Transverse Heegaard Splittings

HyAM RUBINSTEIN & MARTIN SCHARLEMANN

1. Background and the Theorem

In [RS] we use Cerf theory to compare irreducible Heegaard splittings of the same
irreducible non-Haken orientable 3-manifold. A critical part of the argument is
the observation that any two Heegaard surfaces may be isotoped so that they inter-
sect in a nonempty collection of simple closed curves, each of which is essential
in both surfaces. Here we describe an analog to this theorem that applies to the
Haken case. An eventual goal, not yet realized here, is a bound for the number of
stabilizations needed to make two distinct Heegaard splittings equivalent. Such a
bound is found, for the non-Haken case, in [RS].

All manifolds are assumed to be compact and orientable. It is a simple and stan-
dard exercise to show that, if S and T are closed incompressible surfaces in an ir-
reducible 3-manifold M, then they can be isotoped so their intersection (if any) is
a collection of simple closed curves, each of which is essential in both S and 7. A
Heegaard surface in M is as unlike an incompressible surface as possible. It is a
surface that is not only compressible, but a surface that can be compressed entirely
away—on both sides. Yet it is shown in [RS] that, if M is closed and non-Haken,
then a pair of Heegaard surfaces behave something like a pair of incompressible
surfaces: Any pair of Heegaard surfaces P and Q can be isotoped so that they
intersect in a nonempty collection of simple closed curves, each of which is es-
sential in both P and Q. The content here is in the word “nonempty”, since it is
obvious that P and Q can be made disjoint: Choose disjoint spines of handle-
bodies bounded by P and Q, then isotope P and Q near the respective spines.
The purpose here is to extend this result, in a somewhat different form, to the case
in which M may be Haken.

A compression body H is constructed by adding 2-handles to a (surface) x I
along a collection of disjoint simple closed curves on (surface) x {0}, and cap-
ping off any resulting 2-sphere boundary components with 3-balls. The compo-
nent (surface) x {1} of dH is denoted 9 H, and the surface dH — 9, H is denoted
0_H.1f 0_H = () then H is a handlebody. If H = 8, H x I then H is called a
trivial compression body. Define the index I(H) of H tobe x(0_H) — x(9, H).
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(Here x(#) = 0.) Note that /(H) is nonnegative, and is trivial if and only if H is
a trivial compression body or a solid torus.

The cores of the 2-handles defining H, extended vertically down through
(0+ H) x I, are called a defining set of 2-disks for H. There is a dual picture:
A spine for H is a properly imbedded 1-complex ¥ such that H deformation re-
tracts to X U 0_ H. Such a spine can be constructed from a set of defining disks:
The arc co-cores of the 2-handles, with the arc ends that lie on 2-spheres coned to
the centers of the 3-balls and the other ends extended down to d_ H, are the edges
of a spine. The retraction restricts to a map d; H — X U d_ H whose mapping
cylinder is itself homeomorphic to H.

A Heegaard splitting M = A Up B of a 3-manifold consists of an orientable
surface P in M, together with two compression bodies A and B into which P
divides M; P itself is called the splitting surface. The genus of A Up B is de-
fined to be the genus of P. The index I(A Up B) is defined to be I(A) + I(B) =
x(0M) —2x(P). A Heegaard splitting of M can also be viewed as a handle struc-
ture on M in which the 1-handles are the co-cores of the defining 2-handles of A
and the 2-handles are the defining 2-handles of B. A stabilization of the Heegaard
splitting A Up B is the Heegaard splitting obtained by adding to A a regular neigh-
borhood of a proper arc in B that is parallel in B to an arc in P. A stabilization has
genus one larger than and, up to isotopy, is independent of the choice of arc in B,
and is the same if the construction is done symmetrically to an arc in A instead.

Recall the following: If there are meridian disks D4 and D in A and B respec-
tively so that D4 and dDp intersect in a single point in P, then AUp B can be ob-
tained by stabilizing a lower-genus Heegaard splitting. We then say that A Up B
is stabilized. If there are meridian disks D4 and Dy in A and B respectively so
that dD4 and dDp are disjoint in P, then A Up B is weakly reducible. If there are
meridian disks so that D4 = dDp, then A Up B is reducible. 1t is easy to see that
reducible splittings are weakly reducible and that (except for the genus-1 splitting
of $3) any stabilized splitting is reducible. It is a theorem of Casson and Gordon
[CG] that if A Up B is a weakly reducible splitting then either M contains an in-
compressible surface or A Up B is reducible. It is a theorem of Haken [H] that
any Heegaard splitting of a reducible 3-manifold is reducible, and it follows from
a theorem of Waldhausen [W] that a reducible splitting of an irreducible manifcld
is stabilized.

