On Iteration in Planar Domains

PETRA BONFERT

Introduction

Let G C C be a domain in the complex plane, and let f: G — G be an analytic
function mapping G into itself. By f” we denote the nth iterate f* = fo---of
(n times) of f. The behavior of the sequence (f"), as n — o0 is of great interest
and has already been studied in depth for the most important choices of G. If G =
C, then f is a rational function. Many significant results have been proved dur-
ing the last years (see e.g. [B2; CG; Mi; S]). In the case G = C, the function f is
an entire function; see [Be] for an excellent overview. If G is the unit disk, G =
D, then the situation becomes easier, since in this case the family { f" | n € N}
is normal. Initial results have been discovered by Julia, Wolff, and Valiron (see
e.g. [V]); further results have been found by Pommerenke and Baker [P; BaP] and
by Cowen [C].

Owing to the uniformization theorem of Koebe and Poincaré, any other domain
GccC (and even every Riemann surface) is conformally equivalent to the quo-
tient of one of these standard domains and a discrete, fixed-point free subgroup
of the automorphism group associated with that domain. Hence, it seems obvious
that the behavior of the iterates of an analytic function in an arbitrary domain can
be deduced from one of the cases mentioned above. If f possesses a fixed point
in G then this statement is true, but if not then the boundary of G becomes signifi-
cant and the boundary behavior of the universal covering map must be examined.
The cases where G is covered by the whole complex plane are represented by the
plane C itself with entire functions being iterated and by the punctured plane C*,
the latter case being reduced to the first one by means of the exponential map that
covers C* by C and whose boundary behavior is well known. The only case where
G C Cis covered by C is the case G = @, so that this case does not introduce
new problems compared with the iteration of rational functions.

From now on, let G C Cbe a planar domain covered by the unit disk D, that is,
G has at least three boundary points in €. We call such domains hyperbolic, since
they carry a hyperbolic metric (see below). Note that some authors use the term
“hyperbolic” differently: they call a domain G hyperbolic if it possesses a Green’s
function. In [Hei] the iteration of analytic functions in hyperbolic domains has al-
ready been studied, in particular the case of f having a fixed point in G is dealt
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with. Hence, we are only interested in analytic functions f: G — G without fixed
points. Marden and Pommerenke [MP] proved some results for this case; the au-
thors work on hyperbolic Riemann surfaces and extend some of the results known
in the unit disk to the surface. Their principal result gives a semiconjugation of f
to a covering map of an auxiliary surface.

In this paper we prove that f is semiconjugated to a Mdbius transformation of
an auxiliary domain onto itself. Furthermore, we are interested in a classification
of the behavior of the iterates f” in terms of purely geometric conditions con-
cerning G and f. The sequence of hyperbolic distances (Ag(f*(2), "1 (2)),
takes a central position in this classification, and we prove a relation between this
sequence and the corresponding sequence of quasihyperbolic distances.
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and I would like to express my gratitude to my supervisor Christian Pommerenke
for introducing the problem to me and for the numerous interesting discussions I
have had with him. I am also very thankful to Steffen Rohde for his stimulating
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1. Statement of Results

Let G c Cbea hyperbolic domain, and let f: G — G be an analytic function
mapping G into itself. By conjugation with a Mobius transformation we may as-
sume that oo ¢ G, hence G C C. Let D = {|¢| < 1} be the unit disk. Since G
is hyperbolic, there is a universal covering map p: D — G and a Fuchsian group
I' € Mob(D) without elliptic elements with poy = p forall y € T so that G is
conformally equivalent to ]D)/ . The analytic map f:G — G lifts to an analytic
map f:D — D with po f = f o p. Note that there are many different choices of
f. Under our assumptions we have f(¢) # ¢ forall { € D.

Letting pg denote the density of the Poincaré (hyperbolic) metric in G, we have
pc(p(£)) =pp(¢)/|p'(§)| for ¢ €D, where pp(¢) = 1/(1—|¢ |?). Note that some
authors use 2/(1 — |z|?) instead. By Ag(-, -) we denote the hyperbolic distance
in G; see [A] for further details. The Schwarz lemma yields Ag(f(z1), f(z2)) <
A (z1, z2) for 71, z2 € G, so that the sequence (Ag(f"(2), f*t1(2))) converges
forevery z € G asn — o0.

THEOREM 1.1.  Let f: G — G map the hyperbolic domain G C C analytically
and without fixed points into itself. Let f:1D — D be any lift of f under any
universal covering map and let z € G be an arbitrary point. Then

Ae(f @), f™ @) =20 ifand only if Ap(f"(0), F71(0)) == 0.

This theorem makes precise the intuitively obvious fact that the behavior of f
is somehow strongly related to the behavior of any lift f of f under a universal
covering map p:ID — G. Note that from the definition of A we only have
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Ac(f (p(©)), F"(p©))) = min{ Ap(f*©), y(F*()) |y € T}
< A (f" @), f"1(©¢) for ¢ €D, 1)

where “<” can actually occur (e.g. G = D\{0}, f(z) = —z?).

Observe that, by Theorem 1.1, the sequence (Ag(f"(z), f**1(2))) converges
to zero for each z € G or does not converge to zero for any z € G as n — oo.
Note that the theorem also applies if G is the unit disk. Furthermore, we obtain
from Theorem 1.1 that different lifts f:ID — D of the function f under arbitrary
universal covering maps p: D — G behave similarly.

We remark that, for multiply connected domains G, the hyperbolic metric Ag
has no simple geometric meaning, whereas the quasihyperbolic metric Ay, defined
by the quasihyperbolic density pg;(z) = 1/dist(z, dG) is purely geometric. If G is
simply connected, then by the Koebe distortion theorem and the Schwarz lemma
we have
< Pc(@
~ pg(2)
that is, pg(z) = pg(z). This is no longer true for multiply connected domains G;
in fact, pg(z)/pg(z) < 1remains true but in general we cannot find a lower bound
¢ > 0 for this quotient (example: G = D\{0}; see [BP] for a detailed discussion).

We say that f: G — G has an isolated boundary fixed point a € 3¢G if f ex-
tends analytically to the isolated boundary point a and fixes a; thus f(a) = a,
with a suitable definition of “analytic” if a = oo.

From now on we shall assume that f has no isolated boundary fixed point. For
otherwise we can take G = G U {a}. Then the function f: G — G has an interior
fixed pointina € G. This case has already been examined: Kcenigs [K] proved in
1884 that for f’(a) # O there is a local holomorphic change of coordinates w =
g(z) with g(a) = 0 so that locally g o f o g~ ! is the map w — f’(a) - w. Béttcher
[B6] dealt with the case f'(a) = 0 and proved that such an f is locally conjugate
to the map w — w* for some k € N.

