Controls on the Plus Construction

R. J. DAVERMAN* & F. C. TINSLEY

0. Introduction

Given a closed n-manifold M (n =5), a finitely presented group G, and
an epimorphism u: 7;(M) — G with perfect kernel, Quillen’s plus construc-
tion [Q] provides a cobordism (W, M, N) where W is a compact manifold
satisfying:

(1) oW =MUN,

(2) the inclusion N — W is a homotopy equivalence; and

(3) = ;(N) is isomorphic to the quotient G (= m(M)/ker(pn)).

We obtain a more controlled version of this construction, namely, a closed
map p: W—[—1, 1] satisfying the additional properties:

(4) p~X(¢) is a manifold for each te[—1,1]; and

(5) M=p~(1)and N=p~!(-1).

We call a map p: W—[—1, 1] satisfying properties (4)-(5) a crumpled lami-
nation on (W, M, N) and denote it by the 4-tuple (W, M, N, p).

Our earlier constructions required special hypotheses on ker(u) in order
to construct crumpled laminations. Here, we show none are needed. In par-
ticular, our following main result asserts that any cobordism arising from a
Quillen plus construction admits a crumpled lamination.

MAIN THEOREM (THEOREM 1.1). For any closed n-manifold M (n = 6), fi-
nitely presented group G, and epimorphism p: w (M) — G with perfect ker-
nel, there is a cobordism W admitting a crumpled lamination (W, M, N, p),
where p~'([-1,0]) = Nx[-1,0], p~}((0,1]) = M X (0,1], m(N)=G, the
inclusion N— W is a homotopy equivalence, and the inclusion M — W in-
duces the homomorphism p on fundamental groups.

Simple homotopy theory and prior results {DT2] then yield the following
characterization.

MAIN CoOROLLARY (COROLLARY 1.3). Let (W,M,N) be a compact co-
bordism with n=dim(M)=6. Then W admits a crumpled lamination
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(W, M, N, p) if and only if there is a closed n-manifold P C int W with incl:
P — W a homotopy equivalence.

Building on the work of Coram and Duvall [CD], Liem [L], and others,
Daverman has pursued an extensive project to study upper semicontinuous
decompositions of (7 + k)-manifolds into objects having the shape of closed
n-manifolds for k=1 [D4]. Our (W, M, N, p) precisely delineates the case
k =1, for p induces an upper semicontinuous decomposition of the (»n+ 1)-
manifold W into n-manifolds via the partition {p~!(¢) |#e[—1,1]}. The ad-
jective “crumpled” in “crumpled lamination” is suggestive of the fact that
some p~!(¢) must be wildly embedded in W if ker(u) is nontrivial [D3]. This
situation, distinctly different from the cases £ > 1 in Daverman’s program,
highlights the beautiful connections among theories of cobordisms, wild
and flat embeddings, cell-like decompositions, and perfect groups.

During the late 1970s, Cannon capitalized on these intimate relationships
in his quest for a recognition theorem for topological manifolds. His tech-
niques produced a proof of the double suspension theorem [C3]. Before
turning to the study of 3-manifolds, Cannon catalogued a few of his many
insights in [C2]. Of particular consequence to us was his understanding of the
relevance of perfect fundamental groups to the study of wild embeddings.
Specifically, for any codimension-1 submanifold N of an (n + 1)-manifold W,
point x € N, and neighborhood U of x in W, there is a neighborhood V of
x in W such that ker(incly) is perfect, for incl: (V—N), - ((U—N), UN),
where , denotes one particular side of N. Inspired by a helpful suggestion
from John Walsh to “grope” the end of (VV—N),, we apply Cannon’s tech-
niques from the proof of the double suspension theorem in a novel way to
establish a partial converse to the above observation. Viewed this way, our
main theorem takes a perfect normal subgroup of a finitely presented group
(ker(p) < m(M)) and realizes N — W so that

inck M- (W—-N),—-»(W-N),UN)

has ker(incly) = ker(u) at the fundamental group level.

Our earlier, partial results required extra hypotheses on the nature of
ker(u). Until now, groups for which no finitely generated subgroup con-
tains a nontrivial perfect group remained somewhat of a mystery. The sim-
plest example is a manifold M with

m(M)={y,x,uly=[y,x]l, x=y".

If we take p: w (M) — Z given by pu(u) =1and p(x) = u(y) =0, then ker(p)
is perfect and equals the normal closure of y in 7;(M). Furthermore, it can
be shown that no finitely generated subgroup of ker(u) contains a nontriv-
ial perfect subgroup, so our earlier constructions do not apply. However,
the plus construction gives a cobordism (W, M, N) satisfying conditions (1)-
(3). Here, we show that this cobordism and others like it admit crumpled
laminations.
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Moreover, the constructions from this and previous papers exhibit the
precise relationship between attributes of ker(u) and the nature of the wild-
ness of N = p~!(0) in W. We identify three categories of perfect normal sub-
groups and wildness corresponding to our three types of constructions of
crumpled laminations. In Section 6 we provide examples to show that these
categories are, in fact, distinct. Consequently, the new techniques of this
paper are indispensable in constructing crumpled laminations in some cases.

A natural by-product of our methods is a plethora of new examples to
enhance the rather extensive literature on wild and flat embeddings of codi-
mension-1 manifolds. Localized, all constructions give new, wild embed-
dings of $”in S"*! for n= 5.

In Section 1 we prove the main theorem (Theorem 1.1) and its corollaries
using shrinking theory (developed in Section 2) and the end theory (devel-
oped in Section 3). Section 4 contains results for the case involving crumpled
laminations p: W —[0,1] in which p~'(1) CIntW and W\p~'(1) is con-
nected. Section 5 characterizes the boundaryless manifolds U admitting
crumpled laminations in the broad sense—namely, a closed map p of U to
some interval J such that each p~!(¢), ¢ € J, is a closed, connected, codimen-
sion-1 manifold. Finally, Section 6 classifies certain perfect normal subgroups
of finitely presented groups.

1. Crumpled Laminations

Recall from the introduction that a crumpled lamination on a cobordism
(W, M, N) is a continuous, surjective map p: W— [—1, 1] such that p~!(¢) is
a manifold for each te[—1,1] and M UN = p~1({—1, 1}).

THEOREM 1.1 (MAIN THEOREM). For any closed n-manifold M (n=6),
finitely presented group G, and epimorphism p.: (M) — G with perfect ker-
nel, there is a cobordism W that admits a crumpled lamination (W, M, N, p),
where p~'([—1,0)) = Nx[-1,0], p~'((0,1]) = M x(0,1], 7(N) =G, incl:
N - W is a homotopy equivalence, and incl: M — W induces the homomor-
phism pn at the fundamental group level.

Proof. Name a bicollared, codimension-1 submanifold L in M for which
the inclusion L — M induces an isomorphism of fundamental groups. To get
it, fix a finite 2-complex K with 7;(K) = 7;(M); use the fundamental group
relationship and general position to embed K as a tame subset of M; then
take L to be the boundary of a manifold mapping cylinder neighborhood
of (the embedded) K. Denote by L X[—1, 1] the image of a bicollar on L.

Because the image group G of the given epimorphism u: (M) -G is
finitely presented, ker(u) is the normal closure in 7;(M) of a finite set
{wy, ..., w;}, which we express as ncl({w, ..., wi}; m1(M)).

Properly, tamely, and disjointly embed gropes vy, ...,y in LX(0,3]1C
L x (0, 1] so that incly(m(y;)) C ker(n) (see [C2, pp. 860-863]) and, con-
sidered as a loop in M, d+; represents w; e ker(u). Since each +; is tamely
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embedded, we may assume the +y;s have disjoint neighborhoods satisfying
the hypotheses of Proposition 3.3. As in Section 3, we make the proper
grope replacements in L X (0, 1] to obtain a new n-manifold V.

First, we record that 9V’ = L X 1. Then, by Lemma 3.1,

m (V') = 7 (L X (0, 1])/ncl(fincly(7(v;): 1 < i< k}; = (L X (0,1]))
= m(M)/ncl({incly(m(v): 1 =i < k}; (M)
= m(M)/ncl(fwy, ..., w}; 71 (M))
= 1 (M)/ker(u)
=G.

In particular, x;(V’) is finitely presented, so the conclusions of Proposition
3.3 apply and require that the end of ¥’ be homeomorphic to L’ x (0, ), with
incl: L'x (0, 6) » ¥V’ a homotopy equivalence and with 8V’ naturally equal
to L. Denote by Cl(V’) the manifold obtained by adding the end, L’X0, to
L’x(0,6) C V. We will refer to CI(V’)\V”’ simply by L’. Thus, incl: L’- V"’
is a homotopy equivalence; consequently, 7,(L’) = G.

The main construction takes place in M x[—1,1] D (L x[-1,1]) x[—1,1].
We restrict to the unit disk

B ={x, yYeR%*: x2+y2<1jc[-1,1]x[-1,1]

to impose (generalized) polar coordinates on L X B2C L x[—1,1] x[-1,1]C
M x[—1,1]; in other words, express points of L X B?as x X r X 8, where xe L,
O0=sr=1(xx0x80=x"x0x80’, of course), 0 is a complex number of mod-
ulus 1 (shown in bold), and the polar subspace, L X [0, 1] X {—1, 1}, naturally
corresponds to

LX[-1,11x0C(LXxB»)N(Mx0)C Mx[-1,1].