A central point of [ST1] is that any irreducible Heegaard splitting M = AUp B
can be broken up into a series of strongly irreducible splittings (see Figure 1). That
is, we can begin with the handle structure determined by A Up B and rearrange
the order of the 1- and 2-handles, so that ultimately

M = My Up, My Up, --- Up, M,

The 1- and 2-handles which occur in M; provide it with a strongly irreducible
splitting A; Up, B;, with 0_A; = F;and 0_B;_ = F;for1 <i <m; 0_Ap =
d0_M; and 0_ B,, = 04+ M. Each component of each F; is a closed incompressible
surface of positive genus and, for any i, only one component of M; (the active
component) is not a product. The compression bodies A, B, and the splitting
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Figure 1

surface P, in this component are called the active components of A;, B; and P;,
respectively. None of the compression bodies A;, B;_; (1 <i < m) is trivial. If
d_A or d_ B is compressible in M (so in particular M is d-reducible), then respec-
tively Ag or B,, is trivial (i.e., just a product). Such a rearrangement of handles
will be called an untelescoping of the Heegaard splitting. It is easy to see that

m

I(AUp B) = > I(A; Up, B)).
i=0

After the untelescoping we are again able to exploit strong irreducibility, so the
version of [RS, 6.2] that remains true is one expressed in terms of untelescopings
of the splittings.

Suppose the irreducible 3-manifold M has two splittings A Up B and X Uy Y,
as above, which have the respective untelescopings

MO UFI Ml UFZ e UFm Mm

and
Ny UG] N Uc;2 s UG,I N,.

Here each M; has the strongly irreducible splitting A; Up, B; as described above,
and each N; has a similar strongly irreducible splitting X;Ug, ¥;, withd_X; = G;
and 0_Y;_; = G; for 1 <i < n. We will not assume that the partitioning of dIM
into d+ M is the same in both splittings. Indeed, the correct viewpoint is that the
splittings are of distinct manifolds M and N which happen to be diffeomorphic.
Consistent with that viewpoint, welet 0_ N = d_Xo=90_Xand 9, N =0_Y, =
d_Y. It will be convenient at times to let Fo = 0_M, F,,1 ) =3, M, Gog =9J_N,
and G,y = 8. N. Finally, define P’ = Jy; ., {Pi}, F = U <icnlFi}, PT =
P'UF, Q' =Uosi<u{@i), G = U<;<,{G;}, and 0* = Q' UG.

THEOREM 1.1.  Suppose that AUp B and X Uy Y are two irreducible Heegaard
splittings of the same irreducible compact orientable 3-manifold M, and that P™*
and Q% are surfaces (described above) coming from untelescopings of A Up B
and X Ug Y, respectively. Then Pt and Q% can be properly isotoped so that they
are in general position and each curve of intersection is essential in both surfaces.
Each P; (0 <i < m) and each F; (1 < i < m) intersects Q" nontrivially, and
each Q; (0 < j < n) and each G; (1 < j < n) intersects P™ nontrivially.
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2. Sweepouts and Their Structure

We begin the proof of Theorem 1.1 with some general considerations. Since F
and G are incompressible, we can assume at the outset that F and G are in gen-
eral position and that each component of intersection is essential in both surfaces.
If I(AUp B) + I(X Ugp Y) = O then they are both product splittings of M =
d-M x I. Then m = n = 0 and the splitting surfaces Py and Q¢ are isotopic.
Then, after a small isotopy, they can be made to intersect generically in a nontriv-
ial collection of essential simple closed curves. The proof then proceeds by in-
duction on I(A Up B) + I(X Ug Y), but really induction is only needed to show
part of the following simplifying lemma.

LEMMA 2.1.

(1) No component of any P; or Q; is a torus.

(2) No F;, 1 <i <m (resp. Gj, 1 < j < n) has all its components isotopic in
M to components of G (resp. components of F).

(3) NoF;, 1 <i <m (resp. Gj, 1 < j < n) can be isotoped to be disjoint from
O™ (resp. PY).

Proof. 1f any component were a torus, then M would be either (torus) x 7, Sx D?,
or a Lens space ([ST1, Rule 7]); for each of these, any two irreducible splittings
are isotopic [BO].

If all components of some F; were isotopic in M to components of G, then
consider the two manifolds M' = | J;_y My and M? = |J}*. M;. The untele-
scoped splittings of M and N restrict to untelescoped splittings of M' and M>.
These can be telescoped to give splittings (A Up B)" and (X Ug Y)' of M', with
I((AUp B)) + I((AUp B)?) = I(AUp B) and I((X Ug D) + I((X Up Y)?) =
I(X Ugp Y). Rearranging, we have

I((AUp B)") + I((X Ug Y)Y + I((A Up B)?) + I((X Ug ¥)?)
= I(AUp B) + I(X Uy Y).