<1 forall z € G,

THEOREM 1.2. Let f: G — G map the hyperbolic domain G C C analytically,
without fixed points, and without isolated boundary fixed points into itself. If g €
G is an arbitrary point, then there exists a constant ¢ > 0 (depending on z¢ and
f but not on n) with

PG(f"(Zo))
Pg(f” (zo)) —

The theorem shows that we have pg(f"(2)) =~ pg(f"(z)) forall n € N and fixed
z € G even though G is multiply connected. It is then easy to see the following.

<1 forall neN. 2

COROLLARY 1.3. Let the assumptions of Theorem 1.2 hold. Then

=00

AG(FH(2), f*U2) 222 0 ifand only if N5(f(), £ (@) 222

for arbitrary z € G.



50 PETRA BONFERT

Our main result makes Theorem 1 in [ MP] more precise.

THEOREM 1.4. Let f: G — G map the hyperbolic domain G C C analytically,
without fixed points, and without isolated boundary fixed points into itself. Then
there exist a domain H C C, an analytic function g: G — H mapping G into H,
and a Mébius transformation : H — H with ¢(H) = H such that the following
functional equation holds in G:

gof=gpog.
The domain H is hyperbolic if (any) z € G satisfies Ag(f"(2), f"1(z)) 4 Oas
n — oo; otherwise, H = C.
Furthermore, we have:
(1) g isinjective if and only if f is injective;

(1) if f € Aut(G) then H is conformally equivalent to G and g maps G bi-
holomorphically onto H, where Aut(G) denotes the group of all analytic
automorphisms of G; and

(iii) if Ag(f"(2), () # 0asn — oo and if G is finitely connected and
| ¢ Aut(G), then we can choose H = D.

We shall prove Theorem 1.1 in Section 3. Section 4 contains the proofs of The-
orem 1.2 and its Corollary 1.3; Section 5 is devoted to the proof of Theorem 1.4.
In Section 2 we prove some geometric results that will be very useful later on. Fi-
nally, in Section 6 we consider the case where f is a Mobius transformation, and
we explicitly calculate some of the quantities appearing in Theorem 1.4 and its
proof.

2. Some Geometric Results

In this section we state some probably known geometric results; for the reader’s
convenience, we give proofs.

LEMMA 2.1. Let cq and K be positive constants. Then there is a constant ¢ > 0
(depending on cy and K) such that the following holds: If G C C is a hyperbolic
domain and zo, z1 € G satisfy pg(z0) = co - pg;(z0) and Ag(z0, 21) < K, then

pG(z1) = ¢ - pg(z1).

Proof. Without loss of generality we can assume zg = 0 € G and 1 € 3G with
dist(0, 0G) = 1. Our assumptions then are

pc(0) = co, r6(0,z1) = K,
and we shall prove that

(1) pg(z1) = c1 and

(i) dist(zy, 8G) > c,
where ¢ and ¢, are positive constants depending only on ¢y and K. This yields
pc(z1) = ¢ - pg(z1) with ¢ = ¢ - ¢2 > 0 depending only on ¢g and K.
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We can find positive constants d and d depending only on ¢o (and not on G)
such that there is some a € C\G withd < |1 — a| < d (see e.g. [BP, Thm. 1]).
With dist(0, dG) = 1 we have |a| > 1.

For the proof of (i) let H, := C\{1, a}. Then G C H, and so

pG(2) = pn,(z)

holds for z € G. Furthermore,
Ar,(0,z1) <26(0,2z1) =K.

There is a constant ¢y, not depending on the point a but depending only on the
bounds d, d and on K, such that

0H,(2) = ¢
holds for all z € H, satisfying Ay, (0, z) < K. This implies pg(z1) > ci.
For the proof of (ii), let
B=B(rR):={lz|z1, r <|z—1| =R},

and for b € B define H, := C\({1, b}. Then there is some ¢ > 0 depending only
onr, R, and K such that all b € B and all z € Hj, with Ay, (0, z) < K satisfy
lz—1]=¢, |z —b| = ¢,
that is,
dist(z, 0Hp) > c.

In particular, forr =d and R = d, this gives us some constant ¢, > 0 depending
only on d, d and K, and thus only on ¢y and K, with

lz1 — 1] > ¢y, |z1 —al > ¢

(note that @ € B). Let now b € 3G with |z; — b] = dist(z;, dG). We have [b| > 1,
and we show that |z; — b| > ¢, for a constant c; > 0 depending only on cy
and K.

(D) If|b—1| <c /2then|z; —b| > |2y — 1| —|b—1| = ¢, /2.

(2) If |b — 1] > ¢1/2 then, since Ag,(0,z;) < K andd < |1 —a| < d, we
find R > 0 depending only on d and d with |z;] < R. Using |b — z4| =
dist(z1, 9G) < |1 — z1], this implies

b—1<|b—zil+lz1 — 1] < 2|z — 1] <2|z1| +2 < 2R + 2.

From the above with r = ¢;/2 and R = 2R + 2 we therefore have b €
B(r, R) and find ¢, > 0, depending only on r, R, and KX and thus only on ¢y
and K, with |z; — b| > ¢,. Note, that z; € Hp and Ay, (0, z1) < Ag(0,21) <
K since G C Hp.

Let c; = min{c; /2, ¢2}. Then dist(z;, 0G) = |z; — b| = c3. O

The following lemma will prove to be very useful.
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LEMMA 2.2. Let ¢y be a positive constant. Then there is a constant ¢ > 0
(depending on cg) such that the following holds: If G C C is a hyperbolic domain
and zo € G satisfies pg(z0) > co - p5(zo) then

D,OG (ZOs C) C K(ZO, diSt(ZOa aG)/z)a

where D, (zg, c) denotes the hyperbolic disk with (hyperbolic) center zo and
(hyperbolic) radius c; K (-, -) denotes the Euclidean disk with Euclidean center
and Euclidean radius.

Proof. As in the proof of Lemma 2.1, we may assume without loss of generality
that zo = 0 € G and 1 € dG with dist(0, 3G) = 1 and pg(0) > ¢o. We show that
there is a constant ¢ > 0 depending only on ¢ such that

D, (0,¢) C K(0,1/2).

As in the proof of Lemma 2.1, we find some a € C\G withO <d < |l —a| < d
and d,d > 0 depending only on co; furthermore, |a| > 1. This shows that there
is a constant ¢ > 0 with Ay, (0, z) > cforall z € H, with |z| = 1/2. Since G C
H,, we conclude that L;(0, z) > c for all z € G with |z| = 1/2, which proves
that D, (0, c) C K(0, 1/2). 0

COROLLARY 2.3. Let co be a positive constant. Then there is a constant ¢ > 0
(depending on cg) such that the following holds: If G C C is a hyperbolic do-
main and zo € G satisfies pg(zo0) > co - p;(20), then any universal covering map
p:ID — G is injective in D, (&, ¢) for any &y € D with p(&) = zo.