From now on we will refer to the complex numbers of modulus 1 as S, the
unit circle, and frequently we will rewrite L X B% as L x[0,1] X S'. Another
description of these coordinates is as a spin of L X [0, 1] about L x 0—that
is, as the identification space L X [0, 1] x S! with each circle {x} x 0 x S! iden-
tified to a point—abbreviated as Spin(L X [0, 1], L x 0).

Next we form a manifold with boundary identical to

d(Spin(L x [0, 1], L x0))

by spinning CI(V’) about this new boundary component L’ (= CI(V’)—V").
We denote this more general spin structure by Spin(CIl(V’), L’) and obtain it
from CI(V’) x S! by identifying the circles, vx S, to points for all veL".
For brevity we let Y’ = Spin(CI(V’), L’); Y’ is a manifold since CI(V’) has
“end” homeomorphic to L’x [0, 6] and thus L’= L’X0 has a neighborhood
in Y’ homeomorphic to Spin(L’x [0, 8), L’x0) = L’x Int B2. Since V"’ was
undisturbed throughout the grope replacement and the spinning, we may
take

dY’ = a(Spin(Cl(V"), L")) = a(Spin(L X [0,1], L x0) = L x 1 x S".
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We designate the properly embedded submanifold of Y,
CI(VYyx-1DUCI(V')x1),

by Z’; it is naturally homeomorphic to the double of CI(V’) along L.

The grope replacements in L X(0,1] lead to a proper embedding d:
Cx(0,1]- V", C a Cantor set, such that image(d) C Int V. This Cantor set
arises as the finite, disjoint union of Cantor sets C;, one for each grope P;.
The secret to the grope replacement process for (say) P/ involves a collar
e;: dB; x[0,1]— B; on dB;: given C; C dB; so that dB; —C; is homeomorphic
to dP/ (as in Section 3), it follows that

B\ e;((3B;x[0,1)) U(C; x1))

is equivalent to P; [CBL, Cor. 3.3]. Furthermore, because each dP; is col-
lared in P/, one can readily produce a homeomorphism

k: L x(0,1] - V’'\image(d).

Here the embedding d is defined for ce C; C Cas d(c+1t) = e;(c X t); the spin
operation determines a proper embedding

D:Cx(0,1]1xS'-V’'x 8!

given by D(c XsX8) = (d(cXs) X80).

In what follows, any reference to (M X set) means the topology induced
by rectangular coordinates. Otherwise, we ordinarily intend polar or spin
coordinates.

We create part of the desired cobordism W by swapping two spin struc-
tures. Remove Int(Spin(L X [0,1],L X0)) from M x[—1,1] and sewin Y’'=
Spin(CI(V’), L’) via the identity along boundaries. Call the resulting mani-
fold W, Set

N=((Mx0O\(Lx[0,1]x{-1,1}HhUZ'C W’

Then N is a codimension-1 submanifold of W’ that separates #"’. Denote
by W, the closure of the component of W'\ N containing M X1. Let Y/ =
Y'NW,; then, YYNN=2".
Denote by S1 the upper half circle {a+bi e S': b = 0}. Because there exists
a strong deformation retraction ¢, of M x[0,1] to (M x0UL x[0,1] xSl)
with
¢, (M x[0, INLx[0,1]xS}) c ClI(M x[0,1]\L x[0,1]x S}),

W, strong deformation retracts to N UY] via essentially the same deforma-
tion retraction. Using that V'’ strong deformation retracts to L’ and the spin
structure on Y/, one can specify a strong deformation retraction of Y, onto
Z'. Thus, incl: N— W, is a homotopy equivalence.

Attach N X [—1, 0] to W, via the obvious gluing N X0 —- NCW, to form W;
observe that W consists of copies M X1 and N X {—1] of M and N, respec-
tively. In view of the preceding paragraph, obviously (W, M X1, N x {—1}) is
a cobordism for which incl: N X {—1} - W a homotopy equivalence.
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Now we apply Proposition 2.1 with 7= CI(VV’) and with L’ exactly as
given here. For d and D defined above, select a neighborhood U of

D(Cx(0,1] x{i})

so that the closure of U in Y = Spin(7, L’) is compact and so that, for each
point x X r X @ (spin coordinates) in CI(U), either r =0 or 8 has positive imag-
inary part. Let # and g be the homeomorphisms promised by the conclusion
of Proposition 2.1. Since the half spin T X Si C Spin(7, L’) has a neighbor-
hood that obviously embeds in W, the decomposition G of W consisting of
points and nondegenerate elements {g(cX?XB'):ceC, te(—1,1)\{0}] is
shrinkable (locally W/G is a manifold, so [E] applies).

We produce the desired crumpled lamination on W by prescribing one on
the topologically equivalent space W/G. Let g/ W — W/G be the decomposi-
tion map. The composite

geincl: NX[-1,0]-W->W/G

embeds N x[—1,0] in W/G, since each nondegenerate element of the de-
composition intersects N X [—1, 0] in exactly one point of N X 0. Note that
g(D(C x (0,1} x 81)) C g(N x0). For ¢ > 0 let M, denote

(M X {t\\Spin(L X [0,1], LX0))Uk(L x[¢,1]) x {0, 0'}Uk(L X {t}) X x(8),

where 0 = (1—¢2)V2+i-t, 0’ = —(1—t%)"2 +i-t, and «(8) is the subarc of SL
bounded by {6, 0’}. Clearly {M,} partitions M x[0,1]\D(Cx(0,1]x S1).
Define the crumpled lamination p: W/G —[—1,1] as p~!(¢) = g(M,) for 0 <
t<1land p~i(t) = g(N x¢) for —1 < ¢t < 0. If not totally obvious, continuity
of p can be certified using [D3, Cor. 5.3]. O

REMARK. Although Quillen’s plus construction is valid for » = 5§, applica-
tion of Proposition 3.3 in the proof of Theorem 1.1 causes that dimension
to escape our grasp.

Our first corollary affirmatively answers Question 5.4 of [DT2].

COROLLARY 1.2. Suppose (W, M, N) is a compact (n+1)-dimensional co-
bordism (n = 6) such that incl: N - W is a homotopy equivalence. Then W
admits a crumpled lamination (W, M, N, p) such that p~1((0,1]) = M x (0, 1]
and p~'([—1, 0]) is an h-cobordism ( possibly nontrivial).

Proof. By duality [DT2, Lemma 2.5], incl: M — W induces an epimor-
phism incly: 7, (M) - 7 (W) = 7;(N) with perfect kernel. By Theorem 1.1,
there is a crumpled lamination (W’, M, N’, p’) with p’~'((0,1]) = M % (0, 1],
P {[-1,0])=N’'x[—1,0], m(N’) = (M)/(ker(incly: 7;(M) — 7(W))) =
7;(N), and incl: N'—> W a homotopy equivalence. By [DT2, Lemma 5.1],
W is homeomorphic to

Wl UN' W”

where W” = (W", N’, N”) is an h-cobordism. Reparameterization gives Cor-
ollary 1.2. U
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CoROLLARY 1.3. Suppose (W, M, N) is a compact (n+1)-dimensional co-
bordism (n=6). Then W admits a crumpled lamination (W, M, N, p) if
and only if there is a closed n-manifold P C Int W with incl: P—W a ho-
motopy equivalence.

Proof. Sufficiency follows from Theorem 1.1 of [DT3]. For necessity, we
can assume that P is bicollared in W [AC] and that the inclusion of P into
the closure of each component of W\P is a homotopy equivalence. Then
Corollary 1.2 ensures that the closure of each component of W\ P admits a
crumpled lamination. O

2. Decomposition Theory

We will exploit a somewhat unusual phantom shrinking operation, “phan-
tom” because certain standard convergence problems conveniently disappear.
Our prototype involves the sine(1/x) curve S in R?, with its limiting segment
A. Given any open subset V; D S\ A, one can produce a self-homeomorphism
y;of R? fixed outside V; and sending S to some S; C S within 1/j of A. More-
over, with a careful choice of {V}; j=1,2,...}, one can obtain a phantom
shrinking of S—namely, a homeomorphism 4 of R?\ S onto R*\ A where

h(x) =1lim;_, o Yjofj_jo---oy(x).

Careful choice of {¥;} will ensure that to each x € R?\ S corresponds an inte-
ger K = K(x) > 0 such that, for kK = K and points y sufficiently close to x,

Yir1o¥ke - o¥i(Y) = Yoo i(D).

Moreover, for se S\A and ¢ > 0, all but finitely many of {y;e---oy;(s):
Jj=1,2,...} will lie within € of A. However, the sequence need not converge,
so we make no attempt to define A(s); also, 4 is defined on A (A(seA) =
im;_, o Yjoj_1o--- o 1(s) =), but h~! fails to be continuous along A =
h(A), so again we ignore such points.