We know that each 1((A Up B)) > 0, so each I((A Up B)') + I((X Ug Y)') <
I(AUp B) + I(X Ug Y). The proof then follows by applying the inductive hy-
pothesis to the splittings of each M'.

This second condition implies the third, since any incompressible closed sur-
face in a compression body H is parallel to 0_ H. L]

Attach to each F; (1 <i < m) spines ¥4, and Xp, , of A; and B;_; in M; and
M;_,, respectively. Attachto d_A¢ = 0_-M and 9_B,, = 9. M spines X4, and
g, of Ag and B,,, respectively. Similarly, attach spines Xy, and Xy, to 0+ N
and also to each G; attach spines Xy, and Eyj_, of X; and Y;_ in N; and N;_,,
respectively, 1 < j <n.Ineach M;, 0 <i < m (resp. N;, 0 < j < n), the re-
gions between the spines is a product P; x (0, 1) (resp. Q; x (0, 1)) and so can be
swept out by P; (resp. Q;). Choose sweepouts in M and in N. Then, as in [RS],
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the sweepouts define an 1! x I"*! parameterizing of positions of P’ and Q.
Let I; (resp. I;) denote the interval which parameterizes the sweepout of M; by P;
(resp. Nj by Q).

Put the sweepouts in generic position. Since the P; are pairwise disjoint, as
are the Q;, generic position is easy to interpret. Locally, sweepouts intersect just
as would a single pair of sweepouts. This is the situation described in [RS]. In
particular, points at which P’ and Q' intersect nontransversally are isolated in
P’ and Q’, and are either nondegenerate critical points or “birth—death” tangen-
cies. Points at which P’ and G or Q' and F intersect nontransversally are isolated
nondegenerate critical points.

This local picture leads to the following global interpretation. Choose specific
0 <i <mand0 < j < n, and consider just the sweepouts of M; and N; by P;
and Q; (respectively), parameterized by I; x I;. The positions of P; and Q; during
the sweepouts are either transverse (the generic situation), have a single tangency
point (on codimension-1 strata of I; x I;), have two simultaneous nondegenerate
tangencies (these occur at isolated points in I; x I;), or have a birth—death tan-
gency, again at isolated points. This positioning of P; and Q); is, of course, unaf-
fected by motion of the other surfaces, so these codimension-0, -1, and -2 strata
become strata of the same codimension in I"*! x I"*!, Moreover, the strata are
“vertical” in the sense that they are simply products in the other m + n direc-
tions. Any nongeneric position of P’ and Q' in M corresponds in I"*! x [+
to a point lying on one or more of these “primitive” codimension-1 or -2 strata,
each of which corresponds to a distinct point of tangency between P’ and Q’. If
we extend these comments to intersections of P’ and G and Q' and F then noth-
ing fundamental changes; each point of tangency of (say) P; with G produces a
codimension-1 stratum {t} x I"*"*+! where t € I; defines the level of P; in its
sweepout of M;.

Consider again the subsquare I; x I;. Any point on the codimension-0 or -1
strata in I; x I; can be moved by altering the sweepouts slightly near the corre-
sponding tangency point of P; with Q% (or P with Q). Interpreted globally, this
means we can assume that the primitive codimension-1 or -2 strata in I"*+! x J"+!
are transverse. Thus I™*+! x I"*! is broken up into strata of arbitrary codimen-
sion. A codimension-g stratum corresponds to a positioning of P and Q% so
that there are simultaneously k& nondegenerate tangencies of P+ with O and [
birth—death tangencies of P’ with Q’, ¢ = k + 2[. Just as in [RS], strata associ-
ated to birth—death tangencies or to max-min—type (index 0 or 2) tangencies play
almost no role in the argument.

The same generic positioning applies in any product subcube of I™+! x 1*+1: If
I? and I are subcubes of I"*! and I"*!, respectively (corresponding to a choice
of p of the P; and g of the Q;), then the set of points for which there are k simul-
taneous nondegenerate tangencies between the two collections of components is
of codimension k. For example, there is no point in which each of two of the P; are
simultaneously tangent to each of three of the Q;, since this would require at least
2-3 > 2+ 3 tangency points. We formalize slightly with the following definition.
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DEFINITION 2.2. A region is an open component of the top-dimensional strata in
Im-H X In+1 )

A hyperplane is the closed codimension-1 stratum corresponding to a single
saddle tangency point of P with Q. Distinct regions whose closures contain an
open set of the same hyperplane are called adjacent.