Proof. From Lemma 2.2 we obtain a constant ¢ > 0 depending only on c( such
that D,.(z0,c¢) C K(zp, dist(zp, 3G)/2) holds. Since the latter (Euclidean)
disk is simply connected, we find that D, (o, c) is mapped biholomorphically
onto D,.(zo, c) by any universal covering map p:ID — G for any ¢, € D with

p (&) = zo. O

3. Proof of Theorem 1.1

In order to prove Theorem 1.1 we must study the behavior of the iterates f” of any
lift f of f under a universal covering map p: D — G. Since f has no fixed point
in D, the fundamental theorem of Wolff, Denjoy, and Valiron (see [V]) asserts
that the sequence of iterates (") converges to the Denjoy—Wolff point a € 81D of
f uniformly on compact subsets in [D. Theorem 1 in [P] shows: If 7, € Mo6b(ID)
keeps the point a fixed and sends f "(0) to the origin, and if g,: D — DD is defined
by &, = T o f*, then the limit

g(z) = lim £,(2)
n—o0

exists locally uniformly in D and satisfies g(0) = 0, g(D) C D, where g = 0 if

n—>00

and only if Ap(f™(0), f*1(0)) =25 0.If g 2 0, then
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¢(z) = lim (7, o T—_:l)(Z)
n— 00 n

also exists, ¢ # id, ¢ € Mob(ID), and satisfies

gof=¢og.
Furthermore, since p o f = f o p holds in D, the map f :ID — D induces a
homomorphism f; : ' — I' with

foy=fiy)of forall yeT, 3)

where I' is the Fuchsian group associated with p. Since f. is a homomorphism,
we have ( f MNe = ( f*)" and simply write f:. From this we obtain g, o y =
T, o f(y) o t; ! o g,. Let now Ap(f™(0), f**1(0)) 4 0asn — oo. Then
lim, 0 T, © f;’"‘(y) o ‘En_l =: g.(y) exists for all y € I', and satisfies g.(y) €
Mob(ID) and
goy =g:(y)og.

Let

By == g.(I"). 4)

LEMMA 3.1. Let f: G — G map the hyperbolic domain G analytically and with-
out fixed points into itsglf, let p:ID — G be a universal covering map of G with
Fuchsian group T', let f:1D — D be a lift of f under p, and let

Ap(F(0), F"*1(0) A 0 as n — oco.

Define g, ¢, and B, as above. Then we have:

(1) the group B, is a Fuchsian group, and if B, is not cyclic then the extended
group (B, ¢) is also Fuchsian;
(ii) B, does not contain elliptic elements; and
(ii1) if f is of infinite order (that is, if f" # id for all n) and if B, is not cyclic,
then (B, ¢) does not contain elliptic elements.

Proof. (1) This statement is contained in Lemma 4 in [MP]. Note however that the
authors work under the general assumption that f is of infinite order. If f is of
finite order then f € Mob(ID), and from the definition of t,,, g,,, € one sees that
(B, @) = (T, f). f m € N is minimal with f” = id, then f™ € I" and thus,
using (3), every element « of (B,, ¢) can be written in the form

a=yof®@ yerl, wa)el0,...,m—1};

this representation is unique. Now assume that («,,) C (B, ¢) is a sequence con-
verging in ID to the identity with «,, 5 id for alln € N. Then there is a subsequence
(ng)and ¢ € {0, ... ,m — 1} such that ¢(«p,,) = ¢ for all k. Hence

Up, = VYm0 f* forall k €N,

so that y,, = a,, o f = f ~tas k — oo. Because of the discreteness of I' and
using the minimal choice of m, we obtain ¢ = 0 and y,,, = id for k large enough;
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hence «,, = id, which contradicts the assumption. Therefore (B,, ¢) is discrete
and thus a Fuchsian group.

(i1) Looking at the trace, we see that B, does not contain elliptic elements, since
every element of B, is some limit of nonelliptic elements.

(ii1) If B, is not cyclic, then we know from (i) that (B,, @) is a discrete group.
Thus we need only show that it does not contain elliptic elements of finite order.
Note that since f is of infinite order, we have f " ¢ I' for all n € N. In this case,
Lemma 5 in [MP] shows that 9" ¢ B, for all n € N. We define a homomorphism
Jj of (B, ¢) onto Z such that j(8) = 0 for 8 € B, and j(¢) = 1 as follows: the
elements @ € (B, ¢) have the form

a=ﬁlo¢nlo”'oﬁpo¢npa ,BvEB*, nvEZs

for some p € N. Since $o Bo ¢! € B, for B € B, (see (5.4) in [MP]) and ¢" +#
id for all n € Z, we conclude that we can uniquely define the homomorphism j
by the exponent sum

Jj@):=ni+ny+---+np.

Furthermore, we see that & can be written in the form

o = ga—m Oﬂ o(ﬁm'!_j(a)

with some 8 € B, and m € Ny.
Now suppose that @ € (B,, ¢) is elliptic of order k. Then kj(a) = j(af) =
j(@id) = 0 and we have
a=¢ "opfog"
for some B € B,, m € Ny. But this gives 8* = id, which is a contradiction since
B, does not contain elliptic elements. 0

Proof of Theorem 1.1. Let p:ID — G be any universal covering map of G, and
let f:D — D be any lift of f under the map p. If f is of finite order, then f €
Aut(G), hence Ag(f*(2), f*1(2)) = Ag(z, f(z)) ~ Oasn — ooforall z €
G, and the same holds for the lift f € Mdb(D), so that there is nothing to show
in this case. Let now f be of infinite order. We shall consider two cases: in (a)
we consider the special case where z = p(0) holds; in (b) we will see that the be-
havior of the sequence of iterates of one point in G determines the behavior of the
sequence of iterates of each point in G, and this will complete the proof of the
theorem.

Case (a): We first consider the case where z = p(0). Letz, := f"(z)and ¢, =

n—>o0

f"(O) for n € Ny. Since z, = p(Z,) we see from (1) that Ap(&,, §ngp1) —— 0
implies Ag(2n, Znt1) 2225 0. For the other direction we assume that

A’G(Z:r.ls Zn—l—l) —> O and A‘]D(;na §n+1) 7L) O as n — O0.

Recall the definitions of t,, g,, g, ¢ and B, (see the beginning of this section). Let
H = D/B,, and let g: D — H be a universal covering map with Fuchsian group
B, (see Lemma 3.1). Then § = lim,_, o T, o f" induces an analytic map g: G —
H that satisfies
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gop=gqog.

In [MP, 5.4] it is shown that o B, 0@ ~! C B,, so that @ is projected to a covering
map ¢: H — H withp o g = q o ¢. We have

gof=g¢og,
so that

26 (Zns Znt1) = Ar(8(20), 8(Znt1)) = A (9" (8(0)), " (8(z0))) (5

for all n € N. We distinguish three possibilities for B, as follows.