The main result of this section is a technical shrinking theorem that is the
key to constructing laminations. As before, S! is the unit circle in R? with
points of S! written in bold as complex numbers of modulus 1, and S1 c S!
is the upper half-circle. Throughout this section C will denote a Cantor set
in $”~!, T an n-manifold with boundary (possibly noncompact), L’ a com-
ponent of 8T, Y the spin of T about L’, and B! a standard interval. Given an
embedding e: S"~! % (0, 1] — Int T such that e(C x ¢) approaches L’ as ¢ — 0,
we use the spin structure on Y to spin e(S” ! x (0, 1] about L’ and thus deter-
mine an embedding D: C % (0,1] X S' - Y with

D(cxtx0)=e(cxt)X8.

Hence, for each ce C, D(cxtxS")— L’ as t —» 0. We assume that D is fixed
throughout.

ProrosiTION 2.1. Given any neighborhood U of D(C X (0, 1] X {i}), thereisa
phantom homeomorphism h: Y\(L"UD(C x (0,1] x {i})) —» Y\ L’satisfying:
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(1) his the identity over Int T X {+1} and over Y\U,;
(2) there exists a C-preserving homeomorphism

g: Cx[(=1,)\{0}] X B! - AD(C X (0, 11X (S)\{£1, i}))

such that g(Cxt X B') approaches hD(Cx1x1) ast—1, g(CxtxB')
approaches hD(C x1x —1) as t——1, and diamg(cxtxB')—0 as
|t| - 0; and

(3) the cell-like decomposition of Y consisting of points and the arcs

[glcxtxBY:ceC, te(—1, D\{0}}

is upper semicontinuous and shrinkable.

REMARKS. The C-preserving homeomorphism g introduced in (2) parti-
tions AD(C x (0, 1] X (S1\{%1, i})) into the “vertical” arcs g(cx ¢ x B'); the
other features of (2) are designed to ensure that the partition of Y consist-
ing of these arcs plus the singletons from the complement of their union is
upper semicontinuous. In this context, upper semicontinuity of that parti-
tion is equivalent to closedness of the natural map g to the quotient space,
and shrinkability means that g can be approximated, arbitrarily closely, by
homeomorphisms; for our purposes, the chief benefit of the latter is its con-
firmation that the quotient space is topologically equivalent to Y.

We address one tameness issue and a related decomposition-shrinking
issue before turning to the proof of Proposition 2.1. Given X C Y, one writes
that X is I-LCC in Y (for locally 1-co-connected in Y') if, for each neighbor-
hood O CY of xe X, there is a neighborhood O’ C O of x such that each
map B2 — O’\ X can be extended to a map B> — O\ X. Given a compact,
1-dimensional subset X of an n-manifold Y, n > 5, we call X tame (in Y) if
it is 1-LCC in Y. The terminology is justified by work of Bryant [ Br] showing
that any two homotopic, tame embeddings of X in Y are isotopic, via a
compactly supported isotopy of Y.

The result below is similar to Proposition 2 of {D1], which is merely stated
there, not proved. We supply an argument here for the sake of completeness.

LemMA 2.2. Consider a manifold M, a closed subset K of M such that
2+dim K < dim M, and a compact subset X of K x R* C M x R* such that
dim X < k. Then X is I-LCC in M x R*,

Proof. Given a typical neighborhood U x ¥V C M x R* of an arbitrary point
{y,z) € X, where V C R¥ is contractible, one can find z’e V with (y,z') ¢ X,
since dim X < k. Identify a contractible neighborhood U'CUCM of y
such that XN(U’'xz’) =0, and let v be a loop in (U’ XV )\ X. Since

2+dim(K x R¥) < dim(M x RY),
v is homotopic in (U’'X V)\ X to a loop v’ C (U'\K) XV, which, due to the
contractibility of V, is homotopic in (U'\K) XV to aloop v”in (U'\K) X {Z’},
which, in turn, is homotopic to a constant in U’ X {z’}. The image of the com-
posite null homotopy lives in (U'XVN\X C (UXV )\ X, as required. O
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LeEMMA 2.3. Suppose X =\UJ; X is a compact, (n—3)-dimensional subset
of an n-manifold Y such that each X; is I-LCCin Y. Then X is I-LCC inY.

This is folklore. It is given in different terms as [C1, 2C.4 (see also p. 59)].
One proof involves showing that X is 1-LCC in Y iff, in the space C(/% Y)
of all maps 7% — Y with the (complete) sup-norm metric,

AX)={feCU%Y): XN f(I*) =0}
is dense. Lemma 2.3 quickly follows from the Baire category theorem, since

A(X) =N, ACX).

COROLLARY 2.4. If X C D(Cx(0,1}xS') is a compact, I-dimensional set
and dim(XND(Cx1xS') <0, then X is tame in Y.

Proof. Set X;=XND(Cx1xS"), and for j > 1 set
X;=XND(Cx[27/,1-27].

Then Lemma 2.2 gives that X; is 1-LCC in Y, since (locally at least) X;C Y
looks like X;C CxR!'c TxR! and X, is 0-dimensional by hypothesis.
Due to the existence of the embedding e: S"~!x (0, 1] = Int 7, Y looks like
S"~!'x R? near X; (j > 1), with

X;CCxR*C S" 'xR?

so Lemma 2.2 also yields that X; is 1-LCC in Y. Lemma 2.3 does the rest.

O
COROLLARY 2.5. For all te (—1,1)\{0}, the Cantor set of arcs g(C x t X B!}
istameinY.

LEMMA 2.6. Suppose g:Cx(0,1)xB' > Y is an embedding such that
diamg(cx¢XB') -0 as t -0 and as t - 1. Suppose also that, for all em-
beddings k: Cx(0,1)x B! > Y with image(k) = image(g), each Cantor set
of arcs k: Cxt x B, te(0,1), is tame in Y. Then g can be approximated by
a homeomorphism g’ of Cx(0,1) x B! onto g(C x(0,1) X B") such that, as
before, diamg(cxtxB')—»0as t—0 or as t » 1 and such that the decom-
position of Y into points and the arcs

{g'(cxtxBY:ceC,te(0,1)}
is shrinkable.

Proof. For any 2-cell F in a manifold Y, pair {x, x’} C dF, and parameter-
ization g((—1,1) X B') of F\{x,x’}, Daverman and Eaton [DE] (see also
[D5, Sec. 11] for an elaboration in manifolds of dimension > 3) developed
methods depending solely on the presence of many tame arcs in F to adjust
g to another homeomorphism g’ of (0,1) xB' onto F\{x, x’}, yielding a
shrinkable (upper semicontinuous) decomposition of Y into the singletons
from Y \(F\{x, x’}) and the arcs g’(¢ x B!). In light of the hypothesis here
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promising that every Cantor set’s worth of arcs in g(C X (0, 1) X B!) is tame
in Y, the same methods accomplish this parameterized version.

An alternative approach involves Edward’s characterization [E] of shrink-
able decompositions in terms of the disjoint disks property in the image
space. In the space C(I3Y), defined as above, one extracts a countable
dense subset & consisting of pairwise disjoint embeddings, each intersecting
image(g) in a minimal way—due to wildness, the best one can expect is a
0-dimensional intersection, which can be achieved by slipping successively
larger 1-complexes in the various disks off image(g). Let F denote the union
of the countable family of 0-dimensional intersections. Now g can be ad-
justed to make the image of any cx ¢ X B! intersect F at most once. The
disjoint disks property follows, because given any two maps of I? to the
decomposition space, one can approximate them by maps descending to the
quotient from two of the I — Y in &; no two such images intersect, since no
decomposition element meets two disks from &. O

Proof of Proposition 2.1. The crucial part is to produce two items: a homeo-
morphism A: Y\(L'UD(C x(0,1] % {i})) = Y\ L’ satisfying conclusion (1),
and an associated C-preserving homeomorphism g: C x [(—1, D\{0}] x B! -
hD(C x (0,11 x (S}\ {1, i})) satisfying conclusion (2). Then the combina-
tion of Corollary 2.5 and Lemma 2.6 promises that g can be approximated a
C-preserving homeomorphism

g’: Cx[(—=1, D\{0}] X B! = hD(C x (0, 1] x (S\{%1, i})),
so that the decomposition of ¥ whose nondegenerate elements are the arcs
(g’(cxtxBY:ceC, te(—1,1)\{0}}

satisfies conclusion (3) as well.
To accomplish the crucial part, observe that diam D(cx¢xS})l0as¢ 10,
for all ce C. Choose a sequence

l=s5y>8> - >85>8> "
of points in (0,1] such that not only does s; { 0, but also
diam D(c X [Sk4+1, 1 XSL) 10

uniformly as & — oo, for all c e C. Since every D(C X s}, 5;_1] X {i}) is tame
(Corollary 2.4), we can construct a sequence of controlled homeomorphisms
¥;: Y > Y, each supported in a neighborhood V; of D(C X (s;1, 5j_1] X {i}),
such that

Yi(D(C X [$j 41, 5i-1] X {i})) = D(C X [$j41, 551 X {i});

this yields the phantom shrinking homeomorphism 4 =lim;_, o ¥jo---°y,.
Controls on V; are necessary, in part, to guarantee that 4 is appropriately de-
fined as a phantom shrinking Y\(L’'UD(C x (0, 1] X {i})) = Y\ L’ but, more
delicately, to simultaneously fulfill conclusion (2). Details concerning the
latter, similar to those of [DE] for shrinking an embedded 2-cell to an arc,
are provided below.
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We determine successive pairs {0}, 8} of points S+, each bounding a subarc
aj of S1 withie Int(a;) C o; C Int(ozj 1) Our convention is that §; = a; +b;i
with g; > 0 and 0; = —a;+b;i; in other words, 8; lives in the ﬁrst quadrant,
6; in the second quadrant and the two are symmetrlc about the imaginary
axis. Choose {#;, 6/} so that, for ce C,

diamyjo- o (D(c X [5j41, 1] X o) <2-diam D(c X [sj1, ;1% {i})); (%)

let V;(c) denote the component of V; containing D(c X [s;4, ;-] X {i}). In
addition to imposing restrictions on {¥;} to make {y;o---oy(x); j=1,2, ...]
be finite for all xe Y\(L'UD(C x (0, 1] X {i})), we also require that ¥; be the
identity on

D(CX(0,5741] XS UY;_yo-- oy (D(C X (0, 11 X (S\e;_ 1)),

and that diam ¥V(c) < 2-diam D(C X [s;1, 5 1] X {i}).