A hyperline is the closed codimension-2 stratum corresponding to two simulta-
neous saddle tangencies between the same P; and Q;.

Note that a point on the boundary of a hyperplane lies either on d(I™*! x 11
or on a codimension-2 stratum associated to a birth—death tangency at which the
saddle tangency of the hyperplane is “born”.

3. Coding How the Surfaces Intersect

Suppose W is a region. Then any point in W represents a positioning of P" and Q’
so that the surfaces intersect transversally in a collection of simple closed curves.
Label the component W with two labels, u and v. We will describe the label u;
the other label is defined symmetrically by reversing the roles of P and Q, { and
J» etc. For one of the definitions it will be helpful first to observe that if, for some
0 <i <m, all curves of P; N Q7 are inessential in both P; and O, then a spine
of P; is disjoint from Q™. In fact, the rest of P; can be isotoped, with support on
disks bounded by curves of P; N Q7, to be disjoint from Q. In particular, the
active component P, of P; then lies in some X; or ¥;.

DEeFINITION 3.1. The label u is an (m 4 1)-tuple for which each coordinate p;
(0 <i < m) is a subset of the following symbols: ?, a, b, A, B, !. The choice of
symbols is determined by the set of curves P; N Q% as follows.

(1) If there is a curve in P; N Q7 that is inessential in O and bounds an essen-
tial disk in A; (resp. B;) whose only intersections with Q™ are inessential in
Q, then include the symbol A (resp. B) in ;.

(2) If all curves of P; N Q% are inessential in both P; and Q7 then, as above,
some subdisks of P, can be properly isotoped so that P, lies entirely in some
X; orY;. One of A; or B; then abuts P, on the opposite side of P, from Q;
in M;. If itis A;, include the symbol a; if it is B;, include the symbol b.

(3) If all curves of P; N Q7 are inessential in P; but at least one is essential in
Q™, include the symbol “?”,

(4) If there is at least one curve of P; N Q7 that is essential in P;, and if all curves
that are essential in P; are also essential in @, then include the symbol “!”
in pu;.

Similarly, define v as an (n + 1)-tuple for which each coordinate v; (0 < j < n)
is a subset of the following symbols: ?, x, y, X, Y, L.

PROPOSITION 3.2.  Forany region W C I+ x I"*! | there is precisely one sym-
bol in u;. Moreover, if the symbol is a then i = 0 and, after an isotopy of Py sup-
ported on disks bounded by components of Ot N Py, every component of QT N Ag
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is parallel in A to a component of d_ Ag. Symmetric statements hold for label b,
and for labels v; = x or y.

Proof. Consider the curves of intersection of P; with Q. If all are inessential in
P;, then we choose labels a, b or “?” and the definitions make clear that these pos-
sibilities are mutually exclusive. If at least one is essential in P; then consider the
collection of all such essential curves, and consider how they lie in Q. If each
is essential in Q7 then the only possible label is “!”. If one is inessential in O,
consider an innermost such component ¢ in Q¥: ¢ is essential in P; and bounds a
disk in Q7 that intersects P; only in inessential components. Since F' is incom-
pressible, we may isotope the disk so that it is disjoint from F and then isotope its
interior to remove any remaining inessential curves of intersection with P;. Then
the disk lies in either A; or B;, and we accordingly choose either label A or B. La-
bels A and B cannot both occur, since the splitting of M; is strongly irreducible.
This verifies that precisely one symbol appears in p;.

Suppose that ; = a and i # 0, so F; lies in the interior of M. This means
(by Definintion 3.1(2)) that we can isotope disks in P; so that P; becomes disjoint
from O, so that the active component P, lies in X, say, and so that A, lies
on the opposite side of P, from Q; in X;. All components of A; except the one
A, containing P,, are just products. Let F,, = (F; N A,). Exploiting this struc-
ture of A;, isotope all of F; — F., and a spine of F,, very near P; and hence into
M — Q7. Since F., and Q; lie on opposite sides of P, in Xj, it follows that the
components of F,, N OV that are outermost in F,, all lie in G ;. Since both F,
and G; are incompressible, it follows that F,. can also be isotoped into X; so all
of F; C (M — Q™). But this would violate Lemma 2.1(3).