(1) By = {id}. Then H is simply connected and g: D — H maps the unit disk
conformally onto H; hence ¢ € Aut(H). Since ¢ has no fixed point in ID, the map
¢ has no fixed point in H. Thus, together with (5) we conclude

AG(Zn, Znt1) = Au(8(z0), 9(g(20))) >0 forall n €N,

which contradicts our assumption.

(i1) B« = (a), a € Mob(ID) parabolic or hyperbolic. If « is parabolic, then we
can choose H = ID\{0} and hence ¢(w) = e’Pw* for some k € Nand 8 € R,
which together with (5) yields a contradiction to our assumption. If « is hyper-
bolic then we can choose H to be an annulus, which implies that ¢ is a rotation,
¢ # 1d, which together with (5) again contradicts our assumption.

(iit) B, is not cyclic. We obtain from Lemma 3.1 that (B,, ¢) is a Fuchsian
group without elliptic elements. Let wy € D with g(wg) = g(zo). Using that
q o @ = ¢ oq we find B,, € B, such that

A (@™ (8(20)), 0" (8(20))) = Ap(@" (wo), B (" (wo))).
Thus (5) and the assumption Ag(z,,, Zn+1) 2220 yield
Ap(wo, (7" 0 B 0 " TH(we)) = 0 as n — oo,

and this implies ¢~ o B, 0 3"*! = id for n > ng since $~" o B, o @"*! is an el-
ement of the discontinuous group (B, ¢) that does not contain elliptic elements.
Hence ¢ = B, ! € B,; this contradicts Lemma 5 in [MP], which asserts that $* ¢
B, forall k e N.

Case (b): Letnow vg, wo € G be arbitrary, with v,, = f"(vg) and w,, = f"(wo).
We show that

A6 (W, Vpi1) =25 0 if and only if Ag(Wy, Wnt1) ——> 0,

which will complete the proof of our theorem.

It suffices to show one direction of the implication. Suppose Ag(v,, vp11) o,
0.Let p:D — G be a universal covering map with p(0) = vg, and let f:D —
D be a lift of f under p. From (a) we know that Ap (E,,, 2n+1) 27 0 with E‘n =
f "(0); thus Theorem 1 in [P] shows that

n—>00

£.(0) = T (F" () == 0,
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where £, € Mob(D) sends £, to the origin and keeps the Denjoy—Wolff point
a € 0D of f fixed. Let §; € D with p(Sy) = wy, 5, := f"(5o). Then we have
8n(50) —=> 0 and 50 Ap(Ss, £n) ——> 0. This yields

)"G(wna wn+1) =< )‘D(&\m §n+1)
< ApGur Zn) + ApCn» Eng1) + ADEnt1, Sng1)
n—>o0 O D

4. Proof of Theorem 1.2

In this section we give the proofs of Theorem 1.2 and Corollary 1.3.

Proof of Theorem 1.2. We show that if (2) is not true, then the iterates f" con-
verge to an isolated boundary fixed point of f, and this contradicts our assumption.
Let p:ID — G be a universal covering map with p(0) = zo, let z, = f"(zo).
choose a lift f of f, and let ¢, = f"(0), {o = 0. Assume that (2) is not true.
Part (A): There is no R > 0 such that p is injective in D, (¢,, R) foralln €

N. Indeed, if there is an R > 0 such that p is injective in D, (¢, R) foralln €
N, then the Koebe distortion theorem yields
1
pf 1) > — tanh(R).
P (2n) 4
Thus (2) holds, which contradicts our assumption.

Part (B): We show that there are y,, € I"\{id} such that Ap(¢&,, v, (&) — 0
as n — oo. From (A) we find that n; € N, n; ' oo with p not being injective
in D, (&n,, 1/k). Thus there are vy € Dy (&8s, 1/k) with ax(vi) € Dpy (8, 1/k)
for some v € I, oy # id. This implies

ADCns @k (En)) < AD(Gnps otk (Vi)) + Ap(ar (i), @k (&n,)) < 2/k (6)

for all k € N. Without loss of generality, no can be chosen so large that from [F,
Thm. 2] we obtain that f is injective in Ursn o Dop(&n, 2). This together with (6)
gives f(¢n,) # f(ax(8y,)) for all k € N; hence

Cnp41 F fe(0ti)(@n41) forall k €N,
that is, fi(ax) # id for all k € N and similarly
fi(ax) #1id forall j e N,k e N.
Together with (6) this shows that
0 < Ap(Cnpajs f7(@1)Cniaj)) <2/k forall k€N, j e N. (7

Because of the discreteness of I' we can choose y, € I', y,, # id, in such a way
that

}\-]D(Cm yn(gn)) =< )\-D(gm y((n)) for all Y € F’ 14 7é ida (8)

n—0oo

and this together with (7) yields Ap(&,, ¥n(&)) —— O.
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Part (C): Next we show that we can find n; € N so that for n > n; we can
choose vy, = y* € I' in (8), where y* does not depend on n. We use the following
fact (see e.g. [B1, Thm. 8.3.1]): There is a universal constant KX > 0 such that

max{Ap(¢, ¥ (), An(5, ¥ ()} > K ®

for all y, y € " with (y, ) not cyclic and arbitrary { € . (Note that I" is a dis-
crete group belonging to a planar domain, hence every elementary subgroup of I'
is cyclic.)

(a) Let wo € D with Ap(wo, &) < K/10, w, = f"(wo), and n; > ng such
that Ap (&, ¥n(&n)) < K /10 for all n > n,. We show that

Ap(Wp, yn(wn)) < Ap(wy, y(wn)) for all vel,y# id, n = n;. (10)
Otherwise we find @ € T, @ # id, and n > n; with

Ap(Wy, a(wy)) < Ap(Wa, Yu(wy)),
which yields

)\-D({ns a(Cn)) =< 2}\'D(§n’ wn) + )\-D(wns a(wn))
< 2)‘D(§na wn) + )\']D(wns Vn(wn))
=< 4)~]D(§ns wn) + A]D(Cn, Vn((n)) < K.

But this, together with (9) and the fact that Ap(&,, ¥.(¢:)) < K/10, implies that
(yn, @) is cyclic, that is, y, = ¥ and & = B’ for some f € I" and k, ] € Z. Be-
cause of (8) we conclude k = 41 so that @ = y¥, contradicting the inequality
Ap(wy, a(wy,)) < Ap(w,, yn(w,)) which followed from the assumption that (10)
is not true. Hence we have shown that (10) holds.

Furthermore, there is no R > 0 with p being injective in D, (w,, R) for all
n € N. For otherwise, as in part (A), we find that pg(w,)/og(w,) > tanh(R)/4
which together with Lemma 2.1 yields a contradiction to the assumption that (2)
is not true. As in part (B), from this we obtain that

AD(Wy, Yn(Wp)) 2> 0.