For j=1,2, ..., identify the subarc +; of S+ bounded by 1 and 6;, name
an arc A; = (ij-yj)U([sj,l]xl))C (0, 1]xS+, and let R; denote the sub-
disk of (O 11xS! bounded by Aj and A;,,. Define a homeomorphlsm A
(0,1) x B! - (0, l]xB+, where B+ is the open arc in S} bounded by {1, i},
such that A({1/j} xB") = A;. Finally, specify the C-preserving homeomor-
phism

g: Cx[(=1, D\{0}] x B! » hD(C x (0, 1] X (S]\{£1, i}))

on CX(0,1) x B! by setting g(cxtxb) = hD(c X A(t, b)); define it in sym-
metric fashion on C x (—1, 0) x B

Here each R; splits into two pieces, part of a circular annulus given as Rj =
R;N([sj4+1,5;1X;) and part of a circular sector (determined by 6;, ;€ St)
given as R/ = R;N([s;1, 11 X ;). See Figure 1. Then, by restrlctlons on sup-
ports of the shrmklngs Vi,

o;,
/ 11_1\

0 Sja_Sj 17

Figure 1
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hD(c X R}')
=Yjp1° oY i(D(c X R)))
C V(@ UD(EX[841,.5] X ) U0+ oy (D(C X [5)41, 1] X 1))
CViri(©UD(c X [Sj41,5/] XSL)U‘/Ij““"\h(D(CX [si41, 1] X)),

whereas
hD(c X Rj) = yjo---d1(D(c X Rf)) = ¢;(D(c X R}))
C D(c X R})UVj(c),
C Vi(c)UD(c X [sj41,51XSh),

from which the diameter constraints of (*) and upon V;(c) give
diam hD(c X R;) < 5 - diam D(c X [;11, 51 X S}).
This indicates why diam g’(cx¢xB')—>0as 1 | 0. O

3. Recognizing the End

This section relies on a grope construction originated by M. A. Stan’ko but
developed most extensively by J. W. Cannon and his collaborators [AC;
C3; CBL]; see also [DS5, Secs. 38-39]. Among other features, a grope is an
acyclic 2-complex expressed as a locally finite union {S;} of compact, orient-
able surfaces with connected boundary. The interior of each S; contains a
finite collection of simple closed curves {J; ;}, called handle curves, one for
each generator of H;(S;). To each J; ; there corresponds a unique surface
Sk with
Skﬂ S,' = aSk = Ji,j;

one regards the various S;s as being attached to S; along the associated
handle curves. Except for the identification along handle curves, the various
surfaces S; are pairwise disjoint.

Let V be an n-manifold, n = 5. Suppose vy, ..., ¥, are gropes embedded
in ¥ as mutually disjoint, closed subsets, and suppose v; has a closed neigh-
borhood P; such that (P;, ;) is pairwise homeomorphic to (Q;, I';), where T;
denotes a copy of v; PL-embedded in R" as a closed subset and Q; an infinite
regular neighborhood of I there. Determine another closed neighborhood
P;{ C Int P; of each «; such that (P}, v;) is pairwise homeomorphic to (Q;, I'})
and CI(P\P/) is a collar on Fr P;, the frontier of P; in V. By [CBL, Cor.
3.3], there exist an n-cell B; and a Cantor set C; in dB; such that dB\C; is
homeomorphic to Fr P/. The manifold V' obtained from V by a canonical
replacement of the gropes vy, ..., v is the space obtained from the disjoint
union of {CI(V\U P/), B\\Cy, ..., B,\Cy} under homeomorphic identifica-
tion of each Fr P/ with dB\C;.

LemMMA 3.1. Let V'’ be obtained from V by a canonical replacement of
gropes vy, ...,vx. Then each = (Fr P/)— m(P/) and m(Cl(V\U P/)) -
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w (V') are isomorphisms. Moreover, ©((V\\U P/)— w((V"') is an epimorph-
ism having perfect kernel—namely, the normal closure of all the images
[ (Fr P{) - = (V"))

This is standard. Perfectness is immediate, using H;(Fr P/)= H,(dB\C;)=0.

LEMMA 3.2. Let D be a compact subset of a grope . For any compo-
nent W, of y\D, let 1, denote the union of all conjugates in w,(y) of the
(inclusion-induced) image ©\(W,) - w,(y). Then

ncl({Z,: all components W_}; wi(v)) = m;(7).

Proof. For some integer m = 0, the first m stages of the grope v contain D.
The argument reduces to showing that if every element of m,(vy) represented
by a loop outside the first j stages of v belongs to

ncl({Z,: all components W_}; 7,(7)),

then the same is true of elements represented by loops outside the first j—1
stages. Stage j+ 11is attached to stage j along a complete set of handle curves,
so each loop outside stage j—1 is freely homotopic to the product of loops
outside stage j.

By way of further explanation of this reduction, what happens with the
initial stage is typical. Let S denote the first stage of . Clearly v collapses to
the union of Cl(y\ §) with finitely many arcs joining the various components
of the latter to a base point, where any two such connecting arcs meet only
at the base point. . O

PropPosSITION 3.3.  Suppose L is a closed n-manifold, n=5, and v, ..., v
are gropes embedded in L X(0,1/2] as pairwise disjoint, closed subsets.
Let V' denote the manifold obtained from V =L x(0,1] by a canonical
grope replacement of v, ..., v, and suppose w (V') is finitely presented.
Then the end of V' has a neighborhood homeomorphic to L’'x(0,r) for
some n-manifold L', and incl: L' X (0, r) — V is a homotopy equivalence.

Proof. Quillen’s plus construction [Q] provides a compact (7 +1)-manifold
W having boundary components L, L’ such that

(1) incl: L’— W is a homotopy equivalence, and

(2) ker(incly: (L) —» 7 (W)) = ker(incly: 7(L = L X1) - 7 (V")).
Form a new manifold 7 by identifying W and ¥’ via the obvious attachment
along L C W and L X1 = aV". Obviously the end € of 7 coincides with that
of V’. We will show that the inclusion L’ =347 — T is a homotopy equiva-
lence, that = is stable at ¢, and that n;(e) — m{(7) is an isomorphism. Then
Siebenmann’s open collar theorem [S] will yield a homeomorphism between
T and dT x(0,2] = L'x(0, 2], giving the desired conclusions.

Let Y denote the manifold obtained by attaching V' to W along L X1 =3V
and L C dW, just as in the formation of 7. Then 9Y = L’ and, clearly, incl:
L’—Y is a homotopy equivalence. Let ©: Y’ — Y be the universal cover and
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L”"=0"Y(L"). Here © |L"”: L” — L’ is also the universal cover. By condition
(2), for each thickened grope P{C L x (0,11 C Y, ©~(P/) consists of a pair-
wise disjoint collection of copies of P/. Replace each such copy with a copy
of B\C;, thereby obtaining a new manifold Y* with 9Y* = L".

First, note that Y* is simply connected. This follows from the Seifert-
van Kampen theorem by viewing Y* as the union of simply connected
pieces CI(Y\O~ (U P/)) and copies of B\ C;, where each of the latter meets
Cl(Y\O™(UU P)) in a copy of the connected set Fr P/ = dB\C;. Next ob-
serve that Y* is the universal cover of T, with, of course, L” = dY* covering
L’ = aT. To see why, determine a map ©*: Y*— T by restricting to © on the
complement of all named copies of B\ C; and by extending homeomorphic-
ally between these corresponding copies in Y* and 7. Checking that 6* isa
covering map is elementary.

Since L’— Y is a homotopy equivalence, the same is true of L”— Y”. Con-
sequently, L”— Y* is a homology equivalence, for the changes made in con-
structing Y* from Y’ involve replacement of acyclic sets by acyclic sets. In
view of simple connectivity, the Whitehead theorem [Sp, p. 399] certifies that
L”—>Y"* is a homotopy equivalence, so the same holds downstairs for the
inclusion L’ = 87T — 7, as it induces isomorphisms of all homotopy groups.
In light of (2) and Lemma 3.1, this means that #(T’) is isomorphic to =;(V)/
- ncl(fimages[m(P/) = = (V)]}; 7 (C)).