Finally, suppose that 4; = a and i = 0, so F; = 0_M and, after the isotopy
above, Py becomes disjoint from Q. No inactive (product) component of A can
contain an active component of O, since the product splitting is essentially the
only irreducible splitting of a product [ST2]. So, after the isotopy, every compo-
nent of Q% contained in an inactive component of Ag is parallel to a component
of _Ag = 0_M. Since A., lies on the opposite side of P, from Q; in X; (resp.
Y;), either j = O (resp. j = n) and A, C Xg (resp. ¥,;), or j > 0 (resp. j < n)
and so G; (resp. Gj1) is disjoint from Fjy. In the former case, after the isotopy,
O N A, = 0. In the latter case, after the isotopy, either all of A, lies in X j or
else G; lies in A... If all of A, lies in X; (which is possible only if dyy N A, =
d_A. = 0, that s, if A, is a handlebody) then again 07 N A, = @. If G; lies
in A, then it is an incompressible surface in a compression body, so G; is paral-
lel in A, to _A.,. Then any component of O between G ; and 0_A., must be
parallel to d_A... [

4. How Labels Can Change Near a Point in I"+1x J"+1

ProPOSITION 4.1.  Suppose V and W are adjacent regions. If u;(V) = A or a,
then pi(W) cannot be B or b. Symmetric statements hold for labels v;(V) = X
orx andvi(W) =Y ory.
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Proof. Passing from V to W represents passing P through a single saddle tan-
gency with Q7. This cannot change the label y; from A to B or from a to b (see
[RS, Cor. 5.1 and Cor. 5.2]).

It also cannot change the label from b to A (or, symmetrically, from a to B).
The argument is analogous to that of [RS, Lemmas 4.5 and 5.3]. Such a change
of labels would mean that B,, could be made disjoint from Q" and yet P,, would
have a d-reducing disk in A,, — Q. That is, both B,,, the active component of
B,,, and the 0-reducing disk lie in a single X; or ¥;, say Y; (necessarily Y, or Xp
if 3_ B, # ). Attach to B., a maximal collection of essential 2- and 3-handles
in the complement of Q. The resulting 3-manifold B’ has boundary a surface F_
lying entirely in ¥;. F/ must be incompressible in ¥; (see Figure 2). Indeed, a
compressing disk cannot lie outside B’ by definition of B’, and it cannot lie in B’
since the splitting of M,, by P, is strongly irreducible [CG]. Hence each compc-
nent of F must be parallel to a component of Gj41.If 8_B., # ¥ so j = n and
if G,41 C 0. N, then B is 3_B., x I split by P.,. This is impossible because
nontrivial splittings of any such product are reducible [ST2]. If d_ B., = @ then
F!_ is the entire boundary of B’ so it cannot be parallel to G;,;, which does not
bound in ¥;. O

Figure 2

DEFINITION 4.2.  Any region in I”*! x I"*! whose closure contains z € I"+! x
It is called a region at z.

LEMMA 4.3. Suppose z € I x I""! and 0 < i < m. Labels a and b can-
not both occur among the labels |; of regions at z. A similar statement holds for
labels x and y in any v;, 0 < j < n.

Proof. z represents a positioning of P’ and Q’ with perhaps many points of tan-
gency. According to Definition 3.1(2) and Proposition 3.2, if a occurs as a label
for aregion at z then i = 0 and some nearby generic positioning of the active com-
ponent P, puts a spine P, in some X; (or Y;). Similarly, if b occurs as a label
theni = n (so n = 0) and (via Definition 3.1(2)) some nearby generic position-
ing puts a spine of P, into ¥; (not X;, since Q; lies on opposite sides of P, in
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the two positionings). But Py and Q; can have at most two simultaneous tangen-
cies, and, in order to be able to push the spine across Q; with two critical points,
the genus of P, can be at most one. But this violates Lemma 2.1(1). O

LEMMA 4.4. Suppose z € I™! x I"*' and 0 < i < m. Labels a and B can-
not both occur among the labels |1; of regions at 7. A similar statement holds for
labels A and b or for labels x,Y or X, y inany v;, 0 < j < n.

Proof. Again we know that i = 0 and, for Py and Q% determined by z, there is
some nearby positioning of Py that puts a spine of the active component P, of F
in some X (or ¥;). Another nearby positioning creates a curve ¢, in Pp N Q7 that
is inessential in O and bounds an essential disk in By. It follows that ¢, must in
fact be in P, N Q; and at z there are at most two saddle tangencies of P, with
Q’, both at Qj.

