ[(D
k
ξ N )] +K ′Hθ+δ[(DνD

k−1N)].

The second sum can now be estimated in a similar fashion:

‖(DtN )f(p2 )[(D
|β1|
ξ f )p2, . . . , 1(D

|βj |
ξ f ), . . . , (D

|βt |
ξ f )p1]‖

≤ ‖(Dt
ξN )f(p2 )‖(‖f ‖Cr )t−1‖1(D|βj |ξ ϕ)‖

+
∑
l<j

‖(DνD
t−1N)f(p2 )‖(‖f ‖Cr )t−2‖(D|βl |ξ µ)p2‖ · ‖1(D|βj |ξ f )‖

+ ‖(DνD
t−1N)f(p2 )‖(‖f ‖Cr )t−1‖1(D|βj |ξ µ)‖

+
∑
l>j

‖(DνD
t−1N)f(p2 )‖(‖f ‖Cr )t−2‖(D|βl |ξ µ)p1‖ · ‖1(D|βj |ξ ϕ)‖.

To this we can apply the following estimates:

‖1(D|βj |ξ ϕ)‖ ≤ ‖1(D|βj |ξ f )‖ ≤ ‖f ‖Cr‖ξ1− ξ2‖θ+δ;
‖(Dt

ξN )f(p2 )‖ ≤ |||N |||k‖µ(ξ2, ν)‖δ ≤ aδ|||N |||k‖ν‖δ;
‖(DνD

t−1N)f(p2 )‖ ≤ |||N |||k;
‖(D|βl |ξ µ)p‖ ≤ ‖f ‖Cr‖ν‖δ.
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This leaves only‖1(D|βj |ξ µ)‖ to estimate. Since(D l
ξµ) isCθ+δ,

‖1(Dl
ξµ)‖ := ‖(D l

ξµ)(ξ1,ν) − (D l
ξµ)(ξ2,ν)‖ ≤ ‖f ‖Cr‖ξ1− ξ2‖θ+δ,

but also‖1(Dl
ξµ)‖ ≤ ‖(D l

ξµ)(ξ1,ν)‖ + ‖(D l
ξµ)(ξ2,ν)‖ ≤ 2‖f ‖Cr‖ν‖θ+δ. Conse-

quently, we again get‖1(Dl
ξµ)‖ ≤ K‖ξ1−ξ2‖θ‖ν‖δ for someK > 0. Therefore,

for some (different)K > 0,

‖(DtN )f(p2 )[(D
|β1|
ξ f )p2, . . . , 1(D

|βj |
ξ f ), . . . , (D

|βt |
ξ f )p1]‖
≤ K|||N |||k‖ξ1− ξ2‖θ‖ν‖δ.

Combining the first and second sums yields (vi), completing the proof.

With these two lemmas we can now complete our proof of Lemma 5. The defi-
nition of ||| · ||| is the maximum of a set of 2k + 4 elements. The order in which
these are listed in the definition is significant. We have already observed that the
max of the first 2i (i = 1, . . . , k) elements for|||N ||| is ‖(DνN )‖C i−1, and the
max of the first 2i + 1 (i = 1, . . . , k) elements is|||N |||i (by definition). By the
same argument as in the proof of Lemma 2,‖N‖C i ≤ (i + 1)|||N |||i . Therefore,
the cases in Lemma 6 estimate the size of thej th element in the set determining
|||AB||| in terms of the firstj elements for|||A|||. In particular, for eachi, |||AB|||i ≤
K|||A|||i for someK not depending onA (but depending oni andB). Therefore,
if we apply Lemma 6 twice, and then Lemma 7, toχ(N ) = R [(N B f )S], and use
‖R‖C 0‖S‖C 0 ≤ b, we have:

(i) ‖χ(N )‖δ ≤ aδb‖N‖δ;
(ii) ‖DνD

i−1(χ(N ))‖C 0 ≤ a(1+ ε)i−1b‖(DνD
i−1N)‖C 0 +K|||N |||i−1

(i = 1, . . . , k);
(iii) ‖Di

ξ (χ(N ))‖δ ≤ aδ(1+ ε)ib‖(Di
ξN )‖δ +K‖(DνN )‖C i−1 (i = 1, . . . , k);

(iv) Hθ+δ[(DνD
k−1(χ(N ))] ≤ a(1+ ε)rbHθ+δ[(DνD

k−1N)] +K|||N |||k;
(v) Hν

θ+δ[(D
k
ξ (χ(N ))] ≤ aθ+δ(1+ ε)kbHν

θ+δ[(D
k
ξ N )]+

K ′Hθ+δ[(DνD
k−1N)] +K|||N |||k;

(vi) Qθ,δ[Dk
ξ (χ(N ))] ≤ aδ(1+ ε)rbQθ,δ[(Dk

ξ N )] +K ′′Hν
θ+δ[(D

k
ξ N )]+

K ′Hθ+δ[(DνD
k−1N)+K|||N |||k.

Sinceb(1+ ε)raδ < κ, the leading term in each case has a coefficient less than
κ < 1.

Now define the new norm||| · |||′ by

|||N |||′ = max{‖N‖δ, b1‖(DνN )‖C 0, c1‖(DξN )‖δ,
. . . , bk‖(DνD

k−1N)‖C 0, ck‖(Dk
ξ N )‖δ,

d1Hθ+δ[(DνD
k−1N)], d2H

ν
θ+δ[(D

k
ξ N )], d3Qθ,δ[(D

k
ξ N )]},

whereb1 ≥ c1 ≥ · · · ≥ bk ≥ ck ≥ d1 ≥ d2 ≥ d3 > 0 are some collection of
positive constants.||| · |||′ is clearly equivalent to||| · ||| for any positive constants.
Moreover, with this relationship between the constants we haveci|||N |||i ≤ |||N |||′
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andbi‖(DνN )‖C i ≤ |||N |||′ for all i. Therefore, we can use this in the preceding
(i)–(vi) to obtain:

(i) ‖χ(N )‖δ ≤ κ|||N |||′;
(ii) bi‖DνD

i−1(χ(N ))‖C 0 ≤ (κ +Kbi/ci)|||N |||′ (i = 1, . . . , k);
(iii) ci‖Di

ξ (χ(N ))‖δ ≤ (κ +Kci−1/bi)|||N |||′ (i = 1, . . . , k);
(iv) dlHθ+δ[DνD

k−1(χ(N ))] ≤ (κ +Kd1/ck)|||N |||′;
(v) d2H

ν
θ+δ[D

k
ξ (χ(N ))] ≤ (κ +K ′d2/d1+Kd2/ck)|||N |||′;

(vi) d3Qθ,δ[Dk
ξ (χ(N ))] ≤ (κ +K ′′d3/d2 +K ′d3/d1+Kd3/ck)|||N |||′.

Given anyκ ′ with κ < κ ′ < 1, we can choose the constants so that each succes-
sive one is sufficiently smaller than the previous that all of the coefficients on the
right are less thanκ ′. As |||χ(N )|||′ is the maximum of the left-hand sides, we have
|||χ(N )|||′ ≤ κ ′|||N |||′ for all N ∈N. Consequently, there exists a norm equivalent
to ||| · ||| for which‖χ‖ ≤ κ ′ < 1, which completes the proof of Lemma 5.
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