(b) Let wo € D be arbitrary and w, = f"(wo). Then we find £k € N and

w, ..., wk e D with w] = ¢, wk = wo, and Ap(w§, w§*") < K/10 for j =
1,...,k — 1. Applying (a) recursively to the iterates of wj and w{)Jr1 for j =

1,...,%k — 1, we finally obtain

n—oe

)‘-]D(wna yn(wn)) —> 0
and
)\]D(wna yn(wn)) =< A'Il)(wn, y(wn)) for all Y € F’ 14 7é ld, n=ny

with some n; € N. _ _
(c) Let now wo = f(&o) and w, = f"(wo) = &u+1. Applying (b) with y =
¥Yn+1, We conclude that

AD(Cn415 Vn(Gn41)) =< AD(Cnt1, Vst (&n+1)) forall n > n;.

Because of the minimal choice of y, and y,11 (see (8)) and because of (9), this
yields y, = yndj_ll for all n > n;.
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Part (D): Thus, we have shown that there is y* € I" with

n—>00

Ap(Gn, v*(&n)) —— 0
and

Ap(Gn, ¥ (G)) < Ap(Gn, v (§)) forall y €T, y #id, n > ny. (11]

In particular, this shows that y* is parabolic. Let now C, be a geodesic in D from
& to y*(&y) and C,, = p(é‘,,). Then C, is a closed curve in G and, for n > n;,
it is a Jordan curve because of (11) and (9). Furthermore, C,, and C,; are freely
homotopic and £, (C,) 272, 0, where £ o denotes the hyperbolic length in G.
From th1s one easily concludes that there is an isolated boundary point a € 905G
with z,, 2% a (note that z,, € C,). Now, because of Picard’s theorem, the pomt
a is not an essential singularity of f since f maps G into G and G possesses at
least two boundary points in C. With f(z,) = z,41 2%, a we conclude that f
has an analytic extension to a with f(a) = a (with a suitable definition of “ana-
lytic” if a = 00). O

Now, together with Lemma 2.1, the Corollary 1.3 is an easy consequence of The-
orem 1.2.

5. Proof of Theorem 1.4

We consider two cases: Oneis Ag(f*(z), f*1(2)) 4 0asn — oo forallz € G:
the otheris Ag(f"(2), f**'(z)) — Oasn — ooforall z € G. From Theorem 1.1
we know that no other cases can occur.

5.1. The Case Ag(f"(2), f*(2)) A Oasn — oo

We first assume that Ag(f"(z), f**'(z)) 4 Oasn — oco.Let p:ID — G bea
universal covering map with Fuchsian group T, and let f: DD — D be a lift of f
under p. Then we have Ap( f "0, f n+1(0)) A 0as n — oo (see Theorem 1.1)
and with 7, € M6b(ID) as in Section 3 we have

Bn=Tao f" > §£0, (12)
goy =g«(y)og forall y €T, (13)
gof=¢og with = lim (r,07,},) € Mob(D). (14)

n—oo

LetB,:=t,0lor ! ={1,0p0r!|yel}

LEMMA 5.1. Let f:G — G map the hyperbolic domain G C C analytically,
without fixed points, and without isolated boundary fixed points into itself, and let
Ae(f*(@), £ (2)) 4 0asn — oo. Choose a universal covering map p: 1D —
G, denote its Fuchsian group by T", let f :ID — D be a lift of f, and define t,, and
B,, as above. Then the family { B, | n € N} is uniformly discrete; that is, there is
an open neighborhood U of the identity id in Mob (D) such that U N B, = {id}
foralln € N.
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Proof. Let zo = p(0), z, = f"(z0), and ¢, = f "(0). Then Theorem 1.2 shows
that pg(z,) > co - p§;(z,) for all n € N and some constant cg > 0. Thus Corol-
lary 2.3 yields that p is injective in Dy, (gy, ¢) for all n € N and some ¢ > 0
depending only on cq. Hence p o 77! is injective in D, (0, ¢) for all n € N, so
that B(D,,(0,¢c)) N D,,(0,c) = S forall B € B,\{id}, n € N. Let U := {a €
Mo6b(ID) | a(D,, (0, c)) N D, (0, ¢) # @ }. Then U is an open neighborhood of
the identity in M6b(ID) and satisfies U N B, = {id} foralln € N. O

As in Section 3, let B, := g,(I"). We introduce a new group

K
B:=|J¢*oB,og* (15)
k=0

In [MP] the group B, is of main interest, whereas we shall work with the group
B from now on; this is a major difference from [MP]. The following four lemmas
state the most important tools needed for the proof of Theorem 1.4.

LEMMA 5.2. Let the assumptions of Lemma 5.1 hold, and define g,, g, By, and
B as before. Then, for every y € T and k € Ny, the limit lim,,_, o Tptr © f'(¥) o
T, J:k exists and is equal to $* o g,(y) o ¢*. We have

B= [hm Tusko f1(y) otk | v €T, keNO} (16)
B is a Fuchsian group without elliptic elements.

Proof. Lety € I' and k € Ny. Then we have

rd -1
Tnt+k © f*n(y) ° Ttk
1 1

=  Tn4k© Tn_-{}k—l OTytk—19-""0T, OTy Of*n(y) © Tn_l 0Tp0--+0 Tn_—fk
—= ¢ 0 gu(y) 0 ", (17
Let now 8 € B, thatis, 8 = gb o 2+(y) o ¢* for some y € T, k € Ny. Then
B =lim,_ o Tyyx © f (y)ort,. +k by (17) and the other inclusion i 1n (16) is also
clear from (17). With this and the knowledge that 7, o f '(y)or,, +k € B, 4 for
y € I', n € N, k € Ny, the discreteness of B is an immediate consequence of
Lemma 5.1.
We now show that B is a group: Since B C Mob(]D)), it suffices to show that
/31 0132 €B f01‘,31,ﬁ2 € B. Letﬁl, B2 € B, ﬂl 570 g.(y1) o @F, and B =
¢~ 0 g.(y2) 0 @' Since (fr(y2))™! = f*(y5 "), we obtam

(g*(}/z))_ = g*()’z_ )
and thus
Byl =g ogulyy; Do

We now use that ¢ o B, 0 $~! C B, (see (5.4) in [MP]; note that in general this
is a proper inclusion). Then we have:
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Ifk>1: Biopyl=¢F

¢ 0 g (y1) o (@ o gu(yy; Do * D)o gt
¢ % 0 gu(y1) 0 §+(y3) o @* forsome y; €T
= ¢ %0 g.(y10y3) 0@ € B;
Ifk=1: Brofy' =¢*o0gyioy, )od* eB;
Ifk<I: Brofy' =g 0@ oguy)od ™) og(y;Hod €B.

Hence B is a Fuchsian group.

Since every element of B is the limit of nonelliptic Mobius transformations (see
(16)), looking at the trace we conclude that the group B does not contain elliptic
elements. This completes the proof of the lemma. O

I

REMARK. Using the notation of the proof of Lemma 3.1, we see that the group
B is the kernel of the homomorphism j defined there.