Consider what happens as we move across the one or two tangencies of PN J;
that change the label a to B. We have already shown in Proposition 4.1 that at least
two saddle tangencies are required. In the region labeled a, all curves of intersec-
tion of Q; with P, are trivial. Two band moves are made to get us to the region
labeled B, so one of the resulting circles is inessential in Q; and essential in F...
If the two bands connect together three distinct curves, the result would not be es-
sential in P, (see Figure 3(i)). If one connects two curves and the other is joined
to the same curve, then the latter band must be inessential in Q; but essential in P,
(see Figure 3(ii)). The second band takes us from label a to B just with this single
saddle, contradicting Proposition 4.1. Finally, suppose both bands are attached to
the same curve. The new circle ¢, created is inessential in Q; and could not have
been created with a single band move. Since Q; is not a torus (by Lemma 2.1(1);
see Figure 3(ii1)), it follows that both bands must be inessential in Q;, and so ¢, is
but one of three new curves created by adding the handles (see Figure 3(iv)). At
least one of the bands must be essential in P,.. After attaching just this band we
would get an essential curve in P, that is inessential in Q;. This corresponds to a
labeling of this region by either ;t; = A or B, and it would be adjacent to regions
labeled w; = a and B. Hence either labeling contradicts Proposition 4.1. N

5. Labels Near a Hyperline

LEMMA 5.1. Supposez € It x I"*' and 0 <i < m. Let V and W be regions
at zwith u;(V) =a or A and u;(W) = b or B.

(1) z lies on a hyperline h representing two simultaneous tangencies of P; with

some Q;.
(2) In one of the quadrants of h, all regions at z have ; = A. In the opposite
quadrant all regions at z have 1; = B, and in the other two quadrants all

regions have label p1; =!.

(3) If V is any region at z, then in each of the quadrants of h there is a region
U at z so that ui(U) = ug (V) (all k # i), vi(U) = v (V) (all k # j), and
uni(U) =1
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Py Q;
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O--O (ii)

PN Oi
Pu -

Figure 3

A symmetric statement holds if 7 lies in the closure of two regions, one with some
v; = x or X and the other withv; = y orY.

Proof. Following Lemmas 4.3 and 4.4, we may suppose that u;(V) = A and
w; (W) = B; z represents a positioning of P’ and Q" with perhaps many points of
tangency. Since u;(V) = A, P’ and Q% can be made generic near some of these
tangency points so that a curve ¢, of intersection of P; with some Q); is essential
in P; and bounds a disk in A;. Similarly, some tangencies can be made generic
to create a curve ¢ satisfying the conditions for x; = B. We know that neither
¢, nor ¢, are nonsingular curves at z itself because if (say) ¢, were then we could
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move slightly into W without destroying ¢, and thereby show that both labels oc-
cur in W. This would violate Proposition 3.2. Indeed, unless ¢, and ¢, lie in the
same component of P; N Q7 at z, we could create them simultaneously by small
isotopies near each tangency. It follows that they do in fact lie in the same compo-
nent, and hence in a single component of Q. But we have seen above that P; and
a fixed Q; can have at most two simultaneous tangencies (and P; and a fixed G;
not even two), and these tangencies correspond to a hyperline. This verifies (1).

We have also seen (Proposition 4.1) that passing through a single tangency can-
not change the label A to the label B, so ¢, and ¢, must be obtained by resolving
two tangencies of a single component of P; N Q; at z. If there is any other com-
ponent of P; N Q1 at z which resolves into a circle satisfying the requirements for
label A or B, then we could again find a region with both labels. It follows that
opposite quadrants of the hyperline have labels i; = A and pu; = B in every re-
gion at z and that, in the other two quadrants, no such region has u; = A or B.
It further follows (from Lemma 4.4) that ;; % a or b in any region at z. So each
region at z in the other two quadrants has label u; =!or ?.

We adapt the argument of [RS, 5.6-5.7] to understand the behavior of P; N Q;
in the four quadrants of the hyperline. Among the curves of P; N Q; determined
by one quadrant (called the north) is a single component ¢, to which bands cor-
responding to the two saddles are attached. In each of the two adjacent quadrants
(the east and west) is a pair of curves in P; N Q; obtained by attaching one of
the two bands. We denote the pairs respectively as c,,. and c,,, . In the remaining
quadrant (the south), each of the pair of curves c,, and c,,, are banded together
by one of the saddles to produce either three curves or one curve of P; N Q;, de-
pending on how the bands are situated. We call this curve (these curves) c;. We
know that ¢, € ¢, if and only if ¢, € ¢, and symmetrically. Also ¢, = ¢, if and
only if ¢, € ¢; and symmetrically.

CrLam 5.1.1.  If a region at 7 in the northern quadrant has p; ="' or ?, then the
ends of both bands attached to c, lie on the same side of c,, in P; and c; consists
of three curves.

Proof. In this case, ¢, # c, or c,. After attaching either band to c¢,, one of the
resulting curves (either in ¢, orin ¢, ) must be essential in P; but notin Q;, be-
cause one band creates ¢, and the other creates c¢,. If in P; the ends of the band
corresponding to one saddle tangency lie on the opposite side of ¢, from the ends
of the band corresponding to the other, then the compressing disks in A; and B;
would be disjoint, contradicting strong irreducibility of M;. Even if the ends of
both bands lie on the same side of ¢, and ¢, is a single curve, a curve from c,,
would still intersect a curve from c¢,,, in at most one point, which again contra-
dicts the strong irreducibility of M;. U

CrAamm 5.1.2.  No region at z has label pu; =17.