Now we take up the stability of 7; at e. Consider an arbitrary compact
subset D of T. For se (0, 1] let X, denote the part of L X (0, s) in 7. Produce
a neighborhood N C T\ D of ¢ consisting of some X together with sets E,,
where each E, denotes an open subset of some B\ C;. Then produce another
neighborhood N’ C N of e consisting of some X, 0 < s’< s, together with
sets Fg, where {Fj}g refines {E,}, and each loop in Fj is null homotopic in
some E, D Fg. Do this so m(X,) = (L X (0, 5)) is surjective and has kernel
equal to that of m(X,) — 7 (X}). As a result,

T(Xs) = 7(T) = (V) /ncl({images[(P/) - m(V)]}; m(V)) (D)

is surjective. Note that, for each thickened grope P/C V"’ involved in the
standard replacement, there is a compact subset D; of +; such that the image
of m{(P/N X)) — m(P/) — m(7;) (ranging over various basepoints, with the
second homomorphism induced by a proper collapse p;: P/ — v;) contains the
union of all conjugates in m(7;) of the (inclusion-induced) image =;(W,,) >
m1(7;), where the union is taken over all components W, of y\ D;. Now, by
Lemma 3.2 and (f), inclusion N’— T restricts to an isomorphism

image[m(Xy) = m(N")] - 7(T).

Finally, choose a third neighborhood N”C N’ of € such that every loop in
N"1is homotopic in T\ D to a loop in X, C N’. The point is that

image[(w(N") = (T \D)] = image{(m,(X,) » m(T\ D)},
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implying that inclusion induces an isomorphism
image[(m(N") = w((T\D)] - m(T).

Hence, 7, is stable at € and r;(¢) — m(7T’) is an isomorphism, as required.
O
Addendum: The 4-dimensional version of Proposition 3.3 holds when
m (V') is a good group (in the sense of [FQ, p. 99]), because then Quillen’s
plus construction applies [FQ, Sec. 11.1], exactly as above. All the other
steps in the argument routinely carry over when n =4, with no special re-
strictions on m,. Consequently, in dimension n = 5, Theorem 1.1 is also valid
for such good groups G.

4. The 1-Sided Case

A twisted I-bundle over a base n-manifold N (0N = @) is an (n+ 1)-manifold
W which is a locally trivial bundle over N with fiber /=[—1,1] and for
which aW is connected. Say that a compact (#+ 1)-manifold with boundary
W is a fake, laminated, twisted I-bundle if

(a) dW is connected,

(b) W contains a closed n-manifold N such that N— W is a simple ho-
motopy equivalence, and

(c) W admits a crumpled lamination.

THEOREM 4.1. A closed n-manifold M (n = 6) bounds a fake, laminated,
twisted I-bundle W if and only if there exists a compact (n+ 1)-manifold V
with boundary the disjoint union of manifolds M, M’ such that

(1) incl: M’ V' is a simple homotopy equivalence, and

(2) M’ admits a fixed-point free involution.

REMARK. The closed manifold N, which is simple homotopy equivalent
to W in the above definition, arises as the orbit space of the manifold M’
under the involution named in (2).

Proof of Theorem 4.1. Assume M bounds a fake, laminated, twisted I-
bundle W. Let N denote the closed submanifold in W such that N-» W is a
simple homotopy equivalence. Here N cannot separate W, for otherwise
H,(N; Z,)- H,(W; Z,) = H,(N; Z,) would be trivial. Hence, image[incly:
w1 (M) — 7 (W)] is contained in an index-2 subgroup H of x(W). To see
why, check part of the long exact sequence with Z,-coefficients for the pair
(W, W\N):

H{(W\N)—- H\(W)—> H(W,W\N)—-0= Hy(W\N)

and H{(W,W\N) = H"(N) = Z,, by duality; H is the kernel of the natural
composite 7 (W) - H(W;Z,) > H(W,W\N;Z,). Let ©: W'—> W denote
the 2-1 cover of W corresponding to H. Then M’ = 0"Y(N) is connected
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and separates W’ into the two lifts of W\N. Let V denote the closure of one
of the components of W’\M’. Since V might fail to be a manifold-with-
boundary should N be wildly embedded in W, attach a collar M’ x[0,1]
to V* along M’ = M’ x 0 to produce a manifold V' [ D2] having two boundary
components, M’ = M’x1 and a copy of M. Here M’— V is a simple homot-
opy equivalence and M’ admits a fixed-point free involution, since it is a 2-1
cover of N.

Next assume the existence of an (# +1)-manifold V with boundary compo-
nents M, M’ satisfying (1) and (2). By the main theorem, V admits a crumpled
lamination. Let W be the (n+1)-manifold obtained from ¥V by identifying
those points of M’ in an orbit of the given involution. The crumpled lamina-
tion present in ¥ naturally descends to one on W, for the image of distinct
manifolds upstairs are distinct manifolds in W, and M’ is the only element
whose image can be topologically different from its source. In other words,
W is a fake, laminated, twisted /-bundle bounded by a copy of M. O

COROLLARY 4.2. Let M be a closed n-manifold (n = 6) admitting a fixed-
point free involution vi: M — M. Let G denote a finitely presented group
and p: © (M) — G an epimorphism with perfect kernel. Then M bounds a
fake, laminated, twisted I-bundle W with

ker(incly: m{(M) - = (W)) = ker(u).

Proof. According to [Q], starting with M X [0, 1] we could attach 2-handles
and then 3-handles along M X1 to kill ker(x). This would produce a com-
pact (n+ 1)-manifold V* with two boundary components M = M X0 and
M?*, where the inclusion M*—V* is a simple homotopy equivalence. The
trick simply is to attach handles equivariantly. Use general position to ensure
that the attaching 1-sphere S of each 2-handle satisfies v(S)NS =@. Then
attach 2-handles along both S and v(S). This ensures that M X1 together
with all the 2-handles supports a fixed-point free involution extending v on
M =M x1. Now repeat the same process when attaching 3-handles. In so
doing one forms an (n+1)-manifold ¥ with boundary components M, M’
satisfying conditions (1) and (2) in Theorem 4.1, from which the corollary
follows. O

REMARK. Hypothesizing something like the existence of the fixed-point free
involution v is necessary in Corollary 4.2, for obstructions exist to having all
M bound a fake laminated twisted /-bundle. For example, any such M must
have even Euler characteristic: by Theorem 4.1, M must be homologically
equivalent to a manifold M’ that 2-1 covers some manifold N, indicating

x(M) = x(M’") =2-x(N).

5. Classification

THEOREM 5.1. An (n+1)-manifold U (n = 6) admits a crumpled lamina-
tion if and only if U can be expressed as the union of a collection § = {W}}
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of compact (n+1)-manifolds with boundary, where W; is either a I-sided h-
cobordism or a fake, laminated, twisted I-bundle, and W;N\W; # 0 (i # j)
implies W;NW; is a boundary component of each.

REMARK. In any such collection ¥ for a connected manifold U, at most
two elements of § can be fake, laminated, twisted 7/-bundles; all the others
must be 1-sided A-cobordisms.

Proof of Theorem 5.1. First, suppose the collection ¥ = {W}} exists. Then,
by Corollary 1.2 or Theorem 5.1, each W; e ¥ admits a crumpled lamination
£L; (with every component of dW; in £;), so U £; provides a crumpled lami-
nation on U.

Next, suppose U admits a crumpled lamination. By [D3, Thm. 6.6], U
has what was called there a quasi-standard formation {V;}, meaning that
each V; is a compact (n+ 1)-manifold with boundary and is endowed with a
crumpled lamination, where V; either is a twisted /-bundle or has two bound-
ary components. In the former case let W; = V;. In the latter case we will
split V; into two parts, each of which is a 1-sided, laminated #-cobordism.
The proof of Corollary 1.3 promises that Int ¥; contains a codimension-1
closed submanifold P; with incl: P; —» ¥; a homotopy equivalence and with
P; splitting V; into two compact manifolds with boundary W;, W; such that
W.NW; =doW;Now; = P;, where then P; includes in each of W,, W as a
homotopy equivalence. The collection ¥ consisting of all the various W; and
W, (wherever defined) fulfills the requirements. O

Here is an alternative to Theorem 5.1 with more stringent conditions on ele-
ments of the collection ¥. It follows from the proof of the preceding as well
as from corresponding improvements concerning quasi-standard formation
given in [D3, addendum to Thm. 6.6].

THEOREM 5.2. An (n+1)-manifold U (n = 6) admits a crumpled lamina-
tion if and only if U can be expressed as the union of a collection {W;} of
compact (n+1)-manifolds with boundary, where W, is either a I-sided h-
cobordism or a twisted I-bundle, and W,NW; # @ (i # j) implies W,N\W;is a
boundary component of each.