Next we show that the group B has some other representation, too. Let us define

the convergence of groups in the sense of Chabauty: A sequence (A,) of discrete

subgroups of Mob (D) is said to converge in the sense of Chabauty to a discrete

subgroup A of Mob (D) if the following two conditions hold:

(a) for any sequence (3., )r with §,, € A,, converging to some § € M&b(ID) as
k — oo, we have § € A; and

(b) for each § € A there is a sequence (§,) with §, € A, such that §, — § as
n — 00.

See [H] for a detailed discussion of this topology.

LEMMA 5.3. Letthe assumptions of Lemma 5.1 hold, and define B as in (15). Then
the sequence (B,) of groups converges in the sense of Chabauty to the group B.

Proof. Using Lemma 5.2, we need only check part (a) of the definition of the
Chabauty convergence. For §,, € By, , suppose B,, = B € Mob(D) as k — oo.
Then B, can be written as B,, = T,, © ¥, © rn‘kl, where y,, € I'. We will show

@ " °§*(Vnk) Ogbnk — B as k — oo. (18)

To see this, note the following:

@ %o .§*(Vnk) opttog=¢""o g*(ynk) °ogo f”lk by (14)
P ™ ogoyy, o f”k by (13)

— G Moot ! >
= °goT, © B, © 8ny -

1

Now, ¢ ™" o g o 7. converges to the identity as k — o0, since by (12) and (14)

we have

¢ ™ogot, 08, =g forall keN
and g,, — g # const. as k — oo, the convergence being locally uniform in ID.
Note that the family {¢ ™™ o g o r,;;cl | £k € N} is normal in ID. Using this result,

we obtain from the above calculation that
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qﬁ—”kog*(yNk)ogZ""og—éidoﬁog as k — oo;

again considering normality and using that g  const., this shows (18).

Since B is a discrete subgroup of Moéb(ID) by Lemma 5.2, and since ¢ ™% o
8+«(¥Yn,) o 9™ € B for every k € N, we obtain from (18) that there is some kg €
N such that

@ o gu(yn) o @™ =g forall k > ky.

Hence 8 € B, and this completes the proof of the lemma. O

Now we want to show that the group B belongs to a planar domain—that the Rie-
mann surface /B is conformally equivalent to a hyperbolic domain H C C. We
use the following classical fact (see [N, Chap. 9]).

THEOREM 5.4. Let A C Mob (D) be a Fuchsian group without elliptic elements.
Then the Riemann surface D/A is conformally equivalent to a planar domain (i.e.,

a subdomain of the complex plane) if and only if every closed Jordan curve J C
D/A divides D/A.

A consequence of this theorem is the following lemma.

LEMMA 5.5. Let A C Mob(ID) be a Fuchsian group without elliptic elements.
Then the Riemann surface D/A is not conformally equivalent to a planar domain
if and only if the following condition holds: There are two simple hyperbolic ele-
ments o, B € A whose axes Ay, Ag intersect in a point wo € D, and if v € A,
and w € Ag are equivalent points with respect to A then v = o™ (wo) and w =
B" (wg) for some m, n € Z.

Proof. Letg:ID — ID/A be auniversal covering map of the Riemann surface D/A.

(i) Assume that there are two simple hyperbolic elements «, 8 € A whose axes
intersect and that do not have other nontrivial equivalent points with respect to A.
Then the subarcs [wo, a(wg)] of A, and [wo, B(wo)] of Ag map to simple closed
geodesics in ID/A that intersect exactly once. If D/A were conformally equiva-
lent to a planar domain then this could not happen (by the Jordan curve theorem);
thus, D/A is not planar.

(ii) Let, on the other hand, D/A be not conformally equivalent to a planar do-
main. Then there is a closed Jordan curve € in /A that does not divide D/A
(see Theorem 5.4), so we can find another Jordan curve D in D/A that intersects
C exactly once. Choose lifts C(), Dy:[0,1) —> D of C, D with common initial
point Cy(0) = Dy(0). Since C, D are closed curves there exist , B € A such that
Cy, Dy extend continuously to 1 by Cy(1) = a(Co(0)) and Dy(1) = B(Dy(0)).
Since the algebraic intersection number of curves is invariant under free homo-
topies, we conclude from the fact that C , D intersect exactly once that (o, B) is
not cyclic.

Denote by A, and Ag the axes of o and B. Since («, B) is not cyclic we have
A, # Ap. Consider the curves C := |,z @"(Co) and D := |, B" (Do) that
intersect exactly once and that do not have equivalent points with respect to A ex-
cept for the images under « and 8 of their intersection point Cy(0). Since A, and
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C have the same endpoints and so do Ag and D, we conclude that A, and Ag in-
tersect in a point wo € [D and that « and 8 are simple hyperbolic elements of A.
From this we see that A, and Ag do not have equivalent points with respect to A
except for the images of wqo under « and B, and this proves the lemma. ]

Lemma 5.5 enables us to prove that the property of planarity persists to the limit
under Chabauty convergence.

LEMMA 5.6. Let A, C Mob(ID) be Fuchsian groups without elliptic elements
such that D /A, is conformally equivalent to a planar domain for every n € N. As-
sume furthermore that the groups (A,) are uniformly discrete and converge in the
sense of Chabauty to a Fuchsian group A. Then A is a Fuchsian group without
elliptic elements and D/A is conformally equivalent to a planar domain.

Proof. Since every element of A is some limit of elements of the groups A,,, we
see by looking at the trace that A does not contain elliptic elements. Observe
that the uniform discreteness of (A,) implies that two sequences (5,,), (n,) with
OnsNn € Ay, 8y F# N, 6y = 8 € A, and N, — n € A cannot have the same
limit, since otherwise (8, o n,) would converge to the identity.

Assume that D/A is not conformally equivalent to a planar domain. Then there
are two simple hyperbolic elements ¢, 8 € A whose axes intersect in a point wg €
ID such that the subarcs [wg, a(wg)) of A, and [wg, B(wy)) of Ag do not contain
equivalent points with respect to A (see Lemma 5.5). By our assumption there
are a, € A, converging to « and B, € A, converging to B; by looking at the
trace, we may assume that a, and B, are hyperbolic. Since the axes Ay, , Ag,
converge to Ay, Ag, we conclude that A,, and Ag, intersect in a point w, forn
large enough and that w,, — wg as n — o0. Since «, B are simple we may also
assume that «,, B, are simple. Since /A, is conformally equivalent to a pla-
nar domain for every n € N, we conclude from Lemma 5.5 that there is a point
Xp € (Wy, ay(wy)), apoint y, € (w,, Bn(w,)), and an element §, € A, such that
8,(x,) = y,.Note thatsince «,,, 8, are simple, we have §,, # id, B,, oz;l, Bn 00‘;1-
By choosing convergent subsequences we obtain x,,, — x € [wg, a(wo)], Yu, =
y € [wo, B(wy)], and 6,, — & € A, where 6(x) = y. Thus from our assump-
tion we conclude that: x = y = wgand § = id; or x = wg, y = B(wg), and
8§ = PB;orx =a(wgy), y =wp, and § = a~!; orx = a(wp), y = B(wy), and
8 = B oa™!. This contradicts the uniform discreteness of (A,). 1

For the proof of Theorem 1.4 we consider two cases. The first case now follows;
the second case is dealt with in Section 5.2.