Proof. We first show that the northern quadrant cannot have u; =?. If ¢, were
inessential in P; then attaching one band would give two parallel curves. Hence,
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since one bounds a disk in A;, so would the other and we may regard either as ¢,.
Similarly, attaching the other band alone would produce two parallel curves, each
bounding a disk in B;, and we may regard either as c;. But then, after attaching
both, we get three curves (Claim 5.1.1), so ¢, and ¢, are disjoint. This contradicts
strong irreducibility. We conclude that ¢, must be essential in P;, so no regionin
the northern quadrant can have label p; = ?. Similarly, no region in the southern
quadrant can have u; =17.

If a region in the eastern (or, symmetrically, the western) quadrant had u; =72,
then the curves c,, would both be inessential in P;. Banding them together would
produce another component inessential in P;, contradicting the label A or B in the
northern quadrant. U

This verifies part (2) of Lemma 5.1.

CLAM 5.1.3.  The two bands are attached to c, on the same side in one of P; or
Q; and on the opposite side of ¢, in the other.

Proof. Suppose the northern quadrant has p; = A (or B) and consider how the
bands are attached at ¢,. If both bands were attached with ends on the same side
of ¢, then the resulting curve(s) ¢; could be made disjoint from c,. Since ¢, = ¢,
and ¢, € c;, this would contradict strong irreducibility. It follows that the bands
are attached on opposite sides in P;. On the other hand, ¢, is inessential in Qj; if
either band were on the inside of the disk ¢, bounds then this would force a label
i = A in the eastern or western quadrant. Thus, both bands lie on the same side
of ¢, in Q;.

Suppose the northern quadrant has ¢; =!. From Claim 5.1.1 we can conclude
that the bands are attached to ¢, on the same side in P;. But since A and B lie on
opposite sides of P;, in order to create inessential curves in Q; bounding disks in
A and B, the bands must lie on the opposite side of ¢, in Q;. ]

Claim 5.1.3 means that the normal orientations of P; and Q; agree at one sad-
dle point and disagree at the other. Choose axes (I;), and (/;), through z and let
(I x 1), = (I;); X (I;),. The hyperplane H corresponding to the tangency where
the normal orientations of P; and Q; agree will intersect (I x I), in a line of posi-
tive slope; the other hyperplane H_ will intersect in a line of negative slope. These
lines, together with the axes (/;), and (J;), themselves, divide the square (I x I),
into octants and in each quadrant determined by the axes (I;), and (I;), in (I x I),
there will be an octant over which every region at z has label ©; =! (see Figure 4).
Any hyperplane at z other than H is a product in the /; and /; direction, so it will
intersect (/ x I), in one of the axes and will have a normal vector projecting to
a vector in (I x [I), that is parallel to the axes. It follows that, if we ignore the
hyperplanes H_., any region at z in the complement of the other hyperplanes will
projectin (I x I), to some union of the four quadrants cut out by the axes. So any
of the original regions V is adjacent, across one of H, to aregion U with u; =1!.
But crossing a hyperplane H. changes only labels 1; and/or v;. This verifies part
(3) and so concludes the proof of Lemma 5.1. Cl
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Figure 4

6. An Acyclic Map and its Kakutani Fixed Point

Our next goal will be to define a particular multivalued map T: I+ x 1"+ —
I+ x [+ 50 that the image of any point is a union of faces of I”*! x 1"*! and
is contractible. We begin by defining 7" in a region W by using the labeling de-
scribed above. Foreach0 <i <mlet S; ={1}ifu; =aorA, S; ={0}if u; =
bor B, and §; = [0, 1] if u; =! or ?. Define T; similarly for each 0 < j < n.
Then, for any region W, define T(W) C I"™*! x I"*! to be the product of all the
S; and Tj, a face of I"™*! x ["*!. For z € I*! x ["*! an arbitrary point, define
T(z) to be |,y T(W). For any subcube C = [? x 17 C I"™*! x ["*], define
Tc(z) to be the projection of 7'(z) onto C.

LEMMA 6.1. For any subcube C, T¢(2) is contractible.
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Proof. The proof is by induction on the dimension of C. If C is just an interval I;
or I; then it follows from Claim 5.1.2 that 7¢ (z) is either an endpoint or the whole
interval. So suppose the lemma is true for all subcubes of lower dimension than C.
We may as well assume that ; (0 <i < p)and I; (0 < j < g) are the factors of C.