6. Perfect Subgroups of Finitely Presented Groups

If a cobordism (W, M, N) admits a crumpled lamination (W, M, N, p), then
ker(iy) is finitely generated as a perfect normal subgroup of w,(M), where
i: M— W is inclusion [DT2, Lemma 2.5]. This paper is the culmination of
our efforts to establish a converse to this fact. We remove the extra hypoth-
eses on ker(iy) required for our earlier partial converses.

The main purpose of this section is to catalog examples of crumpled lami-
nations whose constructions require our new methods. In particular, we must
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show that prior techniques cannot be applied. This determination demands
a careful look at the characteristics of ker(iy).

If ker(iy) #1, then p~(¢) is wildly embedded in W for at least one i€
(—1,1). As a by-product of the main result, we obtain a description of the
relationship between the algebraic properties of ker(i;) and the geometric
properties of the wild embedding. Theorem 1.1 and its corollaries along with
simple homotopy theory give us a precise characterization.

This section is very much in the spirit of Howie’s classification [H] of
countable groups according to properties of their perfect subgroups and his
analysis of whether the basic group-theoretic operations preserve these cate-
gories. We have changed his labels for the classes to be more suggestive of
their properties and have named our new classes accordingly. We warn the
reader that the definitions are negations of certain conditions on the groups.
Thus, we give each class a label of the form N,,, where “N” connotes “no”
and “xxx” is a particular property associated with the groups within the
class. Though a bit cumbersome, these definitions by negation turn out to
be convenient for tracking the behavior of groups under the standard group-
theoretic operations. This approach has the additional value of suggesting
where one should (or should not) look for particular types of examples. The
first two definitions are modified versions of ones given by Howie [H].

DEFINITION 6.1. A group G belongs to Ny, if G is finitely presented and
contains no nontrivial finitely generated perfect subgroups.

Thus, the label N¢,, means “no (nontrivial) finitely generated perfect sub-
groups”.

DEFINITION 6.2. A group G belongs to Ny, if G is finitely presented and
contains no nontrivial perfect, normal subgroups.

Since the normalizer of a perfect subgroup is itself perfect, N, consists of
the finitely presented groups having no nontrivial perfect subgroups what-
soever, which is precisely the class of finitely presented, transfinite metabe-
lian groups.

Recently, Bestvina and Brady resolved an extremely deep question in com-
binatorial group theory [ BB], necessitating the next definition. See [B] for a
brief discussion of this question.

DEFINITION 6.3. A group G belongs to N, if G is finitely presented and
contains no nontrivial perfect normal subgroups that are finitely generated
as normal subgroups.

Until Bestvina-Brady, all known examples of perfect normal subgroups of
finitely presented groups were, indeed, finitely generated as normal sub-
groups. Their examples all contain finitely generated, perfect subgroups,
and so do not even belong to N¢,,. However, their work is evidence that the
classes N, and N, may, indeed, be distinct.
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In [DTS5] we introduced two intermediate classes of groups.

DEFINITION 6.4. A group G belongs to N, if whenever (W, M, N, p) is a
crumpled lamination, i: M — W is inclusion, and (M) = G, then neces-
sarily ker(iy) = 1.

Suppose (W, M, N, p) is a crumpled lamination and j: N— W is a homot-
opy equivalence; then the hypothesis 7;(M) € N, promises that (W, M, N)
is either a product or a nontrivial #-cobordism. In particular, all elements
in the standard lamination have the same homotopy type.

Given a finitely presented group G and a nontrivial finitely generated per-
fect subgroup P of G, we constructed [DT2] a nontrivial crumpled lamina-
tion (W, M, N, p) using the mapping cylinder of an acyclic map. The basic
strategy was to find a finite acyclic 2-complex K and an embedding f: K-> M
with image(fy: m(K) — m(M)) = P. Then f(K) became a nontrivial point-
preimage of the acyclic map. We call this the polyhedral acyclic mapping
cyclinder construction.

We then were able to handle a more general situation. A finitely presented
group is almost acyclic if it is the fundamental group of a finite 2-complex
K with H|(K; Z) free and H,(K;Z) =0. The wild group of a group G,
Wild(G) [C2], is the unique, maximal perfect subgroup of G. In [DT5] we
showed how to construct a nontrivial crumpled lamination (W, M, N, p) with
m1(M) = G whenever given a finitely presented group G, an almost acyclic
group H, and a homomorphism ¢: H — G with ¢(H ) <ncl(¢(Wild(H)); G).
We label this the almost acyclic mapping construction.

DEerINITION 6.5. A group G belongs to N,, if G is finitely presented and, for
every almost acyclic group H and homomorphism ¢: H— G, with ¢(H) <
ncl(¢(Wild(H)); G), it is necessarily the case that ¢(H) =1.

A group from this class, N,,, admits “no (nontrivial) almost acyclic maps”.

We designate the general construction of Theorem 1.1 of this paper as the
perfect normal subgroup construction.

The ordering of these classes of groups by containment is crucial to under-
standing which of the three constructions apply to which groups. By defini-
tion, N, C Ny,p. Corollary 1.3 and duality require that ker(incly: = (M) —
w1(W)) is finitely generated as a perfect, normal subgroup of x{(M), so that
Npfen C N¢j. Moreover, the almost acyclic mapping construction shows that
N, C N,,. Finally, since any acyclic complex is trivially almost acyclic, we
have N,, C N¢,,. Consequently,

Npn C Npggn © Ny © Ny, © Nigp.

Closer scrutiny of these containments is central to our characterization.
In [H] Howie showed that the containment N, C Ny, is proper. In particu-
lar, let [x, y] denote the commutator of x and y ([x, y] = x"'y~xy) and let
x? denote the conjugate of x by y (x* = y~'xy). For
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G =t:y=[»y"]>) (Adams’s group),

Howie proved that G;e€(Ng,,—N,,). Later on, we will show that G;e
(Naa—Npy). In [DTS5] we demonstrated properness of the containment N,, C
Ny,p by verifying that

Gy =ty =19y eNggy— Ny,

The main consequence of Theorem 1.1 for this section is that N¢., = Nj.

PROPOSITION 6.6. The classes of finitely presented groups Ny, and N
coincide.

Proof. We need only show that N C N, or (equivalently) that C(N¢.q) C
C(N(), where C(*) denotes the complement of *. Let G € C(Nyy,,). Then
G is finitely presented with nontrivial perfect normal subgroup K, which
is finitely generated as a normal subgroup. Theorem 1.1 provides a nontriv-
ial crumpled lamination (W, M, N, p) with 7;(M) =G and ker(iy) = K #1
(i: M- W). Thus, Ge C(N,)). O

To summarize:
an - prgn =N &E N, & Nfgp-

We give a new more details. Our techniques for demonstrating proper
containment include an elaboration, within each of these five classes, about
closure with respect to three basic group-theoretic operations: free products
(Free), split amalgamated free products (SplitAmalg), and split HNN exten-
sions (SplitHNN). Recall than an amalgamated free product G = H *p K
splits if D is a retract of either H or K. Similarly, an HNN-extension G =
(H, t: D' = (D)) splits if either D or (D) is a retract of H. In [DT5, Sec.
4] we made the determinations shown in Table 1 for all three operations

Table 1
an Ncl Naa Nfgp
Free Yes Yes Yes Yes
SplitAmalg Yes ? Yes  Yes

SplitHNN No No No Yes

within all classes, except for N;. Proposition 6.6 and our next result allow
completion of Table 1.

ProPOSITION 6.7. The class Ny, is closed under split amalgamated
products.

Proof. Without loss of generality, let H, K€ Ny, G=H#*pK, and r:
H — D be a retraction. Then r extends to a retraction r: G— K. Let Q be a
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perfect, normal subgroup of G which is finitely generated as a normal sub-
group. Since r is surjective, r(Q) is a perfect, normal subgroup of KX that is
finitely generated as a normal subgroup. But K € Ny, so 7(Q) =1; that is,
Q C ker(r).

In particular, the intersection of Q with each conjugate of D must be
trivial. By any standard subgroup theorem for amalgamated free products
(our specific reference is the subgroup theorem of Lyndon and Schupp [LS,
Chap. I, Sec. 11]), Q, as a subgroup of G, naturally has the structure of a
free product:

Q=F*][{H*=NQ},

where F is a free group and {H2<} is a special collection of conjugates of
H. Since Q is perfect, F must be trivial. Since Q is normal in G, there is a
retraction

n:ker(ry=[[{H%}->H

that takes Q to QN A and trivializes each factor of ker(r) other than H. It
follows that QN H is a perfect normal subgroup of H.