Proof of Theorem 1.4 (Case 1). LetAg(f"(2), f**1(2))  0asn — co.Choose
a universal covering map p:ID — G from ID onto G, denote its Fuchsian group by
T, let f:D — D be alift of £, and define 7, ., &, @, Bx, By as in the beginning
of Section 5.1. Then from Lemma 5.2 we obtain that B = | Jjo, @ %o B,ogFisa
Fuchsian group without elliptic elements, and Lemma 5.3 gives that B is the limit
in the sense of Chabauty of the sequence of uniformly discrete groups (B,) (see
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Lemma 5.1 for the uniform discreteness). Using Lemma 5.6 we obtain that /B
is conformally equivalent to a planar domain H C C, since B, = 1,0 o7, :
is a Fuchsian group belonging to a planar domain. From Theorem A in [Ma] we
know that we can choose H in such a way that Aut(H) C Mob. Letg:ID — H
be a universal covering map with Fuchsian group B. Since g o y = g.(y) o g for
y € I" and g,(y) € B, the map ¢g:D — D induces an analytic map g:G — H
satisfying

gop=4qog. (19)

Note that by the definition of B we have
GoBod ! =B.

Indeed,let B € B, B =0 08, (y)o@* . ThengoBod =@ F o@og.(y)c
@' o @* € B since @ o B, 0o $~! C B,. The other inclusion is clear from the def-
inition of B. Hence, the Mobius transformation ¢ is projected to a covering map
¢: H - H with

poq=qog. (20)
With § o f = ¢ o g, we conclude
gof=g¢og.

We show that ¢ is injective. Let wy, wp, € G with ¢(w;) = @(w;). Choose
vy, vy € Dwithg(vy) = w; and g(v3) = w». Then we have g (¢(v;)) = g(¢(v2))
by (20), hence ¢(v;) = B(¢(v,)) for some B € B. Since ¢ o B = B o ¢, we find
B € B with Bo @ = (o f8, and this leads to ¢(v;) = @(B(v2)), but the Mdbius
transformation ¢ is injective so that we conclude v; = B (v2), which implies w; =
w». Hence ¢ € Aut(H) and from the choice of H we conclude ¢ € Méb.

(i) Let g be injective and let f(w;) = f(w,) for some wy, wy € G. Choose
v1, v2 € D with p(v;) = w; and p(v;) = w,. Then we have f~(v1) = y(f(vz))
forsome y € I, hence f”(vl) = (ﬁ”_l(y)of")(vz) so that we conclude g(v;) =
B(§(v2)) with B = ¢! 0 g,(y) o § € B. Thus (19) yields g(w;) = g(w>), that
is, w; = w,. Therefore f is injective.

Let, on the other hand, f be injective and g(w;) = g(w,) for some w;, wy €
G. Choose vy, v, € D as above. Then we have g(v;) = B(g(vy)) for some
BeB, B=¢*og.y)o@* wherey € T" and k € No. Hence oF(g(vy)) =
(8+(¥) © " 0 2)(v2). With g o f = § 0 & we obtain Z(f*(v1)) = &(v (f*(v2))).
From [MP, Lemma 2] we know that g = h,, o g,, where h,, is injective in compact
sets K C ID for n > ngo (no depending on K). Hence we conclude that there is an
no € Nsuch that g, (f¥(v1)) = (&n 0y o F¥)(v2) forn > ng, and this implies that
F™ ) = (f*(y) o f**)(v,). From this we see f"+t*(w;) = f"**(w,) which
gives w; = wy, so that g is injective.

(ii) We remark that, from the construction of f and g, the assumption f €
Aut(G) implies f € Mob(D) and § = id, § = f. Hence B, = I, and this gives
@ o B, o ™! = B, (see [MP, Lemma 6]), hence B = I'. Thus, H is conformally
equivalent to G and g: G — H is a biholomorphic map.
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(iii) Note that, under the given assumptions, the iterates f” converge to the
boundary of G locally uniformly. Hence, from the assumption that G is finitely
connected, we conclude that every closed curve C C G with compact trace
becomes null-homotopic under iteration with " for some n € N. This shows
that there is some n € N such that f*”(F) = {id} (note that I is finitely gener-
ated), hence B, = B = {id} so that H is simply connected, and we can choose
H =D. O

REMARK. As already mentioned, the use of group B instead of B, is the main
difference between our treatment and that in [MP]. When using the group B, in-
stead of B, the map ¢ lifts only to a covering map of the surface /B, and not to
an automorphism, and the surface is not planar in general. Furthermore, in [MP] a
statement about injectivity similar to (i) is made which seems not to be true, since
@ o B, = B, o ¢ does not hold in general.

5.2. The Case A(f"(2), f*™(2)) > Oasn — oo

THEOREM 5.7. Let f: G — G map the hyperbolic domain G C C analytically,
without fixed points, and without isolated boundary fixed points into itself. Let
rc(f (D), () — Oasn — oo and let zy € G. Define

(@) — f"(z0)
h,.G — C, h,(2) = .
” © = e - Fr o)

Then the sequence (h,) converges locally uniformly in G to an analytic function
h: G — C. Furthermore, h(f(2)) = h(z) + 1 holds forall z € G.

Proof. Let p:ID — G be a universal covering map with p(0) = z, let f: D —

D be a lift of f, and let f " — 1 as n — 00; the last requirement can be achieved
n—>00

by a suitable choice of p. Then Theorem 1.1 yields Ap( f "(0), f n+1(0)) —= 0.
Hence we know from the theorem in [BaP] that

P = "0 e
10 — )
locally uniforlply~ in¢ e ]P>, where 7 is analytic and nonconstant in the unit disk.
Furthermore, 2(f(¢)) = h(¢)+ 1 holds for ¢ € ]I~)> From Theorem 1.2 and Corol-
lary 2.3 we conclude that p is injective in D, (f"(0), ¢) for all n € N and some
¢ > 0. Define p,:D — G, p, := pot,! o, where 7, € Mob(D) as in Sec-
tion 3, and where ¥: D — DPQ(O, c), ¥v(&) = ¢ - R, R = tanh(c). With g, =
T, o f" as previously used and £,(¢) := h,(p(¢)), we have
ﬁn(f) _ (pn o lp—l o gn)sg) — pn(0)