Case 1: Some label p; (i < p) orv; (j < q) is the same in every region at z.

Then, with no loss, assume this label is 1, and let C’ denote the subcube of C
in which the factor I, is dropped. Then T¢/(z) is contractible, by induction. But,
depending on whether p, is always A ora, B or b, “?” or “!”, we have T¢(z) is
either the face Tc/ (z) x {1}, T¢r(z) {0}, or T¢r (2) X I, In any case it is contractible.

Case 2: Some label u; (i < p)isnevera or A (or never b or B) in every region
at z. (Or the symmetric case for label v;.)

Assume the label is ¢, and define C’ as above. Again we know that T¢/(z) is
contractible. Let L be the subcomplex of T¢/(z) that is the union of all faces of
Tc/(z) coming from regions for which ., is “?” or “!”. Then T¢(z) = (T¢/(2) X
{0} U (L x Ip). This clearly deformation retracts to (7¢/(z) x {0}) and so is
contractible.

Case 3: Among the regions at z, every label u; (i < p) is somewhere a or
A and somewhere b or B, and every label v; (j < q) is somewhere x or X and
somewhere y or Y.

Choose any i < p. Then, according to Claim 5.1.1, z lies on a hyperline repre-
senting two simultaneous tangencies of P; withsome Q; (0 < j <n).If j > ¢,
so j does not occur among the coordinates of C then, according to Claim 5.1.3,
Tc(z) = Tci(z) x I, and so is contractible. So suppose also that j < g is a coor-
dinate in C. This means that there is a region at z for which v; = X and one where
v; = Y. Thisimplies a double tangency of Q; with some P and, since 142 < 2x2,
k must be i. That is, Lemma 5.1 can be applied to the same pair of hyperplanes,
this time using labels X and Y instead of A and B. The argument of [RS, Lemma
5.7] shows that the labels X and ¥ must occur in the same two quadrants as A and
B, so the other two quadrants are labeled p; = v; =!. Let C” be the subcube of C
in which both factors I; and I; are dropped. Then it follows from Claim 5.1.3, now
applied both to I; and I;, that T (z) = Tcr(2) X I; x I;, which is contractible. []

LEMMA 6.2. The multivalued map T: I'""*t! x ["*' — "+ x " s closed,

Proof. Suppose (z,z') ¢ graph(T). Then 7’ is not in any face of I+ x I**! that
is the image of a region at z. Since faces are closed, there is a neighborhood of z’
which is also disjoint from these faces, just as there is a neighborhood of z which
is disjoint from any region whose closure does not contain z. Then the product of
the two neighborhoods is a neighborhood of (z, z’) in I"+! x 1"+ x [+l 1
that is disjoint from graph (7). L]

‘6')3

THEOREM 6.3. There is a region for which all labels w; and v; are

Proof. According to the Eilenberg—Montgomery generalization of Kakutani’s the-
orem [EM, Thm. 1], the map 7 has a fixed point z. Thatis, thereisaz € mAl e rtl
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such that z € T'(z). We first show that there is a region adjacent to z for which
all labels p; and v; are either “!” or “?”. Equivalently, we will show that T'(z) =
I+ % [t Indeed, we will show that any region W for which z € T(W) has
T(W) = I™*! x "+, Suppose not, so z € T(W) and T(W) is a proper face. Then
we can assume (with no loss of generality) that, for some i, T1,(W) = S5;(W) =0
and so the ith coordinate z; of z is also zero. Then, by definition of the sweepout, &
pointin W very close to z corresponds to a positioning of P; very nearto F; U Xy, .
In such a position, P; N Q7 consists of F; N O, for which all curves which are
essential in F; are essential in Q, together with meridian circles of any points in
¥4, N OT. In particular, p; (W) = A, !, or 2, so S;(W) = 1 or I, a contradiction.

In W, then, each u; and v; is “!” or “?”. Suppose that some u; (W) =? (or
v;(W) =?). This means that, for any point in W, all curves of the corresponding
P; N Q7 are inessential in P; but at least one is essential in @*. Then an inner-
most such curve in P; bounds a disk in some X; or ¥;. But this would imply that
v; = X, a contradiction. We conclude that in W, all labels are “!”. O

Proof of Theorem 1.1. A point in the region given by Theorem 6.3 corresponds
to a positioning of Pt N Q7 in which each curve in P* N Q7 is either essential in
both P* and Q™ or inessential in both. Moreover, each set P; N 0% and P* N Q;
contains at least one essential curve. A standard innermost disk argument can be
used to remove, by an isotopy, all inessential curves of P+ N Q% without disturb-
ing the essential curves. Ll
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