If we show that QN A is finitely generated as a normal subgroup of H,
then QN H =1 ssince H € N¢,, and necessarily Q =1, completing the proof.
To that end, recall that Q is finitely generated as a normal subgroup of G,
and assume (without loss of generality) that the generating set {h,, ..., h,,]
of Q lies in H. Then any 4 € H can be written as

k
h=T[h¥,
1

where g;€ G. Moreover, each g; = 84> where g;j'HgajﬂQ is a factor in
the free-product representation of Q and where g;€ Q [LS, p. 78]. Applying
n to he HNQ, we have

k k
h=n(h)= n(]_—_[ h,-f"‘,‘b’) = Hn(hgaj)n(qj).
1 1

But n(h,-f"‘:} equals 1 if g, # 1 and equals A, if 8, =1 Also, g; is in the do-
main of 7, so 5(g;)€ H and h =n(h) belongs to the normal closure of
{hy, ..., hy,} in H. O

The completed Table 2 summarizes closure under group operations of these
classes in light of Propositions 6.6 and 6.7. We use Table 2 to provide details

Table 2
an prgn Ncl Naa Nfgp
Free Yes Yes Yes Yes Yes

SplitAmalg Yes Yes Yes Yes Yes
SplitHNN No No No No Yes
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regarding which inclusions Ny, C Ny = N¢y & Ny & N, are proper. The
crux involves scrutiny of the groups G; and G, previously given.
Tietze transformations show that both G, and G, belong to Ny, since

G=(y,x,t:y=[x,yl,x=yH={y,x, t: y>=y*, x=y"
=y x:yt=y"), tix=y".

Thus, G, is obtained by a sequence of two split HNN extensions beginning
with Z. But Z€ N, C Ny,,. Since Ny, is closed under split HNN exten-
sions, G, € N¢g, and contains no nontrivial finitely generated perfect sub-
groups. Similarly,

Gy={x, 2, t: y=[y,xl, x=y%z=y")
=, 22y =1y xl, x=y¥, t:z=y"

and G, is a split HNN extension of a group isomorphic to G,. Thus, G,e
Ny¢g, as well. But G, & N, 50 Nyy & Nigp.

Now, G;¢& Ny = N since (G, G] = ncl({y}; G) is a nontrivial perfect
subgroup of G,. However, we can show G;e€ N,,. Name a homomorphism
¢: H— G, of an almost acyclic group H into G, with

¢(H) < ncl(¢(Wild(H)); G1);

then ¢(H) C Wild(G,) C [Gy, G,]. Any basic subgroup theorem for HNN
extensions gives a presentation for [G;, G,] as the infinite amalgamated tree
product (—oo < m < ©):

Tt *Km—l *Dm_me *Dme+1* Tt
where
Km = Vs Xm* Ym = [yma xm])

and the amalgamation of K,,, and K, ., is along x,, = y,, - Since H is finitely
generated,

‘¢(1¥) C:EC'*lhIK}+J=kDr+11(;+2=k"'*I)

r+s—1

Kiis
for some r and 5, —0 <r <o, 0 =5 <. But each K,, e Ny, so
K, *D,Kr+l *D,_,_,Kr+2 * oo *D,+s_|Kr+s € an

as it results from a sequence of s split amalgamated products of X,,,. Since
the homomorphic image of a perfect group is perfect, $(Wild(H)) =1 and
hence ¢(H) = 1. Thus, Gy € Nyy — Nygep, giving Nypon & Ny, Or (equivalently)
N, & N,,. Thus, G, is an example that cannot be handled by techniques
from prior papers.

We now examine the topology of wildness arising from each class of
groups. More precisely, suppose that (W, M, N) is an (n+1)-dimensional
cobordism (n = 6) with incl: N— W a homotopy equivalence. Recall that
incly: 7 (M) — = (W) has perfect kernel, denoted by P. Using any of the
three constructions alluded to above, we build a cobordism W’ that admits a
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crumpled lamination (W', M, N’, p), with the kernel of the inclusion-induced
homomorphism M — W’ equal to P and with the precise properties of the
chosen construction. The basic result states that these two cobordisms are
topologically the same up to #-cobordism class.

LeEmMmA 6.8 [DT2, Thm. 5.1]. Suppose (W,M,N) and (W',M,N’) are
(n+1)-dimensional cobordisms (n=35, bdy(M) =0) such that the inclu-
sions N—-»W and N'— W' are homotopy equivalences and the inclusion-
induced homomorphisms © (M) — (W) and © (M) — = (W’) have equal
kernels. Then W is homeomorphic to W’ Un. W”, where (W”",N',N") is an
h-cobordism (possibly nontrivial).

Lemma 6.8 ensures that, up to A-cobordism, (W, M, N) depends only on
which of the three constructions we select to build (W', M, N’), and this in
turn depends only on 7;(M) and ker(incly: 7;(M) — 7;(W’)). The attached
h-cobordism admits a trivial crumpled lamination with all the lamination
elements tamely embedded and of the same homotopy type. We summarize
this as follows.

THEOREM 6.9. Let (W, M, N) be an (n+1)-dimensional cobordism (n = 6)
with N - W a homotopy equivalence and

Q =ker(incly: 7 (M) - m(W)) # 1.

(a) (W,M,N) is homotopy equivalent to the crumpled lamination re-
sulting from a perfect normal subgroup construction on M with
w-kernel = Q.

(b) If mi(M)eN,, then (W,M,N) is not homotopy equivalent to the
crumpled lamination resulting from any almost acyclic mapping con-
struction on M with kernel Q.

(¢) If m(M)e N, —N,, and Q = ncl(@(Wild(H)); (M) for an al-
most acyclic group H, then (W, M, N) is homotopy equivalent to the
crumpled lamination resulting from an almost acyclic mapping con-
struction. However, (W, M, N) is not homotopy equivalent to the
crumpled lamination resulting from any polyhedral acyclic mapping
construction on M with kernel Q. '

(d) If m(M) & Ny, and Q = ncl(P; wi(M)), where P is a finitely gener-
ated perfect subgroup of ©;(M), then (W, M, N) is homotopy equiv-
alent to the crumpled lamination resulting from a polyhedral acyclic
mapping construction.

CorOLLARY 6.10. If the appropriate h-cobordism (W',N,N'’) (possibly
nontrivial) is attached to W along N, then “homotopy equivalent” may be
replaced by “homeomorphic” in Theorem 6.9.

The polyhedral acyclic mapping construction arising from the presence of
a finitely generated perfect subgroup is quite special. For all practical pur-
poses, we may view the point-preimages of the acyclic maps as manifold,
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homology cells [DT2, p. 348] or, more generally, as sets with finitely gen-
erated perfect fundamental groups. A more complicated crumpled lamina-
tion might conceivably arise from an acyclic map of manifolds but not from
the polyhedral acyclic mapping construction.

A natural rephrasing asks for a partial converse to Theorem 6.9(d).

QUESTION 6.11. Suppose f: M — N is an acyclic map of closed manifolds.
Must ker( f: 7;(M) — m;(N)) equal the normal closure in 7;(M) of a finitely
generated perfect group?

A negative answer to Question 6.11 would imply the existence of a nontrivial
crumpled lamination with an acyclic mapping cylinder structure not arising
from the polyhedral acyclic mapping construction. Thus, the point-preimages
of f would be acyclic compacta that are not polyhedral and not even ANR-
like. Though we do not know the answer to Question 6.11, we can show
that large classes of fundamental groups cannot exhibit any type of acyclic
mapping structure. In particular, the group G, defined in this section, which
admits a crumpled lamination with an almost acyclic mapping construction,
cannot admit a nontrivial acyclic mapping construction. We shall explain
why not.

Suppose f: M — N is an acyclic map of closed n-manifolds (n = 6) with
ker(fy: my(M) - m(N)) #1. In [DT4, Lemma 12], we show how to always
find y € N so that for every neighborhood U of f~!(») in M, the inclusion-
induced map incly: 7 (U) — x (M) is nontrivial but the composition f;eincly:
7 (U) - m)(M) - 7 (N) is trivial. We say f has local =,-kernel over y.

Let L be a closed neighborhood of y in N. Then f| f ~!(Int L) is an acyclic
map of open manifolds. However, if S is the upper semicontinuous decom-
position of M into points and acyclic sets, {f~!(¢)|fe€ L}, then the decom-
position space M/S need not be an ANR. In particular, if g: M— M/S is
the decomposition map then M/S may not be locally contractible at points
gof ~I(¢) for t e bdy(L). The question of whether M/S is an ANR is closely
related to the question identified by Daverman and Walsh [DW] of whether,
in this setting, M/f ~\(¢) is necessarily an ANR for each € N.

In any case, gof ~Xint(L)) will be an ANR. To study whether particular
groups will admit nontrivial acyclic maps, we define a new class of finitely
presented groups. The description of this class is quite technical because
of the unresolved question alluded to in the previous paragraph. Gener-
ally, though, groups in this class admit only acyclic maps with trivial local
wi-kernel.

DEFINITION 6.12. A finitely presented group G belongs to N, if, whenever
f: M- X is an acyclic map from a compact manifold with n;(M) = G onto
a finite-dimensional metric space X and V is an open and locally contractible
subset of X with incl: f~}(V') - M, then necessarily

incly(ker (f |/ 7'V )y m(S TV > 1)) = 1.
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THEOREM 6.13. The class N, is closed under both the operations of split
amalgamated products and split HNN-extensions.