(Pno ¥~ og)(f(0)) — p.(0)
N (pn o 1.”_1 0 £2,)(¢) — pn(0)
- (lﬁ“l © gn)(f) . p;’1(0)
@ e g (O PO 8@
(Pno ¥ 0 2)(F(0) — pa(0)  Zu(F(0))’

ha(¢) == h(g)
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where (¥ 0 2,)(¢) = 2,(¢)/R — 0 locally uniformly in ID as n — oo (see
[P, Thm. 1]). The family { (p,(s) — p»(0))/p, (0) | n € N} of (normalized) con-
formal maps in the unit disk is normal, and each of its limit functions is again
a normalized conformal map in the unit disk. From this and from the fact that
¥~1(8,(¢)) = 0locally uniformly in ID as n — oo, we conclude that

(Pno 1/’_1 ©8,)() — pn(0) nooo
(Y~1og)(@) - p,0)

locally uniformly in D. It is easy to see that g,(£)/gx( f ) — ﬁ(; ) locally uni-
formly in D as n — oo (see e.g. [Bo, 4.10]), and this gives

1

n—->oo

hn(§) == h(2)
locally uniformly in D; recall that fz,, (&) = h,(p()). Hence we conclude
hoy=h forall y el

alnd~hn(z) - h(z) locally uniformly in G as n — oo with ho p = h. Now
h(f(&)) = h() + 1 for ¢ € D, and therefore

h(f(R))=h(z)+1 forall z €. O

Proof of Theorem 1.4 (Case 2). Let Ag(f"(2), f*1(z)) — 0asn — oo. With
Theorem 5.7, we have already shown the first part of the theorem by choosing H :=
C and g := h. For the proof of (i) recall that g = h = lim,_, o &, and h,(z) =
(f"(@) — f"(2o))/(f"(z0) — f™(z0)). Since h(f(z)) = h(z) + 1 we conclude
that & =£ 0; hence the injectivity of f (which gives injectivity of each A,) implies
the injectivity of /. Let now h be injective and f(w;) = f(w,) for some wy, w; €
G. Then h,(w;) = h,(w,) for all n € N and so h(w;) = h(wy), thatis, w; =
w,. Case (ii) cannot occur since f € Aut(G) implies Ag(f"(2), f*(z)) =
Ac(z, f(2)) > O0foralln € N. O

6. Examples and Final Remarks

As always, let G C C be a hyperbolic domain. In this section we consider the
special case where f is a Mobius transformation mapping G into itself without
fixed points. Without loss of generality, let f(oco) = co. Consider the increasing
sequence of domains

G ={zeC| f"(9) €G}.
THEOREM 6.1. Let f be a Mdbius transformation mapping the hyperbolic do-
main G C C into itself without fixed points, where f(0c0) = oo. Then
Ao(f" (@), ff1 @) -0 asn— oo for(any) z€G
if and only if

Ur"@G=c o |JfG =c\p),

neN neN

where b € C\G is a fixed point of f.
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Proof. If f is of finite order (i.e., if f* = id for some n € N), then f is an auto-
morphism of G and there is nothing to show. Hence let f be of infinite order.
Define H, := f~"(G); thus (H,) is an increasing sequence of domains.

Part (a): Let Ag(f"(z), f**'(z)) = 0 asn — oo, and suppose that H =
\U,.en Ho has at least two boundary points in C (i.e., suppose that H is hyperbolic).
Since H, C H forall n € N, for z € G we obtain

Ae(f" @), f"™(2) = Au,(z, f(2) = Au(z, f(2)) > 0.

Thus Ag(f"(2), f**(z)) / 0asn — oo, which is a contradiction. Hence
U,en H: = Cor U,en Hn = C\{b} for some b € C\G. In the latter case
f(b) = b holds since f(b) ¢ |J nen Hy by definition of H, and f(b) # oo by the
assumption f(co) = oo.

Part (b): For the other implication we must consider two cases.

(i) Let |,y Hn = C\{b} and, without loss of generality, > = 0. Then f(0) =
0 and f(oc0) = 00, so f(z) = cz for some ¢ # 0. If |c| = 1 then ¢" # 1 fol-
lows for all n € N since f is of infinite order. Thus, since G is a domain and
f(G) C G holds, in this case for any r > O either the circle {|z| = r} is entirely
contained in G or it does not meet G at all. If {|z| = r} N G = & for some r >
O then {|z| = r} N H, = @ for all n € N, which is impossible since | J,,.y Hx =
C\{0}. Hence we obtain G = C\{0}, which contradicts the hyperbolicity of G.
Therefore we have |c| # 1 and, without loss of generality, |c| < 1. We prove that
0 is an isolated boundary point of G, that is, we find » > 0 with {0 < |z| < r} C
G. Otherwise we find w;, € C\G with wy — 0as k — oo. With f(G) C G we
then have f~"(w;) ¢ G for all n € N and for |wi| < |c| we find n; € N with
lc] < | f7™(wy)| < 1. Let now w be a limit point of the sequence ( f " (wy))x.
We show that w does not belong to | J, . H,: Either w is the limit of a constant
subsequence, that is, f "% (wy) = w for all k of the subsequence, in which case
f™(w) ¢ Gandso f"(w) ¢ G forall n € N, which gives w ¢ |, .y Hu- Or we
have w = limy_, » f " (wy) for some nonconstant subsequence, whence w ¢ G.
But in this case for n € N and n; > n we have f~"V"(w;) ¢ G, which yields
f*(w) ¢ G; again we conclude that w ¢ |, .y Hs. With |c] < Jw| < 1 this
contradicts | J .y H» = C\{0}.

Thus, we have shown that O is an isolated boundary point of G. Hence, for every
R > 0 we find n¢g(R) € N such that {0 < |z] < R} C H, forall n > no(R). Let
R > max({|zol, |z1|}. Then for n > no(R) we have

A6 (@), f" (@) = A, (2, () < Mo<jz1<r) (20, 21);

letting R — oo, we conclude that Ag(f"(2), " (z)) > 0asn — oo.

(ii) Let |,y H» = C. Then the only fixed point of f is the point co and hence
f is a translation: f(z) = z + d for some d € C. As in (i) it is easy to prove that
for R > 0 we find ng(R) € N such that {|z| < R) C H,, foralln > ng(R). A sim-
ilar calculation as above yields that Ag(f”?(z), f**!(z)) = 0 as n — oo. 1

It is clear that in the case Ag(f"(z), f""'(z)) ¥ 0asn — oo, the domain H
mentioned in Theorem 1.4 can be chosen as H = | ,,.y f " (G).
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REMARK. In [MP] the example mentioned above is also considered, and the au-
thors state that the Fuchsian group belonging to the domain H = {J, .y f 7" (G)
is the group B,. This seems to be false because we only have B, C B, which in
general is a proper inclusion.

A wide class of examples is given by iteration of rational or meromorphic func-
tions f in C if we take G as an invariant component of the Fatou set of the given
function. Our Theorem 1.4 shows that we can find a semiconjugation in G that
transforms f to a Md&bius transformation, which makes the situation easier and
more regular.
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