Thus, a group belongs to N, if it is obtained by a finite sequence of split
amalgamated products or split HNN-extensions beginning with a group
(or groups) belonging to N,. In particular, the group G, above belongs to
N, —N,.. Consequently, a nontrivial crumpled lamination (W, M, N) with
m (M) = G, cannot have the structure of an acyclic mapping cyclinder of
any kind. The question of whether N,, C N, remains unresolved, although
some progress has been made on this front (see [DLT]). Ultimately, we de-
finitively know only that

Npn € Npgen = Ny & Na C Nggp,.
We close with the proof of Theorem 6.13. The following lemma is essential.
LeEMMA 6.14. Suppose f: M — X is an acyclic map of a compact manifold

M onto a finite-dimensional metric space X, V is an open, locally contract-
ible subset of X with incl: f~\(V)—> M, and

incly(ker{(f | f 7'V )y m(S 7 (V) = m(V)) # 1.
Suppose © (M) &N, and ¢: m(M)— G, is a homomorphism to a finitely
presented group G, such that
Y(incly(ker {((f | f 7 (Vg (ST (V) = m(V))) # 1.
Then G, & N,.

Proof. By adding a finite number of 1- and 2-handles to M x[0,1] along
M x {1}, we obtain a cobordism (W, M, N) where ©;(W)=G,, incly: 7;(N) -
m1(W) is an isomorphism, and incly: 7;(M) — x;(W') induces the commuta-
tive diagram

(M) = G
| by

m(W) = G,
t= |

mi(N) = G,.

Consider the acyclic decomposition G of W whose nondegenerate elements
are

{(fI(x),s)eMx[0,1]|xe Cl(V) and se [$, 11}

Let f': W— X’ = W/G be the decomposition map, V' = f'(f (V) x (3, 1)),
and incl: f'~}(V’) - W. It is easy to check that

incly(ker {(f| ST (V' Dy: (SN V)) = m(V)}) # Le m(W).
Thus, G;¢ N,. O]
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Proof of Theorem 6.13. We first prove that N, is closed under free products.
To that end, suppose G = H * K is a free product where H, K € N,, and that
M, X, f: M— X, and V are as in the definition of N,. Let

E = incly(ker{(f [f 7 (V)y: (ST (V) = 1 (V))).

Let r: G— H and s: G — K be the obvious retractions. Since H, K e N,, nec-
essarily E C (ker(r)Nker(s)). Thus, E is contained in a free subgroup of G,
implying E =1 since free groups contain no nontrivial perfect subgroups.

Second, suppose G = H *p K is a free product with amalgamated sub-
group D, H,Ke N,, and r: K— D is aretraction. Then r extends to a retrac-
tion r: G — H. But ker(r) trivially intersects each conjugate of D, so ker(r)
is the free product of a free group and a collection of conjugates of K inter-
sected with ker(r):

ker(r) = F*JI(K%Nker(r))
[LS, Chap. 2].

If M, X, f, V, and E are as above, then E C ker(r). Let g: M’ — M be
the cover of M corresponding to ker(r). Then = (M’) = ker(r) and g is
injective. Let xe V. Since V is locally contractible and f~!(x) is acyclic, it
follows that f~!(x) has a compact manifold neighborhood L, and a lift-
ing j: L,— M’. Hence image(jy) is contained in a subgroup of =;(AM’) that
is the free product of a finitely generated free group and finitely many con-
jugates of K. By the free product case, this subgroup belongs to N,. To
apply Lemma 6.14, let P be any compact neighborhood of x in V with
S~Y(P) Cint(L,) and, with the image of (f|f~!(int(P)), trivial in 7 (V),
let G be the decomposition of L, consisting of points and nondegenerate
elements { f ~1(y) |y e P}; let f': L, — L, /G be the decomposition map. Now,
f'(f~'(Int P)) =Int P, and Lemma 6.14 requires that image((j | f ~'(Int P)),)
be trivial in 7;(M’). Thus, incly(m;(f ~'(Int P))) is trivial in = (M). It fol-
lows easily that E is trivial in m;(M) and G belongs to N,.

Finally, suppose K belongs to N,. Let G =<K, t| D' = ¢(D)), r: K— Dbe
a retraction, and s: G — Z be the homomorphism sending K to 0 and ¢ to 1.
Then ker(s) is the split, amalgamated tree product of conjugates of K:

ker(s) = ---%p_ | K_j*p Ko*p Kj* -,

where K; = K’J, D; = DY, and (r|K;): K; — D; is a retraction. Since Z con-
tains no nontrivial perfect subgroups, E C ker(s). By again localizing to a
compact manifold neighborhood L, of any f~!(x), we see that = (L,) in-
cludes into a finite, split, amalgamated tree product that must—by the sec-
ond part of this theorem—belong to N,. Thus, E is trivial in m;(M) =G,
and G belongs to N,. ]

References

[AC] F. D. Ancel and J. W. Cannon, The locally flat approximation of cell-like em-
bedding relations, Ann. of Math. (2) 109 (1979), 61-86.



Controls on the Plus Construction 415

[BB] M. Bestvina and N. Brady, Morse theory and finiteness properties for groups,
preprint.
[B] K. S. Brown, Cohomology of groups, Springer, New York, 1982.
[Br] J. L. Bryant, On embeddings of compacta in Euclidean space, Proc. Amer.
Math. Soc. 25 (1969), 46-51.
[C1] J. W. Cannon, ULC properties in neighborhoods of embedded surfaces and
curves in E3, Canad. J. Math. 25 (1973), 31-73.
, The recognition problem: what is a topological manifold? Bull.
Amer. Math. Soc. 84 (1978), 832-866.
, Shrinking cell-like decompositions of manifolds. Codimension
three, Ann. of Math. (2) 110 (1979), 83-112.
[CBL] J. W. Cannon, J. L. Bryant, and R. C. Lacher, The structure of generalized
manifolds having nonmanifold set of trivial dimensions, Geometric topology
(J. C. Cantrell, ed.), pp. 261-300, Academic Press, New York, 1979.
[CD] D. S. Coram and P. Duvall, Mappings from S? to S* whose point inverses
have the shape of a circle, General Topology Appl. 10 (1979), 239-246.
[D1] R. J. Daverman, Factored codimension one cells in Euclidean n-space, Pa-
cific J. Math. 46 (1973), 37-43.
, Every crumpled n-cube is a closed n-cell-complement, Michigan
Math J. 24 (1977), 225-241.
, Decompositions of manifolds into codimension one submanifolds,
Compositio Math. 55 (1985), 185-207.
, Decompositions into submanifolds of fixed codimension, Geometric
and algebraic topology (Banach Center Publications, vol. 18), pp. 109-116,
PWN, Warsaw, 1986.
[D5] , Decompositions of manifolds, Academic Press, Orlando, FL, 1986.
[DE] R. J. Daverman and W. T. Eaton, An equivalence for the embeddings of
cells in a 3-manifold, Trans. Amer. Math. Soc. 145 (1969), 369-382.
[DLT] R. J. Daverman, T. Lay, and F. C. Tinsley, Acyclic maps of manifolds and
I-movability, manuscript.
[DTI1] R. J. Daverman and F. C. Tinsley, Laminated decompositions involving a
given submanifold, Topology Appl. 20 (1985), 107-119.
, Laminations, finitely generated perfect groups, and acyclic map-
pings, Michigan Math. J. 33 (1986), 343-351.
, The homotopy type of certain laminated manifolds, Proc. Amer.
Math. Soc. 96 (1986), 703-708.
, Acyclic maps whose mapping cylinders embed in 5-manifolds, Hous-
ton J. Math. 16 (1990), 255-270.
, A controlled plus construction for crumpled laminations, Trans.
Amer. Math. Soc. 342 (1994), 807-826.
[DW] R. J. Daverman and J. J. Walsh, Acyclic decompositions of manifolds, Pa-
cific J. Math. 109 (1983), 291-303.
[E] R. D. Edwards, Topology of manifolds and cell-like maps, Proc. Internat.
Congr. Math. Helsinki (O. Lehto, ed.), pp. 111-127, Acad. Sci. Fennica, Hel-
sinki, 1980.
[FQ] M. Freedman and F. Quinn, The topology of 4-manifolds, Princeton Univ.
Press, Princeton, NJ, 1990.
{H] J. Howie, Aspherical and acyclic 2-complexes, J. London Math. Soc. (2)
20 (1979), 549-558.

(C2]

(C3]

[D2]

[D3]

(D4]

[DT2]

[DT3]

[DT4]

[DTS5]




416 R. J. DavErMAN & F. C. TINSLEY

[L] V. T. Liem, Manifolds accepting codimension-one sphere-like decomposi-
tions, Topology Appl. 21 (1985), 77-86.
LS} R. C. Lyndon and P. E. Schupp, Combinatorial Group Theory, Springer,
Berlin, 1977.
[Q] D. Quillen, Cohomology of groups, Actes Congres Int. Math., Tome 2, pp.
47-51, Gauthier-Villars, Paris, 1971.
[S] L. C. Siebenmann, On detecting open collars, Trans. Amer. Math. Soc. 142
(1969), 201-222.
[Sp]l E. H. Spanier, Algebraic Topology, McGraw-Hill, New York, 1966.
[T] F. C. Tinsley, Acyclic maps which are homotopic to homeomorphisms, Ab-
strct #838-57-31, Abstracts Amer. Math. Soc. 8 (1987), p. 426.

R. J. Daverman F. C. Tinsley
Department of Mathematics Department of Mathematics
University of Tennessee—Knoxville Colorado College

Knoxville, TN 37996-1300 Colorado Springs, CO 80903



